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S1 Two-way and Three-way decision tables used in the HES
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Figure S1: The two-way table used in the Hamlet Evaluation System for aggregating two input scores.
The (i, j) element in the table above shows the output score when the first input is i and the second
input is j.
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Figure S2: Three-way decision tables used in the HES. Each figure fixes the third input score and shows
the output score for different combination of the first two inputs.
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S2 An additional figure and table
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Figure S3: The mean of each sub-model score
across the 1954 regions

Variable Value

Number of regions 1954
Number of regions being attacked 1024
Average security score 3.34
Average regional safety outcome 0.53
Average regional economy outcome 0.51
Average civic society outcome 0.43

Table S1: Summary statistics on key mea-
sures

S3 BART and GP for Bayesian Inference on the CATE

Below, we consider BART and GP for Bayesian inference on these parameters {fk}K−1
k=0 . Specifically,

we sample from the posterior distribution of {fk}K−1
k=0 and apply Algorithm 1 to find a safe policy.

Bayesian Additive Regression Trees (BART). BART is a popular Bayesian nonparametric

model that is commonly used for causal inference, especially to estimate the CATE (Taddy et al.,

2016; Hahn et al., 2020). In general, BART excels in learning complex nonlinear relations while it is

often poor at extrapolating. Thus, BART may be a suitable choice when there exists a substantial

covariate overlap between treatment conditions.

We use a BART to model each fk for k ∈ {0, 1, . . . ,K − 1} as the sum of L regression trees,

i.e., fk(x) =
∑L

ℓ=1 gkℓ(x;Tkℓ, Pkℓ) where gkℓ(·) is the ℓ-th regression tree with parameter Tkℓ and Pkℓ

denoting the structure of the regression tree and the parameters in the terminal nodes, respectively.

Thus, the parameter Θ consists of {Tkℓ, Pkℓ}1≤ℓ≤L,0≤k≤K−1 as well as σ2. We draw posterior samples

for {Tkℓ, Pkℓ}1≤ℓ≤L using an MCMC algorithm once a prior distribution is specified (Chipman et al.,

2010).

Gaussian Process Regression. Another popular Bayesian nonparametric model is Gaussian Pro-

cess regression (GP). GP has a greater degree of smoothness than BART, making it more suitable for

extrapolation (Rasmussen and Williams, 2006; Branson et al., 2019). Therefore, we should consider

using GP when the overlap of covariates between treatment conditions is poor.

As in the case of BART, we use a GP to model each fk. Specifically, fk is assumed to be a random

function based on a collection of Gaussian processes. To conduct Bayesian inference on fk, we specify a

prior for fk by giving the mean function µk(·) and kernel function Kk(·, ·) and obtain posterior samples

of fk using the MCMC algorithm (Rasmussen and Williams, 2006; Branson et al., 2019).

When strong prior information is unavailable, we can set µk(·) = 0 for k ≥ 1 which corresponds to
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no treatment effect. For the kernel function, which determines the covariance between fk(x1), fk(x2)

for any x0,x1 ∈ X , we can, for example, use Matern kernels:

KMatern(x1,x2) = σ2
0

21−ν

Γ(ν)

(√
2ν||x1 − x2||

ℓ

)ν

Bν

(√
2ν||x1 − x2||

ℓ

)
(S1)

where l is the scale parameter, σ2
0 is the variance parameter, Bν is the modified Bessel function of

the second kind, and ν is the smoothness parameter. The hyperparameters in the Matern kernels can

be selected based on prior knowledge about the smoothness of fk(·). For example, to make fk more

smooth, we can increase the scale and smoothness parameters. In general, ℓ and ν determine the prior

knowledge about the smoothness of f , while σ2
0 determines the strength of this prior knowledge.

Extrapolation based on GP is similar to frequentist extrapolation methods that specify the model

class by assuming a certain type of smoothness on the CATE under the robust optimization framework.

For example, Ben-Michael et al. (2021) considers the case with two arms and assumes a Lipschitz

constraint on the CATE, i.e., |f1(x1)− f1(x2)| ≤ c|x1 − x2|. In our framework, if we specify the prior

of f1(x) as a GP with mean function m(x) that is c1 Lipschitz, then the Matern kernel with scale

parameter ℓ and smoothness parameter ν implies the following probabilistic Lipschitz condition:

P (|f1(x1)− f1(x2)| > c2||x1 − x2||) ≤ σ2
0

{(
1 +

1

ν − 1

)
1

c22l
2
+

c21
c22

}
Thus, there exists a direct relationship between the prior hyperparameter of GP and the smoothness

of the underlying model.

