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Summary. The propensity score plays a central role in a variety of causal inference settings.
In particular, matching and weighting methods based on the estimated propensity score have
become increasingly common in the analysis of observational data. Despite their popularity and
theoretical appeal, the main practical difficulty of these methods is that the propensity score
must be estimated. Researchers have found that slight misspecification of the propensity score
model can result in substantial bias of estimated treatment effects. We introduce covariate
balancing propensity score (CBPS) methodology, which models treatment assignment while
optimizing the covariate balance. The CBPS exploits the dual characteristics of the propensity
score as a covariate balancing score and the conditional probability of treatment assignment.
The estimation of the CBPS is done within the generalized method-of-moments or empirical
likelihood framework. We find that the CBPS dramatically improves the poor empirical perfor-
mance of propensity score matching and weighting methods reported in the literature. We also
show that the CBPS can be extended to other important settings, including the estimation of
the generalized propensity score for non-binary treatments and the generalization of experi-
mental estimates to a target population. Open source software is available for implementing the
methods proposed.

Keywords: Causal inference; Instrumental variables; Inverse propensity score weighting;
Marginal structural models; Observational studies; Propensity score matching; Randomized
experiments

1. Introduction

The propensity score, which is defined as the conditional probability of receiving treatment
given covariates, plays a central role in a variety of settings for causal inference. In their sem-
inal article, Rosenbaum and Rubin (1983) showed that, if the treatment assignment is strongly
ignorable given observed covariates, an unbiased estimate of the average treatment effect can
be obtained by adjusting for the propensity score alone rather than a vector of confounders,
which is often of high dimension. Over the next three decades, several new methods based
on the propensity score have been developed and they have become an essential part of ap-
plied researchers’ toolkits across disciplines. In particular, the propensity score is used to adjust
for observed confounding through matching (e.g. Rosenbaum and Rubin (1985), Rosenbaum
(1989) and Abadie and Imbens (2006)), subclassification (e.g. Rosenbaum and Rubin (1984),
Rosenbaum (1991) and Hansen (2004)), weighting (e.g. Rosenbaum (1987), Robins et al. (2000)
and Hirano et al. (2003)), regression (e.g. Heckman et al. (1998)) or their combinations (e.g.
Robins et al. (1995), Ho et al. (2007) and Abadie and Imbens (2011)). Imbens (2004), Lunceford
and Davidian (2004) and Stuart (2010) have provided comprehensive reviews of these and other
methods.
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Despite their popularity and theoretical appeal, a main practical difficulty of these methods
is that the propensity score must be estimated. In fact, researchers have found that slight mis-
specification of the propensity score model can result in substantial bias of estimated treatment
effects (e.g. Kang and Schafer (2007) and Smith and Todd (2005)). This challenge highlights
the paradoxical nature of the propensity score—the propensity score is designed to reduce the
dimension of covariates and yet its estimation requires modelling of high dimensional covariates.
In practice, applied researchers search for an appropriate propensity score model specification
by repeating the process of changing their model and checking the resulting covariate balance.
Imai et al. (2008) called this the ‘propensity score tautology’—the estimated propensity score is
appropriate if it balances covariates. Although various methods have been proposed to refine
and improve propensity score matching and weighting techniques (e.g. Robins et al. (1994) and
Abadie and Imbens (2011)), we believe that it is also essential to develop a robust method for
estimating the propensity score.

In this paper, we introduce the covariate balancing propensity score (CBPS) and show how to
estimate the propensity score such that the resulting covariate balance is optimized. We exploit
the dual characteristics of the propensity score as a covariate balancing score and the conditional
probability of treatment assignment. Specifically, we use a set of moment conditions that are
implied by the covariate balancing property (i.e. mean independence between the treatment
and covariates after inverse propensity score weighting) to estimate the propensity score while
also incorporating the standard estimation procedure (i.e. the score condition for the maximum
likelihood) whenever appropriate. As will be shown, satisfying the score condition can be seen
as a particular covariate balancing condition. The proposed CBPS estimation is then carried
out within the familiar generalized method of moments (GMM) or empirical likelihood (EL)
framework (Hansen, 1982; Owen, 2001).

The CBPS has several attractive characteristics. First, the CBPS estimation mitigates the
effect of the potential misspecification of a parametric propensity score model by selecting
parameter values that maximize the resulting covariate balance. In Section 3, we find that the
CBPS dramatically improves the poor empirical performance of propensity score matching
and weighting methods that were reported by Kang and Schafer (2007) and Smith and Todd
(2005) respectively. Second, the CBPS can be extended to various other important settings in
causal inference. In Section 4, we briefly describe the extension of the CBPS to the generalized
propensity score for non-binary treatment (Imbens, 2000; Imai and van Dyk, 2004) and the
generalization of experimental estimates to a target population (Cole and Stuart, 2010). Third,
the CBPS inherits all the theoretical properties and methodologies that already exist in the GMM
and EL literature. For example, GMM specification tests and moment selection procedures are
directly applicable. Finally, because the methodology proposed simply improves the estimation
of the propensity score, various propensity score methods such as matching and weighting can
be implemented without modification.

The key idea behind the CBPS is that a single model determines the treatment assignment
mechanism and the covariate balancing weights. This differs from several existing methods for
automated covariate balancing (e.g. Diamond and Sekhon (2012), Iacus et al. (2011), Hain-
mueller (2012) and Ratkovic (2012)). In particular, Hainmueller (2012) proposed the entropy
balancing method to construct a weight for each control observation such that the sample
moments of observed covariates are identical between the treatment and weighted control
groups. Unlike the entropy balancing method, however, the CBPS constructs balancing weights
directly from the propensity score. In addition, Graham et al. (2012) proposed a similar covari-
ate balancing method under the empirical likelihood framework, but the treatment assignment
mechanism was not explicitly modelled. These methods resemble the weighting methods for
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analysing sample surveys when some auxiliary information about population distribution is
available (e.g. Deming and Stephan (1940), Little and Wu (1991), Hellerstein and Imbens (1999),
Nevo (2003) and Chaudhuri et al. (2008)).

Furthermore, the method that was proposed by Tan (2010) uses the maximum likelihood
estimate of the propensity score and achieves many desirable properties such as double robust-
ness and sample boundedness by incorporating the outcome model. But, this method does
not explicitly link the propensity score and covariate balancing weights. In contrast with the
methods that were proposed by Tan (2010) and Graham et al. (2012), the CBPS focuses on
the estimation of the propensity score without consulting the outcome data, which aligns with
the original spirit of the propensity score methodology (Rubin, 2007). This separation from the
outcome model enables the CBPS to be applicable to a variety of causal inference settings and
to be used with the existing propensity score methods such as matching and weighting. Section
2.4 gives a more detailed discussion of the connections between the CBPS and these existing
methods.

