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Abstract
Algorithmic decisions are increasingly used in high-stake domains such as criminal justice and medicine. We 
examine whether a security assessment algorithm deployed during the Vietnam War could have been 
improved using outcomes observed shortly after its rollout in late 1969. This empirical setting highlights 
methodological challenges common in real-world algorithmic decision-making. First, a new algorithm must 
be carefully evaluated to avoid worsening outcomes relative to an existing algorithm. Second, because the 
existing algorithm is deterministic, learning improvements require extrapolation that is both transparent and 
credible. Third, the use of discrete decision tables complicates optimization. We introduce the Average 
Conditional Risk (ACRisk), which quantifies the risk that a new algorithm performs worse for subgroups of 
units and then averages this risk across the population. We also develop a Bayesian policy learning 
framework that maximizes the posterior expected outcome while constraining the expected ACRisk. This 
approach separates treatment effect estimation from policy optimization, allowing flexible modelling and 
tractable search over complex policy classes. We show that this leads to a constrained linear programming 
problem. Applying our method, the learned algorithm rates most regions as more secure and assigns 
greater emphasis on economic and political factors over military ones.
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1 Introduction
Algorithmic decisions and recommendations have long been used in areas as diverse as credit mar
kets (Lauer, 2017) and war (Daddis, 2012). They are now increasingly integral to many aspects of 
today’s society, including online advertising (e.g. Li et al., 2010; Schwartz et al., 2017; Tang et al., 
2013), medicine (e.g. Kamath et al., 2001; Nahum-Shani et al., 2018), and criminal justice (e.g. 
Greiner et al., 2020; Imai et al., 2023). A primary challenge when applying data-driven policies 
to consequential decision-making is to characterize and control the risk associated with any 
new policies learned from the data. Stakeholders in fields such as medicine, public policy, and 
the military may be concerned that the adoption of new data-derived policies could inadvertently 
lead to worse outcomes for some individuals in certain settings.

In this article, we consider a particularly high-stake setting, analyzing a United States (US) mili
tary security assessment policy that saw active use in the Vietnam War. During the war, the US 
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military developed a data-driven scoring system called the Hamlet Evaluation System (HES) to 
produce a security score for each region (PACAF, 1969); commanders used these scores to 
make air strike decisions. A recent analysis based on a regression discontinuity design shows 
that the airstrikes had significantly negative effects on development outcomes including regional 
safety, economic, and civic society measures, and so were broadly counter-productive (Dell & 
Querubin, 2018).

We consider whether it would have been possible for modern tools to recognize this at the time, 
and adjust the HES using contemporaneous data collected by the US military and related agencies 
to optimize for various military, economic, and social objectives, while practically controlling the 
risk of worsening these objectives in too many regions. In particular, the original HES was com
posed of various ‘sub-model scores’ that measured different aspects of each region (e.g. economic 
variables, local administration, enemy military presence) based on HES survey responses. It then 
combined these into a single security score through a three-level hierarchical aggregation using 
predefined decision tables. The security scores were presented to Air Force commanders, who 
used them to make targeting decisions.

Our focus is on modifying these underlying decision tables while maintaining the transpar
ency and interpretability of the original HES. Even though the system was in use over a half- 
century ago, this analysis serves three purposes. First, as discussed below, we show how to 
address methodological problems that are also common in other algorithmic decisions and rec
ommendations. Second, because we limit to using data that were available at the time, our ana
lysis serves as a case study on the development of algorithm-assisted decision-making tools in 
high-stake settings. Finally, investigating the potential for improvement gives insight into ways 
that the HES fell short—even with regards to its stated objectives—providing a historical 
lesson.

This empirical analysis poses several methodological challenges that are commonly encountered 
in high-stake data-driven decision-making settings. First, we want to characterize and control the 
risk that a new learned decision, classification, or recommendation policy may lead to worse out
comes for some cases. Second, the HES is a deterministic function of the input data, implying that 
extrapolation is necessary to learn new policies. Third, the security score is produced via a series of 
aggregations using decision tables, which is discrete and difficult to optimize over. Indeed, such 
decision tables are widely used in many public policy and medical decision-making settings (e.g. 
risk scores in the US criminal justice system Ben-Michael et al., 2024a; Greiner et al., 2020; 
Imai et al., 2023).

To address these challenges, we introduce a risk measure, the Average Conditional Risk 
(ACRisk), that first quantifies the risk of a given policy for groups of individual units with a 
specified set of covariates and then averages this conditional risk over the distribution of the 
covariates. In contrast to existing risk measures that characterize the uncertainty around the 
average performance of the policy (e.g. Bai et al., 2022; Delage & Mannor, 2010; Vakili & 
Zhao, 2015), the ACRisk measures the extent to which a learned policy negatively affects sub
groups. This allows us to better characterize the potential heterogeneous risks of applying a 
new policy. With this risk measure in hand, we propose a Bayesian safe policy learning frame
work that maximizes the posterior expected value given the observed data while controlling 
the posterior expected ACRisk. We formulate this as a chance-constrained optimization prob
lem and show how to convert it into a linear constraint, which can be solved as a standard op
timization problem.

The primary advantages of the proposed framework are its flexibility and practical applicabil
ity. Because the chance-constrained optimization problem only relies on posterior samples, one 
can use popular Bayesian nonparametric regression models such as BART and Gaussian 
Process regression (Chipman et al., 2010; Rasmussen & Williams, 2006), while efficiently finding 
an optimal policy within a complex policy class. This is especially helpful in settings such as ours 
with limited or no covariate overlap, where our framework allows for flexible extrapolation 
through the Bayesian prior. In contrast, frequentist notions of safe policy learning rely on robust 
optimization and require solving a minimax optimization problem over both the class of potential 
models and the class of potential policies, making it difficult to consider nonparametric models 
and complex policy classes at the same time (Ben-Michael et al., 2024b; Kallus & Zhou, 2021; 
Pu & Zhang, 2020; Zhang et al., 2022).
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We show through simulation studies that controlling the posterior expected ACRisk effectively 
limits the ACRrisk across various scenarios, reducing the risk of harming certain subgroups of 
units. We also find that although the proposed methodology is designed to be conservative, under 
some settings with a low signal-to-noise ratio, it yields a new policy whose average value is higher 
than a policy learned without the safety constraint. This is evidence that the proposed safety con
straint can effectively regularize the policy optimization problem.

In our empirical analysis, we apply the proposed methodology to find adaptations to the HES that 
directly optimize for military, economic, and social objectives, while limiting the posterior probability 
that these objectives worsen under the hypothetical new system relative to the original HES. We con
sider two policy learning problems—one where we only change the last layer of the hierarchical ag
gregation that combines military, political and social economic sub-model scores, and another where 
we modify all of the decision tables used in the three-level hierarchical aggregation at the same time. 
To deal with the latter complex case, we develop a stochastic optimization algorithm, based on ran
dom walks on partitions of directed acyclic graphs, that is generally applicable to decision tables.

Our analysis consistently shows that the original HES is too pessimistic—assessing regions as 
too insecure—and places too much emphasis on military factors, even when targeting military ob
jectives. In contrast, our data-derived adaptations to the HES assess regions as more secure and 
rely more on economic and social factors to produce regional security scores.

1.1 Related literature
Recent years have witnessed a growing interest among statisticians and machine learning research
ers in finding optimal policies from randomized experiments and observational studies (e.g. Athey 
& Wager, 2021; Beygelzimer & Langford, 2009; Dudík et al., 2011; Kallus, 2018; Kitagawa & 
Tetenov, 2018; Luedtke & Van Der Laan, 2016; Qian & Murphy, 2011; Swaminathan & 
Joachims, 2015; Zhang et al., 2012; Zhao et al., 2012; Zhou et al., 2017, 2022). These works 
typically consider the following two steps under a frequentist framework—first characterize the aver
age performance, or value, of a given policy via the Conditional Average Treatment Effect (CATE), 
and then learn an optimal policy by maximizing the estimated value based on the observed data.

In contrast, we adopt a Bayesian perspective—first obtain the posterior distribution of the 
CATE given the observed data, and then learn an optimal policy by maximizing the posterior ex
pected value. Bayesian methods have been widely used for causal inference (see Li et al., 2022b, for 
a recent review). In particular, BART and Gaussian processes are often used to flexibly estimate the 
CATE (Branson et al., 2019; Hahn et al., 2020; Hill, 2011; Taddy et al., 2016). However, it ap
pears that the Bayesian approach has been rarely applied to policy learning (Kasy, 2018). Our pro
posed framework takes advantage of these popular Bayesian nonparametric methods for safe 
policy learning.

