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ESTIMATING TREATMENT EFFECT HETEROGENEITY IN
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When evaluating the efficacy of social programs and medical treatments
using randomized experiments, the estimated overall average causal effect
alone is often of limited value and the researchers must investigate when the
treatments do and do not work. Indeed, the estimation of treatment effect het-
erogeneity plays an essential role in (1) selecting the most effective treatment
from a large number of available treatments, (2) ascertaining subpopulations
for which a treatment is effective or harmful, (3) designing individualized op-
timal treatment regimes, (4) testing for the existence or lack of heterogeneous
treatment effects, and (5) generalizing causal effect estimates obtained from
an experimental sample to a target population. In this paper, we formulate the
estimation of heterogeneous treatment effects as a variable selection problem.
We propose a method that adapts the Support Vector Machine classifier by
placing separate sparsity constraints over the pre-treatment parameters and
causal heterogeneity parameters of interest. The proposed method is moti-
vated by and applied to two well-known randomized evaluation studies in
the social sciences. Our method selects the most effective voter mobilization
strategies from a large number of alternative strategies, and it also identifies
the characteristics of workers who greatly benefit from (or are negatively af-
fected by) a job training program. In our simulation studies, we find that the
proposed method often outperforms some commonly used alternatives.

1. Introduction and motivating applications. While the average treatment
effect can be easily estimated without bias in randomized experiments, treatment
effect heterogeneity plays an essential role in evaluating the efficacy of social pro-
grams and medical treatments. We define treatment effect heterogeneity as the
degree to which different treatments have differential causal effects on each unit.
For example, ascertaining subpopulations for which a treatment is most beneficial
(or harmful) is an important goal of many clinical trials. However, the most com-
monly used method, subgroup analysis, is often inappropriate and remains one
of the most debated practices in the medical research community [e.g., Lagakos
(2006), Rothwell (2005)]. Estimation of treatment effect heterogeneity is also im-
portant when (1) selecting the most effective treatment among a large number of
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available treatments, (2) designing optimal treatment regimes for each individual
or a group of individuals [e.g., Cai et al. (2011), Gunter, Zhu and Murphy (2011),
Imai and Strauss (2011), Manski (2004), Moodie, Platt and Kramer (2009), Pineau
et al. (2007), Qian and Murphy (2011)], (3) testing the existence or lack of hetero-
geneous treatment effects [e.g., Crump et al. (2008), Davison (1992), Gail and
Simon (1985)], and (4) generalizing causal effect estimates obtained from an ex-
perimental sample to a target population [e.g., Cole and Stuart (2010), Frangakis
(2009), Green and Kern (2010b), Hartman, Grieve and Sekhon (2010), Stuart et al.
(2011)]. In all of these cases, the researchers must infer how treatment effects vary
across individual units and/or how causal effects differ across various treatments.

Two well-known randomized evaluation studies in the social sciences serve as
the motivating applications of this paper. Earlier analyses of these data sets focused
upon the estimation of the overall average treatment effects and did not systemati-
cally explore treatment effect heterogeneity. First, we analyze the get-out-the-vote
(GOTV) field experiment where many different mobilization techniques were ran-
domly administered to registered New Haven voters in the 1998 election [Gerber
and Green (2000)]. The original experiment used an incomplete, unbalanced fac-
torial design, with the following four factors: a personal visit, 7 possible phone
messages, 0 to 3 mailings, and one of three appeals applied to visit and mailings
(civic duty, neighborhood solidarity, or a close election). The voters in the control
group did not receive any of these GOTV messages. Additional information on
each voter includes age, residence ward, whether registered for a majority party,
and whether the voter abstained or did not vote in the 1996 election. Here, our goal
is to identify a set of GOTV mobilization strategies that can best increase turnout.
Given the design, there exist 193 unique treatment combinations, and the number
of observations assigned to each treatment combination ranges dramatically, from
the minimum of 4 observations (visited in person, neighbor/civic-neighbor phone
appeal, two mailings, with a civic appeal) to the maximum of 2956 (being vis-
ited in person, with any appeal). The methodological challenge is to extract useful
information from such sparse data.

The second application is the evaluation of the national supported work (NSW)
program, which was conducted from 1975 to 1978 over 15 sites in the United
States. Disadvantaged workers who qualified for this job training program con-
sisted of welfare recipients, ex-addicts, young school dropouts, and ex-offenders.
We consider the binary outcome indicating whether the earnings increased after
the job training program (measured in 1978) compared to the earnings before the
program (measured in 1975). The pre-treatment covariates include the 1975 earn-
ings, age, years of education, race, marriage status, whether a worker has a college
degree, and whether the worker was unemployed before the program (measured in
1975). Our analysis considers two aspects of treatment effect heterogeneity. First,
we seek to identify the groups of workers for whom the training program is bene-
ficial. The program was administered to the heterogeneous group of workers and,
hence, it is of interest to investigate whether the treatment effect varies as a func-
tion of individual characteristics. Second, we show how to generalize the results
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based on this experiment to a target population. Such an analysis is important for
policy makers who wish to use experimental results to decide whether and how to
implement this program in a target population.

To address these methodological challenges, we formulate the estimation of
heterogeneous treatment effects as a variable selection problem [see also Gunter,
Zhu and Murphy (2011), Imai and Strauss (2011)]. We propose the Squared Loss
Support Vector Machine (L2-SVM) with separate LASSO constraints over the pre-
treatment and causal heterogeneity parameters (Section 2). The use of two separate
constraints ensures that variable selection is performed separately for variables
representing alternative treatments (in the case of the GOTV experiment) and/or
treatment-covariate interactions (in the case of the job training experiment). Not
only do these variables differ qualitatively from others, they often have relatively
weak predictive power. The proposed model avoids the ad-hoc variable selection
of existing procedures by achieving optimal classification and variable selection in
a single step [e.g., Gunter, Zhu and Murphy (2011), Imai and Strauss (2011)]. The
model also directly incorporates sampling weights into the estimation procedure,
which are useful when generalizing the causal effects estimates obtained from an
experimental sample to a target population.

To fit the proposed model with multiple regularization constraints, we develop
an estimation algorithm based on a generalized cross-validation (GCV) statistic.
When the derivation of an optimal treatment regime rather than the description
of treatment effect heterogeneity is of interest, we can replace the GCV statis-
tic with the average effect size of the optimal treatment rule [Imai and Strauss
(2011), Qian and Murphy (2011)]. The proposed methodology with the GCV
statistic does not require cross-validation and hence is more computationally ef-
ficient than the commonly used methods for estimation of treatment effect hetero-
geneity such as Boosting [Freund and Schapire (1999), LeBlanc and Kooperberg
(2010)], Bayesian additive regression trees (BART) [Chipman, George and Mc-
Culloch (2010), Green and Kern (2010a)], and other tree-based approaches [e.g.,
Imai and Strauss (2011), Kang et al. (2012), Lipkovich et al. (2011), Loh et al.
(2012), Su et al. (2009)]. While most similar to a Bayesian logistic regression with
noninformative prior [Gelman et al. (2008)], the proposed method uses LASSO
constraints to produce a parsimonious model.