Finally, the method proposed can be implemented through the open source R package
CBPS (Ratkovic et al., 2012), which is available from the Comprehensive R Archive Network
(http://cran.r-project.org/package=CBPS).

2. Methodology proposed

2.1. The set-up
Consider a simple random sample of N observations from a population P . For each unit i,
we observe a binary treatment variable Ti and a K-dimensional column vector of observed
pretreatment covariates Xi whose support is denoted by X . The propensity score is defined
as the conditional probability of receiving the treatment given the covariates Xi. Following
Rosenbaum and Rubin (1983), we assume that the true propensity score is bounded away from
0 and 1:

0 < Pr.Ti =1|Xi =x/< 1 for any x∈X : .1/

We emphasize that in practice this assumption should be made with care. For example, when
conducting a programme evaluation, researchers may exclude from their data set those individ-
uals who are not eligible for the programme. Estimating the support of the propensity score is
a difficult problem and is beyond the scope of this paper.

Rosenbaum and Rubin (1983) showed that if we further assume the ignorability of treatment
assignment, i.e.

{Yi.1/, Yi.0/}⊥⊥Ti|Xi .2/

where Yi.t/ represents the potential outcome under the treatment status t ∈ {0, 1}, then the
treatment assignment is ignorable given the (true) propensity score π.Xi/:

{Yi.1/, Yi.0/}⊥⊥Ti|π.Xi/: .3/

This implies that the unbiased estimation of treatment effects is possible by conditioning on
the propensity score alone rather than the entire covariate vector Xi, which is often of high
dimension. This dimension reduction property led to the subsequent development of various
propensity score methods, including matching and weighting. Although matching exactly on
the propensity score is typically impossible, methods have been developed to reduce the bias
due to imperfect matching (Abadie and Imbens, 2011) or to obtain a consistent estimate via
weighting (Robins et al., 1994).
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In observational studies, however, the propensity score is unknown and must be estimated
from the data. Typically, researchers assume a parametric propensity score model πβ.Xi/,

Pr.Ti =1|Xi/=πβ.Xi/ .4/

where β ∈Θ is an L-dimensional column vector of unknown parameters. For example, a popular
choice is the logistic model

πβ.Xi/= exp.XT
i β/

1+ exp.XT
i β/

.5/

in which case we have L=K. Researchers then maximize the empirical fit of the model so that
the estimated propensity score predicts the observed treatment assignment well. This is often
done by maximizing the log-likelihood function:

β̂MLE =arg max
β∈Θ

N∑
i=1

Ti log{πβ.Xi/}+ .1−Ti/ log{1−πβ.Xi/}: .6/

Assuming that πβ.·/ is twice continuously differentiable with respect to β, this implies the first-
order condition

1
N

N∑
i=1

sβ.Ti, Xi/=0, sβ.Ti, Xi/= Ti π
′
β.Xi/

πβ.Xi/
− .1−Ti/π

′
β.Xi/

1−πβ.Xi/
, .7/

and π′
β.Xi/= @π.Xi/=@βT. We emphasize that equation (7) can also be interpreted as the con-

dition that balances a particular function of covariates, i.e. the first derivative of πβ.Xi/.
The major difficulty of this standard approach is that the propensity score model may be

misspecified, yielding biased estimates of treatment effects. Although in theory a more complex
non-parametric model can be used (e.g. McCaffrey et al. (2004)), the high dimensionality of
covariates Xi may pose a challenge. To address this issue, we develop CBPS estimation as a
method that is robust to mild misspecification of the parametric propensity score model. We
achieve this robustness by exploiting the dual characteristics of the propensity score as a covariate
balancing score and the conditional probability of treatment assignment.

We operationalize the covariate balancing property by using inverse propensity score weight-
ing:

E

{
TiX̃i

πβ.Xi/
− .1−Ti/X̃i

1−πβ.Xi/

}
=0 .8/

where X̃i = f.Xi/ is an M-dimensional vector-valued measurable function of Xi specified by
the researcher. The score condition given in equation (7) represents a particular choice of f.·/,
i.e. X̃i =π′

β.Xi/, thereby giving more weights to covariates that are predictive of the treatment
assignment according to the propensity score model. However, equation (8) must hold for any
function of covariates so long as the expectation exists. Indeed, if the propensity score model is
misspecified, maximizing the likelihood might not balance covariates. Thus, by setting X̃i =Xi,
we can ensure that the first moment of each covariate is balanced even when the model is
misspecified. Similarly, X̃i = .XT

i X2T
i /T will balance both the first and the second moments.

Currently, the literature offers little theoretical guidance on what covariates should be included
and we do not resolve this problem in this paper.

If the average treatment effect for the treated is of interest, we may wish to weight the control
group observations such that their (weighted) covariate distribution matches with that of the
treatment group. In this case, the moment condition becomes



Covariate Balancing Propensity Score 247

E

{
TiX̃i − πβ.Xi/.1−Ti/X̃i

1−πβ.Xi/

}
=0: .9/

Several remarks are in order. First, the score condition in equation (7) represents another co-
variate balancing condition where X̃i =π′

β.Xi/, thereby placing a greater emphasis on covariates
with strong predictive power. Second, as discussed in Section 2.2, it is possible to overidentify the
propensity score model by incorporating both the score and the covariate balancing conditions.
Third, we note that the covariate balancing property follows directly from the definition of the
propensity score and does not require the ignorability assumption that is given in equation (2).
Thus, the application of the CBPS will improve the balance of observed covariates regardless of
whether there are unmeasured confounders (though the resulting treatment effect estimates may
be biased unless the ignorability assumption holds). Finally, following Rubin (2007), we separ-
ate the estimation of the propensity score from the analysis of outcome data. Indeed, the goal
of the CBPS is to improve the commonly used parametric estimation of the propensity score
regardless of statistical methods that are used to estimate treatment effects.

2.2. Estimation and inference
We estimate the CBPS by using the moment conditions based on the covariate balancing prop-
erty under the GMM or EL framework (see Hayashi (2000) and Owen (2001) for an accessi-
ble introduction of each method). The CBPS is said to be just identified when the number of
parameters equals the number of moment conditions. For example, consider the logistic regres-
sion given in equation (5). The just-identified CBPS results if we use the covariate balancing
conditions given in equation (8) or (9) alone by setting Xi =f.Xi/. In contrast, if we combine
this with the score condition given in equation (7), then the CBPS is overidentified because the
number of moment conditions L+M exceeds that of model parameters L. In the literature, it is
suggested that the overidentifying restrictions generally improve asymptotic efficiency but may
result in a poor finite sample performance. In our simulation and empirical studies (Section 3),
we shall examine the performance of both a just-identified and an overidentified CBPS.