There is also a growing literature on policy learning in scenarios where the CATE is unidenti
fiable (Ben-Michael et al., 2024b, 2025; Kallus & Zhou, 2021; Manski, 2007; Pu & Zhang, 
2020; Yata, 2021; Zhang et al., 2022). These include observational studies with unmeasured con
founders (Kallus & Zhou, 2021), studies with noncompliance or an instrumental variable (Pu & 
Zhang, 2020), studies that lack overlap due to deterministic treatment rules (Ben-Michael et al., 
2025; Zhang et al., 2022), and utility functions that involve the joint set of potential outcomes 
(Ben-Michael et al., 2024b). These works first partially identify the value of a given policy then 
find the policy that maximizes the worst-case value using robust optimization. Our approach dif
fers in that we decouple estimation and policy optimization by only relying on posterior samples 
for policy learning.

In the Reinforcement Learning (RL) literature, various notions of safety have been studied under 
different names (e.g. safe reinforcement learning, risk averse reinforcement learning, pessimistic 
reinforcement learning; see Garcıa & Fernández, 2015). For example, Geibel and Wysotzki 
(2005) control the risk of the agent visiting a ‘dangerous state’ by explicitly imposing a risk con
straint when finding an optimal policy. In contrast, Sato et al. (2001) and Vakili and Zhao (2015)
use the variance of the return as a penalty term in the objective when finding an optimal policy with 
a high expected return and low variance. While this RL literature focuses on online settings where 
the algorithm is designed to avoid risks during exploration, we study the risk of applying data- 
driven policies in offline settings.
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We also extend existing work by developing the notion of ACRisk and using it as a constraint in 
optimizing the posterior expected value of a new policy. A related literature is pessimistic offline 
RL, which quantifies the risk of a given policy using the lower confidence bound (LCB) of the val
ue, and finds a policy that has the best LCB (Bai et al., 2022; Buckman et al., 2020; Chen & Jiang, 
2022; Jin et al., 2022, 2021; Rashidinejad et al., 2021; Shi et al., 2022; Uehara & Sun, 2021; Xie 
et al., 2021; Yan et al., 2022; Yin & Wang, 2021; Zanette et al., 2021). In contrast, the proposed 
ACRisk measures the extent to which a new policy negatively affects some groups of individuals 
when compared to the baseline policy.

Finally, our work is also related to chance constrained optimization, which is widely used in the 
analysis of decision making under uncertainty (e.g. Delage & Mannor, 2007, 2010; Farina et al., 
2016; Filar et al., 1995; Schwarm & Nikolaou, 1999). For example, Delage and Mannor (2010)
consider chance constrained control for Markov Decision Processes. They assume a Gaussian 
model for the reward distribution and use chance constrained optimization to find a policy that 
achieves low regret with high posterior probability. In contrast, our method considers a more gen
eral setup beyond the Gaussian model and uses the posterior expected value of the ACRisk as a 
constraint.

1.2 Outline of the article
The remainder of this article is organized as follows. Section 2 describes US military security 
assessment in the Vietnam War, the HES, and the related empirical policy learning problem. 
Section 3 introduces a formal setup, and Section 4 describes the Bayesian safe policy learning 
framework and the chance-constrained optimization procedure, as well as implementation via 
Gaussian Processes and Bayesian Causal Forests. Section 5 presents numerical experiments 
evaluating our proposal. Section 6 applies the Bayesian safe policy learning method to the 
Military security assessment problem. Section 7 concludes and discusses limitations and fu
ture directions.

2 Military security assessment during the Vietnam War
During the Vietnam War, the United States Air Force (USAF) conducted numerous air strike cam
paigns. One factor guiding USAF commanders in making targeting decisions during these missions 
was a data-driven scoring system called the HES whose goal was to provide a metric for regional 
security based on survey data (PACAF, 1969). We briefly describe the HES and its aggregation 
rules, as well as the policy learning problem we consider. Specifically, we focus on the second ver
sion of the HES, which was developed in 1969 and was originally analyzed by Dell and Querubin 
(2018).

2.1 The hamlet evaluation system
The HES was based on a total of 169 military, political, and socioeconomic indicators collected 
quarterly by Civil Operations and Revolutionary Development Support (CORDS), a joint 
civilian-military agency. These indicators were then categorized and summarized as 20 continu
ous ‘sub-model’ scores.1 Each sub-model score ranges from 1 to 5 and measures a different as
pect of a given region, such as Enemy Military Activity, Economic Activity, and Public Health. 
The HES aggregates these 20 continuous-valued sub-model scores into a single integer-valued 
security score ranging between 1 and 5. The sub-model scores are all semantically ordered so 
that lower values indicate that a region is ‘worse’ in the metric. The final HES score is ordered 
so that regions with a score of 1 should get the highest priority from USAF commanders and 
those with a score of 5 should get the lowest. After calculating the security score for each region 
at the beginning of a quarter, USAF commanders used these scores to make air strike decisions 
during that quarter.

Although several other factors contributed to the determination of eventual air strike targets, 
Dell and Querubin (2018) show that regions which fell just above a security score threshold—and 
hence had a higher security score—were less likely to be subject to air strikes than those regions 

1 The HES actually produces 19 different sub-model scores from the 169 indicators, but one sub-model score is used 
twice in the later aggregation. For simplicity and clarity, consider these to be 20 scores.

4                                                                                                                                                           Jia et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/advance-article/doi/10.1093/jrsssa/qnaf122/8223172 by guest on 06 August 2025



just below the threshold. Using a regression discontinuity design, the authors find that on average, 
the air strike campaign was largely counter-productive, increasing insurgency activities and de
creasing civic engagements.

Despite the overall negative impact of the air strikes found in Dell and Querubin (2018), the ef
fects at different decision boundaries vary (see supplementary material of Dell & Querubin, 2018), 
suggesting potential heterogeneity in treatment effects. Before looking at the data, it is in principle 
possible for changing the security score to have positive or negative effects. For instance, a lower 
security score may lead to more airstrikes, which may directly harm the regional economy and 
civic engagement, but it may also potentially reduce the level of insurgent activities and improve 
the level of regional safety, which may improve overall stability. Therefore, we investigate whether 
it is possible to improve the original HES security evaluation with the contemporaneous data avail
able during the war to achieve better military, economic, and social objectives. As we will see, the 
broad negative impacts of air strikes appear to hold across many regions, and so the data-derived 
HES algorithms we learn generally increase the security score for most regions. Specifically, we fo
cus on the first quarter that the HES was deployed (Q4 1969) and use the military impact assess
ments taken at the beginning of the succeeding quarter (January 1970) as the outcome to measure 
the efficacy of the HES.

2.2 Aggregation via decision tables
The HES aggregates 20 continuous sub-model scores to a single integer-valued security score that 
take a value in {1, 2, 3, 4, 5}, as shown in Figure 1. This hierarchical aggregation process starts by 
rounding the 20 continuous sub-model scores to the nearest integer in {1, 2, 3, 4, 5}. The security 
score then is produced through the following three steps. First, 18 out of these 20 rounded sub- 
model scores are aggregated to six integer-valued model scores relating to Enemy Military, 
Friendly Military, Enemy Political, Government Political, Social, and Economic model scores. 
Second, the resulting six model scores, along with two remaining inputs (impact of military activ
ity and political mobilization), are aggregated to three higher tier integer-valued scores—Military, 
Political, and Social Economic model scores. Finally, these three scores are further aggregated to 
the integer-valued single security score.

At each step of aggregation, the HES uses a two-way or three-way decision table indicated by the 
number shown in each circle of Figure 1. These tables take two or three integer-valued scores, ran
ging from 1 to 5, and return a new score, which takes a value in {1, 2, 3, 4, 5}. Figures S1 and S2 in 
the Appendix show the two-way and three-way decision tables used in the HES, respectively. For 
example, the two-way decision table maps an input of (2, 3) to an output of 2. In the HES, the same 
two-way and three-way tables are used across all levels of aggregation.

Figure 1. Aggregation of 20 sub-model scores. The HES uses 20 sub-model scores as inputs, and aggregates them 
using two-way and three-way decision tables. Each circle corresponds to one aggregation based on the two-way or 
three-way decision table, and the decision tables used in different circles are the same.
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In our analysis, we modify the underlying two-way and three-way decision tables. We focus on 
this, rather than modifying the hierarchical structure itself or using black-box machine learning 
tools, because the hierarchical structure contains substantial domain knowledge, and we wish 
to retain the transparency of the original system. This also facilitates easier comparisons between 
our data-derived modifications and the original HES system. As we discuss and explore in Section 
6.3, altering the underlying decision tables alters the implicit influence of each of the 20 factors in 
constructing the overall HES score. We note, however, that our methodological development in 
the next sections can also be used to adjust the hierarchy itself or to use black box methods, al
though there may be additional computational considerations.

