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Traditionally in the social sciences, causal mediation analysis has been formulated, understood, and
implemented within the framework of linear structural equation models. We argue and demonstrate that
this is problematic for 3 reasons: the lack of a general definition of causal mediation effects independent
of a particular statistical model, the inability to specify the key identification assumption, and the
difficulty of extending the framework to nonlinear models. In this article, we propose an alternative
approach that overcomes these limitations. Our approach is general because it offers the definition,
identification, estimation, and sensitivity analysis of causal mediation effects without reference to any
specific statistical model. Further, our approach explicitly links these 4 elements closely together within
a single framework. As a result, the proposed framework can accommodate linear and nonlinear
relationships, parametric and nonparametric models, continuous and discrete mediators, and various
types of outcome variables. The general definition and identification result also allow us to develop
sensitivity analysis in the context of commonly used models, which enables applied researchers to
formally assess the robustness of their empirical conclusions to violations of the key assumption. We
illustrate our approach by applying it to the Job Search Intervention Study. We also offer easy-to-use
software that implements all our proposed methods.
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Causal inference is a central goal of social science research. In
this context, randomized experiments are typically seen as a gold
standard for the estimation of causal effects, and a number of
statistical methods have been developed to make adjustments for
methodological problems in both experimental and observational
settings. However, one common criticism of experimentation and
statistics is that they can provide only a black-box view of cau-
sality. The argument is that although the estimation of causal
effects allows researchers to examine whether a treatment causally
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affects an outcome, it cannot tell us how and why such an effect
arises. This is an important limitation because the identification of
causal mechanisms is required to test competing theoretical expla-
nations of the same causal effects. Causal mediation analysis plays
an essential role in potentially overcoming this limitation by help-
ing to identify intermediate variables (or mediators) that lie in the
causal pathway between the treatment and the outcome.
Traditionally, causal mediation analysis has been formulated,
understood, and implemented within the framework of linear struc-
tural equation modeling (LSEM; e.g., Baron & Kenny, 1986;
Hyman, 1955; James, Mulaik, & Brett, 1982; Judd & Kenny, 1981;
MacKinnon, 2008; MacKinnon & Dwyer, 1993). We argue and
demonstrate that this is problematic for two reasons. First, by
construction, the LSEM framework cannot offer a general defini-
tion of causal mediation effects that are applicable beyond specific
statistical models. This is because the key identification assump-
tion is stated in the context of a particular model, making it
difficult to separate the limitations of research design from those of
the specific statistical model." Second, the methods developed in
the LSEM framework are not generalizable to nonlinear models,

! By “identification,” we mean whether the causal mediation effects can
be consistently estimated. Thus, identification is a minimum requirement
for valid statistical inference and precedes the issue of statistical estima-
tion, which is about how to make inferences from a finite sample. See
below for the formal discussion in the context of causal mediation analysis
and Manski (2007) for a general discussion.



310 IMAI, KEELE, AND TINGLEY

including logit and probit models, for discrete mediators and
outcomes as well as non- or semiparametric models.

In this article, we propose a general approach that overcomes
these limitations. We use a single framework for the definition,
identification, estimation, and sensitivity analysis of causal medi-
ation effects without reference to any specific statistical model.
First, following the recently published work (e.g., Jo, 2008; Sobel,
2008), we place causal mediation analysis within the counterfac-
tual framework of causal inference and offer the formal definition
of causal mediation effects. This definition formalizes, indepen-
dent of any specific statistical models, the intuitive notion about
mediation held by applied researchers that the treatment indirectly
influences the outcome through the mediator.

Second, we slightly extend the result of Imai, Keele, and
Yamamoto (2010), who proved that under the sequential ignor-
ability assumption the average causal mediation effects are non-
parametrically identified (i.e., can be consistently estimated with-
out any functional form and distributional assumptions).
Sequential ignorability consists of two assumptions: (a) Condi-
tional on the observed pretreatment covariates, the treatment is
independent of all potential values of the outcome and mediating
variables, and (b) the observed mediator is independent of all
potential outcomes given the observed treatment and pretreatment
covariates. Such a nonparametric identification analysis is impor-
tant because it establishes a minimum set of assumptions required
for mediation effects to be interpreted as causal without respect to
statistical models used by researchers.

Third, using our nonparametric identification result, we develop
general estimation procedures for causal mediation effects that can
accommodate linear and nonlinear relationships, parametric and
nonparametric models, continuous and discrete mediators, and
various types of outcome variables. In the literature, some have
extended the LSEM framework to these settings (e.g., Li, Schnei-
der, & Bennett, 2007; MacKinnon, 2008; MacKinnon, Lockwood,
Brown, Wang, & Hoffman, 2007; Wang & Taylor, 2002). Our
approach encompasses many of the existing methods as special
cases, thereby accomplishing many of future statistical tasks iden-
tified in a recent review article by MacKinnon and Fairchild
(2009).

The last and yet perhaps most important contribution of our
proposed approach is a set of sensitivity analyses we develop for
statistical models commonly used by applied researchers. Sensi-
tivity analysis allows researchers to formally quantify the robust-
ness of their empirical conclusions to the potential violation of
sequential ignorability, which is the key and yet untestable as-
sumption needed for identification. The fundamental difficulty in
the causal mediation analysis is that there may exist unobserved
confounders that causally affect both the mediator and the outcome
even after conditioning on the observed treatment and pretreatment
covariates. Therefore, assessing the sensitivity of one’s empirical
findings to the possible existence of such confounders is required
in order to evaluate the validity of any mediation study. In the
LSEM framework, Imai, Keele, and Yamamoto (2010) proposed a
straightforward way to check how severe the violation of the key
identifying assumption would need to be for the original conclu-
sions to be reversed. We generalize this sensitivity analysis so that
it can be applied to other settings.

Because our approach is developed without any reference to a
particular statistical model, it is applicable across a wide range of

situations. In this article, we illustrate its applicability using a
variety of cross-section settings. Our general approach also al-
lowed us to develop the easy-to-use software, mediation, which is
freely available as an R package (R Development Core Team,
2009) at the Comprehensive R Archive Network.? All the analyses
presented in this article are conducted with this software. The
details about the software implementation and its usage are given
in a companion article (Imai, Keele, Tingley, & Yamamoto,
2010a). Future research should address the application of our
approach to the panel data settings (e.g., Cole & Maxwell, 2003;
MacKinnon, 2008, Chapter 8), and multiple (e.g., MacKinnon,
2000; Preacher & Hayes, 2008) and multilevel (e.g., Krull &
MacKinnon, 1999) mediators, all of which are beyond the scope of
the current article.

A Running Example: The Job Search Intervention
Study (JOBS 1I)

To motivate the concepts and methods that we present, we rely
on an example from the psychology literature on mediation and
use the JOBS 1I for our illustration. JOBS II is a randomized field
experiment that investigates the efficacy of a job training interven-
tion on unemployed workers. The program is designed not only to
increase reemployment among the unemployed but also to enhance
the mental health of the job seekers. In the experiment, 1,801
unemployed workers received a prescreening questionnaire and
were then randomly assigned to treatment and control groups.
Those in the treatment group participated in job skills workshops
in which participants learned job search skills and coping strate-
gies for dealing with setbacks in the job search process. Those in
the control condition received a booklet describing job search tips.
In follow-up interviews, two key outcome variables were mea-
sured: a continuous measure of depressive symptoms based on the
Hopkins Symptom Checklist and a binary variable, representing
whether the respondent had become employed.

Researchers who originally analyzed this experiment hypothe-
sized that workshop attendance leads to better mental health and
employment outcomes by enhancing participants’ confidence in
their ability to search for a job (Vinokur, Price, & Schul, 1995;
Vinokur & Schul, 1997). In the JOBS II data, a continuous
measure of job search self-efficacy represents this key mediating
variable. The data also include baseline covariates measured be-
fore administering the treatment. The most important of these is
the pretreatment level of depression, which is measured with the
same methods as the continuous outcome variable. There are also
several other covariates that are included in our analysis (as well as
in the original analysis) to strengthen the validity of the key
identifying assumption of causal mediation analysis. They include
measures of education, income, race, marital status, age, sex,
previous occupation, and the level of economic hardship.

Statistical Framework for Causal Mediation Analysis

In this section, we describe the counterfactual framework of
causal inference, which is widely used in the statistical literature

2 The web address is http://cran.r-project.org/web/packages/mediation.



CAUSAL MEDIATION ANALYSIS 311

(e.g., Holland, 1986) and is beginning to gain acceptance in
psychology (e.g., Jo, 2008; Little & Yau, 1998; MacKinnon, 2008,
Chapter 13; Schafer & Kang, 2008). Following prior work (e.g.,
Imai, Keele, & Yamamoto, 2010; Pearl, 2001; Robins & Green-
land, 1992), we define causal mediation effects using the potential
outcomes notation. We then review the key result of Imai, Keele,
and Yamamoto (2010) and show a minimum set of the conditions
under which the product of coefficients method (MacKinnon,
Lockwood, Hoffman, West, & Sheets, 2002) and its variants yield
valid estimates of causal mediation effects. Finally, we briefly
explain how our approach differs from the existing approach based
on the instrumental variable methods of Angrist, Imbens, and
Rubin (1996). As we noted earlier, the strength of this framework
is that it helps to clarify the assumptions needed for causal medi-
ation effects without reference to specific statistical models.

The Counterfactual Framework

In the counterfactual framework of causal inference, the causal
effect of the job training program for each worker can be defined
as the difference between two potential outcomes: one that would
be realized if the worker participates in the job training program
and the other that would be realized if the worker does not
participate. Suppose that we use 7; to represent the binary treat-
ment variable, which is equal to 1 if worker i participated in the
program and to O otherwise (see later sections for an extension to
nonbinary treatment). Then, we can use Y,() to denote the poten-
tial employment status that would result under the treatment status
t. For example, Y,(1) measures worker i’s employment status if the
worker participates in the job training program. Although there are
two such potential values for each worker, only one of them is
observed; for example, if worker i actually did not participate in
the program, then only Y,(0) is observed. Thus, if we use Y, to
denote the observed value of employment status, then we have
Y, = YT, for all i.

Given this setup, the causal effect of the job training program on
worker i’s employment status can be defined as Y, (1) — Y,(0).
Because only either Y,(1) or Y,(0) is observable, even randomized
experiments cannot identify this unit-level causal effect. Thus,
researchers often focus on the identification and estimation of the
average causal effect, which is defined as E(Y(1) — Y;(0)), where
the expectation is taken with respect to the random sampling of
units from a target population. If the treatment is randomized as
done in JOBS II, then 7; is statistically independent of potential
outcomes; formally, we write (Y,(1), Y;(0)) ILT,. When this is true,
the average causal effect can be identified by the observed mean
difference between the treatment and control groups, E(Y;(1) —
Y(0) = EY, ()| T, = 1) = E¥(0) | T, = 0) = E(Y, | T, = 1) —
E(Y,| T, = 0), which is the familiar result that the difference-in-
means estimator is unbiased for the average causal effect in ran-
domized experiments.

Finally, we note that the above notation implicitly assumes no
interference between units. In the current context, this means, for
example, that worker i’s employment status is not influenced by
whether another worker j participates in the training program. This
assumption is apparent from the fact that the potential values of Y;
are written as a function of 7}, which does not depend on 7 for i #
Jj. The assumption is best addressed through research design. For
example, analysts would want to ensure that participants in the

experiment were not from the same household. The analyses that
follow were conducted under this assumption, and the extension of
our approach to the situation where the assumption is violated is
left for future research.

Defining Causal Mediation Effects

In the statistics literature, the counterfactual framework and
notation have been extended to define causal mediation effects. We
relate this notation to the quantities of interest in the JOBS II study.
For example, suppose we are interested in the mediating effect of
the job training program on depression in which the mediating
variable is workers’ level of confidence in their ability to perform
essential job search activities such as completing an employment
application.

One possible hypothesis is that the participation in the job
training program reduces the level of depression by increasing the
level of workers’ self-confidence to search for a job. We use M, to
denote the observed level of job search self-efficacy, which was
measured after the implementation of the training program but
before measuring the outcome variable. Because the level of job
search self-efficacy can be affected by the program participation,
there exist two potential values, M(1) and M,(0), only one of
which will be observed, that is, M, = M/(T,). For example, if
worker i actually participates in the program (7; = 1), then we
observe M (1) but not M,(0).

Next, we define the potential outcomes. Previously, the potential
outcomes were only a function of the treatment, but in a causal
mediation analysis the potential outcomes depend on the mediator
as well as the treatment variable. Therefore, we use Y{(t, m) to
denote the potential outcome that would result if the treatment and
mediating variables equal f and m, respectively. For example, in
the JOBS II study, Y1, 1.5) represents the degree of depressive
symptoms that would be observed if worker i participates in the
training program and then has a job search self-efficacy score of
1.5. As before, we observe only one of multiple potential out-
comes, and the observed outcome Y; equals Y(T,, M(T),)). Lastly,
recall that no interference between units is assumed throughout;
the potential mediator values for each unit do not depend on the
treatment status of the other units, and the potential outcomes of
each unit also do not depend on the treatment status and the
mediator value of the other units.