Formally, define the sample analogue of the covariate balancing moment condition given in
equation (8) as

1
N

N∑
i=1

wβ.Ti, Xi/X̃i, wβ.Ti, Xi/= Ti −πβ.Xi/

πβ.Xi/{1−πβ.Xi/}
: .10/

If the average treatment effect for the treated rather than the average treatment effect is the
quantity of interest, we use the sample analogue of equation (9). In this case, the weight becomes

wβ.Ti, Xi/= N

N1

Ti −πβ.Xi/

1−πβ.Xi/
: .11/

For the overidentified CBPS, we follow Hansen (1982) and use the following efficient GMM
estimator,

β̂GMM =arg min
β∈Θ

ḡβ.T , X/T Σβ.T , X/−1ḡβ.T , X/ .12/

where ḡβ.T , X/ is the sample mean of the moment conditions,

ḡβ.T , X/= 1
N

N∑
i=1

gβ.Ti, Xi/, .13/

and gβ.Ti, X/ combining all moment conditions,
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gβ.Ti, Xi/=
(

sβ.Ti, Xi/

wβ.Ti, Xi/X̃i

)
: .14/

We assume that πβ.·/ and f.·/ satisfy the standard regularity conditions of the GMM estimator
(Newey and McFadden, 1994). For example, if the conditional distribution of Ti given Xi belongs
to the exponential family, then it is sufficient to assume that the expectations of X̃i and wβ.Ti, Xi/

exist and that all moment conditions are satisfied at a unique value of β.
We use the ‘continuous updating’ GMM estimator (Hansen et al., 1996), which, unlike the

two-step optimal GMM estimator, is invariant and has better finite sample properties. Our
choice of a consistent covariance estimator for gβ.Ti, Xi/ is given by

Σβ.T , X/= 1
N

N∑
i=1

E{gβ.Ti, Xi/gβ.Ti, Xi/
T|Xi} .15/

where we integrate out the treatment variable Ti conditional on the pretreatment covariates Xi.
We find that this covariance estimator outperforms the sample covariance of moment condi-
tions because the latter does not penalize large weights. In particular, in the case of the logis-
tic regression propensity score model, i.e. πβ.Xi/ = logit−1.XT

i β/, we have the expression for
Σβ.T , X/

Σβ.T , X/= 1
N

N∑
i=1

(
πβ.Xi/{1−πβ.Xi/}XiX

T
i XiX̃

T
i

X̃iX
T
i [πβ.Xi/{1−πβ.Xi/}]−1X̃iX̃

T
i

)
.16/

when we use the average treatment effect weight given in equation (10), or

Σβ.T , X/= 1
N

N∑
i=1

(
πβ.Xi/{1−πβ.Xi/}XiX

T
i N πβ.Xi/XiX̃

T
i =N1

N πβ.Xi/X̃iX
T
i =N1 N2 πβ.Xi/=[N2

1{1−πβ.Xi/}]X̃iX̃
T
i

)
.17/

if the average treatment effect for the treated weight given in equation (11) is used. With a set
of reasonable starting values (e.g. β̂MLE), we find that the gradient-based optimization method
works well in terms of speed and reliability.

For estimating the just-identified CBPS, we still use equation (12) without the score condition
and find the optimal value of parameter β such that this objective function equals 0.

Alternatively, we can apply the EL framework to the above moment conditions (Qin and
Lawless, 1994) where the profile empirical likelihood ratio function is given by

R.β/= sup
{

n∏
i=1

npi|pi �0,
n∑

i=1
pi =1,

n∑
i=1

pi gβ.Ti, Xi/=0
}

: .18/

This EL estimator shares many of the attractive properties of the above continuous updating
GMM estimator, notably invariance and higher order bias properties.

2.3. Specification test
One advantage of the overidentified CBPS is that we can use the test of overidentifying restric-
tions as a specification test for the propensity score model. This is not possible if the propensity
score is estimated on the basis of either the score condition or the covariate balancing condition
alone. Under the GMM framework, we can use Hansen’s J-statistic

J =N{ḡβ̂GMM
.T , X/TΣβ̂GMM

.T , X/−1 ḡβ̂GMM
.T , X/} d→χ2

L+M .19/

kimai
Cross-Out
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where the null hypothesis is that the propensity score model is correctly specified. If the propen-
sity score model is correct, any deviation of this statistic from 0 should be within the range of
sampling error. We emphasize that the failure to reject this null hypothesis does not necessarily
imply the correct specification of the propensity score model because it may simply mean that
the test lacks the power (Imai et al., 2008). Nevertheless, the test could be useful for detecting the
model misspecification. Within the EL framework, a similar specification test can be conducted
on the basis of the likelihood ratio.

2.4. Related methods
The idea to weight observations and to balance covariates can be found in both the causal infer-
ence and the survey sampling literatures. Although there is no single best measure of balance,
in our context, weighting is more attractive for balancing covariates than matching because the
latter requires exact matching on the estimated propensity score, which is typically impossi-
ble (Abadie and Imbens, 2011). We do not use balance measures based on matching because
matching is a non-smooth function of data and so the standard GMM or EL theory may not
be applicable (Abadie and Imbens, 2006, 2008).

An important difference between the CBPS and the existing methods, however, is that the
former exploits the fact that a single model determines the treatment assignment mechanism
and the covariate balancing weights. Here, we briefly review some closely related existing meth-
ods. First, Hainmueller (2012) proposed the entropy balancing method, which weights each
observation to achieve optimal balance. Since identifying N weights by balancing the sample
mean of K covariates between the treatment and control groups is an underdetermined prob-
lem when K < N, the entropy balancing method minimizes the Kullback–Leibler divergence
from a set of baseline weights chosen by researchers. In contrast, the CBPS directly models the
propensity score, which is simultaneously used to construct weights for observations. Although
the weights that result from the entropy balancing method may imply the propensity score, the
CBPS makes it easier for applied researchers to model the propensity score directly by using a
familiar parametric model.