2.3 Evidence-based policy learning
To measure the impact of air strikes and learn a new decision policy, we analyze three binary out
comes that reflect regional security, economy, and civic society. These outcomes are based on the 
HES survey data collected in January 1970, after the period of air strikes in the final quarter of 
1969 (Dell & Querubin, 2018). During this period, USAF commanders targeted 1024 of the 
1954 regions defined by the HES.2 Our objective is to develop a new decision rule that generates 
appropriate security scores based on the 20 continuous sub-model scores. It is worth noting that 
our decision variable is the output security score from the HES rather than air strike decisions, 
which are made by commanders. Therefore, our analysis assumes that a new scoring system would 
affect the decisions only through changes in the score. Under this assumption, we optimize the 
overall outcomes in regional security, economy, and civic society by constructing the new security 
score based on the 20 sub-model scores while marginalizing over the airstrike decisions made by 
commanders.

This application yields several methodological challenges. First, the stakes of this decision are 
high and there is potential heterogeneity across regions. This motivates a safe policy learning ap
proach that limits the possibility of generating worse outcomes under a new, learned policy for 
some regions than under the existing policy. Second, the existing policy is deterministic, rather 
than stochastic. Therefore, due to the lack of overlap between regions that received different 
HES scores, we must extrapolate when estimating the potential outcomes under a new policy. 
Such extrapolation is usually computational intensive under a frequentist robust optimization 
framework, as it requires solving an inner optimization problem to partially identify the key pa
rameters. Finally, the existing policy is based on multiple decision tables. Thus, to keep the existing 
structure of the policy, we must solve a complex optimization problem. We now develop a new 
Bayesian safe policy framework that addresses these challenges.

3 Preliminaries
Before we develop our Bayesian policy learning framework, we describe the problem setup and 
notation. In addition, we provide a brief review of Bayesian policy learning.

3.1 Setup and notation
We consider an individualized treatment rule or policy, which deterministically maps a set of p 
pretreatment covariates X ∈ X ⊆ Rp to a multivalued decision D ∈ D = {0, 1, . . . , K − 1} where 
K denotes the total number of decision categories. Formally, a policy is defined as a function 
δ :X → D. We have a simple random sample of n observations from the population of interest 
P, which is characterized by the joint distribution of {X, Y(0), Y(1), . . . , Y(K − 1)} where Y(k) ∈ 
Y represents a potential outcome under decision D = k with k ∈ D and the observed outcome is 
given by Yi = Yi(Di) (Neyman, 1990; Rubin, 1974). This notation implicitly assumes no interfer
ence between units (Rubin, 1980).

We also assume that the decision is unconfounded given the covariates, i.e. {Yi(k)}K−1
k=0 ⊥⊥Di ∣ X i 

(Rosenbaum & Rubin, 1983). However, we do not assume that there exists covariate overlap for 
treated and controlled units—i.e. 0 < Pr(Di = k ∣ X i = x) < 1 for all k ∈ D and x ∈ X . The lack of 

2 See Table S1 and Figure S3 of the online supplementary material for other summary statistics as well as the average 
values of the security score and various sub-model scores.

6                                                                                                                                                           Jia et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/advance-article/doi/10.1093/jrsssa/qnaf122/8223172 by guest on 06 August 2025

http://academic.oup.com/jrsssa/article-lookup/doi/10.1093/jrsssa/qnaf122#supplementary-data
http://academic.oup.com/jrsssa/article-lookup/doi/10.1093/jrsssa/qnaf122#supplementary-data


overlap is motivated by the fact that in many settings, the data are collected under an existing de
terministic policy (Ben-Michael et al., 2025; Zhang et al., 2022).

Suppose that a policy-maker defines a utility function u : {0, 1, . . . , K − 1} × Y → R, which 
maps every decision-outcome pair to a real-valued utility. Then, the expected utility or value of 
policy δ in a policy class Δ is given by,

V(δ) := E u(δ(X), Y(δ(X)))[ ]. (1) 

Our goal is to find an optimal policy within a policy class Δ that has a high value relative to the 
existing policy δ̃, which also belongs to the same policy class Δ (Ben-Michael et al., 2025; Wei 
et al., 2022). In our application, the baseline policy is a deterministic rule that produces the secur
ity score in the HES. Our goal is to derive a new policy whose average value is higher than that of 
the original policy subject to a safety constraint that will be introduced in Section 4.

3.2 Bayesian policy learning
We next briefly introduce the basic elements of Bayesian policy learning (see Ding & Li, 2018; Li 
et al., 2022b, for reviews of Bayesian causal inference). Under the Bayesian framework, all param
eters are regarded as random variables. Following the convention, we will use upper and lower 
case characters to represent parameters and their realizations, respectively.

Suppose that the marginal distribution of potential outcomes is characterized by a possibly in
finite dimensional parameter Θ. Bayesian policy learning proceeds in two steps. First, we specify a 
prior distribution π(Θ) on the parameter Θ and compute its posterior distribution using Bayes’ 
rule,

π(Θ ∣ {X i, Di, Yi}
n
i=1) ∝

􏽙n

i=1

p(Yi ∣ Θ, X i, Di)π(Θ). (2) 

Under Bayesian policy learning, given the posterior distribution of Θ, the optimal policy maxi
mizes the posterior expected value,

δopt = argmax
δ∈Δ

E V(δ; Θ) ∣ {Di, X i, Yi}
n
i=1

􏼂 􏼃
, (3) 

where V(δ; Θ) := E[u(δ(X), Y(δ(X))) ∣ Θ]. We explicitly use the notation V(δ; Θ) to emphasize 
its dependence on the parameter Θ as well as the policy δ. Specifically, V(δ; Θ) averages over 
both the marginal distribution of X, and the conditional distribution of Y(δ(X)) given X and Θ. 
The expectation in equation (3) is taken over the posterior distribution of Θ given the observed 
data.

To solve the optimization problem in equation (3), we can rewrite the expectation over param
eter Θ, covariates X, and potential outcome Y(δ(X)) as,

E V(δ; Θ) ∣ {X i, Di, Yi}
n
i=1

􏼂 􏼃
= ∫
X

􏽘K−1

k=0

E u(k, Y(k)) ∣ X = x, {X i, Di, Yi}
n
i=1

􏼂 􏼃
I(δ(x) = k)dF(x), (4) 

where the inside expectation is taken over the posterior distribution of Θ given the observed data, 
and the distribution of the potential outcomes given Θ and X. The outside expectation is taken 
over the distribution of X, where F is the CDF of X. For simplicity, we will assume the distribution 
of X in the target population is known.

Thus, the original problem in equation (3) can consist of two steps: (i) estimate the posterior 
expected utility of decision d given a covariate profile x, E[u(d, Y(d))|X = x, {X i, Di, Yi}

n
i=1], and 

(ii) find the optimal policy δ by solving the optimization (4) with the estimated values. This formu
lation separates the problem of computing the posterior distribution from that of finding an opti
mal policy.
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4 The proposed methodology
We now describe our Bayesian safe policy learning framework. We begin by introducing a new risk met
ric, the ACRisk, that represents the probability that a new policy yields a worse expected utility condi
tional on covariates than the baseline policy. We then propose to maximize the posterior expected value 
of the new policy while limiting the posterior expected ACRisk. Our methodology consists of two steps: 
first estimating the CATE using a flexible Bayesian model, and then finding a policy within the policy 
class that maximizes the posterior expected value while controlling the posterior expected ACRisk. 
Finally, we show that this chance-constrained optimization problem can be written as a standard 
Bayesian policy learning problem with linear constraints, avoiding additional computational 
complexity.

4.1 Average Conditional Risk
In the existing literature, the risk of a policy is typically measured through uncertainty about its 
value. We then seek a policy that has a high value with a small estimation uncertainty. One limi
tation of this common approach is its failure to account for potential heterogeneity in risk across 
different groups of individuals. A policy that performs well on average may not benefit everyone. 
In our empirical application, a security assessment rule that is effective on average may negatively 
impact some regions. While the risk due to estimation uncertainty will become small as the sample 
size increases, this inherent risk due to heterogeneous treatment effects will remain, even in large 
samples.