To evaluate the empirical performance of the proposed method, we analyze the
aforementioned two randomized evaluation studies (Section 3). We find that per-
sonal visits are uniformly more effective than any other treatment method, while
sending three mailings with a civic duty message is the most effective treatment
without a visit. In addition, every mobilization strategy with a phone call, but
no personal visit, is estimated to have either a negative or negligible positive ef-
fect. For the job training study, we find that the program is most effective for
low-education, high income Non-Hispanics, unemployed blacks with some col-
lege, and unemployed Hispanics with some high school. In contrast, the program
would be least effective when administered to old, unemployed recipients, unmar-
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ried whites with a high school degree but no college, and high earning Hispanics
with no college.

Finally, we conduct simulation studies to compare the performance of the pro-
posed methodology with that of various alternative methods (Section 4). The pro-
posed method admits the possibility of no treatment effect and yields a low false
discovery rate, when compared to the nonsparse alternative methods that always
estimate some effects. Despite reductions in false discovery, the method remains
statistically powerful. We find that the proposed method has a comparable discov-
ery rate and competitive predictive properties to these commonly used alternatives.

2. The proposed methodology. In this section we describe the proposed
methodology by presenting the model and developing a computationally efficient
estimation algorithm to fit the model.

2.1. The framework. We describe our method within the potential outcomes
framework of causal inference. Consider a simple random sample of N units from
population P , with a possibly different target population of inference P ∗. For ex-
ample, the researchers and policy makers may wish to apply the GOTV mobiliza-
tion strategies and the job training program to a population, of which the study
sample is not representative. We consider a multi-valued treatment variable Ti ,
which takes one of (K + 1) values from T ≡ {0,1, . . . ,K} where Ti = 0 means
that unit i is assigned to the control condition. In the GOTV study, we have a to-
tal of 193 treatment combinations (K = 193), whereas the job training program
corresponds to a binary treatment variable (K = 1). The potential outcome under
treatment Ti = t is denoted by Yi(t), which has support Y . Thus, the observed
outcome is given by Yi = Yi(Ti) and we define the causal effect of treatment t for
unit i as Yi(t) − Yi(0).

Throughout, we assume that there is no interference among units, there is a
unique version of each treatment, each unit has nonzero probability of assign-
ment to each treatment level, and the treatment level is independent of the poten-
tial outcomes, possibly conditional on observed covariates [Rosenbaum and Ru-
bin (1983), Rubin (1990)]. Such assumptions are met in randomized experiments,
which are the focus of this paper. Under these assumptions, we can identify the
average treatment effect (ATE) for each treatment t , τ(t) = E(Yi(t) − Yi(0)). In
observational studies, additional difficulty arises due to the possible existence of
unmeasured confounders.

One commonly encountered problem related to treatment effect heterogeneity
requires selecting the most effective treatment from a large number of alternatives
using the causal effect estimates from a finite sample. That is, we wish to identify
the treatment condition t such that τ(t) is the largest, that is, t = arg maxt ′∈T τ(t ′).
We may also be interested in identifying a subset of the treatments whose ATEs
are positive. When the number of treatments K is large as in the GOTV study,
a simple strategy of subsetting the data and conducting a separate analysis for each
treatment suffers from the lack of power and multiple testing problems.
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Another common challenge addressed in this paper is identifying groups of
units for which a treatment is most beneficial (or most harmful), as in the job
training program study. Often, the number of available pre-treatment covariates,
Xi ∈ X , is large, but the heterogeneous treatment effects can be characterized par-
simoniously using a subset of these covariates, X̃i ∈ X̃ ⊂ X . This problem can be
understood as identifying a sparse representation of the conditional average treat-
ment effect (CATE), using only a subset of the covariates. We denote the CATE
for a unit with covariate profile x̃ as τ(t; x̃) = E(Yi(t) − Yi(0) | X̃i = x̃), which
can be estimated as the difference in predicted values under Ti = t and Ti = 0 with
X̃i = x̃. The sparsity in covariates greatly eases interpretation of this model.

We next turn to the description of the proposed model that combines optimal
classification and variable selection to estimate treatment effect heterogeneity. For
the remainder of the paper, we focus on the case of binary outcomes, that is,
Y = {0,1}. However, the proposed model and algorithm can be extended easily
to nonbinary outcomes by modifying the loss function. We choose to model bi-
nary outcomes with the L2-SVM to illustrate our proposed methodology because
it presents one of the most difficult cases for implementing two separate LASSO
constraints. As we discuss below, our method can be simplified when the outcome
is nonbinary (e.g., continuous, counts, multinomial, hazard) or the causal estimand
of interest is characterized on a log-odds scale (with a logistic loss). In particular,
readily available software can be adapted to handle these cases [Friedman, Hastie
and Tibshirani (2010)].

2.2. The model. In modeling treatment effect heterogeneity, we transform the
observed binary outcome to Y ∗

i = 2Yi − 1 ∈ {±1}. We then relate the estimated
outcome Ŷi ∈ {±1} and the estimated latent variable Ŵi ∈ �, as

Ŷi = sgn (Ŵi) where Ŵi = μ̂ + β̂�Zi + γ̂ �Vi,

Zi is an LZ dimensional vector of treatment effect heterogeneity variables, and
Vi is an LV dimensional vector containing the remaining covariates. For example,
when identifying the most efficacious treatment condition among many alternative
treatments, Zi would consist of K indicator variables (e.g., different combinations
of mobilization strategies), each of which is representing a different treatment con-
dition. In contrast, Vi would include pre-treatment variables to be adjusted (e.g.,
age, party registration, turnout history). Similarly, when identifying groups of units
most helped (or harmed) by a treatment, Zi would include variables representing
interactions between the treatment variable (e.g., the job training program) and
the pre-treatment covariates of interest (e.g., age, education, race, prior employ-
ment status and earnings). In this case, Vi would include all the main effects of the
pre-treatment covariates. Thus, we separate the causal heterogeneity variables of
interest from the rest of the variables. We do not impose any restriction between
main and interaction effects because some covariates may not predict the baseline
outcome but do predict treatment effect heterogeneity. Finally, we choose the linear
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model because it allows for easy interpretation of interaction terms. However, the
researchers may also use the logistic or other link function within our framework.

In estimating (β, γ ), we adapt the support vector machine (SVM) classifier
and place separate LASSO constraints over each set of coefficients [Bradley and
Mangasarian (1998), Tibshirani (1996), Vapnik (1995), Zhang (2006)]. Our model
differs from the standard model by allowing β and γ to have separate LASSO
constraints. The model is motivated by the qualitative difference between the two
parameters, and also by the fact that often causal heterogeneity variables have
weaker predictive power than other variables. Specifically, we formulate the SVM
as a penalized squared hinge-loss objective function (hereafter L2-SVM) where
the hinge-loss is defined as |x|+ ≡ max(x,0) [Wahba (2002)]. We focus on the
L2-SVM, rather than the L1-SVM, because it returns the standard difference-in-
means estimate for the treatment effect in the absence of pre-treatment covariates.

With two separate l1 constraints to generate sparsity in the covariates, our esti-
mates are given by

(β̂, γ̂ ) = arg min
(β,γ )

n∑
i=1

wi ·
∣∣1−Y ∗

i ·(μ+β�Zi +γ �Vi

)∣∣2++λZ

LZ∑
j=1

|βj |+λV

LV∑
j=1

|γj |,

where λZ and λV are pre-determined separate LASSO penalty parameters for β

and γ , respectively, and wi is an optional sampling weight, which may be used
when generalizing the results obtained from one sample to a target population.

