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S ince most social science research relies on multiple data sources, merging data sets is an essential
part of researchers’ workflow. Unfortunately, a unique identifier that unambiguously links
records is often unavailable, and data may contain missing and inaccurate information. These

problems are severe especially when merging large-scale administrative records. We develop a fast and
scalable algorithm to implement a canonical model of probabilistic record linkage that has many
advantages over deterministic methods frequently used by social scientists. The proposed methodology
efficiently handles millions of observations while accounting for missing data and measurement error,
incorporating auxiliary information, and adjusting for uncertainty about merging in post-merge
analyses. We conduct comprehensive simulation studies to evaluate the performance of our algo-
rithm in realistic scenarios. We also apply our methodology to merging campaign contribution records,
survey data, and nationwide voter files. An open-source software package is available for implementing
the proposed methodology.

INTRODUCTION

As the amount and diversity of available data sets
rapidly increase, social scientists often harness
multiple data sources to answer substantive

questions. Indeed,mergingdata sets, in particular large-
scale administrative records, is an essential part of
cutting-edge empirical research in many disciplines
(e.g., Ansolabehere and Hersh 2012; Einav and Levin
2014; Jutte, Roos, andBrowne 2011).Datamerging can
be consequential. For example, the American National
ElectionStudies (ANES)andCooperativeCongressional
Election Study (CCES) validate self-reported turnout by

merging their survey data with a nationwide voter file
where only the matched respondents are treated as reg-
istered voters. AlthoughAnsolabehere andHersh (2012)
advocate the use of such a validation procedure, Berent,
Krosnick, and Lupia (2016) argue that the discrepancy
between self-reported and validated turnout is due to the
failure of the merge procedure rather than social desir-
ability and nonresponse bias.

Merging data sets is straightforward if there exists a
unique identifier that unambiguously links records from
different data sets. Unfortunately, such a unique
identifier is often unavailable. Under these circum-
stances, some researchers have used a deterministic
algorithm to automate the merge process (e.g., Adena
et al. 2015; Ansolabehere and Hersh 2017; Berent,
Krosnick, and Lupia 2016; Bolsen, Ferraro, and
Miranda 2014; Cesarini et al. 2016; Figlio and Guryan
2014; Giraud-Carrier et al. 2015; Hill 2017; Meredith
and Morse 2014) whereas others have relied on a
proprietary algorithm (e.g., Ansolabehere and Hersh
2012;EngbomandMoser 2017; Figlio andGuryan2014;
Hersh 2015; Hill and Huber 2017; Richman, Chattha,
and Earnest 2014). However, these methods are not
robust to measurement error (e.g., misspelling) and
missing data, which are common to social science data.
Furthermore, deterministic merge methods cannot
quantify the uncertainty of the merging procedure and
instead typically rely on arbitrary thresholds to deter-
mine the degree of similarity sufficient for matches.1

Thismeans thatpost-mergedataanalyses fail to account
for the uncertainty of themerging procedure, yielding a
bias due to measurement error. These methodological

TedEnamorado, Ph.D. Candidate, Department of Politics, Princeton
University, tede@princeton.edu, http://www.tedenamorado.com.

Benjamin Fifield, Ph.D. Candidate, Department of Politics,
Princeton University, bfifield@princeton.edu, http://www.benfifield.
com.

Kosuke Imai , Professor, Department of Government and
Department of Statistics, Harvard University. imai@harvard.edu,
https://imai.fas.harvard.edu.

The proposed methodology is implemented through an open-
source R package, fastLink: Fast Probabilistic Record Linkage,
which is freely available for downloadat theComprehensiveRArchive
Network (CRAN; https://CRAN.R-project.org/package5fastLink).
WethankBruceWillsieofL2andSteffenWeissofYouGov fordataand
technical assistance, JakeBowers, SethHill, JohanLim,MarcRatkovic,
Mauricio Sadinle, five anonymous reviewers, and audiences at the 2017
Annual Meeting of the American Political Science Association,
Columbia University (Political Science), Fifth Asian Political Meth-
odologyMeeting,GakusyuinUniversity (Law),HongKongUniversity
ofScienceandTechnology, the Institute forQuantitativeSocial Science
(IQSS) at Harvard University, the Quantitative Social Science (QSS)
colloquiumatPrincetonUniversity,UniversidaddeChile (Economics),
Universidad del Desarrollo, Chile (Government), the 2017 Summer
Meeting of the Society for Political Methodology, the Center for Sta-
tistics and the Social Sciences (CSSS) at the University of Washington
for useful comments and suggestions. Replication materials can be
found on Dataverse at: https://doi.org/10.7910/DVN/YGUHTD.

Received: August 8, 2017; revised: May 13, 2018; accepted:
October 17, 2018. First published online: January 2, 2019.

1 These thresholds are highly dependent on data. For example,
Ansolabehere andHersh (2017) find that using three fields with exact
matches as the threshold works well for the Texas voter file, but the
same thresholdmay not work for other data. In contrast, probabilistic
methods can automatically weight observations.
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challenges are amplified especiallywhenmerging large-
scale administrative records.

We demonstrate that social scientists should use
probabilistic models rather than deterministic methods
when merging large data sets. Probabilistic models can
quantify the uncertainty inherent in many merge pro-
cedures, offering a principled way to calibrate and
account for false positives and false negatives.
Unfortunately, although there exists a well-known
statistics literature on probabilistic record linkage
(e.g., Harron, Goldstein, and Dibben 2015; Herzog,
Scheuren, and Winkler 2007; Winkler 2006b), the
current open-source implementation does not scale to
large data sets commonly used in today’s social science
research.Weaddress this challengeby developing a fast
and scalable implementation of the canonical proba-
bilistic record linkage model originally proposed by
Fellegi and Sunter (1969). Together with paralleliza-
tion, this algorithm, which we call fastLink, can be
used to merge data sets with millions of records in a
reasonableamountof timeusingone’s laptopcomputer.
Additionally, building on the previous methodological
literature (e.g., Lahiri and Larsen 2005), we show (1)
how to incorporate auxiliary information such as pop-
ulation name frequency and migration rates into the
merge procedure and (2) how to conduct post-merge
analyses while accounting for the uncertainty about the
merge process. We describe these methodological
developments in the following section.

We then describe the comprehensive simulation
studies to evaluate the robustness of fastLink to
several factors including the size of data sets, the pro-
portion of true matches, measurement error, and
missing data proportion andmechanisms.A total of 270
simulation settings consistently show that fastLink
significantly outperforms the deterministic methods.
Although the proposed methodology produces high-
quality matches in most situations, the lack of overlap
between two data sets often leads to large error rates,
suggesting that effective blocking is essential when the
expected number of matches is relatively small. Fur-
thermore, fastLink appears to perform at least as
well as recently proposed probabilistic approaches
(Sadinle 2017; Steorts 2015). Importantly, our merge
method is faster and scales to larger data sets than these
state-of-art methods.

Next, we present two empirical applications. First, we
revisit Hill and Huber (2017) who examine the ideo-
logical differences between donors and nondonors by
merging the CCES data of more than 50,000 survey
respondents,with thea campaign contributiondatabase
of over five million donor records (Bonica 2013). We
find that the matches identified by fastLink are at
least as high quality as those identified by the propri-
etary method, which was used by the original authors.
We also improve the original analysis by incorporating
the uncertainty of the merge process in the post-merge
analysis. We show that although the overall conclusion
remains unchanged, the magnitude of the estimated
effects is substantially smaller.

As the second application, we merge two nationwide
voter files of over 160 million voter records each,

representing one of the largest data merges ever con-
ducted in social science research.2Bymergingvoterfiles
over time, scholars can study the causes and con-
sequences of partisan residential segregation (e.g., Tam
Cho, Gimpel, and Hui 2013; Mummolo and Nall 2016)
and political analytics professionals can develop
effective microtargeting strategies (e.g., Hersh 2015).
We show how to incorporate available within-state and
across-statemigration rates in themerge process.Given
the enormous size of the data sets, we propose a two-
step procedure where we first conduct a within-state
merge for each state followedby across-statemerges for
every pair of states. The proposed methodology is able
to match about 95% of voters, which is about 30-
percentage points greater than the exact matching
method.Although it ismore difficult to find across-state
movers, we are able to find 20 times asmany such voters
than the existing matching method.

Finally, we give concluding remarks. We provide an
open-source R software package fastLink: Fast
Probabilistic Record Linkage, which is freely available at
theComprehensiveRArchiveNetwork (CRAN;https://
CRAN.R-project.org/package5fastLink) for imple-
menting our methodology so that other researchers can
effectively merge data sets in their own projects.

THE PROPOSED METHODOLOGY

In this section, we first introduce the canonical model of
probabilistic record linkage originally proposed by
Fellegi and Sunter (1969). We describe several
improvements we make to this model, including a fast
and scalable implementation, the use of auxiliary
information to inform parameter estimation, and the
incorporation of uncertainty about themerge process in
post-merge analyses.