S4 Additional Simulation Results

Here we present additional detailed simulation results.

S4.1 Additional explanation on the regularization effect

In the main text, we discussed the way that the ACRisk acts as a form of regularization. Here we include

more intuition about this regularization effect. Figure S4 shows the true CATE in the simulation setup

in Section 5. The area in red indicates a positive CATE whereas the area in blue indicates a negative

CATE. Without the ACRisk constraint, one may end up assigning the area with light blue color to the

treatment condition due to finite sample error. If we impose the ACRisk constraint, however, we can

reduce such errors because those areas have a large posterior uncertainty in determining the sign of the

CATE.
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Figure S4: The true conditional average treatment effect (CATE) in the simulation study. The area with
warm color indicates that the CATE is positive while the area with cold color means that the CATE is
negative. The posterior ACRisk of giving the treatment at B is much smaller than the corresponding
risk at A because the CATE at A is close to 0 and the uncertainty of determining its sign is large.

S4.2 Average Value and ACRisk with different signal strength and prior strength
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Figure S5: Average Value and ACRisk for learned policies using data with covariate overlap, varying
the safety constraint and signal strength.
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Figure S6: Average Value and ACRisk for learned policies using data without covariate overlap, varying
the safety constraint and prior strength for the CATE.

S4.3 The tail distribution of the empirical ACRisk

In the main text, we discuss the average ACRisk of the learned policy in multiple simulations. However,

we may also be interested in the tail distribution for the ACRisk of learned policy. Therefore, we inspect

the 90 percentile of the ACRisk for the learned policy across 2000 simulations. Figures S7 and S8 show

how the 90 percentile of the ACRisk changes with the sample size, signal strength, smoothness for prior

of the CATE, and the strength of the prior.

Overall, we observe similar results as the result for average ACRisk showed in the main text. The

90 percentile of the ACRisk increases as the safety constraint ϵ increases, until reaching a plateau that

corresponds to the ACRisk obtained by maximizing the posterior expected utility with no constraint. A

samller sample size or lower signal lead to a greater ACRisk, and a smoother or stronger prior increases

the ACRisk because we estrapolate more aggressively.
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Figure S7: 90 % quantile of the ACRisk for learned policy among 2000 simulations. The CATE is
estimated with BCF and covariates have overlap
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Figure S8: 90% quantile of the ACRisk for learned policy among 2000 simulations. The CATE is
estimated with a GP and there is no covariate overlap.

S4.4 Simulation results with binary outcomes

The previous simulation design focused on continuous outcomes. Here, we present simulation results

when the outcome is binary. We use a similar setup as in Section 5 where the covariates X = (X1, X2)

and X1, X2
i.i.d∼ Uniform[−1, 1]. We use the same Scenario I (with covariate overlap) and Scenario II

(without covariate overlap) for generating the decision D in the data. For the outcome, we let

Y |X ∼ Bernoulli

(
expit

(
X1

2
+

X2

2
+ γ{3I(X1 > 0, X2 > 0)− 3

2
}D|X1||X2|

))
,

where we consider a strong signal case γ = 2 and a weak signal case γ = 1. We vary the number of

observations n ∈ {50, 100, 200}, and we use a GP to model the CATE.

With covariate overlap. In the case with covariate overlap, there is no need for extrapolation.

Therefore, we use a weak prior for the GP and specify the mean function m(x) = 0, the kernel function

as a Matern kernel with σ0 = 4, l = 0.5. We show how the average ACRisk and the value changes as a

function of the safety constraint ϵ under different sample size and signal strength in Figure S9.

As shown in Figure S9, the average ACRisk increaseas as the ϵ in the safety constraint increases

under all setups. Fixing the safety constraint ϵ, a larger sample size or stronger signal strength leads to

a lower ACRisk. Similar to the results in the main text, we also observe a regularization effect of the

safety constraint, where under appropriate safety constraint, the average value of the learned policy is

higher than the value of the policy that maximizes the posterior expected utility without any safety

constraint.

Without covariate overlap When there is no covariate overlap, the CATE must be extrapolated.