To address this, we introduce a new risk measure, the ACRisk, which represents the probabil
ity that, conditional on the covariates, a policy yields a worse expected utility than the baseline 
policy.

Definition 1 (ACRisk). For a given policy δ, the ACRisk with respect to a baseline policy 
δ̃ is

R(δ, δ̃; θ) : = P E u(δ(X), Y(δ(X))) ∣ X, Θ = θ[ ] < E u(δ̃(X), Y(δ̃(X))) ∣ X, Θ = θ
􏼂 􏼃( 􏼁

, 

where Θ represents the possibly infinite-dimensional parameter that governs 
the marginal distributions of potential outcomes.

The inner expectation in the above definition is taken over the conditional distribution of 
Y(δ(X)) given X and Θ while the outer probability is defined with respect to the marginal distribu
tion of X. We use the above notation to make it explicit that the ACRisk depends on the parameter 
Θ, which governs the conditional distribution of potential outcomes given the covariates X. Note 
that under this definition, R(δ̃, δ̃; θ) = 0 for any value of θ.

The ACRisk first evaluates whether a group of individuals with a certain set of covariates has a 
lower expected utility under policy δ than under the baseline policy δ̃. It then computes the pro
portion of such at-risk groups in the population by averaging over the distribution of covariates. 
The ACRisk is dependent on the covariates we choose, and using different set of covariates can 
result in different at-risk groups, potentially leading to different ACRisk values.

Table 1 provides a numerical example where both Policies I and II outperform the baseline pol
icy. While the improvement of Policy I comes at the expense of group B, Policy II performs equally 
well for both groups. As a result, the ACRisk of Policy I is higher, indicating that 50% of the popu
lation is at risk. The ACRisk minimizes the proportion of the population that is negatively influ
enced by the new policy, leading to safe policy learning. This guarantees that less than a 
prespecified proportion of the population would be hurt by the new policy. In addition, the 
ACRisk can be configured with a user-specified threshold c > 0 to limit the performance degrad
ation of the new policy δ relative to the baseline δ0:

P E[Y(δ(X))|X] − E[Y(δ0(X))|X] < −c
( 􏼁

≤ ϵ.

Fortunately, all the method discussed later will still be applicable to this case.
The conservative nature of the ACRisk makes it suitable for many high-stake decision-making 

settings. For example, in education, we can learn a new policy that assigns a subset of students to 
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new teaching materials while ensuring that most students are not negatively affected by this change 
(e.g. Kizilcec & Lee, 2022; Kundu et al., 2021). Such policy learning can also be done in precision 
medicine, where new treatments are being considered (e.g. Javaid et al., 2022; Smith, 2005; Wiens 
et al., 2019), and in criminal justice, where changes to the pretrial risk assessment instrument may 
be proposed (e.g. Ben-Michael et al., 2025; Greiner et al., 2020). In these applications, a priority is 
to minimize the risk of yielding a worse outcome than the status quo.

We note that the ACRisk is a risk measure based on groups (defined by covariates X). In particu
lar, the ACRisk differs from the following individual measure of risk.

Definition 2 (Average Individual Risk (AIRisk)). For a given policy δ, its AIRisk with re
spect to a baseline policy δ̃ is defined as,

R∗(δ, δ̃; λ) := P u(δ(X), Y(δ(X)) < u(δ̃(X), Y(δ̃(X))) ∣ Λ = λ
( 􏼁

, 

where Λ represents a (possibly infinite dimensional) parameter that governs 
the joint distribution of potential outcomes.

Unlike the ACRisk, the AIRisk is not identifiable because it depends on the joint distribution of 
potential outcomes. One possible strategy is to control an upper bound of the AIRisk 
(Ben-Michael et al., 2024b; Kallus, 2022; Li et al., 2022a). We leave the development of safe policy 
learning in terms of the AIRisk to future research and focus on the ACRisk for the remainder of 
this article.

To control the ACRisk, we must estimate the parameter Θ. Under our Bayesian safe policy 
learning framework, we consider the posterior average of the ACRisk, which we call the 
Posterior Average Conditional Risk or PACRisk. This measure allows us to directly incorporate 
estimation uncertainty into our analysis.

Definition 3 (PACRisk). For a given policy δ, the PACRisk with respect to a baseline pol
icy δ̃ is

Rp(δ, δ̃) := E R(δ, δ̃; Θ) ∣ {X i, Di, Yi}
n
i=1

􏼂 􏼃
, 

where the expectation is taken over the posterior distribution of Θ given the 
observed data {X i, Di, Yi}

n
i=1.

4.2 Bayesian safe policy learning with chance constrained optimization
We now propose a Bayesian safe policy learning procedure that limits the PACRisk introduced 
above (Definition 3). Specifically, we find a policy within a policy class Δ that maximizes the pos
terior average value while limiting the PACRisk below a specified threshold ϵ ∈ [0, 1],

δsafe = argmax
δ∈Δ

E V(δ; Θ) ∣ {X i, Di, Yi}
n
i=1

􏼂 􏼃

subject to E R(δ, δ̃; Θ)
􏼌
􏼌{X i, Di, Yi}

n
i=1

􏼂 􏼃
≤ ϵ,

(5) 

Table 1. A numerical example that illustrates the ACRisk

Conditional expected utility Value ACRisk

Group A (50%) Group B (50%)

Baseline policy 0 0 0 0

Policy I 4 −2 1 0.5

Policy II 1 1 1 0

Note. In this example, both Policies I and II outperform the baseline policy on average, but the improvement of Policy I 
comes at the expense of the group B. The ACRisk shows that 50% of the population, which is the size of the group B in 
this example, is at risk.
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The expectation in the optimization target is taken over the posterior distribution of the parameter 
Θ. We typically choose a policy class Δ that contains the baseline policy so that a solution to equa
tion (5) always exists. The constraint in equation (5) ensures that for a randomly selected group of 
individuals, δsafe has an at most ϵ posterior probability of yielding a worse expected value for the 
group than the baseline policy δ̃. Thus, a smaller value of ϵ yields a safer policy that is more con
servative, limiting the extent of changes to the baseline policy.

A standard Bayesian policy maximizes the posterior expected utility, modifying the baseline pol
icy for subgroups where the posterior expected CATE is large. However, the additional PACRisk 
constraint in equation (4) prioritizes changes to the baseline policy for those subgroups whose pos
terior expected value of the CATE is large and its posterior uncertainty is small. Consider an illus
trative example, in which X is a binary variable and Θ = (θ0, θ1) where θ0 and θ1 are the CATEs for 
X = 0 and X = 1, respectively. The baseline policy in this case is to treat nobody. In addition, sup
pose that the posterior distributions of θ0 and θ1 are N(10, 100) and N(1, 0.1), respectively. Under 
this setting, the Bayesian optimal policy δopt will treat everyone even though the treatment effect 
for the subgroup X = 0 is highly uncertain. In contrast, the PACRisk constraint in our method
ology considers the posterior probability of the group-level positive treatment effect, and will 
be more conservative when changing the baseline policy may negatively affect some subgroups 
due to a high degree of posterior uncertainty of the CATE.

Our simulation and empirical findings show that controlling the PACRisk often leads to conserva
tive inference, especially when the data are collected under a deterministic baseline policy. This is be
cause our methodology is unlikely to chage the baseline policy whenever the posterior uncertainty of 
the CATE is high (even if the posterior expected CATE is large). The proposed method is most suitable 
for high-stake applications where it is crucial to avoid negatively affecting subgroups of a target pop
ulatoin. If the goal is to simply maximize the overall utility without considering the risk of such nega
tive impact, then constraining the PACRisk may result in overly conservative policies.

One potential drawback of chance constraints such as the one shown in equation (5) is its com
putational difficulty due to their complex dependency on both the parameter Θ and the policy δ. 
This makes it challenging to determine how the value of the constraint changes as a function of the 
policy δ. For this reason, researchers typically impose strong assumptions on the marginal distri
bution of potential outcomes and the parameter Θ to obtain a closed-form solution instead (e.g. 
Delage & Mannor, 2010; Mowbray et al., 2022; Vitus et al., 2015).

We overcome this challenge by formulating equation (5) as a deterministic optimization prob
lem with a linear constraint that separates the estimation of CATE from policy optimization in the 
manner similar to equation (4) under the standard Bayesian policy learning. The following the
orem formally establishes the equivalence between the chance constraint optimization in equation 
(5) and a constrained linear programming problem.