The Setup

Suppose that we wish to merge two data sets, A and B,
which have sample sizes ofNA andNB, respectively.We
useK variables, which are common to both data sets, to
conduct the merge. We consider all possible pair-wise
comparisons between these two data sets. For each of
these NA3NB distinct pairs, we define an agreement
vector of lengthK, denotedbyg(i, j),whosekth element
gk(i, j) represents the discrete level of within-pair
similarity for the kth variable between the ith obser-
vation of data setA and the jth observationof data setB.
Specifically, if we have a total of Lk similarity levels for
the kth variable, then the corresponding element of the
agreement vector can be defined as,

2 AlthoughHersh(2015) conducteda large-scaledatamerge,herelied
on a proprietary algorithm. Others such as Ansolabehere and Hersh
(2017) and Tam Cho, Gimpel, and Hui (2013) match data sets of
severalmillionvoters each, but neitherof these studies approaches the
scale of our applications. Note that the US Census Bureau routinely
conducts large-scale data merges for decennial census (Winkler,
Yancey, and Porter 2010).
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gk i; jð Þ ¼

0 different
1
..
.

Lk � 2

9=
; similar

Lk � 1 identical

8>>><
>>>:

(1)

The proposed methodology allows for the existence of
missing data. We define a missingness vector of lengthK,
denoted by d(i, j), for each pair (i, j) where its kth element
dk(i, j)equals1 ifat leastonerecord in thepairhasamissing
value in the kth variable and is equal to 0 otherwise.

Table 1 presents an illustrative example of agreement
patterns based on two artificial data sets,A andB, each of
which has two records. In this example, we consider three
possible values of gk(i, j) for first name, last name, and
street name, i.e., Lk 5 3 (different, similar, nearly identi-
cal),whereas abinary variable is used for theotherfields, i.
e., Lk 5 2 (different, nearly identical). The former set of
variables requires a similarity measure and threshold
values. We use the Jaro–Winkler string distance (Jaro
1989;Winkler1990),which is a commonlyusedmeasure in
the literature (e.g.,Cohen,Ravikumar, andFienberg 2003;
Yancey 2005).3 Because the Jaro–Winkler distance is a
continuousmeasurewhose values range from0 (different)
to 1 (identical), we discretize it so that gk(i, j) takes an
integer value between 0 andLk2 1 as defined in equation
(1). Suppose thatweuse three levels (i.e., different, similar,
and nearly identical) based on the threshold values of 0.88
and 0.94 as recommended byWinkler (1990). Then, when
comparing the last names in Table 1, we find that, for
example, Smith and Smithson are similar (a Jaro–Winkler
distanceof 0.88)whereas SmithandMartinez aredifferent
(a Jaro–Winkler distance of 0.55).4

The above setup implies a total of NA3NB compar-
isons for each of K fields. Thus, the number of com-
parisons grows quickly as the size of data sets increases.
One solution is to use blocking and avoid comparisons
that should not be made. For example, we may make
comparisons within gender group only. While it is
appealing because of computational efficiency gains,
Winkler (2005) notes that blocking often involves ad
hoc decisions by researchers and faces difficulties when
variables have missing values and measurement error.
Here, we focus on the data merge within a block and
refer interested readers to Christen (2012) and Steorts
et al. (2014) for comprehensive reviews of blocking
techniques.5 We also note a related technique, called
filtering, which has the potential to overcome the
weaknesses of traditional blocking methods by dis-
cardingpairs that areunlikely tobematcheswhenfitting
a probabilistic model (Murray 2016).

The Canonical Model of Probabilistic
Record Linkage

The Model and Assumptions

We first describe the most commonly used probabilistic
model of record linkage (Fellegi andSunter 1969). Let a
latent mixing variable Mij indicate whether a pair of
records (the ith record in the data set A and the jth
record in the data set B) represents a match. Themodel
has the following simple finite mixture structure (e.g.,
Imai and Tingley 2012; McLaughlan and Peel 2000):

gk i; jð Þ jMij ¼ m ;
indep:

Discrete pkmð Þ; (2)

Mij ;
i:i:d:

Bernoulli lð Þ; (3)

TABLE 1. An Illustrative Example of Agreement Patterns.

Name Address

First Middle Last Date of birth House Street

Data set A
1 James V Smith 12-12-1927 780 Devereux St.
2 Robert NA Martines 01-15-1942 60 16th St.

Data set B
1 Michael F Martinez 02-03-1956 4 16th St.
2 James D Smithson 12-12-1927 780 Dvereuux St.

Agreement patterns
A:1� B:1 Different Different Different Different Different Different
A:1� B:2 Identical Different Similar Identical Identical Similar
A:2� B:1 Different NA Similar Different Different Identical
A:2� B:2 Different NA Different Different Different Different

The top panel of the table shows two artificial data sets, A and B, each of which has two records. The bottom panel shows the agreement
patterns for all possiblepairsof these records.Forexample, thesecond lineof theagreementpatternscompares thefirst recordof thedataset
Awith the second record of the data set B. These two records have an identical information for first name, date of birth, and house number;
similar information for lastnameandstreetname;anddifferent information formiddlename.Acomparison involvingat leastonemissingvalue
is indicated by NA.

3 Online Supplementary Information (SI) S1 describes how the
Jaro–Winkler string distance is calculated.
4 As shown in the subsectionComputational Efficiency andAppendix
A, the discretization of the distance measure leads to substantial
computational efficiency when making pairwise comparison for each
linkage field.

5 The parameters of record linkage models must be interpreted
separately for each block (Murray 2016).
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where pkm is a vector of length Lk, containing the
probability of each agreement level for the kth variable
given that the pair is a match (m 5 1) or a nonmatch
(m 5 0), and l represents the probability of a match
across all pairwise comparisons. Through pk0, the
model allows for the possibility that two records can
have identical values for some variables evenwhen they
do not represent a match.

This model is based on two key independence
assumptions. First, the latent variableMij is assumed to be
independently and identically distributed. Such an
assumption is necessarily violated if, for example, each
record in the data setA should be matched with no more
than one record in the data set B. In theory, this
assumptioncanberelaxed(e.g.,Sadinle2017)butdoingso
makes the estimation significantly more complex and
reduces its scalability (see Online SI S8). Later in the
paper,wediscuss how to impose such a constraintwithout
sacrificing computational efficiency. Second, the condi-
tional independence among linkage variables is assumed
given thematchstatus.Somestudiesfind that theviolation
of this assumption leads to unsatisfactory performance (e.
g., Belin andRubin 1995;Herzog, Scheuren, andWinkler
2010; Larsen andRubin 2001; Thibaudeau 1993;Winkler
andYancey 2006). InOnline SI S4, we show how to relax
the conditional independence assumption while keeping
our scalable implementation.

In the literature, researchers often treat missing data as
disagreements, i.e.,gk(i, j)5 0 ifdk(i, j)5 1(e.g.,Goldstein
and Harron 2015; Ong et al. 2014; Sariyar, Borg, and
Pommerening 2012). This procedure is problematic
because a true match can contain missing values. Other
imputation procedures also exist but none of them has a
theoretical justification or appears to perform well in
practice.6 To address this problem, following Sadinle
(2014, 2017), we assume that data are missing at random
(MAR) conditional on the latent variable Mij,

dk i; jð Þ?? gk i; jð Þ jMij;

for each i ¼ 1; 2; . . . ;NA, j ¼ 1; 2; . . . ;NB, and k 5 1,
2, …, K. Under this MAR assumption, we can simply
ignore missing data. The observed-data likelihood
function of themodel defined in equations (2) and (3) is
given by,

Lobs k; p j d; cð Þ}

∏
NA

i¼1
∏
NB

j¼1
�
1

m¼0
lm 1�lð Þ1�m∏

K

k¼1

∏
Lk�1

‘¼0
p
1fgkði;jÞ¼‘g
km‘

� �1�dk i;jð Þ( )
;

where pkm‘ represents the ‘th element of probability
vector pkm, i.e., pkm‘ ¼ Pr gk i; jð Þ ¼ ‘ jMij ¼ m

� �
.

Because the direct maximization of the observed-data
log-likelihood function is difficult, we estimate themodel
parameters using the Expectation-Maximization (EM)
algorithm (see Online SI S2).

The Uncertainty of the Merge Process

The advantage of probabilistic models is their ability to
quantify the uncertainty inherent in merging. Once the
model parameters are estimated, we can compute the
match probability for each pair using Bayes rule,7

nij ¼ Pr Mij ¼ 1 j d i; jð Þ; g i; jð Þ� �

¼
l∏K

k¼1 ∏Lk�1
‘¼0 p

1fgkði;jÞ¼‘g
k1‘

� �1�dk i;jð Þ

�1
m¼0l

m 1� lð Þ1�m∏K
k¼1 ∏Lk�1

‘¼0 p
1fgkði;jÞ¼‘g
km‘

� �1�dk i;jð Þ
:

(4)

In the subsection Post-merge Analysis, we show how
to incorporate this match probability into post-merge
regression analysis to account for the uncertainty of the
merge process.