We fix the sample size to 200 and the signal strength γ = 2 and investigate the average Value and

ACRisk for learned policies with different priors. Figure S10 and Figure S11 shows the average Value
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Figure S9: Average Value and ACRisk for the learned policy among 2000 simulations. The CATE is
estimated with GP and covariates have overlap
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Figure S10: Average Value and ACRisk for learned policies using data without covariate overlap, varying
the safety constraint and prior smoothness for the CATE.

and ACRisk of the learned policy as a function of the safety constraint ϵ under different prior smoothness

and prior strength. We observe that with a smoother or stronger prior, the learned has a higher average

ACRisk as the extrapolation is more aggressive.
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Figure S11: Average Value and ACRisk for learned policies using data without covariate overlap, varying
the safety constraint and prior strength for the CATE.

S5 Additional application results

S5.1 Scaled PD importance of level-3 scores
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S5.2 Sensitivity analysis for prior hyperparameters

In the main text, we use a GP to estimate the CATE, relying on the GP prior for extrapolation. Here,

we present a sensitivity analysis for the smoothness of the GP prior, which determines the degree of

extrapolation. Other than the original setup where l = 1, we also consider the setups with l = 0.5 (less

extrapolation on the CATE), l = 2 (more extrapolation on the CATE).

In Figure S13, we plot the partial dependence of the output security score as a function of the

input level-3 score, under learned policies with different values of the prior smoothness parameter l.

We use the regional safety as the outcome for policy learning, and set the safety parameter ϵ = 0.1.

As shown in Figure S13, with greater values of the prior smoothness parameter l for extrapolation,

the obtained policies tend to systematically increase the output security score. This is consistent to
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Figure S13: The relative change of the PD function from the baseline policy to the learned policy
for ϵ = 0.1. Each block corresponds to the different input of the PD function, and different colors
corresponds to different level-3 scores.
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Figure S14: The scaled Partial Dependence (PD) importance of level-3 scores of the learned policy with
regional safety outcomes, as a function of the ϵ. The solid line corresponds to the learned policy, and
the dashed line indicates the baseline policy. Lines with different colors shows the PD importance of
different level-3 scores.

the conclusion of Dell and Querubin (2018): airstrikes increased the communist insurgency activities

and decreases regional safety. Specifically, the change of the partial dependence is larger when l = 2,

which corresponds to a stronger smoothness prior and more extrapolation. When l = 0.5, there is less

extrapolation and the change of the partial dependence is smaller.

We further plot the relative partial dependence importance of each level-3 scores as a function of

the safety constraint ϵ, varying the prior smoothness parameter l. In Figure S13, under all the prior

smoothness parameter, the learned policy downweights the military sub-model scores and upweights

the socioeconomic sub-model scores.

S6 Optimization for Monotonic Decision Tables

In this section, we develop an optimization algorithm applicable to monotonic decision tables where

the output of a decision table is non-decreasing in each input dimension.
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S6.1 Problem definition

We define the monotonic decision table as below:

Definition S1 (Monotonic decision tables). Suppose X1,X2, ...,Xp,Y are finite totally ordered sets, T

is a function that maps x ∈ X = X1 ×X2 × ...×Xp to Y. Then, T is a monotonic decision table if and

only if the following condition holds,

∀ x = {xi}pi=1, x
′ = {x′i}pi=1 ∈ X where xi ≤ x′i for 1 ≤ i ≤ p, T (x1, ..., xp) ≤ T (x′1, ..., x

′
p)

We consider the following general optimization problem over monotonic decision tables.

Definition S2 (Optimization with monotonic decision tables). Suppose f, g are functions that map a

monotonic decision table T into a real-valued output. We consider the problem of finding an optimal

monotonic decision table Topt as defined below:

Topt := argmin
T

f(T ) subject to g(T ) ≥ 0 (S2)

In general, optimization over monotonic decision tables with the form given in Equation (S2) is

difficult to solve. Although one could enumerate all possible monotonic decision tables and their cor-

responding f(T ), g(T ), the number of enumerations is equal to Y |X | = Y |X1|×|X2|×···×|Xp|, which grows

exponentially as the size of the decision table increases. In our application, we wish to simultaneously

learn one two-way decision table and one three-way decision table, yielding a total of 525 × 5125 = 5150

enumerations. We would like to avoid enumerating these many possibilities.

Therefore, we use a Markov chain Monte Carlo (MCMC)-based stochastic algorithm for optimizing

over monotonic decision tables by adopting ideas from the graph theory. Specifically, we represent

a monotonic decision tables as an equivalent directed acyclic graph (DAG) where the directed edges

indicates the monotonicity conditions, and optimize over monotonic decision tables by sampling the

DAGs using an MCMC algorithm.