We now define causal mediation effects or indirect effects for
each unit i as follows:

8,(r) = Y(t, M{(1)) — Yi(t, M/0)), ey

for t = 0, 1. Thus, the causal mediation effect represents the
indirect effect of the treatment on the outcome through the medi-
ating variable (Pearl, 2001; Robins, 2003; Robins & Greenland,
1992). The key to understanding Equation 1 is the following
counterfactual question: What change would occur to the outcome
if one changes the mediator from the value that would be realized
under the control condition, M,(0), to the value that would be observed
under the treatment condition, M,(1), while holding the treatment
status at ¢? If the treatment has no effect on the mediator, that is,
M(1) = ML0), then the causal mediation effect is zero. Although
Y1, M(1)) is observable for units with 7; = t, Y(t, M1 — 1)) can
never be observed for any unit.
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In the JOBS 1II study, for example, 8,(1) represents the difference
between the two potential depression levels for worker i who partic-
ipates in the training program. For this worker, Y,(1, M,(1)) equals an
observed depression level if the worker actually participated in the
program, whereas Y1, M,(0)) represents the depression level that
would result if worker i participates but the mediator takes the value
that would result under no participation. Similarly, §,(0) represents an
impact worker 7’s depression level due to the change in the mediator
induced by the participation in the program while suppressing the
direct effect of program participation. Therefore, this definition for-
malizes, independent of any specific statistical models, the intuitive
notion about mediation held by applied researchers that the treatment
indirectly influences the outcome through the mediator.

Similarly, we can define the direct effect of the treatment for
each unit as follows:

L) = Y1, M{(1)) — Y0, M(1)), 2)

fort = 0, 1. In the JOBS II study, for example, {,(1) represents the
direct effect of the job training program on worker i’s depression
level while holding the level of his or her job search self-efficacy
constant at the level that would be realized under the program
participation.® Then, the total effect of the treatment can be de-
composed into the causal mediation and direct effects:

1
™, = Y(1, M(1)) — Y0, M,(0)) = EE 8.0 + L)}

=0

In addition, if we assume that causal mediation and direct effects
do not vary as functions of treatment status (i.e., 3, = 3,(1) = 8,0)
and {; = {,(1) = {/0), called the no-interaction assumption), then
the mediation and direct effects sum to the total effect, that is, T, =
S, + L.

Finally, in causal mediation analysis, we are typically interested
in the following average causal mediation effect:

8(r) = E(Y(t, M(1)) = Y,(t, M0))),

for + = 0, 1. For the JOBS II study, this would represent the
average causal mediation effect among all workers of the popula-
tion, of which the analysis sample can be considered as represen-
tative. Similarly, averaging over the relevant population of work-
ers, we can define the average direct and total effects as

(0 = E(Yi(1, M(0) — Y,(0, M(1)))

and

14 _
T = E(Y,(1, M(1)) — Y(0, M(0))) = 52{80) + (0},

=0

respectively. As before, under the no-interaction assumption (i.e.,
3 = 8(1) = 80) and T = I(1) = I(0)), the average causal
mediation and average direct effects sum to the average total
effect, that is, T = § + {, yielding the simple decomposition of the
total effect into direct and indirect effects.

Note that the average total effect may be close to zero in some
cases, but this does not necessarily imply that the average causal

mediation effects are also small. It is possible that the average
causal mediation and average direct effects have opposite signs
and thus offset each other, yielding a small average total effect. In
the context of program evaluation, this is an important circum-
stance because it implies that a policy can be improved by mod-
ifying it so that an effective mediator plays a larger role to increase
its overall efficacy.

Sequential Ignorability Assumption

We now turn to the key assumption, which allows us to make valid
inferences about the causal mediation effects defined above. The
question is, what assumptions are needed to give the average medi-
ation effect a causal interpretation? For randomized experiments, we
only need to assume no interference between units to estimate the
average treatment effect without bias. Causal mediation analysis,
however, requires an additional assumption. In particular, we rely on
the following assumption introduced by Imai, Keele, and Yamamoto
(2010). Let X; be a vector of the observed pretreatment confounders
for unit i where & denotes the support of the distribution of X; (i.e., the
range of values X; can take on). In the JOBS II data, X; includes for
each unemployed worker the pretreatment level of depressive symp-
toms as well as some demographic characteristics such as education,
race, marital status, sex, previous occupation, and the level of eco-
nomic hardship. Given these observed pretreatment confounders, the
assumption can be formally written as

Assumption 1 (Sequential Ignorability;, Imai, Keele, &
Yamamoto, 2010): We assume that the following two state-
ments of conditional independence hold:

{Yi(t/’ m)’ Mz(t)} J-I-Tr | Xi =X, (3)
Yi(t’a m) J-LMl(t) | 771 = t’ Xi =X (4)

where 0 < Pr(T, = t| X; = x) and 0 < p(M(H) = m | T, = t,
X.=x)fort=0,1,and all x € X and m € M.

i

Imai, Keele, and Yamamoto (2010) discussed how this assump-
tion differs from those proposed in the prior literature. The main
advantage of this assumption over other alternatives is its ease of
interpretation. Assumption 1 is called sequential ignorability be-
cause two ignorability assumptions are made sequentially. First,
given the observed pretreatment confounders, the treatment assign-
ment is assumed to be ignorable, that is, statistically independent
of potential outcomes and potential mediators. In the JOBS II
study, this first ignorability assumption is satisfied because work-
ers were randomly assigned to the treatment and control groups. In
contrast, this part of the assumption is not guaranteed to hold in
observational studies in which subjects may self-select into the
treatment group. In such situations, a common strategy of empir-
ical researchers is to collect as many pretreatment confounders as
possible so that the ignorability of treatment assignment is more

3 Pearl (2001) called {,(r) a natural direct effect to distinguish it from a
controlled direct effect of the treatment. Imai et al. (2009) argued that the
former corresponds to causal mechanisms, whereas the latter represents the
causal effect of direct manipulation. Imai et al. also discussed the impli-
cations of this distinction for experimental designs.
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credible once the observed differences in these confounders be-
tween the treatment and control groups are appropriately adjusted.

The second part of Assumption 1 states that the mediator is
ignorable given the observed treatment and pretreatment con-
founders. That is, the second part of the sequential ignorability
assumption is made conditional on the observed value of the
ignorable treatment and the observed pretreatment confounders.
Unlike the ignorability of treatment assignment, however, the
ignorability of the mediator may not hold even in randomized
experiments. In the JOBS II study, for example, the randomization
of the treatment assignment does not justify this second ignorabil-
ity assumption because the posttreatment level of workers’ job
search self-efficacy is not randomly assigned by researchers. In
other words, the ignorability of the mediator implies that among
those workers who share the same treatment status and the same
pretreatment characteristics, the mediator can be regarded as if it
were randomized.

We emphasize that the second stage of sequential ignorability is
a strong assumption and must be made with care. It is always
possible that there might be unobserved variables that confound
the relationship between the outcome and the mediator variables
even after conditioning on the observed treatment status and the
observed covariates. Moreover, the conditioning set of covariates
must be pretreatment variables. Indeed, without an additional
assumption, we cannot condition on the posttreatment confounders
even if such variables are observed by researchers (e.g., Avin,
Shpitser, & Pearl, 2005). This means that similar to the ignorability
of treatment assignment in observational studies, it is difficult to
know for certain whether the ignorability of the mediator holds
even after researchers collect as many pretreatment confounders as
possible.

Such an assumption is often referred to as nonrefutable because
it cannot be directly tested from the observed data (Manski, 2007).
Thus, we develop a set of sensitivity analyses that will allow
researchers to quantify the degree to which their empirical findings
are robust to a potential violation of the sequential ignorability
assumption. Sensitivity analyses are an appropriate approach to
nonrefutable assumptions because they allow the researcher to
probe whether a substantive conclusion is robust to potential
violations of the assumption.

Nonparametric Identification Under
Sequential Ignorability

We now turn to the issue of identification and specifically that of
nonparametric identification. By nonparametric identification, we
mean that without any additional distributional or functional form
assumptions, the average causal mediation effects can be consis-
tently estimated. This result is important for three reasons. First, it
suggests the possibility of constructing a general method of esti-
mating the average treatment effect for outcome and mediating
variables of any type and using any parametric or nonparametric
models. Second, it implies that we may estimate causal mediation
effects while imposing weaker assumptions about the correct func-
tional form or distribution of the observed data. Third, nonpara-
metric identification analysis reveals the key role of the sequential
ignorability assumption irrespective of the statistical models used
by researchers.

We first slightly generalize the nonparametric identification
result of Imai, Keele, and Yamamoto (2010). The following result
states that under Assumption 1 the distribution of any counterfac-
tual outcome is identified.

Theorem 1 (Nonparametric Identification): Under Assump-
tion 1, we can identify

S, M) | X, =x) =

fﬂYi|Mi:m’Ti:tvxi:x)dFM,(m|Ti:t,in:x)v
I

A
forany x € X and 1, ¢’ = 0, 1.

The proof is a generalization of Theorem 1 of Imai, Keele, and
Yamamoto (2010) and thus is omitted. Theorem 1 shows that under
sequential ignorability, the distribution of the required potential out-
come (i.e., the quantity in the left-hand side of the equation) can be
expressed as a function of the distributions of the observed data, that
is, the conditional distribution of M, given (T}, X,) and that of Y, given
(M,, T, X;). Thus, the assumption lets us make inferences about the
counterfactual quantities we do not observe (i.e., the potential out-
comes and mediators of workers in the opposite treatment status)
using the quantities we do observe (i.e., observed outcomes and
mediators for workers in a particular treatment status). As we show
next, in the LSEM framework, for example, these conditional distri-
butions are given by a set of the linear regression models. Because
Theorem 1 is not based on any specific model, however, it enables us
to develop a general estimation procedure for causal mediation effects
under various nonlinear conditions.

Causal Interpretation of the Product of Coefficients
and Related Methods

Before turning to our general method, we show that the potential
outcomes framework encompasses the standard mediation analysis
based on the single mediator LSEM as a special case. For illus-
tration, consider the following set of linear equations:

Yi=o, + BT+ EX + &, ©)
M=o, + BT, + & X; + €5, (6)
Y=oy + BT, + yM,; + £ X, + €. @)

After fitting each linear equation via least squares, the product of
coefficients method uses Bz'f/ as an estimated mediation effect
(MacKinnon et al., 2002). Similarly, the difference of coefficient
methods yields the numerically identical estimate by computing
B, — B, in this linear case (MacKinnon et al., 2007, 2002).
Because B, = B,y + B, and B, = Byy + PB; always holds,
Equation 5 is redundant given Equations 6 and 7.

Does the product of coefficients method yield a valid estimate
for the causal mediation effect under the potential outcomes frame-
work? Imai, Keele, and Yamamoto (2010) prove that under se-
quential ignorability and the additional no-interaction assumption,
that is, 8(1) = 3(0), the estimate based on the product of coeffi-
cients method can be interpreted as a valid estimate (i.e., asymp-
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totically consistent) of the causal mediation effect as long as
the linearity assumption holds (see also Jo, 2008). To understand
the connection between the product of coefficients method and the
causal mediation effect defined earlier, we first write each potential
outcome within the LSEM framework:

Y{T, M(T)) = o, + B\T; + £/ X; + €,(T;, M(T)),
M(T) = o, + BT, + & X, + €,(T)),
YT, M(T))) = oz + BsT; + yM; + & X; + €5(T,, M{(T))).

An argument that is nearly identical to the proof of Theorem 2 in
Imai, Keele, and Yamamoto shows that under Assumption 1 the
average causal mediation and direct effects are identified as 8(r) =
B,y and {(f) = B, respectively, for r = 0, 1.*

Thus, as long as an analyst is willing to adopt the linearity and
no-interaction assumptions along with sequential ignorability, the
product of coefficients method provides a valid estimate of
the causal mediation effect. However, Theorem 1 implies that only
the sequential ignorability assumption is needed and neither the
linearity nor the no-interaction assumption is required for the
identification of causal mediation effects. To illustrate this point,
we next explore relaxing the no-interaction assumption.