Although in theory a post-merge analysis can use all
pairs with nonzero match probabilities, it is often more
convenient to determine a threshold S when creating a
merged data set. Such an approach is useful especially
when the data sets are large. Specifically, we call a pair
(i, j) amatch if thematchprobability nij exceedsS. There
is a clear trade-off in thechoiceof this thresholdvalue.A
largevalueofSwill ensure thatmostof the selectedpairs
are correct matches but may fail to identify many true
matches. In contrast, if we lower S too much, we will
select more pairs but many of them may be false
matches. Therefore, it is important to quantify the
degree of these matching errors in the merging process.

One advantage of probabilistic models over deter-
ministic methods is that we can estimate the false dis-
covery rate (FDR) and the false negative rate (FNR).
The FDR represents the proportion of false matches
among the selected pairs whose matching probability is
greater than or equal to the threshold. We estimate the
FDR using our model parameters as follows:

,Pr Mij ¼ 0 j nij $ S
� �

¼
�NA

i¼1�
NB
j¼11 nij $ S

n o
1� nij

� �
�NA

i¼1�
NB
j¼11 nij $ S

n o
(5)

whereas the FNR, which represents the proportion of
true matches that are not selected, is estimated as

Pr Mij ¼ 1 j nij , S
� �

¼
�NA

i¼1�
NB
j¼1nij1 nij,S

n o
lNANB

: (6)

Researchers typically select, at their own discretion,
the value of S such that the FDR is sufficiently small.
But, we also emphasize the FNR because a strict
threshold can lead to many false negatives.8 In our
simulations and empirical studies, we find that the

6 For example, although Goldstein and Harron (2015) suggest the
possibility of treating a comparison that involves a missing value as a
separate agreement value, but Sariyar, Borg, and Pommerening
(2012) find that this approach does not outperform the standard
method of treating missing values as disagreements.

7 This is known as the maximum a posteriori estimate.
8 A more principled solution to the threshold S selection problem
would require data for which the true matching status M(i, j) is
known—so that one can select the value of S to minimize the clas-
sification error. However, in record linkage problems, only in rare
occasions do labeled data sets exist. See Larsen and Rubin (2001),
Feigenbaum (2016), and Enamorado (2018) for approaches that
directly incorporate labeled data.
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results are not particularly sensitive to the choice of
threshold value, although in other applications,
scholars found ex-post adjustments are necessary for
obtaining good estimates of error rates (e.g., Belin and
Rubin 1995; Larsen and Rubin 2001; Murray 2016;
Thibaudeau 1993; Winkler 1993; Winkler 2006a).

In the merging process, for a given record in the data
setA, it is possible tofindmultiple records in the data set
B that have high match probabilities. In some cases,
multiple observations have an identical value of match
probability, i.e., nij ¼ nij0 with j „ j9. Following the lit-
erature (e.g., McVeigh and Murray 2017; Sadinle 2017;
Tancredi and Liseo 2011), we recommend that
researchers analyze all matched observations by
weighting them according to the matching probability
(see the subsectionPost-MergeAnalysis). If researchers
wish to enforce a constraint that each record in one data
set is only matched at most with one record in the other
data set, they may follow a procedure described in
Online SI S5.

Incorporating Auxiliary Information

Another advantage of the probabilistic model intro-
duced above is that we can incorporate auxiliary
information in parameter estimation. This point has not
been emphasized enough in the literature. Here, we
briefly discuss two adjustments using auxiliary
data—first, how to adjust for the fact that some names
are more common than others, and second, how to
incorporate aggregate information about migration.
More details can be found in Online SI S6.

Because some first names are more common than
others, they may be more likely to be false matches. To
adjust for this possibility without increasing the com-
putational burden, we formalize the conditions under
which the ex-post correction originally proposed by
Winkler (2000) is well-suited for this purpose. Briefly,
the probability of being a match will be up-weighted or
down-weighted given the true frequencies of different
first names (obtained, for instance, fromCensusdata)or
observed frequencies of each unique first name in the
data (see Online SI S6.3.1).

Furthermore, we may know a priori how many
matches we should find in two data sets because of the
knowledge and data on over-time migration. For
instance, the Internal Revenue Service (IRS) pub-
lishes detailed information on migration in the United
States from tax records (see https://www.irs.gov/uac/
soi-tax-stats-migration-data). An estimate of the share
of individuals who moved out of a state or who moved
in-state can be easily reformulated as a prior on rel-
evant parameters in the Fellegi–Sunter model and
incorporated into parameter estimation (seeOnline SI
S6.3.2).

Post-Merge Analysis

Finally, we discuss how to conduct a statistical analysis
once merging is complete. One advantage of proba-
bilistic models is that we can directly incorporate the
uncertainty inherent to themerging process in the post-

merge analysis. This is important because researchers
often use the merged variable either as the outcome or
as the explanatory variable in the post-merge analysis.
For example, when the ANES validates self-reported
turnout by merging the survey data with a nationwide
voter file, respondents who are unable to bemerged are
coded as nonregistered voters. Given the uncertainty
inherent to the merging process, it is possible that a
merging algorithm fails to find some respondents in the
voter file even though they are actually registered
voters. Similarly, we may incorrectly merge survey
respondents with other registered voters. These mis-
matches, if ignored, canadversely affect the propertiesof
post-match analyses (e.g., Neter, Maynes, and Ram-
anathan 1965; Scheuren and Winkler 1993).

Unfortunately, most of the record linkage literature
has focused on the linkage process itself without con-
sidering how to conduct subsequent statistical analyses
after merging data sets.9 Here, we build on a small
literatureaboutpost-merge regressionanalysis, thegoal
ofwhich is toeliminatepossiblebiasesdue to the linkage
process within the Fellegi–Sunter framework (e.g., Hof
andZwinderman 2012;Kim andChambers 2012; Lahiri
and Larsen 2005; Scheuren and Winkler 1993, 1997).
We also clarify the assumptions under which a valid
post-merge analysis can be conducted.

The Merged Variable as an Outcome Variable

Wefirst consider the scenario, inwhich researcherswish
to use the variable Z merged from the data set B as a
proxy for the outcome variable in a regression analysis.
We assume that this regression analysis is applied to all
observations of the data set A and uses a set of
explanatory variablesX taken from this data set. These
explanatory variables may or may not include the
variables used for merging. In the ANES application
mentioned above, for example, wemay be interested in
regressing the validated turnout measure merged from
the nationwide voter file on a variety of demographic
variables measured in the survey.

For each observation i in the data setA, we obtain the
mean of the merged variable, i.e., zi ¼ E Z�

i j g; d� �
where Z�

i represents the true value of the merged
variable. This quantity canbe computedas theweighted
average of the variable Z merged from the data set B
where the weights are proportional to the match
probabilities, i.e., zi ¼ �NB

j¼1nijZj=�NB
j¼1nij. In the ANES

application, for example, zi represents the probability of
turnout for survey respondent i in the data setA and can
be computed as theweighted average of turnout among
the registered voters in the voter file merged with
respondent i. If we use thresholding and one-to-one
match assignment so that each record in the data setA is
matched with at most one record in the data set B (see
the subsection The Canonical Model of Probabilistic

9 An important exception includes a fully Bayesian approach outside
of the Fellegi–Sunter framework, which we do not pursue here
because of its limited scalability (see Tancredi and Liseo 2011; Gut-
man, Afendulis, and Zaslavsky 2013; Gutman et al. 2016; Dalzell and
Reiter 2018).
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Record Linkage), then we compute the mean of the
merged variable as zi ¼ �NB

j¼1M
�
ijnijZj where M�

ij is a
binary variable indicating whether record i in the data
setA is matchedwith record j in the data setB subject to
the constraint �NB

j¼1M
�
ij#1.

Under this setting, we assume that the true value of
the outcome variable is independent of the explanatory
variables in the regression conditional on the infor-
mation used for merging, i.e.,

Z�
i ?? Xi j d; gð Þ; (7)

for each i ¼ 1; 2; . . . ;NA. The assumption implies that
themergingprocess isbasedonall relevant information.
Specifically,within an agreement pattern, the true value
of the merged variable Z�

i is not correlated with the
explanatory variables Xi. Under this assumption, the
law of iterated expectation implies that regressing zi on
Xi gives the results equivalent to the ones based on the
regression of Z�

i on Xi in expectation.