Our objective function is similar to several existing LASSO variants but there
exist important differences. For example, the elastic net introduced by Zou and
Hastie (2005) places the same set of covariates under both a LASSO and ridge
constraint to help reduce mis-selections among correlated covariates. In addition,
the group LASSO introduced by Yuan and Lin (2006) groups different levels of the
same factor together so that all levels of a factor are selected without sacrificing
rotational invariance. In contrast, the proposed method places separate LASSO
constraints over the qualitatively distinct groups of variables.

2.3. Estimating heterogeneous treatment effects. The L2-SVM offers two dif-
ferent means to estimate heterogeneous treatment effects. First, we can predict
the potential outcomes Yi(t) directly from the fitted model and estimate the
conditional treatment effect (CTE) as the difference between the predicted out-
come under the treatment status t and that under the control condition, that is,
δ̂(t; X̃i) = 1

2(Ŷi(t) − Ŷi(0)). This quantity utilizes the fact that the L2-SVM is
an optimal classifier [Lin (2002), Zhang (2004)]. Second, we can also estimate
the CATE. To do this, we interpret the L2-SVM as a truncated linear probability
model over a subinterval of [0,1]. While it is known that the SVM does not return
explicit probability estimates [Lee, Lin and Wahba (2004), Lin (2002)], we follow
work that transforms the values Ŵi(t) to approximate the underlying probabil-
ity [Franc, Zien and Schölkopf (2011), Menon et al. (2012), Platt (1999), Sollich
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(2002)]. Specifically, let Ŵ ∗
i (t) denote the predicted value Ŵi(t) truncated at pos-

itive and negative one. We estimate the CATE as the difference in truncated values
of the predicted outcome variables, that is, τ̂ (t; X̃i) = 1

2(Ŵ ∗
i (t) − Ŵ ∗

i (0)). While
this CATE estimate is not precisely a difference in probabilities, the method pro-
vides a useful approximation and returns sensible results that comport with proba-
bilistic estimates of the CATE. With an estimated CATE for each covariate profile,
the CATE for any covariate profile can be estimated by simply aggregating these
estimates among corresponding observations.

2.4. The estimation algorithm. Our algorithm proceeds in three steps: the data
are rescaled, the model is fitted for a given value of (λZ,λV ), and each fit is eval-
uated using a generalized cross-validation statistic.

Rescaling the covariates. LASSO regularization requires rescaling covariates
[Tibshirani (1996)]. Following standard practice, we standardize all pre-treatment
main effects by centering them around the mean and dividing them by standard de-
viation. Higher-order terms are recomputed using these standardized variables. For
causal heterogeneity variables, we do not standardize them when they are indicator
variables representing different treatments. When they represent the interactions
between a treatment indicator variable and pre-treatment covariates, we interact the
(unstandardized) treatment indicator variable with the standardized pre-treatment
variables.

Fitting the model. The L2-SVM is fitted through a series of iterated LASSO fits,
based on the following two observations. First, we note that for a given outcome
Y ∗

i ∈ {±1}, |1 − Y ∗
i Ŵi |2+ = (Y ∗

i − Ŵi)
2 · 1{1 ≥ Y ∗

i Ŵi}. Thus, the SVM is a least
squares problem on a subset of the data. Second, for a given value of {λβ,λγ },
rescaling Z and V allows the objective function to be written as a LASSO problem,
with a tuning parameter of 1, as

n∑
i=1

wi · ∣∣Y ∗
i − (

μ + β̃�Z̃i + γ̃ �Ṽi

)∣∣2+ +
LZ∑
j=1

|β̃j | +
LV∑
j=1

|γ̃j |,

where β̃ = λβ · β , γ̃ = λγ · γ , Z̃i = Zi/λβ , and Ṽi = Vi/λγ .
This allows a fitting strategy via the efficient LASSO algorithm of Friedman,

Hastie and Tibshirani (2010). Specifically, each iteration of our algorithm con-
sists of fitting a model on the set of “active” observations A = {i : 1 ≥ Y ∗

i Ŵi}
and updating this set. We now describe the proposed algorithm in greater detail.
First, the values of tuning parameters are selected, λ = {λβ,λγ }. We then select
the initial values of the coefficients and fitted values as follows, (β̃(0), γ̃ (0)) = 0
and Ỹ

(0)
i = 0 for all i. This places all observations in the initial active set, so that

A(0) = {1, . . . , n}.
Next, for each iteration k = 1,2, . . . , let A(k) = {i : 1 ≥ YiŴ

(k−1)
i } denote the

set of active observations, and a(k) = |A(k)| represent the number of observations
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in this set. Define Z̃
(k)
i and Ṽ

(k)
i as the centered versions of Z̃i and Ṽi (around their

respective mean), respectively, using only the observations in the current active set
A(k). Similarly, we use Y

(k)
i to denote the centered value of Y ∗

i using only the
observations in A(k). Then, at each iteration k, the algorithm progresses in three
steps. We update the LASSO coefficients as(

β̃(k), γ̃ (k))
= arg min

(β̃,γ̃ )

{
1

a(k)

∑
i∈A(k)

(
Y

(k)
i − β̃�Z̃

(k)
i − γ̃ �Ṽ

(k)
i

)2 +
LZ∑
j=1

|β̃j | +
LV∑
j=1

|γ̃j |
}
.

The fitted value is updated as Ŵ
(k)
i = μ̂(k) + β̃(k)�Z̃i + γ̃ (k)�Ṽi where the intercept

is μ̂(k) = 1
a(k)

∑
i∈A(k)(Y ∗

i − β̃(k)�Z̃i − γ̃ (k)�Ṽi). These steps are repeated until
(β, γ ) converges.

Work concurrent to ours has developed an algorithm for the regularization path
of the L2-SVM [Yang and Zou (2012)]. Future work can combine our work and
that of Yang and Zou (2012) in order to estimate the whole “regularization surface”
implied by a model with two constraints.

Selecting the optimal values of the tuning parameters. We choose the optimal
values of the tuning parameters, {λZ,λV }, based on a generalized cross-validation
(GCV) statistic [Wahba (1990)], so that the model fit is balanced against model
dimensionality. The number of nonzero elements of |β̃|0 + |γ̃ |0 = l provides an
unbiased degree-of-freedom estimate for the LASSO [Zou, Hastie and Tibshirani
(2007)]. Our GCV statistic is defined over the observation in the active set A, as
follows:

V (λZ,λV ) = 1

n(1 − l/a)2

∑
i∈A

(
Y ∗

i − Ŵi

)2 = 1

n(1 − l/a)2

n∑
i=1

∣∣1 − Y ∗
i Ŵi

∣∣2+,

where the second equality follows from the fact that the observations outside of A
does not affect the model fit, that is, |1 − Y ∗

i Ŵi |2+ = 0 for i /∈ A.
Given this GCV statistic, we use an alternating line search to find the optimal

values of the tuning parameters. First, we fix λZ at a large value, for example, e10,
effectively setting all causal heterogeneity parameters to zero [Efron et al. (2004)].
Next, λV is evaluated along the set of widely spaced grids, for example, log(λV ) ∈
{−15,−14, . . . ,10}, with the value producing the smallest GCV statistic selected.
Given the current estimate of λV , λZ is evaluated along the set of widely spaced
grids, for example, log(λV ) ∈ {−15,−14, . . . ,10}, and the λV that produces the
smallest GCV statistic is selected. We alternate in a line search between the two
parameters to convergence. After convergence, the radius is decreased based on
these converged parameter values, and the precision is increased to the desired
level, for example, 10−4. The final estimates of coefficients are estimated given
the converged value of (λZ,λV ).