Relaxing the No-Interaction Assumption

Judd and Kenny (1981), and more recently Kraemer and col-
leagues (Kraemer, Kiernan, Essex, & Kupfer, 2008; Kraemer,
Wilson, Fairburn, and Agras, 2002), proposed an alternative to the
standard product of coefficients method by relaxing the no-inter-
action assumption. They argued that assuming no interaction be-
tween the treatment and the mediator is often unrealistic and
replaced Equation 7 with the following alternative specification:

Y=oy + BT, + yM; + kTM; + £ X, + €;. (8)

Such an interaction might arise in the JOBS II study if, for
example, the average mediation effect via the improvement of the
workers’ mental health depends on whether they receive the job
training program. Kraemer et al. (2008) argued that in addition to
B,, either 4 or & must be statistically indistinguishable from zero
in order to conclude that average mediation effects exist.

Although the inclusion of the interaction term, 7;M,, is a rea-
sonable suggestion, the proposed procedure can be improved so
that the hypothesis test is conducted directly on the average causal
mediation effects. Following Imai, Keele, and Yamamoto (2010),
one can show that under Assumption 1, the average causal medi-
ation effects are given by

8(1) = Bo(y + ki), ©)

for t = 0, 1. Estimation of this quantity in the JOBS II example
would give different mediation effects, taking into account an
interaction between program participation and job search self-effi-
cacy. In addition, the average direct and total effects are given by

L(1) = By + wfo, + Bt + & EX)}, (10)

T=Byy+ B35+ kfo, + By + EEX))L (D

for r = 0, 1. The consistent estimates of {(¢) and T can be obtained
by replacing the coefficients of Equations 10 and 11 with their
least squares estimates and E(X;) by the sample average of X,
which we denote by X.° In Appendix A, we derive the asymptotic
variance for each of these quantities of interest.

Although analysts can easily relax the no-interaction assump-
tion, extending the LSEM mediation framework to models for
discrete outcomes, for example, is much more difficult. In contrast,
as we demonstrate later, our general approach can handle nonlinear
models such as logit and probit in a straightforward manner.

Relationship With Instrumental Variables

Recently, some scholars have considered the use of instrumental
variables for causal mediation analysis (e.g., Albert, 2008; Jo,
2008; Sobel, 2008). Using instrumental variables to estimate
causal mediation effects requires an alternative set of identification
assumptions, which differ from Assumption 1 in important ways.
In particular, although the existence of unobserved confounders is
allowed, the direct effect is assumed to be zero (see Appendix B
for details). This means that the instrumental variables approach
eliminates, a priori, alternative causal mechanisms. For this reason,
we believe that it is less than ideal for the causal mediation
analysis used in social science research. A more general and
promising approach is the causal mediation analysis based on
principal stratification (e.g., Gallop et al., 2009).

An Application to JOBS 11

We illustrate the product of coefficients method and related
approaches using the JOBS II data. Here the outcome variable is a
measure of depression and the mediator is the level of worker’s job
search self-efficacy. Both measures range from one to five. To
make sequential ignorability more credible, we include the full set
of covariates described in the outline of JOBS II. Table 1 presents
the estimated quantities of interest based on the product of coef-
ficients and instrumental variables methods. First, we use the
standard product of coefficients method, assuming no interaction
between the mediator and the treatment. We find a small (but
statistically significant at the 95% level) negative mediation effect
(the first column). Because the average treatment effect on the
mediator is negative, the results imply that the program participa-
tion on average decreases slightly the depressive symptoms by
increasing the level of job search self-efficacy. The average direct
and total effects are estimated to be negative as well, and their
effect sizes are larger. However, these estimates are statistically
indistinguishable from zero.

Next, we relax the no-interaction assumption by allowing the
average causal mediation effect to depend on the treatment status.
The second and third columns of the table present the results. The
basic findings resemble the ones based on the standard product of
coefficients method, and there is little evidence for the presence of

+The average total effect is given by B,, which equals Byy + Bs.

5 To estimate the average total effect, we may fit the following model,
Y, = oy + BT + &X, + n'TX, + €, where the average total effect
is given by T = B, + m'E(X).
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Table 1
Estimated Causal Effects of Interest Based on the Product of Coefficients and Instrumental
Variables Methods Using the Job Search Intervention Study Data

Product of coefficients

With interaction

Average Under treatment Under control Instrumental

effect No interaction t=1 (t=0) variable

Mediation —.016 —.014 —.021 —.047
3() [—.03, —.002] [—.026, —.001] [—.040, —.002] [—.120, .024]

Direct —.032 —.027 —.034 .000*
0 [—.107, .046] [—.115,.048] [—.114, .046]

Total —.047 —.047 —.047
T [—.120, .023] [—.120, .024] [—.120, .023]

Note. The outcome variable is a measure of depression for each worker, and the mediator represents the level
of workers’ job search self-efficacy. Each cell shows a point estimate and its corresponding 95% confidence
intervals. The average treatment effect on the mediator is estimated to be .100 with the 95% confidence interval
[.018, .182] (based on the delta method). The results in Columns 2—4 are based on the product of coefficients
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method without and with the interaction between the treatment and the mediator.

& Assumed to be zero.

the interaction effects. Although these calculations were done with
the formulas described in the previous sections, the simulation
approach to estimation described subsequently and implemented in
our software returns nearly identical results. This correspondence
is important because it shows how our approach encompasses the
product of coefficients method as a special case. In later sections,
we extend our approach to nonlinear models. Finally, we apply the
instrumental variables method, though the assumption of no direct
effect is unlikely to hold in this application. Under this method, the
average mediation effect equals the average total effect. Thus, the
results are somewhat different from those based on the other two
methods; the average causal mediation effect is estimated to be
negative but is not statistically significantly different from zero.

Sensitivity Analysis

We now turn to the final and important component of our
approach. One advantage of the potential outcomes framework is
that it helps to clarify the role of key identification assumptions. As
we demonstrated above, randomization of the treatment alone does
not identify causal mediation effects. This means that even in
randomized experiments, an additional assumption (e.g., sequen-
tial ignorability in our approach) is required for identification. As
such, this assumption is of particular interest, because if it is not
satisfied, the estimated quantity cannot be given a causal interpre-
tation. In particular, the second part of Assumption 1 is nonrefut-
able in the sense that it cannot be directly tested with the observed
data.

As in many applications, it is reasonable to think that the
sequential ignorability may have been violated in the JOBS II
study. For example, Jo (2008) pointed out that the second part of
Assumption 1 might be violated by stating that “individuals who
improved their sense of mastery by one point in the intervention
program may have different observed and unobserved character-
istics from those of individuals who equally improved their sense
of mastery in the control condition” (p. 317).

Sensitivity analysis is an effective method for probing the plau-
sibility of a nonrefutable assumption and thus is an important

element of our approach. The goal of sensitivity analysis is to
quantify the degree to which the key identification assumption
must be violated for a researcher’s original conclusion to be
reversed. If an inference is sensitive, a slight violation of the
assumption may lead to substantively different conclusions. The
degree of sensitivity can be calibrated either in comparison to other
studies (Rosenbaum, 2002, p. 325) or in conjunction with expert
opinion (e.g., White, Carpenter, Evans, & Schroter, 2007). Given
the importance of sequential ignorability, we argue that a media-
tion analysis is not complete without a sensitivity analysis. Our
software, mediation, also allows users to conduct sensitivity anal-
yses with only a single additional line of syntax, as illustrated in
Imai et al. (2010a).

The Linear Structural Equation Models

In the context of the standard LSEM framework, Imai, Keele,
and Yamamoto (2010) proposed a sensitivity analysis for causal
mediation analysis based on the correlation between the error for
the mediation model, €,,, and the error for the outcome model, €.
They denoted this correlation across the two error terms as p,
which serves as the sensitivity parameter. Such a correlation can
arise if there exist omitted variables that affect both mediator and
outcome variables because these omitted variables will be part of
the two error terms. Thus, under sequential ignorability, p equals
zero, and nonzero values of p imply departures from the ignor-
ability assumption. Imai et al. showed that it is possible to express
the average causal mediation effect as a function of p and model
parameters that can be consistently estimated even though p is
nonzero.

With this fact, the proposed sensitivity analysis asks the ques-
tion of how large does p have to be for the causal mediation effect
to go away. If small departures from zero in p produce an average
causal mediation effect that is substantively different from the
estimate obtained under sequential ignorability, this suggests that
the study is sensitive to the potential violation of the sequential
ignorability assumption. Moreover, we can also observe whether
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the confidence interval for the mediation effect contains zero,
which provides a more nuanced analysis.

Here we extend the result in Imai, Keele, and Yamamoto (2010)
to the LSEM with the no-interaction assumption relaxed. As such,
we derive the mediation effect as a function of p and other
quantities that can be consistently estimated.

Theorem 2 (Identification With a Given Error Correlation):
Consider the LSEM defined in Equations 6 and 8. Suppose
that Equation 3 of Assumption 1 holds but Equation 4 may
not. Assume that the correlation between €,, and €5, that is, p,
is given (and is assumed to be constant across the treatment
and control groups) where —1 < p < 1. Then, the average
causal mediation effects are identified and given by

3(1) = Bza”{ﬁ, =1 = (1 = pz)},

O

where o7, = Var(e; | T; = 1) and p, = Corr(e,y, €, | T; = 1) for
j=1,2andr=0,1.

A proof is given in Appendix C. Theorem 2 establishes the linkage
between the average causal mediation effect and the degree of
correlation of the two error terms given the identifiable model
parameters.® The iterative procedure described in Imai, Keele, and
Yamamoto (2010) can be used to obtain the confidence intervals
under various values of p.”

How small is small enough for researchers to conclude the
resulting conclusion is valid? Unfortunately, there is no absolute
threshold. In principle, the magnitude of p from one study can be
interpreted only relative to the corresponding p of another study.
However, Imai, Keele, and Yamamoto (2010) showed that the
magnitude of p from one study can be interpreted independently
via the coefficients of determination, or R?. This alternative pa-
rameterization facilitates the interpretation because one can under-
stand the influence of potential omitted variables in terms of its
explanatory power. We discuss and extend this alternative param-
eterization later in this article in the context of nonlinear models.

Empirical Illustration

We return to the example with continuous outcome and medi-
ator measures and ask whether the finding is sensitive to a potential
violation of sequential ignorability. Here we relax the no-interac-
tion assumption for the sensitivity analysis. We find §(1) = 0 when
p is equal to —.165 and 3(0) = 0 when p is —.245. Figure 1
graphically illustrates this point by plotting the estimated average
mediation effects and their 95% confidence intervals as a function
of p. We find that for 3(0) the confidence intervals include zero for
a p value of —.09 and for §(1) at —.06, which further underscores
the sensitivity of the estimate. Imai, Keele, and Yamamoto (2010)
found in another study that the mediation effects are zero for a p
value of .48. Thus, the estimated mediation effects here are con-
siderably more sensitive than in that study. This means that it
would take a smaller unobserved confounder to overturn the con-
clusion obtained under sequential ignorability for the JOBS II
study.

Generalization to Nonlinear Models

In this section, we show that the above methodology can be
generalized to nonlinear models. The difficulty with the LSEM
approach is that it does not readily extend to nonlinear models. For
example, suppose that in the JOBS II study the outcome variable
of interest is a binary measure about whether a subject is employed
or not. The LSEM approach using the product of coefficients no
longer generalizes in a straightforward way if researchers wish to
use the logistic regression to model the outcome variable.

As we demonstrate below, our generalization can accommodate
linear and nonlinear relationships, parametric and nonparametric
models, continuous and discrete mediators, and various types of
outcome variables (for related methods, see Glynn, 2008; Huang,
Sivaganesan, Succop, & Goodman, 2004; VanderWeele, 2009;
Wang & Taylor, 2002). This is possible because our methodology
is not tied to specific statistical models. Using the nonparametric
identification result of Theorem 1, we first develop two algorithms
based on Monte Carlo simulation to estimate causal mediation
effects that are applicable to any statistical models. We then
demonstrate how these algorithms and sensitivity analysis can be
applied to some frequently used nonlinear models.

The Estimation Algorithms

Recall that for each subject we observe YT, M(T;)) but we need
to infer the following counterfactual quantity: Y(7,, M(1 — T)).
Theorem 1 suggests that researchers can obtain one Monte Carlo
draw of the potential outcome Y,(z, M(t")) for any ¢, ' using model
predictions given the subject’s pretreatment covariates X; = x. To
do this, we first sample M(¢') from the selected mediator model,
fIM,| T, =t, X, = x), and then given this draw of the mediator,
sample Y(t, M(t")) from the outcome model, AY, | T, = t, M(t"),
X; = x). Our nonparametric identification result implies that this
procedure need not change regardless of statistical models used for
the mediator and the outcome. Once we obtain these Monte Carlo
draws of potential outcomes, we can compute the relevant quan-
tities of interest that are functions of these potential outcomes.®

This observation leads to the following two general algorithms
that can accommodate many situations researchers encounter in
practice. First, we describe an algorithm for parametric inference
in which parametric models (e.g., probit or logit) are specified for
the mediator and the outcome variable. To make the exposition

© Thus, forr = 0, 1, S(z) becomes zero when p is equal to the correlation
between ¢;; and €;, among those with 7; = ¢, which is denoted by p, and can
be estimated by the sample correlation of the corresponding residuals.