Second, Hainmueller (2008) briefly discussed the possibility of incorporating covariate bal-
ancing conditions into the estimation of the propensity score under the EL framework as a
potential extension of his method (section IV C). We note that his set-up differs from the CBPS
in that the weights are constructed separately from the propensity score. Similarly, Graham
et al. (2012) proposed the EL method, which uses covariate balancing moment conditions to
estimate the propensity score. Unlike these methods, however, the CBPS optimizes the covariate
balance while modelling the treatment assignment. Moreover, the overidentified CBPS enables
the specification test for the propensity score model.

Third, under the likelihood framework, Tan (2010) identified a set of constraints to generate
observation-specific weights that enable desirable properties such as double robustness, local
efficiency and sample boundedness. These weights may not fall between 0 and 1 and hence
cannot be interpreted as the propensity score. In addition, like the method of Graham et al.
(2012), Tan’s method incorporates the outcome model in a creative manner when constructing
weights. In contrast, the CBPS focuses on estimation of the propensity score without consult-
ing the outcome data, which aligns with the original spirit of the propensity score methods
(Rubin, 2007). As illustrated in Section 4, the direct connection between the CBPS and the
propensity score widens the applicability of the CBPS. For the same reason, the CBPS can also
be easily used in conjunction with existing propensity score methods such as matching and
weighting.
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All these covariate balancing methods resemble the weighting methods for analysing sample
surveys when some auxiliary information about the population distribution is available (see
Deming and Stephan (1940), Oh and Scheuren (1983), Little and Wu (1991), Hellerstein and
Imbens (1999), Nevo (2003) and many others). For example, Nevo (2003) proposed a method
where the availability of auxiliary data is assumed and the set of covariate balancing moment
conditions is used to estimate a parametric sample selection model.

In addition, several methods have been proposed to improve the estimation of the propensity
score. In particular, McCaffrey et al. (2004) proposed to use the generalized boosting model
(GBM) for the estimation of the propensity score, which they reported works well in practice. The
advantage of this method is that it is non-parametric, allowing the complex relationship between
the treatment variable and a large number of covariates. In contrast, the CBPS represents a
simple and yet powerful method to improve the commonly used parametric estimation of the
propensity score. Although the parametric method has its own limitations, it is easier for applied
researchers to use and interpret. Unlike non-parametric methods such as the GBM, the CBPS
does not require tuning parameters.

Finally, some recent methods aim to balance the joint distribution of all covariates directly
without estimating the propensity score. Iacus et al. (2011) proposed to conduct exact match-
ing after making continuous covariates discrete and coarsening discrete covariates. Camillo
and D’Attoma (2011) followed the same strategy of discretizing continuous covariates and
constructed a global measure of imbalance based on the conditional multiple-correspondence
analysis, which is a projection method that is related to factor analysis. Ratkovic (2012) devel-
oped a non-parametric subsetting method which asymptotically achieves joint independence
between a general treatment regime and a vector of covariates.

3. Simulation and empirical studies

In this section, we apply the proposed methodology to prominent simulation and empirical
studies where propensity score methods have been shown to fail. We show that the CBPS can
dramatically improve the poor performance of the propensity score weighting and matching
methods that have been reported in the previous studies. Before we describe the results, we note
that the CBPS optimizes the balance measure that is directly relevant for weighting methods.
For matching, the connection may not be as clear since matching can be done by using different
balance measures. Here, we limit our investigation to the question of how the CBPS can improve
the performance of a certain propensity score matching procedure by estimating the propensity
score differently.

3.1. Improved performance of propensity score weighting methods
In a controversial paper, Kang and Schafer (2007) conducted a set of simulation studies to
study the performance of propensity score weighting methods. They found that the misspecifi-
cation of a propensity score model can negatively affect the performance of various weighting
methods. In particular, they showed that, although the doubly robust estimator of Robins et al.
(1994) provides a consistent estimate of the treatment effect if either the outcome model or
the propensity score model is correct, the performance of the doubly robust estimator can
deteriorate when both models are slightly misspecified. This finding led to a rebuttal by Robins
et al. (2007), who criticized the simulation set-up and introduced alternative doubly robust
estimators.

In this section, we replicate the simulation study of Kang and Schafer (2007) except that we
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estimate the propensity score by using our proposed methodology. We then examine whether or
not the CBPS can improve the empirical performance of propensity score weighting estimators.
In particular, Kang and Schafer used the following data-generating process. There are four
pretreatment covariates XÅ

i = .XÅ
i1, XÅ

i2, XÅ
i3, XÅ

i4/, each of which is independently, identically
distributed according to the standard normal distribution. The true outcome model is a linear
regression with these covariates and the error term is an independently, identically distributed
standard normal random variate such that the mean outcome of the treated observations equals
210, which is the quantity of interest to estimate. The true propensity score model is a logistic
regression with XÅ

i being the linear predictor such that the mean probability of receiving the
treatment equals 0:5. Finally, only the non-linear transforms of covariates are observed and
they are given by Xi = .Xi1, Xi2, Xi3, Xi4/={exp.XÅ

i1=2/, XÅ
i2={1+exp.XÅ

1i/}+10, .XÅ
i1XÅ

i3=25+
0:6/3, .XÅ

i1 +XÅ
i4 +20/2}.

Kang and Schafer (2007) studied four propensity score weighting estimators. The propensity
score model that they used is a logistic regression with Xi as the linear predictor. This is a
misspecified model because the true propensity score is a logistic regression with XÅ

i as the
linear predictor (but non-linear in the observed covariates Xi). The weighting estimators that
they examined are the Horvitz–Thompson estimator HT (Horvitz and Thompson, 1952), the
inverse propensity score weighting estimator IPW (Hirano et al., 2003), the weighted least
squares regression estimator WLS (Robins et al., 2000; Freedman and Berk, 2008) and the
doubly robust estimator DR (Robins et al., 1994):

μ̂HT = 1
n

n∑
i=1

TiYi

πβ̂.Xi/
,

μ̂IPW =
n∑

i=1

TiYi

πβ̂.Xi/

/
n∑

i=1

Ti

πβ̂.Xi/
,

μ̂WLS = 1
n

n∑
i=1

XT
i γ̂WLS, γ̂WLS =

{
n∑

i=1

TiXiX
T
i

πβ̂.Xi/

}−1 n∑
i=1

TiXiYi

πβ̂.Xi/
,

μ̂DR = 1
n

n∑
i=1

{
XT

i γ̂OLS + Ti.Yi −XT
i γ̂OLS/

πβ̂.Xi/

}
, γ̂OLS =

(
n∑

i=1
TiXiX

T
i

)−1 n∑
i=1

TiXiYi:

Both the weighted least squares and the ordinary least squares regressions are misspecified
because the true model is linear in XÅ

i rather than Xi.
To estimate the propensity score, Kang and Schafer (2007) used the logistic regression with

Xi being the linear predictor, i.e. πβ.Xi/ = logit−1.XT
i β/, which is misspecified because the

true propensity score model is the logistic regression with XÅ
i being the linear predictor. Our

simulation study uses the same propensity and outcome model specifications but we investigate
whether the CBPS improves the empirical performance of the weighting estimators. To estimate
the CBPS, we use the same logistic regression specification but use the covariate balancing
moment conditions by setting X̃i =Xi under the GMM framework of the methodology proposed
outlined in Section 2. Thus, our simulation study examines how replacing the standard logistic
regression propensity score with the CBPS will improve the empirical performance of the four
commonly used weighting estimators.