E Z�
i j Xi

� � ¼ E E Z�
i j c; d;Xi

� � j Xi
� 	 ¼ E zi j Xið Þ: (8)

The conditional independence assumption may be
violated if, for example, within the same agreement
pattern, a variable correlated with explanatory varia-
bles is associated with merging error. Without this
assumption, however, only the bounds can be identified
(CrossandManski2002).Thus, alternativeassumptions
such as parametric assumptions and exclusion restric-
tions are needed to achieve identification (see Ridder
and Moffitt 2007, for a review).

The Merged Variable as an Explanatory Variable

The second scenario we consider is the case where we
use the merged variable as an explanatory variable.
Suppose that we are interested in fitting the following
linear regression model:

Yi ¼ aþ bZ�
i þ h>Xi þ «i; (9)

where Yi is a scalar outcome variable and the strict
exogeneity is assumed, i.e., E «i j Z�;Xð Þ ¼ 0 for all i.
We follow the analysis strategy first proposed by Lahiri
and Larsen (2005) but clarify the assumptions required
for their approach to be valid (see also Hof and
Zwinderman 2012). Specifically, we maintain the
assumption of no omitted variable for merging given in
equation (7). Additionally, we assume that the merging
variables are independent of the outcome variable
conditional on the explanatory variables Z* andX, i.e.,

Yi ?? c; dð Þ j Z�;X: (10)

Under these two assumptions, we can consistently
estimate the coefficients by regressing Yi on zi and Xi,

E Yi j c; d;Xið Þ ¼ aþ bE Z�
i j c; d;Xi

� �þ h>Xi þ E «i j c; d;Xið Þ
¼ aþ bzi þ h>Xi;

(11)

where the secondequality follows from the assumptions
and the law of iterated expectation.

We generalize this strategy to the maximum like-
lihood (ML) estimation, which, to the best of our
knowledge, has not been considered in the literature

(but see Kim and Chambers (2012) for an estimating
equations approach),

Yi j Z�
i ;Xi ;

indep:
Pu Yi j Z�

i ;Xi
� �

; (12)

whereu is a vector ofmodel parameters. Toestimate the
parameters of this model, we maximize the following
weighted log-likelihood function:

ĥ ¼ argmax
u

�
NA

i¼1
�
NB

j¼1
n�ij logPu Yi j Z�

i ¼ Zj;Xi
� �

; (13)

where n�ij ¼ nij=�NB
j9¼1nij9. Online SI S7 shows that under

the two assumptions described earlier and mild regu-
larity conditions, the weighted ML estimator given in
equation (13) is consistent and asymptotically normal.
Note that becausewe are considering large data sets, we
ignore the uncertainty about n�ij.

SIMULATION STUDIES

We conduct a comprehensive set of simulation studies
to evaluate the statistical accuracy and computational
efficiency of our probabilistic modeling approach and
compare them with those of deterministic methods.
Specifically, we assess the ability of the proposed
methodology to control estimation error, false positives
and false negatives, and its robustness to missing values
and noise in the linkage fields, as well as the degree of
overlap between two data sets to be merged. We do so
by systematically varying the amount and structure of
missing data and measurement error.

The Setup

To make our simulation studies realistic, we use a data
set taken from the 2006 California voter file. Because
merging voter files is often done by blocking on gender,
we subset the data set to extract the information about
female voters only, reducing the number of observation
to approximately 17 million voters to 8.3 million
observations. To create a base data set for simulations,
we further subset the data set by removing all obser-
vations that have at least one missing value in the fol-
lowing variables: first name, middle initial, last name,
date of birth, registration date, address, zip code, and
turnout in the 2004 Presidential election. After listwise
deletion, we obtain the final data set of 341,160 voters,
from which we generate two data sets of various
characteristics to be merged. From this data set, we
independently and randomly select two subsamples to
be merged under a variety of scenarios.

We design our simulation studies by varying the
values of the five parameters as summarized below.
Online SI S9.1 describes in detail the precise setups of
these simulations.

1. Degree of overlap: Proportion of records in the smaller
data set that are also in the larger data set. We consider
three scenarios—20% (small), 50% (medium), and
80% (large).
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2. Size balance: Balance of sample sizes between the two
data sets to be merged. We consider three ratios—1:1
(equally sized), 1:10 (imbalanced), and 1:100 (lopsided).

3. Missing data: We consider five different mechanisms,
missing completely at random(MCAR),MAR, andnot
missing at random(NMAR).ForMARandNMAR,we
consider independent and dependent missingness
patterns across linkage fields.

4. Amount ofmissingdata: Proportionofmissing values in
each linkage variable other than year of birth. We
consider three scenarios—5% (small), 10% (medium),
and 15% (large).

5. Measurement error: Proportion of records (6%) for
which thefirst name, last name, and street name contain
a classical measurement error.

Together, we conduct a total of 135 (533 3 5) sim-
ulation studies wheremissing data are of main concern.
We also conduct another set of 135 simulations with
various types of nonclassicalmeasurement errors, while
keeping the amount of missing values fixed (see Online
SI S9.2).

Results

Figure 1 compares the performance of fastLink
(blue solid bars) to the two deterministic methods
often used by social scientists. The first is the merging

method based on exact matches (red shaded bars),
whereas the second is the recently proposed partial
match algorithm (ADGN; light green solid bars) that
considers two records as a match if at least three fields
of their address, date of birth, gender, and name are
identical (Ansolabehere and Hersh 2017). The top
panel ofFigure1presents theFNRwhereas thebottom
panel presents the absolute error for estimating the
2004 turnout rate.Wemerge two data sets of equal size
(100,000 records each) after introducing the classical
measurement error and themediumamount ofmissing
data as explained above. For fastLink, only pairs
with a match probability $0.85 are considered to be
matches, but the results remain qualitatively similar if
we change the threshold to 0.75 or 0.95.

We find that fastLink significantly outperforms
the two deterministic methods.10 Although all three
methods are designed to control the FDR, only
fastLink is able to keep the FNR low (less than five
percentage in all cases considered here). The deter-
ministic algorithms are not robust to missing data and
measurement error, yielding a FNR of much greater
magnitude. Additionally, we observe that the deter-
ministic methods yield a substantially greater estimation

FIGURE 1. Accuracy of Data Merge

Thetopandbottompanelspresent thefalsenegativerate(FNR)andtheabsoluteestimationerror (forestimatingtheturnout rate), respectively,when
merging datasets of 100,000 records each across with different levels of overlap (measured as a percentage of a data set). Three missing data
mechanismsarestudiedwith themissingdataproportionof10%foreachlinkagefieldother thanyearofbirth:missingcompletelyat random(MCAR),
missing at random (MAR), andmissing not at random (MNAR). Classical measurement error is introduced to several linkage fields. The proposed
probabilisticmethodology (fastLink; blue solidbars) significantlyoutperforms the twodeterministic algorithms, i.e., exactmatch (redshaded
bars) and partial match (ADGN; light green solid bars), across simulation settings.

10 In Online SI S8, we compare fastLink to the state-of-the-art
probabilistic methods and find that fastLink performs as well as
these methods.
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bias thanfastLinkunless thedataareMCAR.Under
the other two missing data mechanisms, the magni-
tude of the bias is substantially greater than that of
fastLink. Although fastLink has an absolute
estimation error of less than 1.5 percentage points even
under MNAR, the other two methods have an absolute
estimation error of more than 7.5 percentage points
under bothMAR andMNAR. Finally, the performance
of fastLink worsens as the size of overlap reduces
and the missing data mechanism becomes less random.

We next evaluate the accuracy of FDR and FNR
estimates in the top and bottom panels, respectively.
Because the deterministic methods do not give such
error estimates, we compare the performance of the
proposed methodology (indicated by blue solid circles)
with that of the same probabilistic modeling approach,
which treatsmissingvalues asdisagreements followinga
common practice in the literature (indicated by solid
triangles). Figure 2 presents the results of merging two
data sets of equal sizewhere themediumamount of data
are assumed to be MAR and some noise are added as
described earlier. In the top panel of the figure, we find
that the true FDR is low and its estimate is accurate
unless the degree of overlap is small. With a small
degree of overlap, both methods significantly under-
estimate the FDR. A similar finding is obtained for the

FNR in the bottom panel of the figure where estimated
FNR is biased upward.

One way to address the problem of having small
overlap would be to use blocking based on a set of fully
observed covariates. For example, in our simulations,
because the year of birth is observed for each record in
bothdata sets,weblock thedatabymakingcomparisons
only across individuals within a window of 61 year
around each birth year.11 Then, we apply fastLink
to each block separately. As shown in the right most
column of Figure 2, blocking significantly improves the
estimation accuracy for the FDR and FNR estimates as
well as their true values although the bias is not elim-
inated. The reason for this improvement is that tradi-
tional blocking increases the degree of overlap. For
example, in this simulation setting for each of the 94
blocks under consideration, the ratio of true matches to
all possible pairs is at least 83 1025, which is more than
15 times as large as the corresponding ratio for no
blockingand is comparable to thecaseofoverlapof50%.