kimai
Inserted Text
1+
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The use of this GCV statistic is reasonable when exploring the degree to which
the treatment effects are heterogeneous. However, if the goal is to derive the opti-
mal treatment rule, the researchers may wish to directly target a particular measure
of the performance of the learned policy. For example, following Imai and Strauss
(2011) and Qian and Murphy (2011), we could use the largest average treatment
effect as the statistic (known as “value statistic”) for cross-validation. In addition
to its computational burden, one practical difficulty of cross-validation based on
the value statistic is that when the total number of causal heterogeneity variables
is large and the sample size is relatively small as in our applications, we may not
have many observations in the test sample that actually received the same treat-
ment as the one prescribed by the optimal treatment rule. In addition, the training
sample may have empty cells so that they do not predict treatment effects for some
individuals in the test set. This makes it difficult to apply this procedure in some
situations. The use of the GCV statistic is also computationally efficient as it avoids
cross-validation.

Comparing computation times across competitors is difficult, as they can
vary dramatically depending on the number of cross-validating folds (Boosting,
LASSO), iterations (Boosting), the number of MCMC draws and number of
trees (BART), and desired precision in estimating the tuning parameters (LASSO,
SVM). The general pattern from our simulations is that the computational time for
the proposed method is significantly greater than the Bayesian GLM, tree, and the
cross-validated logistic LASSO with a single constraint. It is comparable to BART
and significantly less than cross-validated boosting.

Finally, in a recent paper, Zhao et al. (2012) propose a method that is related to
ours. There are several important differences between the two methods. First, we
are primarily interested in feature selection using LASSO penalties, whereas Zhao
et al. focus on prediction using an l2 penalty. While we use a simple parametric
model with a large number of features, Zhao et al. place their method within a
nonparametric, reproducing kernel framework. In kernelizing the covariates, they
achieve better prediction but at the cost of difficulty in interpreting precisely which
features are driving the treatment rule. Second, we use two separate LASSO penal-
ties for causal heterogeneity variables and pre-treatment covariates, whereas Zhao
et al. do not make this distinction. Third, our tuning parameter is a GCV statistic,
which eliminates the computational burden of cross-validation as used by Zhao
et al.

3. Empirical applications. In this section we apply the proposed method to
two well-known field experiments in the social sciences.

3.1. Selecting the best get-out-the-vote mobilization strategies. First, we an-
alyze the get-out-the-vote (GOTV) field experiment where 69 mobilization tech-
niques were randomly administered to registered New Haven voters in the 1998
election [Gerber and Green (2000)]. It is known in the GOTV literature that there



452 K. IMAI AND M. RATKOVIC

is substantial interference among voters in the same household [Nickerson (2008)].
Thus, to avoid the problem of possible interference between voters, we focus on
14,774 voters in single voter households where 5269 voters of them belong to the
control group and hence did not receive any of these GOTV messages. Address-
ing this interference issue fully requires an alternative experimental design where
the treatment conditions correspond to different number of voters within the same
household who receive the GOTV message (our method is still applicable to the
data from this experimental design because it can handle multi-valued treatments).
For the purpose of illustration, we also ignore the implementation problems docu-
mented in Imai (2005) and analyze the most recent data set.

In our specification, the causal heterogeneity variables Zi include the binary
indicator variables of 192 treatment combinations, that is, KZ = 192. We include
a set of noncausal variables Vi , which consist of the main effect terms of four pre-
treatment covariates (age, member of a majority party, voted in 1996, abstained in
1996), their two-way interaction terms, and the square of the age variable, that is,
KV = 10.

Of the 192 possible treatment effect combinations, 15 effects are estimated as
nonzero (see Table 5 in Appendix). As these coefficients range from main effects
to four-way interactions, they are difficult to interpret. Instead, we present the es-
timated treatment effect for every treatment combination in Table 1. Some of our
results are consistent with the prior analysis. First, canvassing in person is the most
effective GOTV technique. This result can be obtained even from a simple use of
the difference-in-means estimator (estimated 2.69 percentage point with t-statistic
of 2.68). Second, every mobilization strategy that consists of a phone call and no
personal visit is estimated with a nonpositive sign, suggesting that the marginal
effect of a phone call is either zero or slightly negative. Most prominently, phone
messages with a neighborhood appeal or civic appeal decrease turnout.

The proposed method also yields finer findings than the existing analyses. For
example, since personal canvassing is expensive, campaigns may be interested in
the most effective treatment that does not include canvassing. We find that three
mailings with a civic responsibility message and no phone calls or personal visits
increase turnout marginally by 1.17 percentage point. This result is similar to the
one independently obtained in another study [Gerber, Green and Larimer (2008)].
Three mailings with other appeals produce smaller effects (1.17 and 0.04 percent-
age point increase, resp.).

Finally, the proposed method, upon considering all possible treatments, pro-
duces clear prescriptions. First, in the presence of canvassing, any additional treat-
ment (phone call, mailing) will lessen the canvassing’s effectiveness. If voters are
canvassed, they should not receive additional treatments. Second, if voters are not
canvassed, they should be targeted with three mailings with a civic duty appeal.
Any other treatment combination will be less cost-effective, and may even sup-
press turnout.
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TABLE 1
Estimated heterogeneous treatment effects for the New Haven get-out-the-vote experiment

Get-out-the-vote mobilization strategy

Visit Phone Mailings Appeal type Average effect

Yes No 0 Any 3.06
Yes No 3 Civic 2.64
Yes No 3 Close 2.31
Yes Civic, Close 0 Close, Neighbor 2.04
Yes No 1–2 Close 1.60
Yes No 3 Civic 1.50
Yes Civic, Close 1–3 Civic, Close 1.46
Yes None, Civic/Neighbor, Neighbor 1–2 Neighbor 1.46
Yes None, Civic 0,2 Civic, Neighbor 1.46
No No 3 Civic 1.17
No No 2 Civic 1.14
No Close 0,1,3 Close 0.81
Yes Civic/Blood, Neighbor, Neighbor/Civic 3 Civic, Neighbor 0.80
No Close 2 Close 0.74
No No 3 Close 0.70
Yes Civic/Blood, Civic 1–3 Civic 0.53
No No 3 Neighbor 0.04
Yes Civic/Blood 1–3 Civic −0.64
No Neighbor/Civic 3 Neighbor −0.65
No Civic/Blood 1,3 Civic −0.91
No Civic/Blood 2 Civic −0.99
No Civic/Blood, Civic 1,3 Civic −2.07
No No 2 Close −2.08
No Civic/Blood 2 Civic −2.14
No Civic, Civic/Blood, Neighbor 1 Civic, Neighbor −2.60
No Neighbor 2 Neighbor −2.67
No Neighbor 3 Neighbor −3.24
No Civic 0–1 Neighbor −3.49
No Civic 2 Neighbor −3.56
No Civic 3 Neighbor −4.12

Note: Results are presented in terms of percentage points increase or decrease relative to the baseline
of no treatment of any type administered. Every treatment combination consists of an assignment to
personal visit (Yes or No), phone call (Donate blood, civic appeal, civic appeal/donate blood, neigh-
borhood solidarity, civic appeal/neighborhood solidarity, close election), number of mailings (0–3)
and appeal type (neighborhood solidarity, civic appeal, close election). Personal visits are uniformly
more effective than any other treatment method, while sending three mailings with a Civic Responsi-
bility message is the most effective treatment with no visit. Every mobilization strategy with a phone
call, but no personal visit or mailings, is estimated with a nonpositive sign.