As in the original study, we conduct simulations under four scenarios:

(a) both propensity score and outcome models are correctly specified,
(b) only the propensity score model is correct,
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(c) only the outcome model is correct and
(d) both the propensity score and the outcome models are misspecified.

For each scenario, two sample sizes, 200 and 1000, are used and we conduct 10000 Monte
Carlo simulations and calculate the bias and root-mean-squared error (RMSE) for each
estimator.

The results of our simulation study are presented in Table 1. For a given scenario, we examine
the bias and RMSE of each weighting estimator on the basis of four different propensity score
methods:

(a) the standard logistic regression with Xi being the linear predictor as in the original sim-
ulation study (‘GLM’),

(b) the just-identified CBPS estimation with the covariate balancing moment conditions with
respect to Xi and without the score condition (‘CBPS1’),

(c) the overidentified CBPS estimation with both covariate balancing and score conditions
(‘CBPS2’) and

(d) the true propensity score (‘True’), i.e. πβ.Xi/= logit−1.XÅ
i

Tβ/.

In the first scenario where both models are correct, all four weighting methods have relatively
low bias regardless of what propensity score estimation method we use (though the overidentified
CBPS introduces some bias for estimators HT and IPW). However, the estimator HT has a
large variance and hence a large RMSE when either the standard logistic regression or the true
propensity score is used. In contrast, when used with the CBPS, the same estimator has a much
lower RMSE. There is a bias–variance trade-off where, relative to method GLM, the CBPS
dramatically reduces variance at the expense of some increase in bias. A similar observation can
be made for estimator IPW whereas estimators WLS and DR are not sensitive to the choice of
propensity score estimation methods.

The second simulation scenario shows the performance of various estimators when the
propensity score model is correct but the outcome model is misspecified. As expected, the
results are quite similar to those of the first scenario. When the propensity score model is cor-
rectly specified, the four weighting estimators have low bias. However, the CBPS significantly
reduces the variance of estimator HT even when compared with the true propensity score. This
confirms the theoretical result in the literature that the estimated propensity score leads to a
more efficient estimator of the average treatment effect (e.g. Hahn (1998) and Hirano et al.
(2003)).

The third scenario examines an interesting situation where the propensity score model is mis-
specified whereas the outcome models for estimators WLS and DR are correct. As expected, we
find that estimators HT and IPW, which solely rely on the propensity score, have large bias and
RMSE when used with the standard logistic regression model. However, the CBPS significantly
reduces their bias and RMSE regardless of whether it incorporates the score equation from
the logistic likelihood. In contrast, the bias and RMSE of estimators WLS and DR remain
low and essentially identical across the propensity score estimation methods. Together with the
results under the second scenario, these results confirm the double-robustness property where
estimator DR performs well so long as either the propensity score or outcome model is correctly
specified.

The final simulation scenario illustrates the most important point made by Kang and Schafer
(2007) that the performance of estimator DR can deteriorate when both the propensity score
and the outcome models are misspecified. Under this scenario, all models suffer from some
degree of bias when used with the standard logistic regression model. The bias and RMSE are
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Table 1. Relative performance of the four different propensity score weighting estimators based on different
propensity score estimation methods under the simulation setting of Kang and Schafer (2007)†

Sample Estimator Bias for the following methods: RMSE for the following methods:
size n

GLM CBPS1 CBPS2 True GLM CBPS1 CBPS2 True

(1) Both models correct
200 HT 0.33 2.06 −4.74 1.19 12.61 4.68 9.33 23.93

IPW −0.13 0.05 −1.12 −0.13 3.98 3.22 3.50 5.03
WLS −0.04 −0.04 −0.04 −0.04 2.58 2.58 2.58 2.58
DR −0.04 −0.04 −0.04 −0.04 2.58 2.58 2.58 2.58

1000 HT 0.01 0.44 −1.59 −0.18 4.92 1.76 4.18 10.47
IPW 0.01 0.03 −0.32 −0.05 1.75 1.44 1.60 2.22
WLS 0.01 0.01 0.01 0.01 1.14 1.14 1.14 1.14
DR 0.01 0.01 0.01 0.01 1.14 1.14 1.14 1.14

(2) Propensity score model correct
200 HT −0.05 1.99 −4.94 −0.14 14.39 4.57 9.39 24.28

IPW −0.13 0.02 −1.13 −0.18 4.08 3.22 3.55 4.97
WLS 0.04 0.04 0.04 0.04 2.51 2.51 2.51 2.51
DR 0.04 0.04 0.04 0.04 2.51 2.51 2.51 2.51

1000 HT −0.02 0.44 −1.67 0.29 4.85 1.77 4.22 10.62
IPW 0.02 0.05 −0.31 −0.03 1.75 1.45 1.61 2.27
WLS 0.04 0.04 0.04 0.04 1.14 1.14 1.14 1.14
DR 0.04 0.04 0.04 0.04 1.14 1.14 1.14 1.14

(3) Outcome model correct
200 HT 24.25 1.09 −5.42 −0.18 194.58 5.04 10.71 23.24

IPW 1.70 −1.37 −2.84 −0.26 9.75 3.42 4.74 4.93
WLS −2.29 −2.37 −2.19 0.41 4.03 4.06 3.96 3.31
DR −0.08 −0.10 −0.10 −0.10 2.67 2.58 2.58 2.58

1000 HT 41.14 −2.02 2.08 −0.23 238.14 2.97 6.65 10.42
IPW 4.93 −1.39 −0.82 −0.02 11.44 2.01 2.26 2.21
WLS −2.94 −2.99 −2.95 0.20 3.29 3.37 3.33 1.47
DR 0.02 0.01 0.01 0.01 1.89 1.13 1.13 1.13