We present the results of the remaining simulation
studies in the Online Simulation Appendix. Two major

FIGURE 2. Accuracy of FDR and FNR Estimates

The top panel compares the estimated FDR (x-axis) with its true value (y-axis) whereas the bottom panel compares the estimated FNR
against its true value. We consider the medium amount of missing data generated under MAR as a missingness mechanism and add
measurement error to some linkage fields. The blue solid circles represent the estimates based on fastLink whereas the black solid
triangles represent the estimates obtained by treating missing data as disagreements. The FDR and FNR estimates are accurate when the
overlap is high. Additionally, fastLink gives lower FDR and FNR than the same algorithm that treats missing values as a disagreement.
Note that in cases where the overlap is small (20%), blocking improves the precision of our estimates.

11 In Online SI S12, we also present results using a clustering method,
i.e., k-means, to group similar observations.
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patterns discussed above are also found under these other
simulation scenarios. First, regardless of the missing data
mechanisms and the amount of missing observations,
fastLink controls FDR, FNR, and estimation error
well. Second,agreaterdegreeofoverlapbetweendata sets
leads tobettermergingresults in termsofFDRandFNRas
well as the accuracy of their estimates. Blocking can
ameliorate these problems caused by small overlap to
some extent. These empirical patterns are consistently
found across simulations even when two data sets have
unequal sizes.

Computational Efficiency

We compare the computational performance of
fastLink with that of the RecordLinkage package
in R (Sariyar and Borg 2016) and the Record Linkage
package in Python (de Bruin 2017) in terms of running
time. The latter two are the only other open
source packages in R and Python that implement
a probabilistic model of record linkage under the Fell-
egi–Sunter framework. To mimic a standard computing
environment of applied researchers, all the calculations
are performed in aMacintosh laptop computerwith a 2.8
GHz Intel Core i7 processor and 8 GB of RAM.

Although fastLink takes advantage of a multi-
core machine via the OpenMP-based parallelization
(the other two packages do not have a parallelization
feature), we perform the comparison on a single-core
computing environment so that we can assess the
computational efficiency of our algorithm itself. Addi-
tionally,we include runtime resultswhereweparallelize
computation across eight cores. For all implementa-
tions, we set the convergence threshold to 1 3 1025.12

We consider the setup in which wemerge two data sets
of equal size with 50% overlap, 10% missing proportion
under MCAR, and no measurement error. Our linkage
variables are first name, middle initial, last name, house
number, streetname,andyearofbirth.Wevary the sizeof
each data set from 1,000 records to 300,000 observations.
As in the earlier simulations, each data set is based on the
sample of 341,160 female registered voters in California,
for whom we have complete information in each linkage
field. To build the agreement patterns, we use the Jar-
o–Winkler string distance with a cutoff of 0.94 for first
name, last name, and street name. For the remaining
fields, we only consider exact matches as agreements.

Figure 3 presents the results of this running time
comparison. We find that although all three packages
take a similar amount of time for data sets of 1,000
records, the running time increases exponentially for
the other packages in contrast to fastLink (black
solid triangles connected by a dashed line, single core;
blue solid circles connected by a solid line, eight cores),

which exhibits a near linear increase. When matching
data sets of 150,000 records each,fastLink takes less
than six hours to merge using a single core (under three
hourswhenparallelizedacrosseight cores). Incontrast, it
takes more than 24 hours for Record Linkage (Python;
solid purple squares connected by a dotted line), to
merge two data sets of only 20,000 observations each.
The performance is not as bad for Record Linkage (R;
red crosses connected by a dashed line), but it still takes
over six hours to merge data sets of 40,000 records each.
Moreover, an approximation based on an exponential
regression model suggests that Record Linkage (R)
would take around 22 hours to merge two data sets of
50,000 records each, while Record Linkage (Python)
wouldtakeabout900days toaccomplishthesamemerge.
In Online SI S3.1, we further decompose the runtime
comparison to provide more detail on the sources of our
computational improvements. We detail the choices we
make in the computational implementation that yields
these substantial efficiency gains in Appendix A.

EMPIRICAL APPLICATIONS

Inthis section,wepresent twoempiricalapplicationsof the
proposed methodology. First, we merge election survey
data (about 55,000 observations) with political con-
tributiondata(aboutfivemillionobservations).Themajor
challenge of this merge is the fact that the expected
number of matches between the two data sets is small.
Therefore,weutilizeblockingandconduct thedatamerge
within each block. The second application is tomerge two
nationwide voter files, each of which has more than 160
million records. Thismay, therefore, represent the largest
datamergeeverconducted in thesocial sciences.Weshow
how to use auxiliary information about within-state and
across-state migration rates to inform the match.

Merging Election Survey Data with Political
Contribution Data

Hill andHuber (2017) study differences between donors
and nondonors by merging the 2012 CCES survey with
the Database on Ideology, Money in Politics, and
Elections [DIME, Bonica (2013)]. The 2012 CCES is
based on a nationally representative sample of 54,535
individuals recruited from the voting-age population in
the United States. The DIME data, on the other hand,
provide the information about individual donations to
political campaigns. For the 2010 and 2012 elections, the
DIME contains over five million donors.

The original authors asked YouGov, the company
which conducted the survey, to merge the two data sets
using a proprietary algorithm. This yielded a total of
4,432 CCES respondents matched to a donor in the
DIME data. After the merge, Hill and Huber (2017)
treat each matched CCES respondent as a donor and
conduct various analyses by comparing these matched
respondents with those who are not matched with a
donor in the DIME data and hence are treated as
nondonors.Below,weapply theproposedmethodology
to merge these two data sets and conduct a post-merge

12 Starting values differ acrossmethods because othermethods donot
allow us to change their default starting values. However, the EM
algorithmconvergesquickly regardlessof the choiceof startingvalues.
In fact, it is well known that the bottleneck is a large number of
required comparisons (e.g., Christen 2012; Jaro 1972), for which we
use a hashing technique as described below in Appendix A.
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analysis by incorporating the uncertainty about the
merge process.

Merge Procedure

We use the name, address, and gender information to
merge the two data sets. To protect the anonymity of
CCES respondents, YouGov used fastLink to
merge the data sets onour behalf.Moreover, because of
contractual obligations, the merge was conducted only
for 51,184 YouGov panelists, which is a subset of the
2012CCESrespondents.Weblockbasedongender and
state of residence, resulting in 102 blocks (50 states plus
Washington DC 3 two gender categories). The size of
each block ranges from 175,861 (CCES5 49, DIME5
3,589) to 790,372,071 pairs (CCES 5 2,367, DIME 5
333,913) with the median value of 14,048,151 pairs
(CCES5 377, DIME5 37,263). Within each block, we
merge the data sets using the first name, middle initial,
last name, house number, street name, and postal code.
As done in the simulations, we use three levels of
agreement for the string-valued variables based on the
Jaro–Winkler distance with 0.85 and 0.92 as the
thresholds. For the remaining variables (i.e., middle
initial, house number, and postal code), we utilize a
binary comparison indicating whether they have an
identical value.

To construct our set of matched pairs between CCES
and DIME, first, we use the one-to-one matching
assignment algorithmdescribed inOnline SI S5andfind
the best match in the DIME data for each CCES
respondent. Then,wedeclare as amatch anypairwhose
matching probability is above a certain threshold. We
use three thresholds, i.e., 0.75, 0.85, and 0.95, and
examine the sensitivity of the empirical results to the

choice of threshold value.13 Finally, in the original study
of Hill and Huber (2017), noise is added to the amount
of contribution to protect the anonymity of matched
CCES respondents. However, we signed a non-
disclosure agreement with YouGov for our analysis so
that we can make a precise comparison between the
proposed methodology and the proprietary merge
method used by YouGov.

Merge Results

Table 2 presents the merge results. We begin by
assessing the match rates, which represent the pro-
portion of CCES respondents who are matched with
donors in theDIMEdata.Although thematch rates are
similar between the twomethods,fastLink appears
to find slightly more (less) matches for male (female)
respondents than the proprietary method regardless of
the threshold used. However, this does not mean that
bothmethodsfind identicalmatches. In fact, out of 4,797
matches identified by fastLink (using the threshold
of 0.85), the proprietarymethoddoesnot identify 861or
18% of them as matches.

As discussed in the subsection The Canonical Model
of Probabilistic Record Linkage, one important ad-
vantage of the probabilistic modeling approach is that
we can estimate the FDR and FNR, which are shown in
the table. Such error rates are not available for the

FIGURE 3. Running Time Comparison

Theplotpresents the resultsofmergingdatasetsofequal sizeusingdifferent implementationsof theFellegi-Suntermodel.Thedatasetswere
constructed from a sample of female registered voters in California. The amount of overlap between datasets is 50%, and, for each dataset,
there are 10%missing observations in each linkage variable: first name, middle initial, last name, house number, street name, and year of
birth. The missing data mechanism is Missing Completely at Random (MCAR). The computation is performed on a Macintosh laptop
computer with a 2.8GHz Intel Core i7 processor and 8GB of RAM. The proposed implementationfastLink (single-core runtime as black
solid triangles connected by a dashed line, and parallelized over eight cores as blue solid dots connected by a solid line) is significantly faster
than the other open-source packages.