Theorem 1 (Control of the PACRisk as a Linear Constraint). Define the posterior condi
tional benefit and risk of decision k relative to the existing policy δ̃ as,

bk(x) := E τk(x, Θ) ∣ {Di, X i, Yi}
n
i=1

􏼂 􏼃
,

rk(x) := P τk(x, Θ) < 0 ∣ {Di, X i, Yi}
n
i=1

( 􏼁
, 

where τk(x, θ) := E[u(k, Y(k)) − u(δ̃(x), Y(δ̃(x))) ∣ X = x, Θ = θ]. Then, the 
chance-constrained optimization defined in equation (5) is equivalent to the 
following deterministic optimization problem,

δsafe = argmax
δ∈Δ

􏽘K−1

k=0

∫ I(δ(X) = k)bk(X)dF(X)

subject to
􏽘K−1

k=0

∫ I(δ(X) = k)rk(x)dF(X) ≤ ϵ

(6) 

where F(x) is the cumulative distribution function of covariates X.
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Proof is given in the Appendix. In the theorem, τk(x, θ) is the improvement in the conditional 
expected utility when changing the decision δ̃(x) to k where {τk(x, Θ)}K−1

k=0 is fully determined by 
K − 1 pairwise CATEs between K decisions. In practice, we use the empirical CDF for F(X).

Theorem 1 enables us to explicitly separate the posterior of Θ and the policy δ in the chance- 
constrained optimization. We note that this formulation is possible because the ACRisk of a policy 
δ is a weighted average of its conditional risk given X, which can be represented by {rk(x)}K−1

k=0 . We 
can first calculate the conditional improvement and risk, i.e. bk(x) and rk(x), using either closed- 
form calculation or samples from posterior draws. Then, like in standard Bayesian policy learning, 
we can solve the constrained policy optimization problem based on bk(x) and rk(x). Algorithm 1
summarizes the procedure of our proposed Bayesian safe policy learning based on the posterior 
draws of Θ.

If the number of posterior draws is large, the policy obtained by solving the optimization prob
lem with posterior samples, b̂k(x) and r̂k(x), will be close to the one based on the true posterior 
mean of bk(x) and rk(x). For example, if the approximation error supx∈X ,1≤k≤K|bk(x) − b̂k(x)| is 
O( 1

M ), then the posterior expected value of the obtained policy will be at most worse than the op
timal policy that maximizes posterior expected value by O( 1

M ).

4.3 Bayesian CATE estimation
A primary advantage of the proposed Bayesian safe policy learning framework introduced above is 
separating the tasks of estimating the CATE and optimizing the policy. This means that our frame
work can readily accommodate the use of flexible Bayesian nonparametric models for CATE 
estimation.

As an example that mirrors our empirical application, suppose that we have an ordered deci
sion, k ∈ {0, 1, . . . , K − 1} and a continuous outcome. We begin by modelling the marginal 

Algorithm 1 Bayesian safe policy learning based on posterior draws

Input: Data {X i, Di, Yi}
n
i=1; A total of M posterior draws, i.e. {Θ(m)}M

m=1; Covariate distribution function F(x)

Output: Bayesian safe policy δ̂safe :X⟶D = {0, 1, . . . , K − 1}

1 Approximate the posterior conditional benefit of decision k, bk(x) = E[τk(x, Θ) ∣ {X i, Di, Yi}
n
i=1], by the sample 

average of posterior draws for x ∈ X :

b̂k(x) =
1
M

􏽘M

m=1

τk(x, Θ(m)) 

2 Approximate the posterior conditional risk of decision k. rk(x) = P(τk(x, Θ) < 0 ∣ {Di, X i, Yi}
n
i=1), by the sample 

average of posterior draws for x ∈ X :

r̂k(x) =
1
M

􏽘M

m=1

I τk(x, Θ(m)) < 0
􏼈 􏼉

3 Solve this approximated optimization problem:

δ̂safe= argmax
δ∈Δ

􏽘K−1

k=0

∫ I(δ(X) = k)b̂k(X)dF(X)

subject to
􏽘K−1

k=0

∫ I(δ(X) = k)r̂k(x)dF(X) ≤ ϵ 
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distribution of the baseline potential outcome Yi(0) and then the K − 1 CATEs between two ad
jacent treatment levels. Specifically, we assume the following model,

Yi(k) =
􏽘k

d=0

fd(Xi) + ϵi, ∀ k ∈ {0, 1, . . . , K − 1} 

where ϵi is an i.i.d Gaussian random variable with mean 0 and variance σ2, f0(x) = E[Y(0) ∣ X = x], 
and fk(x) = E[Y(k) − Y(k − 1) ∣ X = x] for 1 ≤ k ≤ K − 1. Here, we have an infinite dimensional 
parameter Θ = (σ2, {fk(·)}K−1

k=0 ) that determines the marginal distribution of each potential outcome 
Y(k) given covariates X. If we have binary or categorical outcomes, we use a link function to trans
form the mean outcome to a continuous scale, e.g.

Yi(d) ∣ X i ∼ Bernoulli(pd(X i)) where pd(X i) = g−1
􏽘d

k=1

fk−1(X i)

􏼠 􏼡

(7) 

where g−1(·) is the inverse link function.
In principle, any Bayesian method can be applied for modelling {fk(·)}K−1

k=0 . In Section S3 of the 
online supplementary material, we discussed two popular methods, Bayesian Additive 
Regression Trees (BART) and Gaussian Processes (GPs) to demonstrate how such models can 
be accommodated.

5 A simulation study
In this section, we conduct a simulation study to examine the empirical performance of the pro
posed Bayesian safe policy learning methodology. To highlight the key concepts, we consider a 
simple setup with a binary decision.

5.1 Setup
We consider the following data generating processes with the number of observations n 
varying from 50 to 500, i.e. n ∈ {50, 100, 200, 500}. There are two covariates X = (X1, X2) 
that are independently and identically distributed according to a uniform distribution 
X1, X2 ∼i.i.dUniform( − 1, 1). There are two scenarios, one with covariate overlap and the other 
without it: 

• Scenario I (with covariate overlap): The data are collected through a randomized experiment 
with P(D = 1 ∣ X = x) = 0.5, ∀x ∈ X . Here, the baseline policy is to treat nobody, i.e. 
δ̃(x) = 0, ∀x ∈ X .

• Scenario II (without covariate overlap): The data are collected under a deterministic policy 
δ̃(x) = I(x1 > 0.5), which serves as the baseline policy. Thus, the treatment assignment is 
also deterministic, i.e. P(D = 1 ∣ X = x) = δ̃(x).

Within each simulation scenario, we specify the outcome model as,3

Y ∣ X ∼ N X1 + X2 + {4I(X1 > 0, X2 > 0) − 2}D|X1‖X2|, σ2( 􏼁

where we consider a high signal-to-noise ratio case (σ = 1), a medium signal-to-noise ratio case 
(σ = 2), and a low signal-to-noise ratio case (σ = 3). In this setup, treatment is effective for individ
uals with X1 > 0, X2 > 0. Finally, we set the utility to be equal to the outcome, i.e. u(d, y) = y.

3 We also consider a data generating process with binary outcomes in Section S4 of the online supplementary 
material. The results are broadly similar to the continuous case.
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We consider policies based on a linear separation of the covariate space X :

Δ := δ( · , · ) : δ(x1, x2) = I(ax1 + bx2 + c > 0); a, b, c ∈ R
􏼈 􏼉

(8) 

Notice that this policy class does not contain the oracle treatment rule—giving the treatment to 
individuals with X1 > 0 and X2 > 0. We apply the proposed Bayesian safe policy learning meth
ods, and use the empirical distribution of the covariates X as an approximate CDF of X.

For Scenario I with covariate overlap, we use Bayesian Causal Forests (BCF) to estimate the 
CATE and the expected outcome under the control condition, i.e. E(Y(0)), with the default hyperp
rior parameter specification suggested by Hahn et al. (2020). For modelling E[Y(0)|X], we use 200 
trees and hyperparameters of β = 2, η = 0.95. For modelling the CATE, we impose a stronger prior 
and use a BART model with 50 trees, and β = 3, η = 0.25. Here, β is the penalization hyperpara
meter for the depth of trees (larger values lead to more shallow trees) and η is the splitting prob
ability hyperparameter (larger values lead to deeper trees).

For Scenario II without covariate overlap, we use GP regression to model the expected outcome 
under the control condition as well as the CATE. We set the kernel of the Gaussian process as a 
Matern kernel with parameter l = 0.5, 1 or 2, ν = 3/2 (see equation (S1)). We use a noninformative 
prior where the mean function of the GP, m(x), is set to 0. For other hyperparameters in the kernel 
function, we set the length scale to {0.5, 1, 2} which correspond to a nonsmooth, moderately 
smooth, and highly smooth CATE. We set σ2

0 to {1, 4, 16} which corresponds to a strong, medium, 
and weak prior.