7 This use of residuals differs from the structural equation modeling
tradition in that residuals are not being used to access the fit of statistical
models as discussed in Mulaik (2007). Instead, they are used to assess the
violation of the key identification assumption. Although others have
pointed to assumptions about residuals (Bullock, Green, & Ha, 2010;
MacKinnon et al., 2002; Mulaik, 2009) and the consequences of omitted
variables (James et al., 1982, pp. 71-80), to our knowledge these scholars
propose no formal sensitivity analysis about the identifying assumption.
See VanderWeele (2010) for an alternative approach.

8 This is true as long as they do not involve the joint distribution of
Y(t, M(1)) and Y(t, M(0)) because only marginal distributions are iden-
tified under sequential ignorability.
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Sensitivity analysis with continuous outcome and mediator. Figure 1A is for the estimated average

mediation effect under the control, and Figure 1B is for treatment. The dashed line represents the estimated
mediation effect for p = 0. The gray areas represent the 95% confidence interval for the mediation effects at each
value of p. The solid line represents the estimated average mediation effect at different values of p.

concrete, we describe the algorithm to estimate the average causal
mediation effects. The proposed algorithm is based on the quasi-
Bayesian Monte Carlo approximation of King, Tomz, and Witten-
berg (2000), in which the posterior distribution of quantities of
interest is approximated by their sampling distribution. A similar
idea has been used for specific models (see Bauer, Preacher, & Gil,
2006; MacKinnon, Lockwood, & Williams, 2004). Our algorithm,
in contrast, applies to any parametric statistical model of research-
ers’ choice (see below for an algorithm that can be applied to
nonparametric models). Here we provide an outline of the algo-
rithms (their details are given in Appendix D).

Algorithm 1 (Parametric Inference): This algorithm can be
used for any parametric model.

Step 1. Fit models for the observed outcome and mediator
variables.

Step 2. Simulate model parameters from their sampling dis-
tribution.

Step 3. Repeat the following three steps: (a) simulate the
potential values of the mediator, (b) simulate the potential
outcomes given the simulated values of the mediator, (c)
compute the causal mediation effects.

Step 4. Compute summary statistics such as point estimates
and confidence intervals.

The generality of this algorithm is attractive because the same
algorithm can be applied to any parametric statistical model. This
allows us to develop easy-to-use statistical software that computes
point and uncertainty estimates under various statistical models.
Imai et al. (2010a) illustrated the use of this software with the exact
syntax used to produce the empirical results of this article. In these

examples, we find that 1,000 simulations for each step (the default
number of simulations in the software) are sufficient. However, for
other applications with a smaller data set and/or more complex
models, a greater number of simulations may be required.

Finally, our nonparametric identification result also permits
the use of more complex models such as non- or semiparametric
models and quantile regression models. For these models, we
propose using a nonparametric bootstrap procedure to obtain a
distribution of causal mediation effects. Although this algo-
rithm is applicable to parametric inference as well, Algorithm 1
is typically much more computationally efficient. Each step of
Algorithm 2 corresponds to that of Algorithm 1. Again, we
outline the proposed algorithm here and provide the details in
Appendix D.

Algorithm 2 (Nonparametric Inference): The following algo-
rithm is applicable to both parametric and nonparametric
models.

Step 1. For each of the bootstrapped samples, repeat the
following steps: (a) fit models for the observed and mediator
variables, (b) simulate the potential values of the mediator, (c)
simulate the potential outcomes given the simulated values of
the mediator, (d) compute the causal mediation effects.

Step 2. Compute summary statistics such as point estimates
and confidence intervals.

We evaluate our algorithms using two sets of simulations with
varying sample sizes. In one set of simulations, we use a popula-
tion model in which the mediator has a nonlinear effect on the
outcome. We then compare the performance of a semiparametric
model with that of a linear model with and without a quadratic
term of the mediator. In the other set of simulations, we consider
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the case in which the mediator is continuous but the outcome is
binary. We examine the performance of the probit model against
the product of coefficients method. In both simulations, as ex-
pected, we find that our methods recover the population parameters
with little bias. The results and details of the simulations are
reported in Appendix E.

Next, we illustrate how our methods can handle a variety of
situations that often arise in causal mediation analysis by applying
them to the JOBS II study. This helps illustrate the generality of
our methods. We also show theoretically how our methods relate
to the existing approaches in the literature.

Quantile Causal Mediation Effects

We have shown that the methods based on the LSEM frame-
work provide the average causal mediation effects under sequen-
tial ignorability. However, in some cases, researchers may be
interested in distributional features of the outcome variable other
than the average. In the JOBS II example, policymakers might be
concerned about individuals with high levels of depression rather
than those with the average level of depression. It might also be
true that a few individuals respond to the intervention in dramatic
fashion, making the average a poor description of how these
individuals respond to the treatment. In such instances, quantile
causal mediation effects, which represent the difference between a
certain quantile (e.g., median) of two relevant potential outcomes,
may be of interest.®

In this context, quantile regression allows for a convenient way
to model the quantiles of the outcome distribution while adjusting
for a variety of covariates (Koenker, 2005). Specifically, we re-
place Equation 7 with the quantile regression model. The usual
product of coefficients method is not applicable here, but Algo-
rithm 2 can be used.

Using the JOBS II data, we examine whether the job training
program directly affected subjects’ levels of depression and
whether job search self-efficacy mediated the relationship between
the outcome and the treatment. Figure 2 presents the estimated
quantile causal mediation and direct effects and their 95% confi-
dence intervals under Algorithm 2. Both direct and indirect effects
in the figure are averaged over the observed pretreatment covari-
ates included in the quantile regression models. Figure 2A dem-
onstrates the effect of the intervention that occurs through the
mediator job search self-efficacy. Figure 2B shows how the inter-
vention affects quantiles of depression directly. One can see that
the magnitude of the estimated mediation effects increases slightly
as one moves from lower to higher quantiles, but the change is
small, implying that the effects are relatively constant across the
distribution. In contrast, the estimated direct effects vary substan-
tially across the quantiles, although the confidence intervals are
wide and always include zero.

Nonparametric and Semiparametric Regressions

In the LSEM framework, the estimation of the average causal
mediation effects is based on a set of linear regressions. How
might one relax the linearity assumption? In the JOBS 11 study, the
change in depression mediated by increased job search self-effi-
cacy may be very small among those with high levels of job search

self-efficacy. For these subjects, the program participation is un-
likely to further increase the mediating effects because of a dimin-
ishing effect of the treatment on the mediator. Conversely, medi-
ation effects might be smallest among those with low job search
skills, as they are unable to overcome societal and institutional
thresholds that reinforce levels of depression.

Instead of assuming linear relationships between variables, non-
or semiparametric regressions may be used to avoid linear func-
tional form assumptions (e.g., Keele, 2008). These models attempt
to recover the true relationship from the data while imposing much
weaker functional form assumptions. Although one could use a
quadratic term in the LSEM framework, it is well known that such
transformation often provides a poor approximation in practice
(see the simulation in Appendix F). Moreover, the product of
coefficients method no longer applies to these and more complex
situations. With Algorithm 2, however, the analyst can use non-
parametric or semiparametric regression models, and the causal
mediation effects can be easily estimated.

As an illustration, we allow the mediator to have a nonlinear
effect on the outcome by applying a generalized additive model
(GAM) to estimate the average causal mediation effects (Hastie &
Tibshirani, 1990). We fit the following regression equation instead
of Equation 7:

Y=oy + BT, + s(M) + E7X; + €5, (12)

where s( - ) is a smooth and possibly nonlinear function that we
estimate nonparametrically from the data (e.g., a spline). In the
LSEM framework s( * ) is assumed to be a linear function. We also
relax the no-interaction assumption by fitting the following model,
Vi = g + BT, + sfM)(1 — T) + s(M)T, + £€'X; + &,
instead of Equation 8. For the semiparametric regression model, we
used the package mgev in R (Wood, 2006).

Figure 3 plots the estimated nonlinear relationship between the
expected level of depression (the average outcome) and the level
of job search self-efficacy (the mediator) with and without the
interaction between the treatment and the mediator. Figure 3A (the
no-interaction model) shows that there is a mild threshold effect
between job search self-efficacy and depression. That is, self-
efficacy must exceed the midpoint of the scale before there is any
attendant decrease in depression. Figures 3B and 3C plot the
estimated nonlinear relationships for the control and treatment
groups separately under the model with the interaction. For both
groups, the estimation is somewhat imprecise but is consistent with
Figures 3B and 3C in that there is a negative relationship at higher
levels of the mediator. For the treatment group, the pattern closely
mirrors that observed in the no-interaction model, though the width
of the confidence intervals must temper any decisive conclusions.

Table 2 presents the estimated average causal mediation effects
based on the GAM and Algorithm 2 with 10,000 bootstrap resa-
mples. First, we assume no interaction between the mediator and
the treatment. Under this model (in the left column), we find a

° Formally, a-quantile causal mediation effects are defined as 5, (1) =
ga(0) — qo(e), for t = 0, 1 and 0 < a < 1, where g, () = inf{y;
F(Y(t, M(t")) = y) = a} is the quantile function for the distribution of
Y(t, M(t")). Similarly, we can define quantile direct and total effects as
L0 = g1 @) — go ().
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Figure 2. Estimated quantile causal mediation and direct effects based on the JOBS II data. The outcome
variable is a measure of depression for each worker, and the mediator represents the level of workers’ job search
self-efficacy. The figure presents the estimated quantile mediation effect (A) and the estimated quantile direct
effect (B), along with 95% confidence intervals. The quantile mediation effects are estimated to be negative and

statistically significant, whereas the quantile direct effects have much wider confidence intervals.

small, but statistically significant, negative mediation effect. This
effect is estimated to be slightly larger in magnitude compared
with that in Table 1, though the difference is not statistically
significant. The second and third columns of the table present the
results without the no-interaction assumption. As in Table 1, the
difference between the mediation effect for the treatment and
control groups is small and is not statistically significant. Finally,
as in Table 1, the estimated average direct and total effects for each
specification are not statistically distinguishable from zero. In
general, we find that modeling nonlinearity in the relationship does
little to change our inference with the JOBS data, but the larger
point is that Algorithm 2 allows us to relax basic model assump-
tions and still produce well-defined direct, mediation, and total
effects under sequential ignorability.

Discrete Mediator

Next, consider the situation in which the mediator is discrete—a
common occurrence for many applications in psychology in which
the measure for the mediator is often an ordered scale or binary. In this
case, Algorithm 1 can be simplified.'® Modeling the mediator with
either a probit-logit or ordered probit—logit model allows for straight-
forward parametric adjustment of pretreatment covariates. With these
models, the proposed algorithms will provide the estimates of the
average causal mediation effects and their estimation uncertainty.
This is an important area of application because discrete and binary
measures are extremely common, and yet the standard methods based
on the LSEM framework are not directly applicable.

We demonstrate the flexibility of Algorithm 1 using the JOBS II
data. The mediating variable in the original study, job search
self-efficacy, is a continuous scale, as we noted previously. For
demonstration purposes, we recoded the worker’s job search self-
efficacy into two discrete measures. In the first measure, we
recoded the measure to be binary by splitting responses at the

sample median. In a second measure, we recoded the scale to be a
four-category ordered variable. Otherwise, we use the same set of
variables as in Table 1.

Here we perform two analyses. In the first, we model the binary
mediator with a probit model and estimate the average causal
mediation effects with and without the no-interaction assumption.
Table 3 presents the results that are largely consistent with the
prior analysis when the mediator was measured with a continuous
scale. One can see that the treatment decreased depression by
increasing job search self-efficacy, but it had little direct causal
effect. One can also see little differences in the average causal
mediation effect across treatment status."'

Next, we use the four-category measure for the mediator and fit
an ordered probit model for the mediator. Table 4 presents the

'% First note that in this case Theorem 1 reduces to A(Y; (1, M(t')) | X; = x) =
Swen 8Y: | M; = m, T, = t, X, = X)Pr(M, = m| T, = ¢, X, = x). When the
mediator is binary and the quantity of interest is the average causal mediation
effect, the equation simplifies further to 8() = {E(Y;|M; = 1, T, = 1) —
E(Y,|M, = 0.7, = } {Pe(M, = 1|T, = 1) = Px(M, = 1|T, = 0)}, which
equals the expression derived by Li et al. (2007). If the support of the mediator
distribution, L, is bounded, then Step 3 of Algorithm 1 can be done with the
following single calculation: For each j = 1, 2, ..., J draw from the model

sampling distributions, compute

) 1

W) = — W(y. ;

0 =5 SEN | m )
i=1met

XM, =m|T,=1,X) — (M, =m| T, = 0,X)}

Thus, we can complete Step 3 without sampling either M,(7) or
Yi(t, M(1")).