13 In Online SI S10.3, instead of a one-to-one matching restriction
used here, we present the results of the weighted approach described
in the subsection The Uncertainty of the Merge Process. As shown in
Figure S7 of Online SI S10.3, there is no distinguishable difference in
the results obtained from either approach.
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proprietarymethod.As expected, the overall estimated
FDR is controlled to less than 1.5% for both male and
female respondents. The estimated FNR, on the other
hand, is large, illustrating the difficulty of finding some
donors. In particular, we find that female donors are
much more difficult to find than male donors.

Specifically, there are 12,803 CCES respondents
who said they made a campaign contribution during
the last 12 months before the 2012 election. Among
them, 5,206 respondents claimed to have donated at
least 200 dollars. Interestingly, both fastLink and
the proprietary method matched an essentially iden-
tical number of self-reported donors with a con-
tribution of over 200 dollars (2,431 and 2,434 or
approximately 47%, respectively), whereas among the
self-reported small donors both methods can only
match approximately 16% of them.

Next, we examine the quality of matches for the two
methods (see also Online SI S13). We begin by com-
paring the self-reported donation amount of matched
CCES respondents with their actual donation amount
recorded in the DIME data. Although only donations
greater than 200 dollars are recorded at the federal
level, theDIMEdata include somedonations of smaller
amounts, if not all, at the state level. Thus, although we
do not expect a perfect correlation between self-
reported and actual donation amount, under the
assumption that donors do not systematically under or
over report the amount of campaign contributions, a
high correlation between the two measures implies a
more accurate merging process.

The upper panel of Figure 4 presents the results
where for fastLink, we use one-to-one match with
the threshold of 0.85.14We find that for the respondents
who are matched by both methods, the correlation
between the self-reported and matched donation
amounts is reasonably high (0.73). In the case of
respondents who are matched by fastLink only, we
observe that the correlation is low (0.57) but is greater
than the correlation for those matches identified by the
proprietary method alone (0.42). We also examine the
distribution ofmatch probabilities for these three groups
of matches. The bottom panel of the figure presents the
results, which are consistent with the patterns of corre-
lation identified in the top panel. That is, those matches
identified by the two methods have the highest match
probability whereas most of the matches identified only
by the proprietary method have extremely low match
probabilities. In Online SI S13, we also examine the
quality of the agreement patterns separately for the
matches identified by both methods, fastLink only,
and the proprietary method only. Overall, our results
indicate that fastLink produces matches whose
quality is often better than that based on the proprietary
method.

TABLE 2. TheResults ofMerging the 2012CooperativeCongressional Election Study (CCES)with the
2010 and 2012 Database on Ideology, Money in Politics, and Elections (DIME) Data

fastLink Proprietary method

0.75 0.85 0.95

Number of matches All 4,948 4,797 4,576 4,534
Female 2,198 2,156 2,067 2,210
Male 2,750 2,641 2,524 2,324

Overlap between fastLink
and proprietary method

All 3,959 3,936 3,881
Female 1,877 1,866 1,844
Male 2,082 2,070 2,037

Match rate (%) All 9.67 9.37 8.94 8.85
Female 8.12 7.96 7.63 8.16
Male 11.40 10.95 10.40 9.64

FDR (%) All 1.24 0.65 0.21
Female 0.92 0.53 0.14
Male 1.50 0.75 0.28

FNR (%) All 15.25 17.35 20.81
Female 5.35 6.80 10.30
Male 21.83 24.36 27.79

The table presents the merging results for both fastLink and the proprietary method used by YouGov. The results of fastLink are
presented for one-to-one match with three different thresholds (i.e., 0.75, 0.85, 0.95) for the matching probability to declare a pair of
observations as a successful match. The number ofmatches, the amount of overlap, and the overall match rates are similar between the two
methods.The tablealsopresents informationon theestimated falsediscoveryand falsenegative rates (FDRandFNR, respectively)obtained
using fastLink. These statistics are not available for the proprietary method.

14 Figures S5 and S6 in Online SI S10 present the results under two
different thresholds: 0.75 and 0.95, respectively. The results under
those thresholds are similar to those with the threshold of 0.85 pre-
sented here.
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Post-Merge Analysis

An important advantage of the probabilistic modeling
approach is its ability to account for the uncertainty of
themerge process in post-merge analyses.We illustrate
this feature by revisiting the post-merge analysis of Hill
andHuber (2017).Theoriginal authors are interested in
the comparison of donors (defined as those who are
matchedwith records in theDIMEdata)andnondonors
(defined as those who are not matched) among CCES
respondents. Using the matches identified by a pro-
prietary method, Hill and Huber (2017) regress policy
ideology on the matching indicator variable, which is
interpreted as a donation indicator variable, the turnout
indicator variables for the 2012 general election and
2012 congressional primary elections, as well as several
demographic variables. Policy ideology, which ranges
from 21 (most liberal) to 1 (most conservative), is
constructed by applying a factor analysis to a series of
questions on various issues.15 The demographic control
variables include income, education, gender, household
union membership, race, age in decades, and impor-
tance of religion. The samemodel isfitted separately for
Democrats and Republicans.

To account for theuncertaintyof themergeprocess, as
explained in the subsection Post-Merge Analysis, we fit
the same linear regressionexcept thatweuse themeanof
the match indicator variable as the main explanatory
variable rather than thematch indicatorvariable.Table3
presents the estimated coefficients of the afore-
mentioned linear regression models with the corre-
sponding heteroskedasticity-robust standard errors in
parentheses. Generally, the results of our improved
analysis agreewith thoseof theoriginal analysis, showing
that donors tend to be more ideologically extreme than
nondonors.

Although the overall conclusion is similar, the esti-
mated coefficients are smaller in magnitude when
accounting for the uncertainty of merge process. In
particular, according to fastLink, for Republican
respondents, the estimated coefficient of being a donor
represents only 12% of the standard deviation of their
ideological positions (instead of 21% given by the
proprietary method). Indeed, the difference in the
estimated coefficients between fastLink and the
proprietary method is statistically significant for both
Republicans (0.035, s.e. 5 0.014), and Democrats
(20.015, s.e.5 0.007). Moreover, although the original
analysis find that the partisan mean ideological differ-
ence for donors (1.108, s.e. 5 0.018) is 31 percentage
larger than that for nondonors (0.848, s.e.5 0.001), the
results based onfastLink shows that this difference
is only 25 percentage larger for donors (1.058,

FIGURE 4. Comparison of fastLink and the Proprietary Method

The top panel compares the self-reported donations (y-axis) bymatched CCES respondents with their donation amount recorded in the DIME
data (x-axis) for the three different groups of observations: those declared as matches by both fastLink and the proprietary method (left),
those identified byfastLink only (middle), and thosematched by the proprietarymethod only (right). The bottompanel presents histograms
for the match probability for each group. For fastLink, we use one-to-one match with the threshold of 0.85.

15 They include gun control, climate change, immigration, abortion,
jobs versus the environment, same-sex marriage, affirmative action,
and fiscal policy.
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s.e. 5 0.018). Thus, although the proprietary method
suggests that the partisan gap for donors is similar to the
partisan gap for those with a college degree or higher
(1.100, s.e.5 0.036), fastLink shows that it is closer
to the partisan gap for those with just some college
education but without a degree (1.036, s.e. 5 0.035).

MergingTwoNationwideVoterFilesOverTime

Our second application is what might be the largest data
merging exercise ever conducted in social sciences.
Specifically, we merge the 2014 nationwide voter file to
the 2015 nationwide voter file, each of which has over
160millionrecords.ThedatasetsareprovidedbyL2, Inc.,
a leading national non-partisan firm and the oldest
organization in theUnited States that supplies voter data
and related technology to candidates, political parties,
pollsters,andconsultants foruse incampaigns. Inaddition
to thesheer sizeof thedatasets,merging thesenationwide
voter files is methodologically challenging because
some voters change their residence over time, making
addresses uninformative for matching these voters.

Merge Procedure

Whenmergingdata sets of this scale,wemust drastically
reduce the number of comparisons. In fact, if we
examine all possible pairwise comparisons between the
twovoterfiles, the total numberof suchpairs exceeds2.5
3 1016. It is also important to incorporate auxiliary
information aboutmovers because the address variable
is noninformative when matching these voters. We use
the IRS Statistics of Income (SOI) to calibrate match
rates for within-state and across-state movers. Details
on incorporating migration rates into parameter esti-
mation can be found in the subsection Incorporating
Auxiliary Information andOnline SI S6.2. The IRS SOI
data are definitive source of migration data in the
United States that tracks individual residences year-to-
year across all states through their tax returns.