3.2. Identifying workers for whom job training is beneficial. Next, we apply
the proposed methodology to the national supported work (NSW) program. Our
analysis focuses upon the subset of these individuals previously used by other



454 K. IMAI AND M. RATKOVIC

researchers [Dehejia and Wahba (1999), LaLonde (1986)] where the (randomly
selected) treatment and control groups consist of 297 and 425 such workers, re-
spectively. We consider two aspects of treatment effect heterogeneity. First, we
seek to identify the groups of workers for whom the training program is beneficial.
The program was administered to a heterogeneous group of workers and, hence, it
is of interest to investigate whether the treatment effect varies as a function of indi-
vidual characteristics. Second, we show how to generalize the results based on this
experiment to a target population. Such an analysis is important for policy makers
who wish to use experimental results to decide whether and how to implement this
program in a target population.

For illustration, we generalize the experimental results to the 1978 panel study
of income dynamics (PSID), which oversamples low-income individuals. Within
this PSID sample, we focus on 253 workers who had been unemployed at some
point in the previous year to avoid severe extrapolation. This subsample is labeled
PSID-2 in Dehejia and Wahba (1999). The differences across the two samples are
substantial. The PSID respondents are on average older (36 vs. 24 years old) and
more likely to be married (74% vs. 16%) and have a college degree (50% vs.
22%) than NSW participants. The proportion of blacks in the PSID sample (40%)
is much less than in the NSW sample (80%). In addition, on average, PSID re-
spondents earned more income ($7600) than NSW participants ($3000). All differ-
ences, except for proportion Hispanic, are statistically significant at the 5% level.

In our model, the matrix of noncausal variables, V , consists of 45 pre-treatment
covariates. These include the main effects of age, years of education, and the log
of one plus 1975 earnings, as well as binary indicators for race, marriage sta-
tus, college degree, and whether the individual was unemployed in 1975. We also
use square terms for age and years of education, and every possible two-way in-
teractions among the pre-treatment covariates are included. The matrix of causal
heterogeneity variables Z includes the binary treatment and interactions between
this treatment variable and each of the 39 pre-treatment covariates. This yields
KZ = 45 and KV = 44.

Using this specification, we first fit the model to the NSW sample to identify
the subpopulations of workers for whom the job training program is beneficial.
Second, we generalize these results to the PSID sample and estimate the ATE
and CATE for these low-income workers. Unfortunately, sampling weights are
not available in the original data and, hence, for the purpose of illustration, we
construct them by fitting a BART model, using V as predictors [Hill (2011)]. We
then take the inverse estimated probability of being in the NSW sample as the
weights for the proposed method [Stuart et al. (2011)]. To facilitate comparison
between the unweighted and weighted models, we standardize the weights to have
a mean equal to one. A weight greater than one signifies an observation that is
weighted more highly in the PSID model than in the NSW model. This allows us
to assess the extent to which differences in identified heterogeneous effects reflect
underlying differences in the covariate distributions between the NSW and PSID
samples.
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After fitting the model to the unweighted and weighted NSW samples, the
CATE is estimated using the covariate value of each observation, that is, τ̂ (1,Xi).
The sample average of these CATEs yields an ATE estimate of 7.61 and 4.61 per-
centage points for the NSW and PSID samples, respectively. Nonzero coefficients
from the fitted models are shown in Table 6 of the Appendix. As with the previ-
ous example, interpreting high order interactions is difficult. Thus, we present the
groups of workers who are predicted to experience the ten highest and lowest treat-
ment effects of the job training program in the NSW (Table 2) and PSID sample
(Table 3). The groups most helped, and hurt, by the treatment were identified by
matching the observations in these tables to the nonzero coefficients.

Across both tables, unemployed Hispanics and highly educated, low-earning
non-Hispanics are predicted to benefit from the program. Similarly, workers who
were older and employed and whites with a high school degree are identified as
those who are negatively affected by the program. Weights marked with asterisks
in each table indicate heterogeneous effects that are not identified in the other
table. For example, unemployed Blacks with some college are identified as ben-
eficiaries only in Table 2, while married whites with no high school degree only
appear in Table 3. This difference is explained by the fact that unemployed blacks
with some college make up 2.7% of the NSW sample but only 0.4% of the PSID
sample. Similarly, married whites with no high school degree make up 15.8% of
the PSID sample and are identified in Table 3, but only make up 0.1% of the NSW
sample and are not identified in Table 2. Indeed, when generalizing the results to a
different population, large groups in that population are more likely to be selected
for heterogeneous treatment effects. Weighting allows us to efficiently estimate
heterogeneous treatment effects in a target population.

4. Simulation studies. In this section we conduct two simulation studies to
evaluate the performance of the proposed method relative to the commonly used
methods: BART (R package bayestree), Bayesian logistic regression with a
noninformative prior (R package arm), Conditional Inference Trees [Hothorn,
Hornik and Zeileis (2006); R package party], Boosting with the number of
iterations selected by cross-validation (as implemented in R package ada), and
logistic regression with a single LASSO constraint and cross-validation on the
“value” statistic [Qian and Murphy (2011); R package glmnet]. The first set of
simulations corresponds to the situation where the goal is to select a set of the
most effective treatments among many alternatives. The second set considers the
case where we wish to identify a subpopulation of units for which a treatment is
most effective. In both cases, we assume that the treatment Ti is independent of the
observed pre-treatment covariates Xi . The logistic LASSO method is only applied
to the second set of simulations for the reason mentioned in Section 2.4. Finally,
for each scenario, we examine 4 different sample sizes between 250 and 5000 and
run 1000 simulations.
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TABLE 2
Ten highest and lowest treatment effects of job training program based on the NSW Data

Groups most helped or hurt Average Highschool Earnings Unemp. PSID
by the treatment effect Age Educ. Race Married degree (1975) (1975) weights

Positive effects
Low education, Non-Hispanic 53 31 4 White No No 10,700 No 1.36

High Earning 50 31 4 Black No No 4020 No 0.97∗
40 28 15 Black No Yes 0 Yes 0.89∗

Unemployed, Black, 38 30 14 Black Yes Yes 0 Yes 1.28∗
Some College 37 22 16 Black No Yes 0 Yes 0.99∗

45 33 5 Hisp No No 0 Yes 0.89
39 50 10 Hisp No No 0 Yes 1.28∗

Unemployed, Hispanic 37 33 9 Hisp Yes No 0 Yes 1.13∗
37 28 11 Hisp Yes No 0 Yes 1.02∗
37 32 12 Hisp Yes Yes 0 Yes 1.80∗

Negative effects
Older Blacks, −17 43 10 Black No No 4130 No 1.15

No HS Degree −20 50 8 Black Yes No 5630 No 4.55

−17 29 12 White No Yes 12,200 No 1.45∗
Unmarried Whites, −17 31 13 White No Yes 5500 No 1.56

HS Degree −19 31 12 White No Yes 495 No 1.12
−19 31 12 White No Yes 2610 No 1.21

−20 36 12 Hisp No Yes 11,500 No 1.10∗
High earning Hispanic −21 34 11 Hisp No No 4640 No 0.89∗