! Nonlinear models with no interaction term can produce numerical
estimates that differ for §(0) and (1) due to the nonlinear link function. For
simplicity we report 5(1) for these models.
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Figure 3. Generalized additive models and estimated nonlinear relationships between the mediator (job search
self-efficacy) and the outcome (depression level). Figure 3A assumes no interaction between the treatment and
the mediator, whereas Figures 3B and 3C allow for the interaction. The solid lines represent the estimated
nonlinear relationships between the mediator (the horizontal axis) and the expected outcome (the vertical axis).
Ninety-five percent confidence intervals (dashed lines) are based on nonparametric bootstrap. With the no-
interaction assumption, changes in job search self-efficacy at lower levels have little effect on depression, though
these effects are imprecisely estimated. Changes in the mediator have a negative effect at higher levels and are
precisely estimated. When the interaction is allowed, the effect of the mediator is steadily decreasing in the
control group, whereas for the treatment group the effect stays relatively constant.

results. First, we assume no interaction between the mediator and
the treatment. In line with the results given in Table 1, there is a
small negative average mediation effect. We also relax the no-
interaction assumption by including an interaction term, 7,M;, in
the outcome regression model. The second and third columns of
the table present the results. As before, there is little evidence of an
interaction effect. We have shown that altering the model for the
mediator presents no complications for Algorithm 1, which en-
ables the estimation of the quantities of interest and provides
estimates of statistical uncertainty.

Binary Outcome

One situation that has attracted the attention of many researchers
is the case with the binary outcome and the continuous mediator.
Many approaches have been proposed for such situations (e.g.,

Table 2
Estimated Causal Quantities of Interest Based on the
Generalized Additive Model

Ditlevsen, Christensen, Lynch, Damsgaard, & Keiding, 2005;
Freedman, Graubard, & Schatzkin, 1992; MacKinnon, 2008;
MacKinnon et al., 2007, 2002; Wang & Taylor, 2002). One im-
portant criticism of existing methods is that they lack a causal
interpretation (Kaufman, MacLehose, Kaufman, & Greenland,
2005). Here we derive analytical expressions for causal mediation
effects when the outcome is binary. We show that our general
approach can easily accommodate binary outcomes and examine
the exact relationship between our proposed method and some of
the existing approaches.

Analytical expressions for the average causal mediation ef-
fects. For the sake of notational and algebraic simplicity, we
consider the following simple model without the pretreatment
confounders. In Appendix F, we show that all our analytical results
will hold for the model with the observed pretreatment covariates
with some notational complexity. The model is given by

Table 3
Estimated Causal Quantities of Interest With
the Binary Mediator

With interaction

With interaction

Average Under treatment Under control Average Under treatment Under control

effect No interaction t=1 t=0) effect No interaction =1 t=0)
Mediation —.022 —.021 —.025 Mediation —.019 —.019 —.018

3() [—.041, —.004] [—.042, —.004] [—.048, —.004] 3() [—.033, —0.007] [—.035, —.006] [—.027, —.005]
Direct —.022 —.012 —.015 Direct —.026 —.031 —.029

0) [—.093, .048] [—.081, .058] [—.085, .055] 0) [—.098, .045] [—.096, .040] [—.099, —.039]
Total —.044 —.037 Total —.045 —.048

T [—.116,.028] [—.111,.036] T [—.117,.027] [—.118,.022]

Note. The setup is identical to that of Table 1 except that the generalized
additive model is used to model the outcome variable. Ninety-five percent
confidence intervals are based on nonparametric bootstrap. The second
column displays the results under the no-interaction assumption, whereas
the third and fourth columns display the results without this assumption.

Note. The setup is identical to that of Table 1 except that a probit model
is used to model the mediator. Ninety-five percent confidence intervals are
based on Algorithm 1 with 1,000 Monte Carlo draws. The second column
displays the results under the no-interaction assumption, whereas the third
and fourth columns display the results without this assumption.
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Table 4
Estimated Causal Quantities of Interest With
the Discrete Mediator

With interaction

Average No Under treatment Under control
effect interaction t=1 (t=0)
Mediation —.013 -.017 —.011
3(t) [—.029, .003] [—.040, .004] [—.027,.004]
Direct —.032 —.029 —.036
0} [—.098, .037] [—.104, .045] [—.111,.036]
Total —.044 —.047
T [—.115,.028] [—.122,.028]

Note. The setup is identical to that of Table 1 except that an ordered
probit model is used to model the mediator. Ninety-five percent confidence
intervals are based on Algorithm 1 with 1,000 Monte Carlo draws. The
second column displays the results under the no-interaction assumption,
whereas the third and fourth columns display the results without this
assumption.

M; = o, + B,T; + &, (13)
Y, = 1Y >0} where Y = oy + BT, + YM, + €5, (14)

where €,; and €;; are independently and identically distributed
(i.i.d.) random variables with zero mean and Var(e,,) = o3 and
Var(e;;) = 3. The observed outcome variable Y; is equal to 1 or
0 depending on whether the value of the latent variable Y; is
greater than zero. Note that under Assumption 1, we have the
independence between two error terms. If €,; is an i.i.d. standard
normal (logistic) random variate, then the model for the outcome
variable is a probit (logistic) regression. Although a more compli-
cated model (such as a model with interactions and a nonparamet-
ric model) is easily used within our general framework, this simple
model establishes the clear relationship between our approach and
the existing methods.

Here we focus on the estimation of the average causal me-
diation effects and briefly state the analytical results for the
interested reader. The important point is that our general ap-
proach readily incorporates the calculation of causal mediation
effects with binary outcome variables. Given the above model
and Assumption 1, we can derive the analytical expression for
the average causal mediation effects (see Appendix F for a
proof). The functional form differs, depending on whether a
probit or logit model is fitted to the outcome measure. This is
due to the fact that different nonlinear link functions are used in
each of these models.

First, consider a logit model. This implies that €5; is an i.i.d.
logistic random variable and &, N'(0, 03). The average causal
mediation effects can be written as

8(1) = H(oz + Bt + y(a, + By) — H(o + Bt + yau),
(15)

where H(-) represents the following distribution function for €,, =
Y& T €3

T (&;— 53:’\ exp(gs)
Hew) = f_ (D< Yo /{1 + exp(gy;

This quantity can be computed with a standard numerical integra-
tion technique. The average total effect, on the other hand, equals
T = H(as + By + ¥(@, + B)) — Hias + ya,).

Next, suppose a probit model is used for the outcome variable
and hence &;,44N'(0, 1) and &,;4N(0, o2). Then, a similar calcu-

lation yields

5(r) = q)(% + Bst + (o, + Bz)) _ q><0‘3 + Bar + 'YOLZ)’

V/O'gyz +1 \/0%'\/2 + 1
(16)

for + = 0, 1 and where ®(-) represents the standard normal
cumulative density function. As in the LSEM case, we obtain the
average total effect by fitting the probit model,

Pr(Y; =1 | T) = ®(a; + B,T)), (17)
where o, = (03 + ya)o3y’+1 and B, = (YB, +

B3)/\o5y* + 1. Then, the average total effect is given by T =

Da; + By) — Pay).

Analytical investigation of the relationship with the existing
methods. Currently, there are two commonly used methods for
computing average mediation effects with binary outcomes. First,
Freedman et al. (1992) suggested the difference of coefficients
method, which is based on the difference between 3, from Equa-
tion 17 and 5 from Equation 14. Second, MacKinnon et al. (2007)
advocated the product of coefficients method in which the y
parameter from Equation 14 is multiplied by (3, from Equation 13.
There exist SPSS and SAS macros (SOBEL and INDIRECT) that
implement the product of coefficients method for the binary out-
come.

Unfortunately, as MacKinnon et al. (2007) correctly pointed out,
because probit and logistic regressions are nonlinear models, the
difference of coefficients and product of coefficients methods give
different estimates. Indeed, the nonlinearity of those models im-
plies that unlike in the case of the LSEM, neither of the two
methods consistently estimates the average causal mediation ef-
fects given in Equations 15 and 16. In Appendix E, we show via
a simulation study that the bias of product of coefficients method
can be substantial in certain situations. This illustrates the impor-
tant advantage of our proposed approach over the existing meth-
ods.

Proportion mediated. Another quantity of interest consid-
ered in the literature is the proportion mediated, or the magnitude
of the average causal mediation effects relative to the average total
effect. Using our notation, we can define this quantity as

(5(0) + 8(1)}/2
—

(18)

v=

which is the average causal mediation effect divided by the
average total effect. Clearly, this quantity makes sense only
when the sign of the sum of the two average causal mediation
effects (i.e., the numerator) is the same as the sign of the
average total effect (i.e., the denominator). In the literature, the
following measure of the proportion mediated has been pro-
posed (e.g., Ditlevsen et al., 2005; Freedman & Graubard, 1992;
MacKinnon et al., 2007):
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__ YB2
YT YR+ By (19

It can be shown that ¥ is equal to yB./{B, \/;205 + 1} when the
probit regression is used to model the outcome and is equal to
vB.AB /3 + 1} when the logistic regression of the form,
logit™'(Pr(Y; = 1[T)) = &, + BT, is used.

As shown by Wang and Taylor (2002), ¥ is a valid measure
of the proportion mediated on the latent variable scale (logit or
probit), that is, Y;. However, it does not generally equal v,
which represents the relative magnitude of the average causal
mediation effect with respect to the average causal effect.
Nevertheless, it is interesting to note that as shown in Appendix
G, when the direct effect is small, U may approximate v well
whether or not the logistic or probit regression is used and
whether or not the pretreatment covariates are included in the
model. In Appendix G, we also empirically examine the mag-
nitude of bias for the existing measure ¥ using the JOBS II
study.

Empirical illustration. In the JOBS II study, a key question
of interest is whether the program participation leads to a better
employment outcome by increasing job search self-efficacy. Here
we use our approach to estimate the average causal mediation
effects when the outcome is a binary variable, indicating whether
subjects were working more than 20 hr a week 6 months after the
job training program. We use the model with and without the
interaction term and include the same set of pretreatment covari-
ates to bolster the credibility of sequential ignorability.

The results are given in Table 5. Under the no-interaction
assumption, unlike what was observed for the depression out-
come, the estimated average mediation effect is small, and the
95% confidence interval contains zero. The estimated average
direct effect is larger than the estimated average mediation
effect but is not statistically significant, either. As a result, the
estimated proportion mediated is a mere 6%. A statistical test of
the no-interaction assumption reveals that the mediation effect
does not vary across levels of the treatment, and the results
mirror those estimated under the no-interaction assumption. As
illustrated in this example, our algorithms easily extend to the

Table 5
Estimated Causal Quantities of Interest With a Binary Outcome

With interaction

No Under treatment  Under control

Average effect interaction t=1 (t=0)
Mediation .004 .003 .007

() [—.001, .012] [—.002, .020] [—.001, .020]
Direct .057 .054 .059

iH6) [—.008, .124] [—.009, .118] [—.005, .121]
Total .061 .062

T [—.006, .128] [—.003, .125]
Proportion mediated .058 .072

v [—.104, .300] [—.145, .402]

Note. Outcome is whether a respondent was working more than 20 hr per
week after the training sessions. Ninety-five percent confidence intervals
are based on Algorithm 2 with 1,000 resamples. The second column
displays the results under the no-interaction assumption, whereas the third
and fourth columns display the results without this assumption.

binary outcome case and provide a principled method for esti-
mating causal quantities of interest along with their statistical
uncertainty.

Nonbinary Treatment

Our proposed approach so far has assumed that the treatment
variable is binary. Similarly, other research tends to consider
the cases of binary treatment variables, regardless of whether it
is based on the potential outcomes framework (e.g., Albert,
2008; Jo, 2008) or not (e.g., Ditlevsen et al., 2005; MacKinnon
et al., 2007; Wang & Taylor, 2002). Fortunately, our approach
can be extended to the case of nonbinary treatment only at
the cost of notational complexity. For example, the causal
mediation effects can be defined for any two levels of the
treatment:

3t 1y, 1p) = Yilt, M{(1))) — Yi(t, M{(1y)), (20)

where ¢, # t,. This equals the definition given in Equation 1 when
t;, = 1 and 7, = 0. The corresponding average causal mediation
effect is defined as 3(t; 1,, t,) = EQ(t; 1,, t,)).

Because the values of 7, 7, and ¢, need to be selected in order
to compute 3(z; 1,, ), a more comprehensive approach would
be to choose the baseline treatment level (7, = 0) first and then
compute the average causal mediation effects for different
treatment values with respect to this baseline. One can further
plot the estimated value of the average causal mediation effects
(relative to the baseline treatment level, say, ¢, = 0) averaged
over the distribution of the observed treatment, that is,
J3(t; t,, 0)dF (1), against each chosen value of ¢, in order to
investigate how the average causal mediation effects change as
the function of the treatment intensity. Because the validity of
Theorem 1 does not depend on the distribution of the treatment,
the algorithms presented previously can be used to make infer-
ences about this and other quantities of interest.