(4) Both models incorrect
200 HT 30.32 1.27 −5.31 −0.38 266.30 5.20 10.62 23.86

IPW 1.93 −1.26 −2.77 −0.09 10.50 3.37 4.67 5.08
WLS −2.13 −2.20 −2.04 0.55 3.87 3.91 3.81 3.29
DR −7.46 −2.59 −2.13 0.37 50.30 4.27 3.99 3.74

1000 HT 101.47 −2.05 1.90 0.01 2371.18 3.02 6.75 10.53
IPW 5.16 −1.44 −0.92 0.02 12.71 2.06 2.39 2.25
WLS −2.95 −3.01 −2.98 0.19 3.30 3.40 3.36 1.47
DR −48.66 −3.59 −3.79 0.08 1370.91 4.02 4.25 1.81

†The bias and RMSE are computed for the Horvitz–Thompson HT, the inverse propensity score weighting IPW,
the inverse propensity score weighted least squares WLS and the doubly robust least squares DR estimators. The
performance of the just-identified CBPS (CBPS1) and the overidentified CBPS (CBPS2) is compared with that of
the standard logistic regression (GLM) and the true propensity score (True). We consider four scenarios where the
outcome and/or propensity score models are misspecified. The sample sizes are n=200 and n=1000. The number
of simulations is 10000. Across the four weighting estimators, the CBPS dramatically improves the performance
of GLM when the model is misspecified.

the largest for estimator HT but estimator DR also exhibits a significant amount of bias and
variance. However, the CBPS with or without the score equation can substantially improve the
performance of estimator DR. Specifically, when the sample size is 1000, the bias and RMSE
are dramatically reduced. The CBPS also significantly improves the performance of estimators
HT and IPW even when compared with the true propensity score. In sum, even when both the
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outcome and the propensity score models are misspecified, the CBPS can yield robust estimates
of treatment effects.

Throughout this simulation study, the just-identified CBPS without the score equation signif-
icantly outperforms the overidentified CBPS for estimator HT. For other estimators, the results
are similar. The overidentifying restriction test that was described in Section 2.3 mostly fails to
detect model misspecification, indicating that this simulation study is well designed.

How can the CBPS dramatically improve the performance of the GLM? Fig. 1 shows that the
overidentified CBPS sacrifices likelihood to improve balance under two of the four simulation
scenarios. We use the following multivariate version of the ‘standardized bias’ (Rosenbaum and
Rubin, 1985) to measure the overall covariate imbalance:

Imbalance=
{(

1
N

N∑
i=1

wβ̂.Ti, Xi/Xi

)T (
1
N

N∑
i=1

XiX
T
i

)−1 (
1
N

N∑
i=1

wβ̂.Ti, Xi/Xi

)}1=2

: .20/

Fig. 1 shows that, when both the outcome and propensity score models are correctly specified
(Figs 1(a)–1(c)), the CBPS achieves better covariate balance (Fig. 1(b)) without sacrificing much
likelihood (Fig. 1(a)). In contrast, when both models are misspecified (Figs 1(d)–1(f)), the CBPS
significantly improves covariate balance (Fig. 1(e)) at the cost of some likelihood (Fig. 1(d)).
Figs 1(c) and 1(f) show the CBPS’s trade-off between likelihood and covariate balance where a
larger improvement in covariate balance is associated with a larger loss of likelihood.

Finally, as an additional comparison, we have applied the GBM of propensity score that was
proposed by McCaffrey et al. (2004) (we use their twang R package with its default options).
This non-parametric method has been reported to work well in the Kang and Schafer (2007)
simulation setting (Ridgeway and McCaffrey, 2007). We briefly summarize the results of this
comparison. We find that the performance of the GBM is significantly worse than that of the
CBPS for estimators HT and IPW. In particular, for estimator HT, the GBM often exhibits
greater bias and RMSE than does GLM. In contrast, the GBM performs best for estimators
WLS and DR, outperforming the CBPS.

3.2. Improved performance of propensity score matching methods
In an influential paper, LaLonde (1986) empirically evaluated the ability of various estimators
to obtain an unbiased estimate of the average treatment effect in the absence of randomized
treatment assignment. From a randomized study of a job training programme (the ‘National
supported work demonstration’) where an unbiased estimate of the average treatment effect is
available, LaLonde constructed an ‘observational study’ by replacing the control group of these
experimental data with untreated observations from non-experimental data sets such as the
Current Population Survey and the Panel Study of Income Dynamics. LaLonde showed that
the estimators he evaluated failed to replicate the experimental benchmark, and this finding led
to increasing interest in experimental evaluation among social scientists.

More than a decade later, Dehejia and Wahba (1999) revisited LaLonde’s study and showed
that the propensity score matching estimator could closely replicate the experimental bench-
mark. Dehejia and Wahba estimated the propensity score by using the logistic regression and
matched a treated observation with a control observation on the basis of the estimated propen-
sity score. This finding, however, came under intense criticism by Smith and Todd (2005). They
argued that the impressive performance of the propensity score matching estimator that had
been reported by Dehejia and Wahba critically hinges on a particular subsample of the original
LaLonde data that they analysed. This subsample excludes most of the high income workers
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from the non-experimental comparison sets, thereby making the selection bias much easier to
overcome. Indeed, Smith and Todd showed that, if one focuses on the Dehejia and Wahba
sample, other conventional estimators do as well as the propensity score matching estimator.
Moreover, the propensity score matching estimator cannot replicate the experimental bench-
mark when applied to the original LaLonde data and is quite sensitive to the propensity score
model specification.

In what follows, we investigate whether the CBPS can improve the poor performance of
the propensity score matching estimator that was reported by Smith and Todd (2005). Specif-
ically, we analyse the original LaLonde experimental sample (297 treated and 425 untreated
observations) and use the Panel Study of Income Dynamics as the comparison data (2490
observations). The pretreatment covariates in the data include age, education, race (white, black
or Hispanic), marriage status, high school degree, earnings in 1974 and earnings in 1975. The
outcome variable of interest is earnings in 1978. In this sample, the experimental benchmark
for the average treatment effect is $886 with a standard error of $488.

Following Smith and Todd’s (2005) analysis, we first estimate the ‘evaluation bias’, which is
defined as the average effect of being in the experimental sample on 1978 earnings. Specifically, we
estimate the conditional probability of being in the experimental sample given the pretreatment
covariates. On the basis of this estimated propensity score, we match the control observations
in the experimental sample with observations in the non-experimental sample. Since neither
group of workers received the job training programme, the true average treatment effect is zero.
We conduct 1-to-1 nearest neighbour matching with replacement where matching is done on
the log-odds of the estimated propensity score. Whereas Smith and Todd trimmed the data
to improve the credibility of the overlap assumption, we avoid doing so in this illustration for
simplicity and transparency. In addition to the 1-to-1 matching, we also conduct the optimal
1-to-N nearest neighbour matching with replacement where N is chosen on the basis of the
value of the J-statistic in equation (19) calculated after refitting the overidentified CBPS to each
matched subset, which is obtained on the basis of the initial fit of the overidentified CBPS to
the entire data, with N ranging from 1 to 10.