−21 27 12 Hisp No Yes 24,300 No 0.95∗
−21 36 11 Hisp No No 3060 No 0.88∗

Note: Each row represents the estimated treatment effect given the characteristics of workers. The most effective treatment rule would target low-education,
high income Non-Hispanics; unemployed blacks with some college, and unemployed Hispanics. The treatment would be least effective when administered
to older, employed recipients; unmarried whites with a high school degree but no college; and high earning Hispanics with no college. The last column
represents the PSID weights, which are the inverse of the estimated probability of being in the NSW sample, standardized to have mean one. Weights
marked with an asterisk indicate the groups which are not identified as having highest or lowest treatment effects when generalizing the results to the
PSID sample (see Table 3 for those results).
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TABLE 3

Highest and lowest estimated treatment effects when generalizing the results to the PSID sample

Groups most helped or hurt Highschool Earnings Unemp. PSID
by the treatment Effect Age Educ. Race Married degree (1975) (1975) weights

Positive effects
86 22 10 White Yes No 23,000 No 2.14∗

Married Whites, 77 20 11 White Yes No 8160 No 1.87∗
No HS Degree 69 28 10 White Yes No 6350 No 1.64∗

60 26 8 White Yes No 36,900 No 1.61∗
75 20 12 White Yes Yes 8640 No 5.47∗

Married, Educated 50 25 14 Black Yes Yes 11,500 No 1.82∗
49 27 13 White Yes Yes 854 No 3.19∗
48 24 12 White Yes Yes 24,300 No 7.19∗

Unmarried, Uneducated 83 31 4 White No No 10,700 No 1.36
49 33 5 Hisp No No 0 Yes 0.89

Negative effects
−41 26 13 White No Yes 5400 No 1.44∗

Unmarried Whites, −44 29 12 White No Yes 12,200 No 1.45∗
HS Degree −44 31 12 White No Yes 495 No 1.12

−46 31 12 White No Yes 2610 No 1.21
−57 31 13 White No Yes 5500 No 1.56

−43 43 10 Black No No 4130 No 1.15
Older Blacks −43 42 9 Black Yes No 3060 No 1.60∗

Employed, No HS Degree −47 44 9 Black Yes No 10,900 No 2.61∗
−60 46 8 Black No No 2590 No 1.22∗

−100 50 8 Black Yes No 5630 No 4.55

Note: When administering the treatment in the PSID sample, the most effective treatment rule would target married whites with no high school degree;
married, educated non-Hispanics; and unmarried individuals with little education. The treatment will be least effective when administered to unmarried
whites with a high school degree; high-earning, older blacks with a high school degree. The last column represents the PSID weights, which are the
inverse of the estimated probability of being in the NSW sample, standardized to have a mean equal to one. Weights marked with an asterisk indicate the
groups which are not identified as having highest or lowest treatment effects when fit to the (unweighted) NSW sample (see Table 2 for those results).
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4.1. Identifying best treatments from a large number of alternatives. We con-
duct simulations for selecting a set of the best treatments among a large number of
available treatments. We use two settings, one with the correct model specification
and the other with misspecified models, where un-modeled nonlinear terms are
added to the data generating process. In the simulations with correct model spec-
ification, we have one control condition, 49 distinct treatment conditions, and 3
pre-treatment covariates. That is, Zi consists of 49 treatment indicator variables
and Vi is a vector of 3 pre-treatment covariates plus an intercept, that is, LZ = 49
and LV = 4. Among 49 treatments, 3 of them have substantive effects; the ATE
is approximately equal to 7, 5, and −3 percentage points, respectively. The re-
maining 46 treatment indicator variables have nonzero but negligible effects, with
the average effect sizes ranging within ±1 percentage point. In contrast, all pre-
treatment covariates are assumed to have substantial predictive power.

We independently sample the pre-treatment covariates from a multivariate nor-
mal distribution with mean zero and a randomly generated covariance matrix.
Specifically, an (LV × LV ) matrix, U = [uij ], was generated with uij ∼ N (0,1)

and the covariance matrix is given by U�U . The design matrix for the 49 treat-
ment variables is orthogonal and balanced. The true values of the coefficients are
set as β = {7.5,3.3,−2, . . .} and γ = {50,−30,30}, where . . . denotes 47 re-
maining coefficients drawn from a uniform distribution on [−0.7,0.7]. Finally,
the outcome variable Yi ∈ {−1,1} is sampled according to the following model;
Pr(Yi = 1 | Zi,Vi) = a(Z�

i β + V �
i γ + b) with {a, b} selected such that the mag-

nitude of the ATEs roughly equals the values specified above.
For the simulations with an incorrectly specified model, we include unmod-

eled nonlinear terms based on the pre-treatment covariates in the data generating
process. Specifically, Vi now includes the interaction term between the first and
second pre-treatment covariates and the square term of the third pre-treatment
covariate as well as the main effect term for each of the three covariates. These
higher-order terms are used to generate the data, but not included as covariates
in fitting any model. As before, the outcome variable is generated after an affine
transformation in order to keep the size of the ATEs approximately equal to the
pre-specified levels given above.

Figure 1 summarizes the results in terms of false discovery rate (FDR) and
discovery rate (DR) separately for the largest and substantive effects. We define
discovery as estimating the largest effect (three largest effects) as the largest effect
(nonzero effects) with the correct sign. Similarly, false discovery occurs when the
largest effect is not correctly discovered and at least one coefficient is estimated to
be nonzero. FDR may not equal one minus DR because the former is based only
on the simulations where at least one coefficient is estimated to be nonzero. The
first row presents FDR for the largest effect whereas the second row presents its
DR. Similarly, the third row plots the FDR for the three largest effects while the
fourth row presents their DR. Note that fewer than three nonzero effects may be
estimated.
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FIG. 1. False discovery rate (FDR) and discovery rate (DR) for selecting the best treatments among
a large number of available treatments. Simulation results with correct specification (left column)
and incorrect specification (right column) are shown. The figure compares the performance of the
proposed method (SVM; thick solid lines) to that of BART (BART; dashed lines), conditional inference
trees (Tree; dashed-dotted lines), Boosting (Boost; dotted lines), and Bayesian logistic regression
with a noninformative prior (GLM; solid lines). Here, discovery is defined as estimating the largest
effect (three largest effects) as the largest effect (nonzero effects) with the correct sign. The first and
second (third and fourth) rows present the FDR and DR for the largest effect (three largest effects),
respectively.
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The results show that across simulations the proposed method (SVM; solid lines)
has a smaller FDR while its DR is competitive with other methods. The compari-
son with BART reveals a key feature of our method. The proposed method domi-
nates BART in FDR regardless of model specification. The largest estimated effect
from BART identifies the largest effect slightly more frequently, but at the cost of
a higher FDR. Despite its low FDR, our method maintains a competitive DR. For
many methods, model misspecification increases FDR and reduces DR. For this
reason, we recommend erring in favor of including too many rather than too few
pre-treatment covariates in the model.