Sensitivity Analysis for Nonlinear Models

Finally, we show that sensitivity analysis discussed earlier can also
be generalized to some of the most commonly used nonlinear models.
Unlike our estimation algorithms, sensitivity analysis must be devel-
oped in the context of a specific statistical model. However, the same
idea is applicable across models, and here we show that the extension
is possible for the cases of binary mediator and binary outcome
variables. We also discuss an alternative parameterization, which can
facilitate the interpretation of sensitivity analysis.

Binary Mediator

First, we extend the sensitivity analysis to the situation in which
the mediator is binary. We consider the latent binary variable
model defined by

M; = 1{M; > 0} where M, = o, + B,T;, + & X; + €5,

where £, N'(0,1) and the outcome is continuous and defined as
in Equation 8 and hence an interaction between the treatment and
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the mediator is allowed. The process, though more complex in its
mechanics, is essentially identical to the case for the LSEM. We
simply derive the mediation effects as a function of p and other
quantities that can be consistently estimated when p is nonzero.
We assume (€,,, €,5) are i.i.d. bivariate normal random variables
with mean zero and covariance pos, and p remains the correlation
between the two error terms. As before, we can identify the
expectation and variance of the outcome variable when p is non-
zero. Furthermore, the additional model parameters necessary for
calculating the average causal mediation effect can be estimated
for each value of p.'?

We now demonstrate the sensitivity analysis for the binary
mediator example analyzed earlier. We ask how sensitive this
estimate is to the possible existence of an unobserved confounder
that might explain the association between the mediating variable
and the outcome. For the sensitivity analysis, we estimate the
average causal mediation effect, that is, {5(1) + 5(0)}/2, under a
series of p values and use Algorithm 1 to compute 95% confidence
intervals. Figure 4 presents the result. We find that the estimated
average mediation effect is zero when p = —.24 and that the 95%
confidence interval contains zero for p greater than —.09.

Binary Outcome

Finally, we extend the sensitivity analysis to binary outcomes.
Here we assume a mediator model as defined by Equation 6 and
outcome model defined as

Y, = 1Y’ >0} where Y/ = oy + BT, + YyM; + ] X, + €3,
21

where €;"4N(0,1). For the sake of simplicity, we do not include
the interaction term between the treatment and the mediator, but a
similar sensitivity analysis can be developed for the model with the
interaction term. As before, the sensitivity parameter p represents
the correlation between the two error terms, and (€,,, €;5) follows
the bivariate normal distribution with the mean zero and the
covariance po,.

0.05
!

Average Mediation Effect: 5(t)

-0.10

0.00

-0.05

T T T T
-1.0 -0.5 0.0 0.5 1.0

Sensitivity Parameter: p

Figure 4. Sensitivity analysis with continuous outcome and binary me-
diator. The dashed line represents the estimated mediation effect. The gray
areas represent the 95% confidence interval for the mediation effects at
each value of p.

The result, given in Appendix H, parallels closely with the
sensitivity analysis for LSEM. For example, taking the partial
derivative with respect to p shows that d(r) is monotonically
decreasing (increasing) with respect to p when 3, > 0 (3, < 0).
Moreover, when B, # 0, we have 8(f) = 0 if and only if y = 0 or
equivalently p = p, the same condition as for LSEM (see Theorem 4
of Imai, Keele, & Yamamoto, 2010). Because the average total effect,
T = HP(, + B, + £X) — P, + &/ X)}, is identified, we
can use this result to conduct sensitivity analysis for the proportion
mediated. We omit an empirical illustration, although the analysis
would proceed as in the last two examples.

Sensitivity Analysis Based on the Coefficients
of Determination

Despite its simplicity, researchers may find it difficult to inter-
pret the magnitude of the sensitivity parameter p. Here we present
an alternative method for the interpretation of p. In the case of the
LSEM, Imai, Keele, and Yamamoto (2010) showed how to inter-
pret the same sensitivity analysis using the following decomposi-
tion of the error terms for Equations 6 and 7:

=NU; + €,
for j = 2, 3, where U, is an unobserved pretreatment confounder
(or linear combinations of confounders) that influences both the
mediator and the outcome, and A, represents an unknown coeffi-
cient for each equation. Such omitted variables lead to the viola-
tion of the sequential ignorability assumption.

Under this assumption, p can be written as a function of the
coefficients of determination (i.e., R?). This allows for the sensi-
tivity analysis to be based on the magnitude of an effect of the
omitted variable. This can be done in two ways. First, p can be
expressed as a function of the proportions of previously unex-
plained variances in the mediator and outcome regressions, that is,
R;? = 1 — Var(e,,)/Var(e,,) and R}> = 1 — Var(e);)/Var(e;,),
respectively. We can now express the sensitivity parameter as a
function of these two quantities: p = sgn(\,\;)R},R}y, where sgn(x)
is the sign function (which equals 1 if x is positive, equals 0 if x is
zero, and equals — 1 if it is negative). Thus, sensitivity analysis can
be conducted once researchers specify the direction of the effects

2 When p is nonzero, the expectation and variance of the outcome are
EY,|T, = tM; = mX; = x) = a3 + Bt + ym + wim + Ex +
po,(t, x) and Var(Y; | T, = t, M; = m, X; = x) = 03 {1 — p*n,,(t, Y)(M,.(2,
X) + o, + Bot + & X)), where my(t,x) = o, + Byt + Ex)/P(a, +
By + &x) and mtx) = —¢l + By + EP(—a, -
Byt — & x) are the inverse Mills ratios. Because (ct,, B, &) can be estimated
from a probit regression of M, on (1, T, X,), the parameters (o3, B3, 7, K, &3,
0;) can be consistently estimated with feasible generalized least squares with
a known value for p. Finally, once these model parameters are estimated, the
average causal mediation effect is calculated as a function of p and other
consistentty—estimmated  parameters: d(1) = (y + kE P, + B, +
§X) — P(a, + £X)} As in the sample selection model of Heckman
(1979), p is actually identified given the nonlinearity of the model, but we will
not use this fact because it only hinges on the functional form assumption.
Using these results, one can conduct a sensitivity analysis for the case with a
binary mediator, which is done automatically with our software.
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of the unobserved confounder U, in the mediator and outcome
models, sgn(\,\;),"* as well as the relative magnitude of those
effects, R,? and R}?.

Similarly, the sensitivity analysis can be based on the propor-
tions of original variances that are explained by the unobserved
confounder in the mediator and outcome regressions, that is, R2, =
{Var(e,,) — Var(e),)}/Var(M,) and R2 = {Var(e,;) — Var(e)}/
Var(Y,), respectively. In this case, the expression for p is given by
sgn(\\3)R, RN (1 — Ry)(1 — R3), where R;, and R} are the usual
coefficients of determination for the mediator and outcome regres-
sions.

When the mediator or the outcome variable is binary, we use the
pseudo-R> of McKelvey and Zavoina (1975). For example, in the
binary mediator case, we redefine R, = {1 — Var(e,)}/
{Var(M?) + 1} and R2, = Var(M;)/{Var(M;) + 1} in the above
formula, where M represents the predicted value of the latent
mediator variable for the probit regression. Thus, in all cases
considered here we can interpret p using two alternative coeffi-
cients of determination. This value can then be used to compare
across studies or evaluated in reference to subject specific knowl-
edge about the likely magnitude of effect from the confounding
variable.

Next, we present an empirical example of a sensitivity analysis
in terms of the coefficients of determination for the case of a
continuous outcome (depression 6 months following the treatment)
and a dichotomous mediator. The model used here is the same as
the one that produces the results given in Table 3 except that for
the purpose of illustration we use an alternative mediator that is a
dichotomized index of several psychological measures such as the
original job search self-efficacy variable and the internal locus of
self-control. We call this variable mastery. The resulting estimate
of the average mediation effect is —.031, with the 95% confidence
interval of [—.050, —.007].

How sensitive is this result to an unobserved confounder that
influences both the mediator and the outcome? Consider the so-
called ability bias in which participants with greater ability are
likely to respond to the training, thereby increasing the level of
their mastery, and yet they are also likely to have a relatively lower
level of depression. Under this scenario, we assume the sign of the
product of coefficients for the unobserved confounder is negative,
that is, sgn(A\,\;) — 1, because their effects are expected to operate
in the opposite directions.

Figure 5 presents our sensitivity analysis based on the coeffi-
cients of determination, R3, and R, which represent the propor-
tions of original variances explained by the unobserved con-
founder for the mediator and the outcome, respectively. In the
figure, the contour line of 0 corresponds to values of R2, and R2
that yield zero average causal mediation effect. For example, when
R;, = .6 and R} = .3, the estimated mediation effect would be
approximately zero. This means that the unobserved confounder,
ability, would have to explain 60% of the original variance in the
(latent) mastery variable and 30% of the original variance in the
depression variable for the estimate to be zero. At higher values of
both RZ, and R3, the estimated average causal mediation effect
would be positive, whereas at lower values the sign of the estimate
remains negative. This implies that the values of R2, and R must
be relatively high for the original conclusion to be reversed.
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Figure 5. Sensitivity analysis with continuous outcome and binary me-
diator. The plot contains contour lines that represent estimated average
mediation effect corresponding to unobserved pretreatment confounders of
various magnitudes. These magnitudes are measured by the coefficients
of determination, R3, and R%, each of which represents the proportion of
original variance explained by the unobserved confounder for the mediator
and the outcome, respectively. Here we assume that the unobserved con-
founder, ability, influences the mediator and the outcome in the opposite
directions.

Concluding Remarks

In this article, we proposed a general approach to causal medi-
ation analysis. Our approach consisted of the following four ele-
ments: (a) general definitions of causal mediation effects given
within the counterfactual framework, (b) nonparametric identifi-
cation based on the sequential ignorability assumption, (c) estima-
tion algorithms for parametric and nonparametric models, and (d)
sensitivity analyses to assess the robustness of empirical results.
The proposed approach is general because it is developed without
any reference to a particular statistical model and therefore is
applicable to a wide range of situations. In doing so, we developed
easy-to-use software, mediation (Imai et al., 2010a), and give
researchers access to estimation strategies that can handle a variety
of data. Furthermore, our approach straightforwardly calculates
estimates of uncertainty that allow for hypothesis testing and
confidence interval construction. We also believe it is important to
probe the extent to which an unverifiable assumption drives the
results of the analysis. Thus, as a part of our general approach, we
have developed a sensitivity analysis that allows researchers to
quantify the exact degree of departure from the key identification
assumption that is required for the original results to no longer
hold.

We emphasize that in our approach each component is closely
linked together. The potential outcomes definition of causal me-
diation effects allows us to conduct the nonparametric identifica-
tion analysis, which reveals the key assumption required for re-
searchers to interpret mediation effects as causal. The result of this
identification analysis implies the general estimation algorithms
that are applicable across a variety of statistical models. Further-

13 For example, if the omitted variable affects the mediator and outcome
variable in the same direction, then sgn(A\,\5) = 1.
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more, the potential violation of the key identification assumption
motivates the development of the sensitivity analysis within the
context of statistical models commonly used by applied research-
ers.

Future research should extend this general framework to more
complex situations such as panel data, multilevel models, and
multiple mediators. Like much of the existing literature, we have
focused on the statistical methods that are applicable to either
standard randomized experiments (in which the treatment is ran-
domized) or observational studies in cross-section settings. How-
ever, we do not consider alternative experimental designs in which
the mediator is either directly or indirectly manipulated by re-
searchers. In our ongoing work (Imai, Tingley, & Yamamoto,
2009), we evaluated the advantages and disadvantages of the
existing experimental designs and developed new experimental
designs that may more effectively identify causal mediation ef-
fects. We also showed how these experimental designs can serve
as templates for observational studies so that causal mediation
analysis can be conducted with less stringent assumptions than
sequential ignorability (Imai, Keele, Tingley, & Yamamoto,
2010b).
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Appendix A

Asymptotic Variance Under the Model With the Interaction

Using the delta method and noting the independence between
B, and (4, k), we can write the asymptotic variance of estima-
ted average causal mediation effect in Equation 9 as Var(B,(y +
ROITX)~(y + m)VaB,|T.X) + BVa§|T.X) +
£Var(k | T, X) + 2tCov(¥, R | T, X)} for t = 0, 1 (Preacher, Rucker, &
Hayes, 2007). On the basis of this asymptotic variance, one can
conduct the statistical test with the null hypothesis of the form 3(7) =
Ofort=0,1.

To derive the asymptotic variance for the estimated direct effect
given in Equation 10, we first rewrite the variance as

Var(B; + &{&, + Bor + £ X} | T, X)
= Var(B, | X, T) + Var(R{&, + Bor + £ X} | T, X) +
2Cov(Bs, R{c, + Bor + E/ X} | T, X).