Finally, to examine the sensitivity to the propensity score model specification, we follow
Smith and Todd’s (2005) analysis and fit three different logistic regression models—a linear
specification, a quadratic specification that includes the squares of non-binary covariates and
the specification that was used by Smith and Todd which is based on Dehejia and Wahba’s
(1999) variable selection procedure and adds an interaction term between Hispanic and zero
earnings in 1974 to the quadratic specification. Our standard errors are based on Abadie and
Imbens (2006) rather than the bootstrap that was used by Smith and Todd.

Table 2 presents the estimated evaluation bias of 1-to-1 and optimal 1-to-N nearest neigh-
bour propensity score matching with replacement across three different propensity score model
specifications described above. The results are compared across the propensity score estima-
tion methods—the standard logistic regression (GLM), the just-identified CBPS with balance
condition only (CBPS1) and the overidentified CBPS that combines the likelihood and balance
conditions (CBPS2). Across all specifications and matching methods, the CBPS substantially
improves the performance of the propensity score matching estimator based on the standard
logistic regression. In particular, the overidentified CBPS has the smallest evaluation bias across
most propensity score model specifications. The just-identified CBPS also has a smaller bias than
the standard logistic regression.

To see where the dramatic improvement of the CBPS comes from, we examine the co-
variate balance across the estimation methods and model specifications. Table 3 presents the
log-likelihood as well as the multivariate standardized bias statistics for the treated observations
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Table 2. Estimated evaluation bias of 1-to-1 and optimal 1-to-N nearest neighbour propensity score match-
ing estimators with replacement†

Model Results for 1-to-1 nearest Results for optimal 1-to-N nearest
specification neighbour estimator neighbour estimator

GLM CBPS1 CBPS2 GLM CBPS1 CBPS2

Linear −1209.15 −654.79 −505.15 −1209.15 −654.79 −130.84
(1426.44) (1247.55) (1335.47) (1426.44) (1247.55) (1335.47)

Quadratic −1439.14 −955.30 −216.73 −1234.33 −175.92 −658.61
(1299.05) (1496.27) (1285.28) (1074.88) (943.34) (1041.47)

Smith and Todd (2005) −1437.69 −820.89 −640.99 −1229.81 −826.53 −464.06
(1256.84) (1229.63) (1757.09) (1044.15) (1179.73) (1130.73)

†The results (standard errors are in parentheses) represent the estimated average effect of being in the experimental
sample (i.e. the estimated evaluation bias) on the 1978 earnings where the experimental control group is compared
with the matched subset of the untreated non-experimental sample. If a matching estimator is successful, then
its estimated effect should be close to the true effect, which is zero. The propensity score is estimated in three
different ways using the logistic regression—standard logistic regression (GLM), the just-identified CBPS with
the balance conditions alone (CBPS1) and the overidentified CBPS which combines the score equation and the
balance conditions (CBPS2). Three different logistic propensity score model specifications are considered—the
linear, and the quadratic function of covariates, and the model specification that was used by Smith and Todd
(2005). Across model specifications and matching estimators, the CBPS substantially improves on the GLM. In
addition, CBPS2 with the optimal 1-to-N matching generally has the smallest bias.

(as opposed to the log-likelihood for the entire sample that was given in equation (20)) defined
as

imbalance=
{(

1
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)T (
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TiXiX
T
i

)−1 (
1
N

N∑
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wβ̂.Ti, Xi/Xi

)}1=2

.21/

for the entire sample (the top panel) and the optimal 1-to-N matched sample (the bottom panel).
In addition to these statistics, we also present the average Mahalanobis distance for matched
pairs and the L1 imbalance statistic (Iacus et al., 2011) for the matched sample.

As seen in Section 3.1, the CBPS significantly improves the covariate balance when compared
with the standard logistic regression (GLM) while sacrificing some degree of likelihood. This
is true across model specifications. This gain is achieved without sacrificing covariate balance
measured by using the Mahalanobis distance or the L1 imbalance statistic. We note that the
overidentifying restriction test that was described in Section 2.3 does not reject the null hypoth-
esis that the propensity score model specification is correct. The J-statistic is equal to 6.8 (22
degrees of freedom), 7.7 (30 degrees of freedom) and 8.1 (32 degrees of freedom) for the linear,
quadratic and the Smith and Todd (2005) model specifications respectively. This may explain
the fact that the estimates based on the CBPS, although still biased by several hundred dollars,
are fairly stable across model specifications and offer a noticeable improvement when compared
with the standard logistic regression estimates.

Finally, we compare the estimated average treatment effect based on the propensity score
matching estimators with its experimental estimate. Note that this estimate is not the true treat-
ment effect. For this reason, Smith and Todd (2005) focused on the estimation of evaluation
bias, but others, including LaLonde (1986) and Dehejia and Wahba (1999), studied the differ-
ences between the experimental estimates and the estimates based on various statistical methods.
As explained by Smith and Todd, the LaLonde experimental sample combined with the Panel
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Table 3. Covariate balance across different propensity score estimation methods and model specifications†

Measure Results for linear model Results for quadratic model Results for Smith and
Todd (2005) model

GLM CBPS1 CBPS2 GLM CBPS1 CBPS2
GLM CBPS1 CBPS2

Entire sample
Log-likelihood −547 −564 −558 −521 −551 −534 −520 −550 −534
Overall imbalance 5.106 0.000 0.538 4.338 0.000 1.109 4.359 0.000 1.137

Matched sample
Overall imbalance 0.563 0.490 0.359 0.767 0.166 0.075 0.216 0.162 0.056
Mahalanobis 0.020 0.020 0.020 0.074 0.011 0.042 0.039 0.016 0.039
L1-imbalance 0.936 0.929 0.925 0.928 0.925 0.929 0.938 0.933 0.926

†We compare three different ways of estimating the propensity score—standard logistic regression (GLM), the
just-identified CBPS with the balance conditions alone (CBPS1) and the overidentified CBPS that combines the
score equation with the balancing conditions (CBPS2). For each estimation method, we consider three logistic
regression specifications—the linear, the quadratic function of covariates, and the model specification that was
used by Smith and Todd (2005). Given each specification, we report the ‘overall imbalance’ which represents the
multivariate standardized bias statistic defined in equation (21) for the entire sample (upper panel) and for the
optimal 1-to-N nearest neighbour matched sample (bottom panel). In addition, the log-likelihood is presented
for the entire sample, and Mahalanobis distance and L1 imbalance statistics are shown for the matched sample.
When compared with the GLM method the CBPS significantly reduces the overall imbalance without sacrificing
covariance measured by the Mahalanobis and L1-distance measures.