Unlike three of its competitors, Boosting, conditional inference trees, and
Bayesian GLM, the performance of the proposed method improves as the sam-
ple size increases. Boosting and trees both attain an FDR and DR of zero as the
sample size grows. The tree focuses in on the largest effects, not identifying any
small effects as the sample size grows. This may be due to the fact that trees do
not converge asymptotically to the true conditional mean function unless the un-
derlying function is piecewise constant (though they converge to the minimal risk)
[see, e.g., Breiman et al. (1984)]. The boosting algorithm uses trees as base learn-
ers, which may be leading to the deteriorating performance in identifying small
effects. The performance of Bayesian GLM also declines with increasing sample
size, because we are not considering uncertainty in the posterior mean estimates.
To address this issue, one must use some p-value based regularization, such as
using a p-value threshold of 0.10 (see Figure 2 in the next set of simulations for
illustration).

4.2. Identifying units for which a treatment is beneficial/harmful. In the sec-
ond set of simulations, we consider the problem of identifying groups of units for
which a treatment is beneficial (or harmful). Here, we are interested in identify-
ing interactions between a treatment and observed pre-treatment covariates. The
key difference between this simulation and the previous one is that in the cur-
rent setup causal heterogeneity variables (treatment-covariate interactions) may be
correlated with each other as well as other noncausal variables. The previous sim-
ulation setting assumes that causal heterogeneity variables (treatment indicators)
are independent of each other and other variables. In this simulation, we also in-
clude a comparison with the logistic regression with a single LASSO constraint
and the maximal ten-fold cross-validation on the “value” statistic [Qian and Mur-
phy (2011)]. This statistic is the expected benefit from a particular treatment rule
[see also Imai and Strauss (2011)]. Note that in the previous simulation, due to a
large number of treatments, cross-validation on this statistic is not feasible.

In the current simulation, we have a single treatment condition, that is, K = 1,
and 20 pre-treatment covariates Xi . The pre-treatment covariates are all based
on the multivariate normal distribution with mean zero and a random variance-
covariance matrix as in the previous simulation study, with five covariates then
discretized using 0.5 as a threshold. Causal heterogeneity variables Zi consist of
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FIG. 2. False discovery rate (FDR) and discovery rate (DR) for identifying units for which a treat-
ment is most effective (or harmful). The figure compares the performance of the proposed method
(SVM; solid lines) with the logistic LASSO (LASSO) and the Bayesian logistic regression based on a
noninformative prior (GLM; dashed and dotted lines). For Bayesian GLM, we examine the estimates
based on posterior means (dashed lines) and statistical significance (p-value less than 0.1). Here,
discovery is defined as estimating the largest effect (four largest effects) as the largest effect (nonzero
effects) with the correct sign. The top and bottom plots in the first (second) column present the FDR
and DR for the largest effect (three largest effects), respectively.

20 treatment-covariate interactions plus the main effect for the treatment indicator
(LZ = 21), while Vi is composed of the main effects for the pre-treatment covari-
ates (LV = 20).

Given this setup, we generate the outcome variable Yi in the same way as in Sec-
tion 4.1 according to the linear probability model. There are 4 pre-treatment covari-
ates that interact with the treatment in a systematic manner. As before, we apply
an affine transformation so that an observation whose values for these two covari-
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ates are one standard deviation above the mean has the CATE of roughly 4 and
1.7 percentage points. That is, we set β = {−2.7,2.7,−6.7,−6.7, . . .} and γ =
{50,−30,30,20,−20, . . .} where the . . . denotes uniform draws from [−0.7,0.7].

Figure 2 compares the FDR and DR for our proposed method (SVM; solid lines)
with those for the logistic LASSO (LASSO) and Bayesian logistic regression (GLM;
dotted and dashed lines). For the Bayesian GLM, we consider two rules: one based
on posterior means of coefficients (dashed lines) and the other selecting coeffi-
cients with p-values below 0.1 (dotted lines). Unlike the simulations given in Sec-
tion 4.1, neither BART, boosting, nor conditional inference trees provide a simple
rule for variable selection in this setting and hence no results are reported.

The interpretation of these plots is identical to that of the plots in Figure 1. In the
left column, the top (bottom) plot presents FDR (DR) for the largest effect, whereas
that of the right column presents FDR (DR) for the four largest effects. When
compared with the Bayesian GLM, the proposed method has a lower FDR for
both largest and four largest estimated effects. The p-value thresholding improves
the Bayesian GLM, and yet the proposed method maintains a much lower FDR and
comparable DR. Relative to the LASSO, the proposed method is not as effective
in considering the largest estimated effect except that it has a lower FDR when the
sample size is small. However, when considering the four largest estimated effects,
the proposed method maintains a lower FDR than the LASSO, and a comparable
DR. This result is consistent with the fact that the value statistic targets the largest
treatment effect while the GCV statistic corresponds to the overall fit.

To further evaluate our method, we consider a situation where each method is
applied to a sample and then used to generate a treatment rule for each individual
in another sample. For each method, a payoff, characterized by the net number
of people in the new sample who are assigned to treatment and are in fact helped
by the treatment, is calculated. To represent a budget constraint faced by most re-
searchers, we specify the total number of individuals who can receive the treatment
and vary this number within the simulation study.

Specifically, after fitting each model to an initial sample, we draw another sim-
ple random sample of 2000 observations from the same data generating process.
Using the result from each method, we calculate the predicted CATE for each
observation of the new sample, τ̂ (1; X̃i), and give the treatment to those with
highest predicted CATEs until the number of treated observations reaches the
pre-specified limit. Finally, a payoff of the form 1{τ̂ (1; X̃i) > 0} · sgn(τ (1;Xi))

is calculated for all treated observations of the new sample where τ(1;Xi) is
the true CATE. This produces a payoff of 0.5 if a treated observation is actu-
ally helped by the treatment, −0.5 if the observation is harmed, and 0 for un-
treated observations. As a baseline, we compare each method to the “oracle”
treatment rule, 1{τ(1;Xi) > 0} · sgn(τ (1;Xi)), which administers the treatment
only when helpful. We have also considered an alternative payoff of the form
1{τ̂ (1; X̃i) > 0} · τ(1;Xi), representing how much (rather than whether) the treat-
ment helps or harms. The results were qualitatively similar to those presented here.
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TABLE 4
Performance in payoff relative to the oracle

Sample size

Method 250 500 1000 5000

SVM −2 11 22 42
BART −19 −4 8 21
LASSO −18 2 15 28
GLM −20 −7 7 34
Boost −1 10 18 40
Tree 2 2 2 5
Treat everyone −123 −121 −121 −116

Note: The table presents a payoff for each method as a percentage of the optimal oracle rule, which
is considered as 100%. Each method is fit to a training set, and the treatment is administered to every
person in the validation set with a predicted improvement. The proposed method (SVM) narrowly
dominates Boosting (Boost), and both the proposed method and Boosting noticeably outperform
all other competitors, except conditional inference trees (Tree) at sample size 250. At larger sample
sizes the tree severely underfits. While the proposed method and Boosting perform similarly by a
predictive criterion, Boosting does not return an interpretable model. BART, GLM, and LASSO rep-
resent the Bayesian Additive Regression Tree, the logistic regression with a noninformative prior,
and the logistic regression with a single LASSO constraint and cross-validation on the value statistic.
The bottom row presents the outcome if every observation were treated, indicating that in this simu-
lation the average treatment effect is negative, but there exists a subgroup for which the treatment is
beneficial.