Noting the independence between (4,8) and (,,B,,€,) and using
the result of Goodman (1960), we can write the second term of the
above equation as

Var(R{@, + Byt + £ X} T, X) =
(a + Bot + £ X)?Var(R | T, X) + &*Var(é, + for + £ X | T, X)
+ Var(R | T, X)Var(é, + Bor + £ X | T, X),
where Var(q, + Br + & )z |T,X) = Var(&|T,X) + FVar
B T.X) + X'Var§|T. XX + 2:Cov(&, B, |T.X) + 2uX'
Cov(,, & | T,X) + 2X Cov(&,, & | T, X). Finally, using the result
of Bohrnstedt and Goldberger (1969) and noting the independence
again, we write the final covariance term as
Cov(Bs, Rlc, + Bt + X} | T, X) =
(cy + Bt + £ X)Cov(Bs, R | T, X).
Finally, the variance for the estimated total effect is given by

Var(B, + 4 X|T,X) = Var(§, | T,X) + X"Var(4|T, X)X + 2X"
Cov(B4| T, X).

Appendix B

The Assumption of Instrumental Variables Estimation

Assumption 2 (Instrumental Variables Assumption;
Angrist et al., 1996): The assumption consists of the
following three parts:

1. Ignorability of treatment assignment: {Y(t', m),
MO} LT;| X, = xand 0 < Pr(T, = t| X, = x) for
t,t' =0,1andall x € %,

2. Monotonic treatment effect on the mediator: M(1) =
M(0) (or M(1) = M(0)) foralli = 1,2,...,n;

3. No direct effect (exclusion restriction): Y(1, m) =
Y0, m) for all m € JM.

Like Assumption 1, Assumption 2 requires that the treatment
assignment is ignorable given the observed pretreatment covari-
ates. As noted before, the ignorability of treatment assignment is
satisfied in experiments in which the treatment is randomized, a
typical setting where causal mediation analysis is employed. More

importantly, the instrumental variables method replaces the sequential
ignorability assumption about the mediator with two alternative as-
sumptions. Although allowing for the possibility that there may exist
unobserved variables that confound the relationship between the out-
come and mediating variables, the instrumental variables method
assumes that the treatment monotonically affects the mediator and
that the treatment has no direct effect on the outcome. Like the
ignorability of the mediator, these two assumptions are not directly
testable because we never observe M(1) and M,(0) (or Y1, m) and
Y0, m)) jointly for any given unit.

Although these assumptions are not refutable, we can probe
their plausibility. The monotonicity assumption may be plausible
in some cases. In the context of the JOB II study, for example, the
assumption implies that the program participation would help
every worker in the study by improving his or her level of self-
confidence in the search for a job. However, the assumption is
violated if there are some workers whose self-confidence level is
negatively affected by the job training program. Thus, the mono-
tonicity assumption rules out any job seeker having a negative-

(Appendices continue)
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reaction to the training programming and thus being less effective
at finding a job.

The assumption of no direct effect for every unit is more
problematic, as the main goal of causal mediation analysis is to test
alternative causal mechanisms. This assumption implies that there
is no other causal pathway other than through the mediator of
interest. In the JOBS II study, the assumption is difficult to justify
because the increase in the level of job search self-efficacy is
probably not the only reason why the job training program reduces
the depressive symptoms. Thus, although Assumption 2 has an
advantage of allowing for the existence of unobserved confound-

ers, it a priori excludes the possibility of a direct effect from the
treatment to the outcome.

If the instrumental variables assumption is maintained, there is
no need to use the product of coefficients as the average mediation
effect. Indeed, all one needs to do is to estimate the average total
effect of the treatment that under the no-direct-effect assumption
equals the average mediation effect. Specifically, under Assumption
2, B in Equation 7 is assumed to equal zero, and the average causal
mediation effect is identified as & = B,y = B,, where B, is given in
Equation 5. Thus, the estimated average causal mediation effect and
its variance are easily obtained by regressing Y; on 7; and X;.

Appendix C

Proof of Theorem 2

Equations 6 and 8 imply

Yi=(cy + a3) + {B3 + (v + 0B, + ak}T;

+ (v& + &)X + kETX, + (v + kT)g, + €.

Let &, = (y + «kT)g, + &5 Then, E(ey[T) = (v +
kT)E(ey | T) + [E(es|T) = 0, where the second equality fol-
lows from Equation 3 of Assumption 1 (for details, see proof of
Theorem 2 in Imai, Keele, & Yamamoto, 2010). Thus, the iden-
tifiable parameters are (o}, By, &, 05, Bos &y KEs, 01, 05, P,) foOr
t =0, 1, where o; = o,y + a5, By = B3 + (y + K)B, + a,k, and
&, = v& + &;. This means that if we identify (v, k), then (o5, B5,
£&,) is also identifiable. To identify (y, k), we solve the following

system of equations (note that k can also be identified from k&, as
long as there is no interaction term between X; and 7, in the

outcome regression; for the sake of generality, however, we do not
pursue this identification strategy here):

ot = (y + 0003, + 2(y + n)pas 03, + 03,
ﬁzzo-ltO-Zt = ('Y + tK)O-%r + PO2,073;

where (p,, 07,, 03,) is identifiable from the data and (v, k, 03,) is
the set of unknown parameters for + = 0, 1. The number of
equations is four and is equal to the number of parameters, and
thus one can express k and vy as the functions of identifiable
parameters. Thus, with Equation 9, the desired expression results.

Appendix D

The Estimation Algorithms

Parametric Inference

Suppose that the quantity of interest is the average causal
mediation effect, 8(r).

Step 1: Fit models for the observed outcome and mediator
variables. Fit a parametric model, f;,(M; | T;, X,), for the media-
tor and another parametric model, £, (Y;| T\, M, X;), for the out-
come where 0,, and 0, represent model parameters.

Step 2: Simulate model parameters from their sampling
distribution. Sample J copies of 6,, and 0, from their sampling

distributions and denote them 0%) and 6¢?, respectively. We use the
approximation based on the multivariate normal distribution (with
mean and variance equal to the estimated parameters and their
estimated asymptotic covariance matrix, respectively).

Step 3. Foreachj=1,...,J, repeat the following three steps:

1. Simulate the potential values of the mediator. For each t =
0,1 and each i = 1, ..., n, sample K copies of M(t) from
foo(M; | £, X;) and denote them as MY (r) fork = 1,. .., K. That s,
we generate two potential values of the mediator each based on the
mediator model, one under the treatment condition and the other
under the control condition.

(Appendices continue)
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2. Simulate the potential outcomes given the simulated values
of the mediator. Foreacht=0,1andeachi=1,...,n, sample
one copy of Y,(z, M{®(t")) from fyo(Y; | £, MY(¢'), X;) and denote it
as Y¥O(r, MP5(t")) for k = 1, ..., K. That is, for each treatment
status, we generate two potential outcomes, again using model
predictions, one using the mediator status generated under the
treatment condition and the other using the mediator value under
the control condition.

3. Compute the causal mediation effects.
age causal mediation effect as

Compute the aver-

89(1) = %KZ A M (1) = Y M)},

i=lk=1

That is, we simply take the difference across the two outcome
predictions under treatment and the two outcome predictions under
control and average across the predictions for each of the N units
in the study. This provides us with 3Y’(¢), which is one Monte
Carlo draw of the average mediation effect.

Step 4: Compute summary statistics. Finally, we compute
the point estimate of 8(r) and its uncertainty estimates from the
distribution of mediation effects: 8”(r). For example, the sample
median and the sample standard deviation of the distribution can
be used as the point estimate of 3(r) and its standard error, whereas
percentiles of this distribution can serve as confidence intervals
for (7).

In principle, one can modify Step 3.3 of the above algorithm to
accommodate any quantities other than the average causal medi-
ation effects. For example, the a-quantile average causal media-
tion effects defined in Footnote 9 can be estimated by computing
the sample quantile of Yf”‘)(t, M,(fk)(t’)) across treatment and con-
trol. Although the proposed algorithm is applicable for any para-
metric model, algorithms specifically tailored for a particular
model are typically more computationally efficient because, de-
pending on the models chosen by researchers, further simplifica-
tions of Algorithm 1 may be possible.'

Nonparametric Inference

Suppose that the quantity of interest is the average causal
mediation effect, 3(2).

Step 1. Take a random sample with replacement of size n from
the original data J times. For each of the J bootstrapped samples,
repeat the following steps:

1. Fit models for the observed and mediator variables. Fit a
possibly nonparametric model, fiM, | T, X,), for the mediator and

another possibly nonparametric model, AY;|T,, M,, X,), for the
outcome. Denote the estimates as f(M, | T;, X;) and f(Y, | T,, M,,
X;). Again, these are simply the mediator and outcome models that
are now allowed to be nonparametric or semiparametric models.

2. Simulate the potential values of the mediator. Foreacht =
0,1andeachi=1,2,...,n sample K copies of M(t) from f(M, | ¢,
X,) and denote them as MY¥(¢) for k = 1, 2, ..., K. Once again,
we generate a set of predictions for the mediator under each
treatment status.

3. Simulate the potential outcomes given the simulated values
of the mediator. For eacht = 0,1 andeachi =1,2,...,n,
sample one copy of Yz, MY¥(¢")) from f(Y, | t, MY(t"), X,) and
denote it as YYO(r, MY®(1")) for k = 1,2, . . ., K. Potential outcome
predictions are generated for each treatment status and two medi-
ator predictions.

4. Compute the causal mediation effects.
age causal mediation effect as

Compute the aver-

89(1) = %E AV M) = Y, MEP(0))},

i=lk=1

which is the difference between the two outcome predictions under
each treatment status.

Step 2: Compute summary statistics. Compute the point
estimate of §(¢) and its uncertainty estimates using the J estimates
from the bootstrap sampling distribution. The sample median and
the sample standard deviation of 3Y#) can be used as the point
estimate of d(r) and its standard error. Percentiles may be used as
confidence intervals.

As before, in some cases, the simplification of Algorithm 2 is
possible, though we do not describe the details here.

4 For example, there is no need to simulate the mediator and the
outcome as well as model parameters in the LSEM framework, although
point and uncertainty estimates will be approximately equal. Moreover, if
the quantities of interest can be derived analytically from the selected
parametric model for the outcome variable, f; (V; | T\, M,, X,), then Step 3.2
can be skipped and Step 3.3 can be modified to compute the average causal
mediation effect for each unit directly given a Monte Carlo draw MY%(r) for
t =0, 1 as follows:

- 1 }
50 = - 3 5 B 1 MP(), X) = Ey(r |1 MP(0), X))

One situation in which this simplification is possible is when the outcome
variable is binary and modeled with logistic regression.

(Appendices continue)
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Appendix E

Simulation Studies

Here we conduct a series of Monte Carlo simulations to dem-
onstrate the superiority of our method over the existing methods
based on the LSEM. Although there exist a variety of situations
one can examine, we focus on two specific scenarios: (a) when
nonlinearity is present in the outcome model and (b) when the
outcome is binary.

Nonlinear Model

We begin by conducting a simulation study with nonlinearity in
the outcome model. In such a situation, one common strategy is to
add quadratic and/or cubic terms as additional linear predictors
within the LSEM framework. For more complex forms of nonlin-
earity, however, this strategy can perform poorly especially in a
large sample. Thus, we also examine the performance of the
semiparametric model discussed in the section Nonparametric and
Semiparametric Regressions. Specifically, we generate data from
Equations 6 and 7 but make the relationship between the outcome
and mediator variables nonlinear as shown in Figure E1. Thus, a
quadratic model is a reasonable but incorrect approximation. We
do not include any additional covariates in the assumed models
beyond the binary treatment and the mediator. We simulate the
error terms as independent normal random variables so that se-
quential ignorability holds.
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Figure EI. Nonlinear relationship used for a Monte Carlo study. The
solid line represents the average potential outcome, E(Y,(z, m)), as a func-
tion of the mediator while the treatment variable is held constant.

Table El
Simulation Results With the Nonlinear Outcome Model
by Sample Size

Large effect size Small effect size

Method Bias RMSE Bias RMSE
N = 100

GAM —0.53 3.67 —0.11 0.72

Quadratic —4.29 4.63 —0.25 0.69

Linear —6.26 6.45 -0.32 0.37
N = 500

GAM -0.47 2.08 —0.09 0.39

Quadratic —7.19 7.40 —0.35 0.49

Linear —6.66 6.71 -0.33 0.34

Note. In the generalized additive model (GAM), the estimation of the
average causal mediation effect is based on Algorithm 2. The quadratic or
linear structural equation model includes the square term of the mediator as
an additional linear predictor in the outcome model. The estimation of the
average causal mediation effect for this model is based on Algorithm 1.
The linear model represents the standard product of coefficients method.
The true average causal mediation effect is 4.4 for large effect size and 0.22
for small effect size. RMSE = root-mean-squared error.