We develop the following two-step procedure that
utilizes random sampling and blocking of voter records to
reduce the computational burden of the merge (see
OnlineSIS3.2andS6.2).Ourmerge isbasedonfirstname,

middle initial, lastname,housenumber, streetname,date/
year/month of birth, date/year/month of registration, and
gender.Thefirst stepuseseachof thesefields to informthe
merge, whereas the second step uses only first name,
middle initial, last name, date/year/month of birth, and
gender. For both first name and last name, we include a
partial match category based on the Jaro–Winkler string
distance calculation, setting the cutoff for a full match at
0.92 and for a partial match at 0.88.

As described in Online SI S6.2, we incorporate
auxiliary information into the model by moving from
the likelihood framework to a fully Bayesian approach.
Because of conjugacy of our priors, we can obtain the
estimated parameters by maximizing the log posterior
distributionvia theEMalgorithm.This approach allows
us to maintain the computational efficiency.16

Step 1:Matchingwithin-statemovers and nonmovers
for each state.

(a) Obtain a random sample of voter records from each
state file.

(b) Fit themodeltothissampleusingthewithin-statemigration
rates from the IRS data to specify prior parameters.

(c) Create blocks by first stratifying on gender and then
applying the k-means algorithm to the first name.

(d) Using the estimated model parameters, conduct the
data merge within each block.

Step 2: Matching across-state movers for each pair of
states.

(a) Set aside voters who are identified as successful
matches in Step 1.

(b) Obtain a random sample of voter records from each
state file as done in Step 1(a).

TABLE 3. Predicting Policy Ideology Using Contributor Status

Republicans Democrats

Original fastLink Original fastLink

Contributor 0.080*** 0.046*** 20.180*** 20.165***
(0.016) (0.015) (0.008) (0.009)

Turnout for 2012 general election 0.095*** 0.095*** 20.060*** 20.060***
(0.013) (0.013) (0.010) (0.010)

Turnout for 2012 primary election 0.094*** 0.095*** 20.019** 20.022***
(0.009) (0.009) (0.009) 0.009)

Demographic controls Yes Yes Yes Yes
Number of observations 17,386 17,386 20,925 20,925

The estimated coefficients from the linear regression of policy ideology score on the contributor indicator variable and a set of demographic
controls.Alongwith theoriginal analysis, the tablepresents the resultsof the improvedanalysisbasedonfastLink,whichaccounts for the
uncertainty of the merge process. *** p , 0.001, ** p , 0.01, * p , 0.05. Robust standard errors in parentheses.

16 Specifically,we setpriorparameters on theexpectedmatch rate and
expected within-state movers rate using the IRS data, giving 75%
weight to the prior estimate and 25% weight to the maximum like-
lihood estimate. For the first step, we set priors on bothpaddress,1,0 (the
probability of a voter’s address not matching conditional on being in
the matched set, which is equivalent to the share of in-state movers in
the matched set) and l. For the second step, we set a prior on l.
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(c) Fit the model using the across-state migration rates
from the IRS data to specify prior parameters.

(d) Create blocks by first stratifying on gender and then
applying the k-means algorithm to the first name as
done in Step 1(c).

(e) Using the estimated model parameters, conduct the
data merge within each block as done in Step 1(e).

In Step 1, we apply random sampling, rather than
blocking, strategy touse thewithin-statemigration rates
from the IRS data and fit the model to a representative
sample for each state. For the same reason, we use a
random sampling strategy in Step 2 to exploit the
availability of IRS across-state migration rates. We
obtain a random sample of 800,000 voter records for
files with over 800,000 voters and use the entire state file
for states with fewer than 800,000 voter records on file.
Online SI S11 shows through simulation studies that for
data setsas small as100,000records,a5%randomsample
leads to parameter estimates nearly indistinguishable
from those obtained using the full data set. Based on this
finding, we choose 800,000 records as the size of the
random samples, corresponding to a 5% of records from
California, the largest state in the United States.

Second, within each step, we conduct the merge by
creating blocks to reduce the number of pairs for consid-
eration. We block based on gender, first name, and state,
andwe select the number of blocks so that the average size
of each blocked data set is approximately 250,000 records.
To block by first name, we rank ordered the first names
alphabetically and ran the k-means algorithm on this
ranking in order to create clusters of maximally similar
names.17 Finally, the entire merge procedure is computa-
tionally intensive.Thereason is thatweneed to repeatStep
1foreachof50statesplusWashingtonDCandapplyStep2

toeachof1,275pairs.Thus,asexplainedinOnlineSIS2,we
useparallelizationwhenever possible.Allmergeswere run
on a Linux cluster with 16 2.4-GHz Broadwell 28-core
nodes with 128 GB of RAM per node.

Merge Results

Table 4 presents the overall match rate, FDR, and FNR
obtained from fastLink. We assess the performance
of the match at three separate matching probability
thresholds to declare a pair of observations a successful
match:0.75,0.85,and0.95.Wealsobreakout thematches
by within-state matches only and across-state matches
only. Across the three thresholds, the overall match rate
remains very high, at 93.04% under a 95% acceptance
threshold, although the estimatedFDRandFNRremain
controlledat0.03%and3.86%.All three thresholdsyield
match rates that are significant higher than the corre-
sponding match rates of the exact matching technique.

In Figure 5, we examine the quality of the merge
separately for the within-state merge (top panel) and
across-state merge (bottom panel). The first column
plots the distribution of the matching probability
across all potential match pairs. For both within-state
and across-state merge, we observe a clear separation
between the successful matches and unsuccessful
matches, with very few matches falling in the middle.
This suggests that the true and false matches are
identified reasonably well. In the second column, we
examine the distribution of the match rate by state.
Here, we see that most states are tightly clustered
between 88% and 96%.OnlyOhio, with a match rate of
85%, has a lowermatch rate. For the across-statemerge,
the match rate is clustered tightly between 0% and 5%.

In the third column, we plot the estimated FDR
against the estimated FNR for each state. For the
within-state merge, the FDR is controlled well—every
state other than Minnesota has an FDR below 0.1%.
Additionally, there are only two states, Mississippi and

TABLE 4. The Results of Merging the 2014 Nationwide Voter File with the 2015 Nationwide Voter File

fastLink

Exact0.75 0.85 0.95

Match count (millions) All 135.60 129.69 128.73 91.62
Within-state 127.38 127.12 126.80 91.36
Across-state 8.22 2.57 1.93 0.27

Match rate (%) All 97.25 93.67 93.04 66.24
Within-state 92.06 91.87 91.66 66.05
Across-state 5.19 1.80 1.38 0.19

FDR (%) All 1.02 0.10 0.03
Within-state 0.08 0.04 0.01
Across-state 0.95 0.06 0.02

FNR (%) All 3.35 3.63 3.86
Within-state 2.63 2.83 3.05
Across-state 0.72 0.80 0.81

This table presents the merging results for fastLink for three different thresholds (i.e., 0.75, 0.85, 0.95) for the matching probability to
declare a pair of observations a successful match. Across the different thresholds, the match rates do not change substantially and are
significantly greater than the corresponding match rates of the exact matching technique.

17 SeeOnline SI S14 for evidence that this blocking strategy performs
similarly to a blocking strategy based on age windowing.
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NewMexico, wherefastLink seems to have trouble
identifying true matches, as measured by the FNR. In
the across-statemerge, the FDR for every state is below
0.1%, suggesting that the resulting matches are of high
quality. Furthermore, fastLink appears to be
finding a high share of true movers across voter files, as
the FNR for all but three states falls under 2%.

Finally, we examine the across-state migration pat-
terns recovered from our matching procedure. Figure 6
displays a heatmap of the migration patterns obtained
fromfastLinkwith darker purple colors indicating a
higher match rate when merging the 2014 nationwide
voter file for a given state (origin state) to the 2015
nationwide voter file for a given state (destination state).
We uncover several regional migration patterns. First,
wefindamigration cluster inNewEngland,wherevoters
from New Hampshire and Rhode Island migrated to
Massachusetts between 2014 and 2015. Another strong
migration cluster exists between New Jersey, Delaware,
and Pennsylvania in the mid-Atlantic region. Both pat-
terns suggest thatmostmigrationoccursbetweenclusters
of adjacent states and urban centers. Finally, we find a
large volume of out migration to Florida from across the
United States, and the out migration is particularly

concentrated in states on the Eastern seaboard such as
Virginia,NewHampshire,NewJersey, andConnecticut.
This possibly reflects the flowof older voters and retirees
to the more temperate climate.