The results from the simulation are presented in Table 4. The table presents
a comparison of payoffs, by method, as a percentage of the optimal oracle rule,
which is considered as 100%. The bottom row presents the outcome if every ob-
servation were treated, indicating that in this simulation the average treatment ef-
fect is negative but there exists a subgroup for which treatment is beneficial. The
proposed method (SVM) narrowly dominates Boosting (Boost), and both the pro-
posed method and Boosting noticeably outperform all other competitors, except
conditional inference trees (Tree) at sample size 250. At larger sample sizes, how-
ever, the tree severely underfits. While the proposed method and Boosting perform
similarly by a predictive criterion, Boosting does not return an interpretable model.
We also find that SVM outperforms LASSO, which is consistent with the fact that
the GCV statistic targets the overall performance while the value statistic focuses
on the largest treatment effect. If administering the treatment is costless, the pro-
posed method generates the most beneficial treatment rule among its competitors.

Figure 3 presents the results across methods and sample sizes in the presence
of a budget constraint. The left column shows the proportion of treated units that
actually benefit from the treatment for each observation considered for the treat-
ment in the order of predicted CATE (the horizontal axis). The oracle identifies
those who certainly benefit from the treatment and treats them first. The middle
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FIG. 3. The relative performance of individualized treatment rules derived by each method. The fig-
ure presents the proportion of treated units (based on the treatment rule of each method) who benefit
from the treatment (left column), are harmed by the treatment (middle column), and the difference
between the two (right column) at each percentile of the total sample who can be assigned to the
treatment. The oracle (solid lines) treats each observation only when helpful and hence is identical
to the horizontal line at zero in the middle column. The proposed method (SVM; solid thick lines)
makes fewer mistreatments than other methods, while it is conservative in assigning observations to
the treatment.
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column shows the proportion of treated units that are hurt by the treatment. Here,
the oracle never hurts observations and hence is represented by the horizontal line
at zero. The right column presents the net benefit by treatment rule, which can
be calculated as the difference between the positive (left column) and negative
(middle column) effects. Each row presents a different sample size to which each
method is applied.

The figure shows that when the sample size is small, the proposed method as-
signs fewer observations a harmful treatment, relative to its competitors. For mod-
erate and large sample sizes, the proposed method dominates its competitors in
both identifying a group that would benefit from the treatment and avoiding treat-
ing those who would be hurt. This can be seen from the plots in the middle col-
umn where the result based on the proposed method (SVM; solid thick lines) stays
close to the horizontal zero line when compared to other methods. Similarly, in the
right column, the results based on the proposed method stay above other methods.
When these lines go below zero, it implies that a majority of treated observations
would be harmed by the treatment. The disadvantage of the proposed method is
its conservativeness. This can be seen in the left column where at the beginning of
the percentile the solid thick line is below its competitors for small sample sizes.
This difference vanishes as the sample size increases, with the proposed method
outperforming its competitors. In sum, when used to predict a treatment rule for
out-of-sample observations, the proposed method makes fewer harmful prescrip-
tions and often yields a larger net benefit than its competitors.

5. Concluding remarks. Estimation of heterogeneous treatment effects plays
an essential role in scientific research and policy making. In particular, researchers
often wish to select the most efficacious treatments from a large number of pos-
sible treatments and to identify individuals who benefit most (or are harmed) by
treatments. Estimation of treatment effect heterogeneity is also important when
generalizing experimental results to a target population of interest.

The key insight of this paper is to formulate the identification of heterogeneous
treatment effects as a variable selection problem. Within this framework, we de-
velop a Support Vector Machine with two separate sparsity constraints, one for a
set of treatment effect heterogeneity parameters of interest and the other for ob-
served pre-treatment effect parameters. This setup addresses the fact that in many
applications, pre-treatment covariates are much more powerful predictors than
treatment variables of interest or their interactions with covariates. In addition,
unlike the existing techniques such as Boosting and BART, the proposed method
yields a parsimonious model that is easy to interpret. Our simulation studies show
that the proposed method has low false discovery rates while maintaining com-
petitive discovery rates. The simulation study also shows that the use of our GCV
statistic is appropriate when exploring the treatment effect heterogeneity rather
than identifying the single optimal treatment rule.
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A number of extensions of the method developed in this paper are possible.
For example, we can accommodate other types of outcome variables by consid-
ering different loss functions. Instead of the GCV statistic we use, alternative cri-
teria such as AIC or BIC statistics as well as more targeted quantities such as
the average treatment effect for the target population can be employed. While
we use LASSO constraints, researchers may prefer alternative penalty functions
such as the SCAD or adaptive LASSO penalty. Furthermore, although not di-
rectly examined in this paper, the proposed method can be extended to the sit-
uation where the goal is to choose the best treatment for each individual from
multiple alternative treatments. Finally, it is of interest to consider how the pro-
posed method can be applied to observational data [e.g., see Zhang et al. (2012)
who develop a doubly robust estimator for optimal treatment regimes] and longi-
tudinal data settings where the derivation of optimal dynamic treatment regimes
is a frequent goal [e.g., Murphy (2003), Zhao et al. (2011)]. The development of
such methods helps applied researchers avoid the use of ad hoc subgroup anal-
ysis and identify treatment effect heterogeneity in a statistically principled man-
ner.

APPENDIX: ESTIMATED NONZERO COEFFICIENTS FOR EMPIRICAL
APPLICATIONS

TABLE 5
Nonzero coefficient estimates for the New Haven get-out-the-vote experiment

Treatment interactions

Visit Phone Mailings Message Coefficient

Yes Any 0–3 Any 1.50
No No 2 Neighborhood 1.25
Yes No 0 Any 1.04
No Close 0 Close 0.84
Any No 3 Any 0.72
Yes Any 0 Any 0.59
Any No 3 Civic 0.49
Yes No 0–3 Close 0.15
No Any 2 Any −0.08
Any Any 3 Civic −0.68
Any Civic 0–3 Civic −0.95
No No 2 Close −2.09
Any Civic/Blood 0–3 Civic −2.16
No Neighbor 0–3 Neighbor −2.72
No Civic 0–3 Neighbor −3.67

Note: Coefficients are presented on the percentage point scale. 13 of the 193 causal heterogeneity
parameters were estimated as nonzero (6.7%). The largest positive coefficients correspond with a
personal visit, while the largest negative effects correspond with receiving a civic or neighborhood
solidarity appeal via phone. These coefficients generate the predicted treatment effects in Table 1.
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TABLE 6
Nonzero coefficient estimates for the job training program data

NSW PSID

Treatment intercept 6.92 6.67
Main effects

Age 0.00 −0.83
Married 1.32 3.39
White 0.00 0.10

Squared terms
Age2 −0.03 −0.09
Education2 0.89 0.86

Interaction terms
No HS degree, Unemployed in 1975 −1.06 0.00
White, Married 0.00 26.16
White, No HS degree 25.35 30.65
Hispanic, Logged 1975 earnings −49.36 −62.15
Black, Logged 1975 earnings 8.29 0.00
White, Education 0.00 −1.41
Married, Education 4.90 12.11
Married, Logged 1975 earnings 0.00 5.72
Education, Unemployed in 1975 7.52 9.59
Age, Education 0.00 −0.47
Age, Black −0.56 0.00
Age, Hispanic 0.00 0.34
Age, Unemployed in 1975 3.30 4.79

Note: The table presents the estimates from the model fitted to the NSW Data without (left column)
and with the PSID weights (right column). Coefficients are rescaled to the percentage point scale.
The first row contains the estimated intercept, which corresponds to the estimated CATE for an
observation with characteristics set at the mean of all pre-treatment covariates.
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