S6.2 Graph representation for monotonic decision tables

Monotonic decision tables can be equivalently represented as directed acyclic graphs (DAGs). We rep-

resent different inputs of decision tables as vertices of the DAG, and the monotonicity constraint on

the decision table as directed edges in the graph. For example, Figure S15 shows the graph represen-

tation for the original two-way decision tables in the HES (Figure S1). The two-way decision table has

5× 5 = 25 different inputs, which corresponds to the 25 vertices in the graph. The edges in the DAG

indicate the monotonicity constraint that the output should satisfy according to the decision table. For

example, in Figure S15, there is a directed edge from vertex [1, 1] to vertex [1, 2], which means that the

output of the decision table for input [1, 1] should be no greater than the output for input [1, 2].
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Figure S15: The DAG representation of the original 2-way decision table in the HES. Each vertice
corresponds to an input of the 2-way table, and directed edges indicate the relative order the corre-
sponding output should satisfy based on the monotonicity constraint. The color of the nodes indicate
the output of the 2-way decision table in the original HES.
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Figure S16: An example of partition for a decision table that does not satisfy the monotonicity con-
straint. There is a directed edge from [3, 1] to [3, 2], but the output for [3, 1] is larger than the output
for [3, 2].

With this representation, finding a decision table from X to Y is equivalent to finding a graph

partition that separate the DAG into |Y| areas where vertices in the same area have the same output

scores. A monotonicity constraint on the decision table is equivalently translated to an acyclic constraint

on the partition, where we forbid any directed edges from a node with larger output to a node with a

smaller outcome (Herrmann et al., 2017, 2019).

Figure S15 shows the graph partition corresponding to the original two-way decision table in the

HES, where the color of a node indicates the partition. This satisfies the monotonicity constraint. In

contrast, Figure S16 shows a different partition that does not satisfy the monotonicity constraint. There

is a directed edge from [3, 1] to [3, 2], but the output for [3, 1] is larger than the output for [3, 2].

S6.3 Optimization by sampling partitions of the DAGs

We optimize over monotonic decision tables by finding optimal acyclic partitions of the corresponding

DAGs. We propose an MCMC-based stochastic algorithm for sampling acyclic partitions of the DAGs

and optimize over it. To do this, we first sample a topological sort of a DAG (Karzanov and Khachiyan,
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Algorithm 1: Stochastic Optimization Algorithm for Monotonic Decision Tables

Data: A DAG G that contains all the potential inputs of the decision table and relations from
monotonicity constraints; a Markov chainM that generates an acyclic partial partition
of G with a uniform stationary distribution; An initial monotonic decision table T0 and
corresponding state S0 ofM.

1 for 0 ≤ r ≤ R do
2 Sr0 ← Sr

3 Tr0 ← Tr

4 for 1 ≤ k ≤ K do
5 Srk ←M(Sr(k−1))

6 Trk ← Decision table that corresponds to Srk

7 end for
8 Sr+1 ← argminT∈{Tr0,Tr1,...,TrK} f(T ) subject to g(T ) ≥ 0

9 Tr+1 ← Decision table corresponds to Sr+1;

10 end for
11 Return TR+1

1990) and then segment the topological sort into |Y| pieces to obtain a partition of the DAG.

Definition S3. (Topological sorts on DAGs) A topological sort of a directed acyclic graph is a linear

ordering of its vertices such that for every directed edge uv from vertex u to vertex v, u comes before

v in the ordering.

We take advantage of the fact that any segmentation of a topological sort corresponds to an acyclic

partition and produces a decision table satisfying the monotonicity constraint. Conversely, for any

decision table satisfying the monotonicity constraint, there will be a corresponding topological sort

and segmentation that produces the decision table. We use the MCMC algorithm of Karzanov and

Khachiyan (1990) to sample a topological sort from the DAG and a random walk to sample segmenta-

tions of the topological sorts. This gives us a Markov chain that generates random acyclic partitions.

Finally, we use a short-burst algorithm to use the MCMC sampling algorithm for optimization (Cannon

et al., 2023). Algorithm 1 formally describes our optimization procedure.

In the application, we run the above algorithm 2000 times to obtain 2000 corresponding decision

tables. Then we choose the one that achieves the highest posterior expected value.
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