For both methods, we use Stan (Carpenter et al., 2017) to compute 2,000 posterior samples 
from two chains with a burn-in period of 500 samples.

5.2 Findings
Since we know the true data generating process, we can calculate the ACRisk for the learned pol
icy under different policy learning setups. Since the proposed methodology controls the 
PACRisk, it is of interest to investigate how the ACRisk of the learned policy as well as the policy 
value change as functions of the safety constraint ϵ in equation (5). We also examine the influ
ence of the prior distribution on the performance of the proposed methodology when there is no 
covariate overlap.

5.2.1 Sample size and signal strength
Figure 2 presents the average value (left panel) and average ACRisk (right panel) of learned policies 
under different values of the safety constraint ϵ (x-axis) with various sample sizes, using the con
tinuous outcome model. Similarly, Figure S5 in the appendix shows the results with different val
ues of the safety constraint ϵ and signal-to-noise ratio. The data generating process follows 

(a) (b)

Figure 2. The average value (left panel) and ACRisk (right panel) of the learned policies using the data with covariate 
overlap, varying the safety constraint ϵ and sample size n. (a) Average Value (b) Average ACRisk.
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Scenario I, and there is no extrapolation. As expected, we find that a weaker of safety constraint 
(i.e. a greater value of ϵ) leads to a greater ACRisk of the learned policy, reaching a plateau that 
corresponds to the ACRisk obtained by maximizing the posterior expected utility with no con
straint. Note that for small sample sizes, the average value of learned policies can be negative 
due to finite sample error even though the baseline policy has value 0.

On average, a smaller sample size and lower signal-to-noise ratio lead to a greater ACRisk. 
Interestingly, an appropriate level of the safety constraint (around 0.05 in this simulation) achieves 
a greater average value compared to maximizing the posterior expected value with no constraint. 
This is especially true when the sample size is small and/or the signal-to-noise ratio is low. In such 
settings, the safety constraint regularizes the policy optimization, only modifying the existing pol
icy for those who are expected to benefit from a new policy with a high degree of certainty. The 
ACRisk constraint can reduce the areas that are incorrectly assigned to the new policy due to ran
dom noise.

To see how the ACRisk constraint can have a regularization effect, consider the following toy 
example, in which our baseline policy is the control condition (d = 0) and the potential outcome 
model is Y(d) = −0.1d + ϵ with ϵ ∼ N(0, 1). In this case, the optimal policy should be the same as 
the baseline policy for everyone. However, since the treatment effect is quite small relative to the 
noise, we may incorrectly modify the policy for some cases especially when the sample size is small. 
The ACRisk constraint enables us to take into account the uncertainty of treatment effect estima
tion and therefore reduce these incorrect decisions. In Section S4.1 of the online supplementary 
material, we further explore the regularization impact of the ACRisk constraint in our main simu
lation specification.

5.2.2 Prior in extrapolation
Next, we investigate the influence of prior parameters in GPs on the performance of the proposed 
methodology under Scenario II where there is no covariate overlap. Specifically, we consider the 
scale parameter l and the variance parameter σ2

0, which determine the smoothness of CATE and 
prior strength, respectively. Recall that a greater value of l implies a smoother function, while a 
smaller value of σ2

0 corresponds to a stronger prior belief. We fix the sample size to 200 and use 
a low signal-to-noise ratio when generating the data.

Figure 3a shows the average value of the learned policy under different prior smoothness. In 
general, the value of learned policy tends to decrease as the prior smoothness increases. 
However, when the safety constraint is strong (i.e. ϵ is small), the value of the learned policy 
with stronger prior smoothness is slightly greater. A small value of ϵ implies that we only wish 
to change the baseline policy for a set of covariates that correspond to large CATEs. A smoother 
prior leads to a more conservative estimate of the CATE and can better identify such covariates.

Furthermore, Figure 3b shows that as the prior for the CATE becomes smoother, we extrapolate 
further, leading to an increase in the average ACRisk. In Figure S6 of the appendix, we observe a 
similar pattern when varying the prior strength for estimating the CATE.

(a) (b)

Figure 3. Average Value (left panel) and ACRisk (right panel) for learned policies using data without covariate 
overlap, varying the safety constraint ϵ and prior smoothness for the CATE l (a greater value corresponds to a greater 
degree of prior smoothness). (a) Average Value (b) Average ACRisk.
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To summarize, our simulation study shows that the safety constraint on the PACRisk can effect
ively control the true ACRisk in policy learning, reducing the risk of harming specified subgroups. 
In addition, a moderately binding safety constraint can induce beneficial regularization and im
prove the average value of the learned policy, especially when the sample size is small and the 
signal-to-noise ratio is low.

6 Empirical analysis of the HES security assessment
With our methodological development in hand, we now return to the analysis of the military se
curity assessment described in Section 2. We will focus on learning a new rule to aggregate the 20 
sub-model scores into one overall security score, while keeping the original structure of the HES 
and only modifying the two-way and three-way tables used for the aggregation.

6.1 Setup
To formalize our problem, let X(k) ∈ [1, 5] denote the k-th sub-model scores with 
k ∈ {1, 2, . . . , 20}, where X ∈ X denotes the whole 20-dimensional input vector. We use S(i,j) ∈ 
{1, 2, 3, 4, 5} to represent the jth score at the ith level where j ∈ {1, 2, . . . , ni} and i ∈ {1, 2, 3} 
with nj representing the total number of scores aggregated at the j-th level. We note that X(k) ≠ 
S(1,k) because the raw input score X(k) is rounded to obtain the first level score S(1,k). To apply 
the Bayesian safe policy learning method, we use the empirical CDF of X as an approximate of 
its population CDF.

The output security score is denoted by D ∈ D = {1, 2, 3, 4, 5}. We use Y ∈ {0, 1} to represent 
one of three binary regional development outcomes measured in January, 1970: regional safety, 
regional economy, and regional civic society. These variables are calculated by Dell and 
Querubin (2018) based on a latent class analysis of data from the HES surveys, using a mixture 
model to estimate the posterior probability that each Hamlet belongs to one of two latent groups 
associated with ‘high’ and ‘low’ outcome. We analyze each outcome separately. This metric for 
utility is far from comprehensive in characterizing the complex outcomes for each region, but it 
is a practical metric that summarizes many survey questions.

We consider a policy δ, which is a deterministic function that maps the inputs x ∈ X (the 20 sub- 
model scores) to an output score d ∈ D. We define two-way and three-way decision tables as the 
following functions that map integer-valued input scores to an integer-valued output score. Recall 
that each input/output score takes an integer value, ranging from 1 to 5.

T2( · , · ) : {1, 2, 3, 4, 5}2 → {1, 2, 3, 4, 5},

T3( · , · , · ) : {1, 2, 3, 4, 5}3 → {1, 2, 3, 4, 5}.
(9) 

Let 􏽥T2 and 􏽥T3 represent the baseline decision tables used in the existing HES. These existing rules 
are monotonic, meaning that a decision table with a greater input score never yields a smaller out
put score, holding the other input scores constant. Formally, a two-way decision table T2 is mono
tonic if and only if we have T2(i1, j1) ≤ T2(i2, j2) for all i1, j1, i2, j2 ∈ {1, 2, 3, 4, 5} and 
i1 ≤ i2, j1 ≤ j2. Similarly, a three-way decision table T3 is monotonic if and only if we have 
T3(i1, j1, k1) ≤ T3(i2, j2, k2) for all i1, j1, k1, i2, j2, k2 ∈ {1, 2, 3, 4, 5} and i1 ≤ i2, j1 ≤ j2, 
k1 ≤ k2. Recall that the sub-model scores are ordered so that lower values are ‘worse.’ Thus, 
the monotonicity condition is reasonable because higher sub-model scores should not make a re
gion less secure. We will require that our learned decision tables also satisfy this monotonicity 
condition.

6.2 Learning to aggregate military, economic, and political sub-models
We begin by learning a single decision table while keeping the other tables of the HES. In particu
lar, we consider learning a new third-level three-way decision table T3 that aggregates three 
scores—the Military, Political, and Social Economic models—and produces the final output secur
ity score D (see Figure 1).