CONCLUDING REMARKS

With the advance of the Internet, the last two decades
havewitnessed a“data revolution” in the social sciences
where diverse and large data sets have become elec-
tronically available to researchers. Much of today’s
cutting-edge quantitative social science research results
from researchers’ creativity to link multiple data sets
that are collected separately. Inmany cases, however, a
unique identifier that canbeused tomergemultipledata
sources does not exist. Currently, most social scientists
rely on either deterministic or proprietary methods.
Yet, deterministic methods are not robust to meas-
urement errors and missing data, cannot quantify the
uncertainty inherent inmerge process, and often require
arbitrary decisions from researchers. Proprietary meth-
ods, many of which are also deterministic, lack trans-
parency and hence are not suitable for academic and

FIGURE 5. Graphical Diagnostics From Merging the 2014 Nationwide Voter File with the 2015
Nationwide Voter File

Thisfigurepresentsgraphicaldiagnostics forfastLink forwithin-statematches(toppanel)andacross-statematches (bottompanel).Thefirst
column plots the distribution of thematching probability across all patterns. The second column plots the distribution of the match rate for each
state. Lastly, the third column compares the FNR against the FDR for each state separately.
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policy research where reproducibility and transparency
play an essential role.

Here, we advocate the use of probabilistic modeling
to assist merging large-scale data sets. The main
advantage of probabilistic models is their ability to
estimate false positive and false negative rates that arise
when linking multiple data sets. We contribute to the
statistical literature of record linkage by developing a
fast and scalable implementation of the canonical
model. Through simulation and empirical studies, we
demonstrate that the proposed methodology can
quickly and reliably merge data sets even when they
have millions of records.

Like any methods, however, the proposed record
linkage technology has important limitations of which
researchers must be aware. Most importantly, the
proposed methodology is likely to have a difficult time
producing high-quality matches when the overlap
between two data sets is expected to be small. As shown
in our simulation studies, for these difficult merge
problems, effective blocking is essential. Blocking is
even more important when linking many data sets at
once. Other important research questions are how to
merge more than two files at the same time and how
to efficiently use a small amount of hand-coded data to

improve the quality of record linkage. We leave these
methodological challenges to future research.

Appendix A. COMPUTATIONALLY
EFFICIENT IMPLEMENTATION

In this appendix, we describe the details of our computa-
tionally efficient implementation of the canonical model of
probabilistic record linkage.

Reverse Data Structures for
Field Comparisons

The critical step in record linkage is to compare pairs of
records across theK fields used to link two data sets, which is
often regarded as the most expensive step in terms of
computational time (Christen 2012). To do so, for each
linkage field k, we first compare observation i of data set A
and j from data set B via a predefined distance metric (e.g.,
Jaro–Winkler for string-valued fields) and obtain a value
whichwe callSk(i, j).However, comparisons in the Fellegi–Sunter
model are represented in terms of a discrete agreement
level per linkage field, not a continuous measure of
agreement as the one implied by the distance metric. In
other words, we need a discrete representation of Sk(i, j).

FIGURE 6. Across-State Match Rates for the 2014 Nationwide Voter File to 2015 Nationwide Voter File
Merge

We plot the match rates from each across-state match pair as a heatmap, where darker colors indicate a higher match rate.
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Specifically, if we have a total ofLk agreement levels for the
kth variable, then,

gk i; jð Þ ¼
0 if Sk i; jð Þ # t0
1 if t0 , Sk i; jð Þ # t1

..

.

Lk � 1 if tLk�2 , Sk i; jð Þ # tLk�1

8>>><
>>>:

; (14)

where gk(i, j) represents the agreement level between the
values forvariablek for thepair (i, j) and s ¼ t0; t1; . . . ; tLk�1f g
the set of predetermined thresholds use to define the agree-
ment levels. For example, to compare names and last names,
some authors such as Winkler (1990) argue in favor of using
the Jaro–Winkler string distance to produce Sk, where one
could use t5 {0.88, 0.94} to construct gk for three agreement
levels.

Still the problem with constructing gk is that the number of
comparisons we have to make is often large. In our proposed
implementation we exploit the following characteristics of
typical record linkage problems in social sciences:

• The number of unique values observed in each linkage
field is often less than thenumberof observations in each
data set. For example, consider a variable such as first
name. Naively, one may compare the first name of each
observation in data setAwith that of every observation
in B. In practice, however, we can reduce the number of
comparisons by considering only unique first name that
appears in each data set. The same trick can be used for
all linkage fields by focusing on the comparison of the
unique values of each variable.

• For each comparison between two unique first names
(name1;A and name1;B), for example, we only keep the
indicesof theoriginal data sets andstore themusingwhat
is often referred as a reverse data structure in the lit-
erature (Christen 2012). In such an arrangement, a pair
of names (name1;A, name1;B) becomes a key with two
lists, one containing the indices fromdata setA that have
a first name equal to name1;A, and another list that does
the same for name1;B in data set B.

• Comparisons involving a missing value need not be made.
Instead, we only need to store the indices of the observa-
tions inA andB that containmissing information forfieldk.

• Because the agreement levels aremutually exclusive,we
use the lowest agreement level as the base category.
Once a set of threshold values has been defined, then a
pair of names can only be categorized in one of the Lk

agreement levels. The indices for the pairs of values that
can be categorized as disagreements (or nearly dis-
agreements) do not need to be stored. For most varia-
bles, disagreement is the category that encompasses the
largest number of pairs. Thus, our reverse data structure
lists become quite sparse. This sparsity can be exploited
by the use of sparse matrix, yielding a substantially
memory-efficient implementation.

Sparse Matrix Representation of Hash Tables
to Count Agreement Patterns

Next, we describe our computationally efficient imple-
mentation of the Fellegi–Sunter model via the EM algorithm

(see Online SI S2 for the exact algorithm we use). First, for
implementing the E step, notice that the match probability
given in equation (5) takes the same value for two pairs if their
agreement patterns are identical. For the sake of illustration,
consider a simple example where two variables are used for
merging, i.e., K5 2, and binary comparison is made for each
variable, i.e.,Lk52.Under this setting, therearea total ofnine
agreementpatterns: (0, 0), (0, 1), (1, 0), (1, 1), (NA,0), (NA,1),
(0, NA), (1, NA), and (NA, NA), where 1 and 0 represent
agreement and disagreement, respectively, whereas NA
represents a missing value. Then, for instance, the match
probability for (0, 1) is given by lp110p211/{lp110p211 1 (1 2
l)p100p201}whereas that for (1,NA) is equal tolp111/{lp1111
(1 2 l)p101}. If all comparison values are missing, e.g., (NA,
NA), then we set the match probability to l. Thus, the E step
can be implemented by computing the match probability for
each of the realized agreement patterns. Often, the total
number of realized agreement patterns is much smaller than
the number of all possible agreement patterns.

Second, the M step defined in equations (S1) and (S2)
requires the summation of match probabilities across all pairs
or their subset.Because this probability is identicalwithineach
agreement pattern, all we have to do is to count the total
number of pairs that have each agreement pattern. In other
words, the number of pairs per agreement pattern becomes
our sufficient statistic. We use the following hash function for
efficient counting:18

H ¼�
K

k¼1
Hk where

Hk ¼
h 1;1ð Þ
k h 1;2ð Þ

k . . . h 1;NBð Þ
k

..

. ..
. . .

. ..
.

h NA;1ð Þ
k h NA;2ð Þ

k . . . h NA;NBð Þ
k

2
664

3
775;

(15)

where h i;jð Þ
k ¼ 1 gk i; jð Þ > 0f g2gk i;jð Þþ1fk> 1g3Sk�1

e¼1 ðLe�1Þ. The
matrix Hk maps each pair of records to a corresponding
agreement pattern in the kth variable that is represented by a
uniquehash value basedon thepowers of 2. These hash values
are chosen such that the matrix H links each pair to the
corresponding agreement pattern across K variables.

Because an overwhelming majority of pairs do not agree
in any of the linkage fields, most elements of theHk matrix
are zero. As a result, the H matrix also has many zeros. In
our implementation, we utilize sparse matrices the lookup
time of which is O(P) where P is the number of unique
agreement patterns observed. In most applications, P is
much less than the total number of possible agreement
patterns, i.e.,∏K

k¼1Lk. This hashing technique is applicable
if the number of variables used for merge is moderate. If
many variables are used for the merge, approximate
hashing techniques such asminhashing and locally sensitive
hashing are necessary.

18 Since the work of Jaro (1972), the use of table-like objects to store
agreement patterns has been recognized as an important step to
improve computational efficiency. Our contribution goes beyond by
tying together, under a unified framework, reverse data structures and
novel use of a sparse matrix representation of a hash table to store
agreement patterns.
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SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit
https://doi.org/10.1017/S0003055418000783.

Replicationmaterials can be found onDataverse at: https://
doi.org/10.7910/DVN/YGUHTD.
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