Within these basic settings, we conduct two Monte Carlo sim-
ulations each with two different sample sizes (100 and 500) for a
total of four sets of scenarios. Several population parameters were
held constant across all four sets of results: The population values
of a,, B,, a3, and B were all set to 0.25. In the first set of
simulations, the amount of the total effect that was mediated is
approximately 25%. In the second set of simulations, the amount
of the total effect that was mediated is higher and about 75%. In
sum, we compare how well each method performs when the
mediation effects are large or small with two sample sizes (small
and moderate).

For each of the four data-generating processes, we compare
three estimation methods. The first method uses the GAM and
Algorithm 2 as discussed in the main text. The second method we
use is Algorithm 1 based on the LSEM, which includes the square
term of the mediator as an additional linear predictor in the
outcome model. Finally, we estimate average causal mediation
effects using the standard product of coefficients method. The
results are reported in Table El and are based on 2,500 simula-
tions. We compute both bias and the root-mean-squared error
(RMSE) for each method.

(Appendices continue)
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331

Performance of the Proposed Method With Binary Outcome Variable Relative to the Product of Coefficients Method

Large effect size

Small effect size

Proposed method

Product of coefficients

Proposed method Product of coefficients

Sample size Bias RMSE Bias RMSE Bias RMSE Bias RMSE
50 0.014 0.172 0.213 0.682 0.002 0.097 0.092 0.349

100 0.008 0.127 0.198 0.451 0.000 0.068 0.092 0.228

500 0.001 0.065 0.184 0.257 —0.002 0.032 0.089 0.127
1,000 —0.001 0.046 0.180 0.218 —0.001 0.023 0.090 0.110
Note. The data-generating processes are based on the probit outcome (binary measure of employment) regression and the linear mediation (continuous

measure of job search self-efficacy) regression from the Job Search Intervention Study example. No covariates are used for this simulation experiment. The
true average causal mediation effect is 0.106 for large effect size and 0.052 for small effect size. RMSE = root-mean-squared error.

We first review the results when the average causal mediation
effect is large and the sample size is small. Here conventional
methods perform very poorly, with the bias being nearly an order
of magnitude higher compared with the semiparametric model.
This same basic pattern holds for the larger sample size as well.
The parametric models fare better in terms of RMSE when the
sample size is small. This is not surprising, as nonparametric
methods tend to have higher levels of variance in small samples.
Regardless, the RMSE for the GAM is significantly smaller. Once
the sample size is moderate, the difference becomes more stark, as
the RMSE for the parametric models is more than twice that of the
GAM.

When the mediation effect is small, the GAM results again
clearly outperform conventional models in terms of bias. The bias
for the mediation effect is typically 3 times smaller when the GAM
is used. As expected, the RMSE is actually worse for small sample
sizes but improves markedly for the large sample sizes. Together,
this simulation exercise demonstrates why the generality of our
proposed approach is valuable. Nonparametric and semiparametric
regression models allow for robust and flexible modeling of non-
linearity, and our proposed method can accommodate these models
in a straightforward manner.

Binary Outcome

In our second example, we study whether our estimation algo-
rithm can accurately recover the average causal mediation effect in

a case with a binary outcome and a continuous mediator. As in the
previous simulation, we use two effect sizes. To make the data-
generating process realistic, we set the parameters (o, o5, B3, Y)
equal to the values generated from regression analysis of the JOBS
II data with the dichotomous employment outcome variable (pro-
bit) and continuous job search self-efficacy mediator (ordinary
least squares; i.e., 3.9, —0.9, 0.15, 0.19). For the sake of simplicity,
we do not use covariates, though our approach easily accommo-
dates them.

We set 3, = 3 in our first simulation and 3, = 1.5 in our second
simulation so as to produce a larger (about 0.1) and smaller (about
0.05) average causal mediation effect, where B, is defined in
Equation 6. We vary the sample size from a relatively small (50)
to a relatively large sample (1,000). We compare our method
(Algorithm 1) against the product of coefficients method in terms
of bias and RMSE for the estimated average causal mediation
effect. As before, each Monte Carlo experiment is based upon
2,000 simulations with our mediation software.

Table E2 presents the results from our simulations. The bias and
RMSE of our method are small even with a sample size of only 50
and steadily decline as the sample size increases. Conversely,
using the product of coefficients method to estimate the average
causal mediation effect produces substantial bias and a large
RMSE for all cases we examine. This demonstrates that blindly
applying the product of coefficients method in practice can yield
highly misleading inferences.

(Appendices continue)
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Appendix F

The Average Causal Mediation Effects With Binary Outcome

We derive the general expression for the average causal mediation
effects using the following model with the pretreatment confounders. The
result given in the main text is a special case of this general result.

M; = o, + B,T; + ngXi t €
Y, = 1{Y; >0} where Y; = a3 + B:T; + yM, + & X, + €3,

i

where €,, and €5, are different i.i.d. random variables with zero mean and
Var(e,;) = o3 and Var(e;;) = o3. Under Assumption 1, we have

JE(Y, | T,=1t, M, X, = x)dF(M, | T,=1,X;,=x)
= [Pr(os + Bst + YM; + & x + €5, > 0)dF(M; | T; = t', X; = x)
= [Pr{o; + Byt + & x + y(ow + Bot’ + & x + €) + €5, > 0}
X dF(e,;)
= [y + Bst + & x + y(o, + Bot’ + Ex + &) + €5, >0}
X dF(€3;)dF(ey;)

=1—Pr{yey + &= — a3 — Byt — E;x —y(o, + Bot" + ngx)},

where the second equality follows from the change of variables
formula as well as the fact that 7, L¢€,, and the fourth equality
follows from the independence between €,; and €5;.

Suppose €,; is an i.i.d. logistic random variable and
£,;9N'(0, 03). Using the results derived above, we obtain
3(1) = HH(as + Byt + & X, + y(ap + By + & X))

= H(oy + Bst + & X, + y(a, + & X))},

T=EH(+ B+ §3TX,' + v, + B, + ngX,))
— H(ay + y(8, + ngX;))}

Next, suppose &,;44N(0, 1) and &,,;~N(0, o3). Then, we have

_ oy + Byt + E X+ vyl + B, + E X
B(t)—[E{CD< 3+ Bs & _ 27( 2+ B+ ))
\ory + 1

P oy + Byt + &5 X + v, + £ X)
\/0'572 + 1 ’

T=EHd(a, + By + ngXi) — ®(a; + ngxx)}

Appendix G

The Proportion Mediated With Binary Outcome

Without Covariates

Suppose that the probit regression is used to model the binary
outcome variable without pretreatment covariates, that is, the
model defined in Equations 13 and 14, where €;4N'(0, o3) and

£, N(0, 1). We derive the condition under which the common

measure used in the literature, ¥ in Equation 19, approximates the
true proportion mediated, v. First, we use the following linear
approximation to the average causal mediation effect:

5(1) = %@(“S Bt + (o + le')>

\/0'5"/2 +1 =0

_ d)<0L3 + Bat + ’YOL2> B2

o3y + 1 o3y + 1

fort = 0, 1. Similarly, we can approximate the average total effect,

_ <a3+70‘2) Y82 + Bs

T= .
\/crg'yz +1 \/cg'yz +1

With these results, the proportion mediated is approximated by

_ l 1+ (_83{83 + 2(as + 7012)}> B2
h) xp 2(o3y* + 1) Bs + B

Thus, one condition under which ¥ approximately equals v is that
the average direct effect is small.

This result extends to the situation in which the logit regression
is used, that is, the model defined in Equations 13 and 14, where
€54 N'(0, 03) and €, is an i.i.d. standard logistic random variable.

(Appendices continue)
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Figure G1. The bias of the product of coefficients method for estimating proportion mediated. The bias is

calculated based on the JOBS II data. The outcome variable is whether someone finds employment, and the
mediator represents the level of job search self-efficacy. The figure compares the true proportion mediated (solid
line), v defined in Equation 18, with the estimate based on the product of coefficients method (dashed line), ©
defined in Equation 19. The bias increases as the coefficient for the treatment in the outcome regression, 35,

becomes greater.

The calculation similar to the above yields the following approx-
imation to the true proportion mediated:

1 »
V=g l+f exp

_33{83 + 2(0; + ya, — €3)}
2v%o3

exp(&y) . YB2
{1 +exp(es)} ' Bs +¥By

Thus, when the average direct effect is small, the standard measure
approximates the true proportion mediated well.

With Covariates

The above result can be generalized to the model with the observed
pretreatment covariates. Because the analytical calculation is similar, we
present the probit case, thatis, M, = o, + BT, + £X; + &, with
&“NO,0) and PHY|T,M,X) = ®las + BT + M,

+ & X). Using the same linear approximation as before, we obtain

Soa o + Bst + EX; + vy, + £X) B2
o) = [E{d)( VoY + 1 )} N

5 [E{¢<O‘3 + &X; + (o, + §2Xi)>} YB2 + Bs

V/o%'yz +1 \/o'g’yz +1

for t = 0, 1. Thus, the proportion mediated is approximately equal
to the following expression:

o~ 1[1 n [E{d)<a3 +Bs+ gsz(i;” V(o + gz&'))}/
2 \/0’2'\/ +1

E (OL3 + &X; + (o, + Ein)) vBs
{d) oyt + 1 }] Bs +vBy

Thus, again, one condition under which v approximately equals ¥
is that the direct effect is small.

An Example from the JOBS II Study

The difference between the proportion mediated measure
used in the literature, U, and the true proportion mediated, v,
becomes larger as 35 increases in magnitude. To illustrate this
difference, we again use the JOBS II data and use the dichot-
omous outcome measure of whether someone was employed 6
months following the treatment. We first estimate the mediation
and outcome models with our full set of covariates using linear
and probit regression, respectively. For our illustration, we use
these estimates, except that we fix the mediation effect to be 1
because the mediation effect in the JOBS data is quite small.
Next, we calculate the proportion mediated at different values
of 5, beginning with the estimated value from the sample,
.171, and plot the difference between ¥ and v in Figure G1.
Consistent with the analytical result derived above, the estimate
based on the product of coefficients method diverges from the
true proportion as [3; becomes larger.

(Appendices continue)
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Appendix H

The Details of the Sensitivity Analysis for Binary Outcome

For the binary outcome model given in Equation 21, identifica-
tion of the average causal mediation effects under nonzero values
of p requires several steps. For ¢+ = 0, 1, we can write the average
causal mediation effects with nonzero p as

vYBo(1 — 1)
Vyzoﬁ + 2ypo, + 1

3(1) = [E{cb(aI + Byt +EX +

t
—(I><0c1 T QR )}
Y03 + 2ypo, + 1

In the expression above, B, and o5 can be consistently estimated
via the regression of M; on (1, T}, X;). The four parameters in this
expression that we still need to identify are a,, 3, &, and . The
first step toward identification requires estimating the probit re-
gression: ¥, = 1{Y; > 0} with ¥/ = «, + BT, + &X, +
€,, where we assume €&,““N(0,1). Second, we define p =
Corr(e;;, €;,), which identifies y as

_ et p)/ —p)
Y = .

Next we estimate Equation 21, which gives a set of biased
estimates when p is nonzero. We denote ¥ as the biased coefficient
for M, in this probit model of the outcome, and we use it to obtain
a consistent estimate of § = o,¥/\1 + o342, In fact, we can also
obtain o, and B, from this probit equation: o = s/l — p>+
ap/oy, By = ~g3\1 —p + Boploy, and § = Ez\/l =P+ &ploy,
where (a5, B3, &) are the intercept and the coefficients for 7; and X,
respectively. We now have consistent estimates for all the quantities
needed to estimate the average causal mediation effects when p is
nonzero.
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New Editors Appointed for Journal of Neuroscience, Psychology,
and Economics, 2011-2016

The American Psychological Association is pleased to announce the appointment of new
co-editors for Journal of Neuroscience, Psychology, and Economics for a 6-year term
beginning in 2011. As of January 1, 2011, all new manuscripts should be directed to:

Department of Epileptology, University Hospital Bonn
Head, NeuroCognition/Imaging, Life & Brain Center

Electronic manuscript submission: As of January 1, 2011, manuscripts should be
submitted electronically to the new editors via the journal’s Manuscript Submission
Portal: http://www.apa.org/pubs/journals/npe, under the Instructions to Authors.

Manuscript submission patterns make the precise date of completion of the 2010
volumes uncertain. The current co-editors, Martin Reimann, PhD, and Oliver Schilke,
PhD, will receive and consider new manuscripts through December 31, 2010. Should
2010 volumes be completed before that date, manuscripts will be redirected to the new
editors for consideration in the 2011 volume.