We use separate GPs with a logit link function g to model the expected outcome under different 
decisions (see Section 4.3). Specifically, we assume the model given in equation (7) where 
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d = 1, 2, 3, 4, 5. We use f0 to model the expected outcome under the decision D = 1, whereas fk 
with k = 1, 2, 3, 4 is used to model the effect between two adjacent decisions.

We set the prior mean function for all the GPs to zero, i.e. m(x) = 0, implying that all potential 
outcomes are distributed as Bernoulli with probability 1/2. For the kernel function of the GP, we 
use a Matern kernel with ν = 3/2, l = 1, σ2

0 = 4 (see equation (S1)). This corresponds to a weak pri
or, implying that with ¿90% probability, fk(·) is no less smooth than a Lipschitz function with a 
Lipschitz constant of 10.95. Section S5.2 of the online supplementary material presents a sensitiv
ity analysis where we use larger/smaller values of l to induce more/less extrapolation. Overall, 
these results are consistent with our main findings that are presented below.

Optimizing a single decision table in our application is not computationally demanding. 
Therefore, we use the Gurobi solver to optimize equation (5) over three-way monotonic decision 
tables. We use the military impacts on regional safety, economy, and civic society as separate bin
ary outcomes and set the utility function to u(D, Y) = Y. Our utility only considers the outcome 
and does not penalize the use of a lower or higher security score.

Figure 4 shows how the results of our Bayesian safe policy learning procedure change with the 
safety constraint ϵ when the outcome is regional safety. Figure 4a shows the posterior expected utility 
of the learned policy, while Figure 4b presents the proportion of changed elements in the three-way 
table. We find that a weaker safety constraint (i.e. a greater value of ϵ) leads to a greater difference 
between the learned and baseline policies in terms of the changed elements of the three-way table. 
The learned policy also has a higher posterior expected utility when the safety constraint is weaker. 
A stronger posterior ACRisk constraint also reduces the width of the credible interval for the posterior 
expected utility under the policy, since fewer individuals are assigned to the new decision. In addition, 
Figure 4a shows the posterior expected utility rather than the true utility. This is why we do not ob
serve a reguarlization effect similar to the one shown in Figure 2.

Table 2 shows how the learned security score differs from the original score across regions. Our 
setup for this result is the same as the one used in Figure 4 with regional safety as the outcome. No 
region has a change in the security score greater than 1 in its absolute magnitude. This is due to the 
structure of the HES: changing the original score by ¿1 involves a high degree of extrapolation. 
Because the prior mean of the effect between two adjacent scores is 0, the further we move 
away from the existing score, the closer the posterior mean of the effect moves towards 0. In add
ition, more extrapolation leads to a higher posterior uncertainty and so a higher level of PACRisk. 
These properties of the posterior combine to limit changes to the original score.

Without constraining the PACRisk (i.e. when ϵ = 1), the learned policy increases the security 
score for all regions whose baseline security score is either 2 or 3. This finding is consistent 
with that of Dell and Querubin (2018) that a higher security score improves regional safety. We 

(a) (b)

Figure 4. The posterior expected utility of the learned policy (left panel) and the proportion of elements in the 
three-way table changed by the learned policy (right panel) under different values of ϵ, when regional safety 
development is the outcome. A weaker safety constraint (i.e. a greater value of ϵ) leads to a greater difference 
between the baseline and learned policies. The posterior expected utility also becomes greater. (a) Posterior 
expected utility (b) Proportion of changed elements.
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find that as the risk constraint ϵ decreases, fewer regions have learned scores different from the 
original scores. When ϵ = 0.01, the learned policy even decreases the security score for a small pro
portion of regions whose baseline security score is 3. We note that this happens in part due to the 
monotonicity constraint imposed on the decision table.

Figure 5 presents the relative difference in the partial dependence (PD) of the baseline and learned 
policies with respect to the three level-3 scores. The PD function measures the dependence of the out
put security score on the level-3 scores, i.e. S(3,1), S(3,2), S(3,3), by computing the marginal expected 
output of the policy given certain input scores (Friedman, 2001; Greenwell et al., 2018). For example, 
the PD function for policy δ( · ; T3) with respect to level-3 military score S(3,1) is computed as,

Imilitary(x; T3) =
1
n

􏽘n

i=1

T3(x, S(3,2)
i , S(3,3)

i ).

We find the percent change in the PD function between the learned and baseline policies are 
mostly positive. That is, the expected output security score under the learned policy is generally 
higher than the baseline policy for all three level-3 input scores. Recall that a higher security score 
signifies that a region should not be targeted, so increasing the scores would be likely to decrease 
the frequency of airstrikes, and potentially improve the regional outcome. This finding is consist
ent with that of Dell and Querubin (2018): airstrikes increased the military and political activities 
of the communist insurgency, negatively impacting regional safety and the regional economy.

Table 2. Change in the security score. Each row corresponds to the original security score. Each cell shows the 
proportion of regions with their learned security score change where ‘−1’ and ‘+1’ indicate the learned score is one 
point less and greater than the original score, respectively

Original score ϵ = 1 ϵ = 0.1 ϵ = 0.01

−1 no change +1 −1 no change +1 −1 no change +1

1 100% 100% 100%

2 100% 53.5% 46.5% 86.2% 13.8%

3 100% 5.5% 94.5% 3.4% 95.2% 1.4%

4 98.4% 1.6% 100% 100%

5 100% 100% 100%

Figure 5. The relative change of the PD function from the baseline policy to the learned policy for ϵ = 0.1. Each block 
corresponds to a different input of the PD function, and different colours corresponds to different level-3 scores. For 
example, the first blue bar in the first block corresponds to {Imilitary (1; T3) − Imilitary (1; T̃ 3)}/Imilitary (1; T̃ 3), where T3 and 
T̃ 3 are the learned and baseline policies, respectively.
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We further compute the PD importance (Greenwell et al., 2018) of the military, political, and 
socioeconomic level-3 scores under the learned policy as a function of the safety constraint ϵ, using 
the three different outcomes. The PD importance measures the degree to which a PD function is 
sensitive to the input. A small PD importance means that the output score does not strongly de
pend on the input. For ease of interpretation, we scale the PD importance of level-3 scores for 
each policy so that they sum to one, allowing us to compare the PD importance of level-3 scores 
across different policies.

Figure 6 compares the scaled PD importance of each factor (denoted by different colours) be
tween the baseline (dotted lines) and learned (solid lines) policies as a function of the strength 
of the safety constraint ϵ. The figure shows a consistent pattern: when both the regional economy 
and regional safety are used as outcomes, the learned policies up-weight the socioeconomic model 
and down-weight the military model. Figure S12a of the online supplementary material further 
investigates the PD importance of the different factors when learning policies targeting civic soci
ety outcomes. Overall, our analysis suggests that the HES over-emphasized the importance of the 
military model for all three types of outcomes.

6.3 Learning the entire scoring system
Next, we consider learning both the two-way and three-way tables through all three levels of ag
gregation. In other words, we consider a policy class with the same aggregation structure as in the 
original HES, but also allowing the two-way and three-way tables to be modified. Formally, we 
consider the following policy class, Δ3 = {δ( · ; T2, T3) : T2, T3 is monotonic}. We use the same 
posterior CATE draws obtained in the previous analysis.

Unlike Section 6.2, this complex policy class makes it difficult to directly optimize the objective. 
In Section S6 of the online supplementary material, we develop an optimization method based on 
directed acyclic graph (DAG) partitioning to solve this specific problem. As in the previous ana
lysis, we compute the PD importance measure for each sub-model score.

As the policy class Δ3 is large and contains many different policies, it is difficult to directly in
terpret the obtained policy through the learned decision tables. Therefore, we use the PD import
ance measure to understand how the data-derived policy differs from the HES. Figure 7 presents 
the relative importance of the sub-model scores under the baseline and optimal policies with a 
safety constraint ϵ = 0.1. Each plot shows the scaled PD importance of the 19 different sub-model 
scores under the baseline and learned policies for the three different outcomes: regional safety, 
economy, and civic society. Each arrow shows how the scaled PD importance changes from the 
baseline policy to the learned policy.

We find that when the outcome is either regional economy or civic society (Figures 7a and 7b), 
the learned policy puts less weight on the security sub-model scores than the baseline policy, 
with particularly large declines in the relative importance of enemy military activity and presence. 

(a) (b)

Figure 6. The scaled Partial Dependence (PD) importance of level-3 scores of the learned policy, as a function of the 
ϵ. The solid line corresponds to the learned policy, and the dashed line indicates the baseline policy. Lines with 
different colours shows the PD importance of different level-3 scores. (a) Regional economy as outcome 
(b) Regional safety as outcome.
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(a)

(b)

(c)

Figure 7. The scaled PD importance of 19 different sub-model scores in the learned policy (ϵ = 0.1) and baseline 
policy with different outcomes. Each arrow indicates the change of the scaled PDP importance from the baseline 
policy to the learned policy. (a) Regional economy as outcome (b) Regional civic society as outcome (c) Regional 
safety as outcome.
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Note, however, that this is partially offset by an increase in the relative importance of PSDF 
(People’s Self-Defense Force) activity and law enforcement.

In contrast, the socioeconomic sub-model scores are more important when targeting all three 
outcomes, and particularly so when targeting the economic outcome. Finally, the change in the 
relative importance of the political sub-model scores is more mixed; their importance only changes 
slightly when targeting regional safety (Figure 7c). It generally declines when targeting the regional 
economy, and increases when targeting regional civic society.

7 Concluding remarks
In this article, we propose a new notion of the ACRisk, which represents the population propor
tion of groups that would be worse off under a new policy than under the baseline policy. We then 
develop a Bayesian safe policy learning methodology that limits this risk. We separate the estima
tion of heterogeneous treatment effects from the optimization of policies, enabling the use of flex
ible Bayesian nonparametric models while considering a complex policy class.

We apply the proposed methodology to the HES, a military security assessment used during the 
Vietnam War to guide airstrike decisions for USAF commanders. Substantively, our analysis 
shows that the HES—which saw active use during the war—attached too much importance to 
the military security scores, even when targeting military objectives. In contrast, the Bayesian 
safe policy assigns greater weights to socioeconomic factors. We also develop a stochastic opti
mization algorithm that is generally applicable to monotonic decision tables. Given the popularity 
of such decision rules in public policy and other settings, we believe that our optimization algo
rithm is of independent interest.

There are several directions for further research. First, while we take a Bayesian approach, one 
may consider a frequentist approach to controlling the ACRisk in policy learning. Second, our 
simulation study suggests that the posterior ACRisk constraint plays a role of regularization in 
policy optimization and an appropriate level of risk constraint can improve the average value of 
the learned policy. Better understanding how regularization improves policy learning is an import
ant next step. Third, it is of interest to extend the proposed Bayesian policy learning framework to 
other types of constraints such as fairness and budget constraints.
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Appendix: Proof of Theorem 1
For simplicity, we will denote the triplet of {X i, Di, Yi} as Zi. Therefore, our goal is to show that the 
original chance-constraint optimization problem (see equation (5))

δsafe = argmax
δ∈Δ

E V(δ; Θ) ∣ {Zi}
n
i=1

􏼂 􏼃
,

subject to E R(δ, δ̃; Θ) ∣ {Zi}
n
i=1

􏼂 􏼃
≤ ϵ,

(A1) 
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can be equivalently written as,

δsafe= argmax
δ∈Δ

􏽘K−1

k=0

∫ I(δ(x) = k)bk(x)dF(x)

subject to
􏽘K−1

k=0

∫ I(δ(x) = k)rk(x)dF(x) ≤ ϵ,

(A2) 

where F(x) be the CDF of the covariate X, and

τk(x, θ) := E u(k, Y(k)) − u(δ̃(x), Y(δ̃(x))) | X = x, Θ = θ
􏼂 􏼃

,

bk(x) := E τk(x, Θ) ∣ {Zi}
n
i=1

􏼂 􏼃
,

rk(x) := P τk(x, Θ) < 0 ∣ {Zi}
n
i=1

( 􏼁
.

We first show that the constraint given in equation (A1) is equivalent to equation (A2). By the def
inition of the PACRisk, we have

R(δ, δ̃; Θ) = P E u(δ(X), Y(δ(X))) |X, Θ[ ] < E u(δ̃(X), Y(δ̃(X))) |X, Θ
􏼂 􏼃 􏼌

􏼌Θ
( 􏼁

= P E u(δ(X), Y(δ(X))) − u(δ̃(X), Y(δ̃(X))) |X, Θ
􏼂 􏼃

< 0
􏼌
􏼌Θ

( 􏼁

= P
􏽘K−1

k=0

τk(X, Θ)I(δ(X) = k) < 0

􏼌
􏼌
􏼌
􏼌
􏼌
Θ

􏼠 􏼡 (A3) 

Therefore, equation (A1) can be written as

E R(δ, δ̃; Θ) | {Zi}
n
i=1

􏼂 􏼃

= E P
􏽘K−1

k=0

τk(X, Θ)I(δ(X) = k) < 0

􏼌
􏼌
􏼌
􏼌
􏼌
Θ

􏼠 􏼡

{Zi}
n
i=1

􏼌
􏼌
􏼌
􏼌
􏼌

􏼢 􏼣

= EΘ EX I
􏽘K−1

k=0

τk(X, Θ)I(δ(X) = k) < 0

􏼨 􏼩 􏼌
􏼌
􏼌
􏼌
􏼌
Θ

􏼢 􏼣 􏼌
􏼌
􏼌
􏼌
􏼌
{Zi}

n
i=1

􏼢 􏼣
(A4) 

= EX,Θ I
􏽘K−1

k=0

τk(X, Θ)I(δ(X) = k) < 0

􏼨 􏼩 􏼌
􏼌
􏼌
􏼌
􏼌
{Zi}

n
i=1

􏼢 􏼣

= EX EΘ I
􏽘K−1

k=0

τk(X, Θ)I(δ(X) = k) < 0

􏼨 􏼩 􏼌
􏼌
􏼌
􏼌
􏼌
{Zi}

n
i=1, X

􏼢 􏼣 􏼌
􏼌
􏼌
􏼌
􏼌
{Zi}

n
i=1

􏼢 􏼣 (A5) 

=EX

􏽘K−1

k=0

I(δ(X) = k)EΘ I τk(X, Θ) < 0
􏼈 􏼉 􏼌

􏼌{Zi}
n
i=1, X

􏼂 􏼃
􏼌
􏼌
􏼌
􏼌
􏼌
{Zi}

n
i=1

􏼢 􏼣

(A6) 

= EX

􏽘K−1

k=0

I(δ(X) = k)rk(X)

􏼌
􏼌
􏼌
􏼌
􏼌
{Zi}

n
i=1

􏼢 􏼣

=
􏽘K−1

k=0

∫ I(δ(x) = k)rk(x)dF(x).
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Here I use the subscript of X and Θ to explicitly denote the expectation being taken over the ran
domness of X of Θ. From equation (A4) to equation (A5), we use the law of iterated expectation to 
switch the order of the inner and outer expectations. From (A5) to (A6), we utilize the fact that 
there’s only one nonzero term in the summation 

􏽐K−1
k=0 τk(X, Θ)I(δ(X) = k), which simplifies the in

dicator function.
Similarly, for the optimization target, we have

E V(δ; Θ) ∣ {Zi}
n
i=1

􏼂 􏼃

= E u(δ(X), Y(δ(X))) ∣ {Zi}
n
i=1

􏼂 􏼃 (A7) 

= E E u(δ(X), Y(δ(X))) ∣ {Zi}
n
i=1, X

􏼈 􏼉 􏼌
􏼌{Zi}

n
i=1

􏼂 􏼃

= E E
􏽘K−1

k=0

u(δ(X), Y(k))I(δ(X) = k)

􏼌
􏼌
􏼌
􏼌
􏼌
{Zi}

n
i=1, X

􏼨 􏼩 􏼌
􏼌
􏼌
􏼌
􏼌
{Zi}

n
i=1

􏼢 􏼣

= EX EΘ
􏽘K−1

k=0

τk(X, Θ)I(δ(X) = k)

􏼌
􏼌
􏼌
􏼌
􏼌
{Zi}

n
i=1, X

􏼨 􏼩 􏼌
􏼌
􏼌
􏼌
􏼌
{Zi}

n
i=1

􏼢 􏼣

+ const.

= EX

􏽘K−1

k=0

I(δ(X = k)bk(X)

􏼌
􏼌
􏼌
􏼌
􏼌
{Zi}

n
i=1

􏼢 􏼣

+ const.

(A8) 

=
􏽘K−1

k=0

∫ I(δ(x) = k)bk(x)dF(x) + const. 

where const. represents the term that is not a function of δ. In equation (A7), the expectation is 
taken over the distribution of X, the posterior distribution of Θ, and the conditional distribution 
of Y given X, Θ. Then, we first compute the expectation over Θ and the conditional distribution of 
Y given X. Taking the expectation over the distribution of X gives equation (A8). This completes 
the proof.                                                                                                                                 □
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