Table 4. Comparison between the estimated average treatment effects from matching estimators and the
experimental estimate†

Model Results for 1-to-1 nearest Results for optimal 1-to-N
specification neighbour nearest neighbour

GLM CBPS1 CBPS2 GLM CBPS1 CBPS2

Linear −304.92 423.30 183.67 −211.07 423.30 138.20
(1437.02) (1295.19) (1240.79) (1201.49) (1110.26) (1161.91)

Quadratic −922.16 239.46 1093.13 −715.54 307.51 185.57
(1382.38) (1284.13) (1567.33) (1145.82) (1158.06) (1247.99)

Smith and Todd (2005) −734.49 −269.07 423.76 −439.54 −617.68 690.09
(1424.57) (1711.66) (1404.15) (1259.28) (1438.86) (1288.68)

†The experimental estimate is 886 with the standard error of 488. As in Table 2, we compare three different
ways of estimating the propensity score—the standard logistic regression (GLM), the just-identified CBPS with
the balance conditions alone (CBPS1) and the overidentified CBPS that combines the score equation with the
balancing conditions (CBPS2). For each estimation method, we consider three logistic regression specifications—
the linear, the quadratic function of covariates and the model specification that was used by Smith and Todd
(2005). The standard errors are in parentheses. The CBPS generally yields the estimates that are much closer to
the experimental estimate when compared with standard logistic regression.

Study of Income Dynamics comparison sample that we analyse present a particularly difficult
selection bias problem to be overcome. In the literature, for example, Diamond and Sekhon
(2012) analysed this same sample by using the genetic matching estimator and presented the
estimate of −571 (with a standard error of 1130), which is somewhat far from the experimental
estimate, which is 866 with a standard error of 488. In contrast, when applied to other samples,
various methods including genetic matching yielded estimates that are generally much closer to
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the experimental estimate (Dehejia and Wahba, 1999; Diamond and Sekhon, 2012; Hainmueller,
2012).

We base our matching estimates of the average treatment effects on the same propensity
scores as those used to generate the estimates of evaluation bias given in Table 2. As before,
we then conduct the 1-to-1 and optimal 1-to-N nearest neighbour matching with replace-
ment based on the log-odds of the estimated propensity score except that we now match
the treated experimental units with the (untreated) observational units. Table 4 presents the
results. Although the standard errors are large, one clear pattern emerges from these results.
The CBPS with or without the score equation generally yields the matching estimates that are
much closer to the experimental estimate when compared with the standard logistic regression
(GLM). This pattern is consistent with those observed in our analysis of evaluation bias (see
Table 2). In sum, although substantial differences remain between the experimental and match-
ing estimates, the CBPS generates effect estimates with substantively less bias than the standard
logistic regression.

4. Extensions

We have shown that the CBPS can dramatically improve the performance of propensity score
weighting and matching estimators when estimating the average treatment effects in observa-
tional studies. Another important advantage of the CBPS is that it can be extended to other
important causal inference settings by directly incorporating various balancing conditions. In
this section, we briefly describe a couple of potential extensions of the CBPS.

4.1. Generalized propensity score for multivalued treatments
First, we extend the CBPS to causal inference with multivalued treatments. Suppose that we have
a multivalued treatment where the treatment variable Ti takes one of the K integer values, i.e.
Ti ∈T ={0, : : : , K −1} where K �2. The binary treatment case that was considered in Section 2
is a special case with K =2. Following Imbens (2000), we can define the generalized propensity
score as the multinomial probabilities

πk
β.Xi/=Pr.Ti =k|Xi/ .22/

where all conditional probabilities sum to 1, i.e. ΣK−1
k=0 πk

β.Xi/ = 1. For example, we may use
multinomial logistic regression to model this generalized propensity score. As in the binary
case, we have the moment condition that is based on the score function under the likelihood
framework:

1
N

N∑
i=1

K−1∑
k=0

[
1{Ti =k}
πk

β.Xi/
· @πk

β.Xi/

@βT

]
=0: .23/

Regarding the balancing conditions, weighting covariates by their inverse will balance them
across all treatment levels. This fact yields the following K −1 sets of moment conditions:

1
N

N∑
i=1

[
1{Ti =k}X̃i

πk
β.Xi/

− 1{Ti =k −1}X̃i

πk−1
β .Xi/

]
=0 .24/

for each of k =1, : : : , K −1. As before, these moment conditions can be combined with that of
equation (23) under the GMM or EL framework.
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4.2. Generalizing experimental results
Another possible extension of the CBPS concerns the generalization of experimental results to
a target population when an experimental sample is not representative. Cole and Stuart (2010)
and Stuart et al. (2011) used the propensity score to generalize experimental results (see also
Imai and Ratkovic (2013)). Suppose that we have an experimental sample of Ne units where the
binary treatment variable Ti is completely randomized. Let Si represent the sampling indicator
where Si = 1 if unit i is in the experimental sample and Si = 0 otherwise. In this context, the
‘propensity score’ is defined as the conditional probability of being in the experimental sample
given the pretreatment characteristics

πβ.Xi/=Pr.Si =1|Xi/: .25/

In addition to the experimental sample, we assume that a random sample that is representative
of the target population P is available and its sample size is Nne. Without loss of generality,
we assume that the first Ne units belong to the experimental sample Si = 1 for i = 1, : : : , Ne,
and the last Nne units belong to the non-experimental sample Si =0 for i=Ne +1, : : : , N where
N =Ne +Nne represents the total sample size. The assumption that makes the generalization of
experimental results possible is {Yi.1/, Yi.0/}⊥⊥Si|Xi and 0 <πβ.Xi/< 1, which together imply
that the sample selection bias can be eliminated by conditioning on Xi. Under this assumption,
the propensity score πβ.Xi/ is estimated by fitting, for example, a logistic regression with Si

as the response variable. Similar to equation (7), the moment condition from this model is the
score function

1
N

N∑
i=1

{
Si π

′
β.Xi/

πβ.Xi/
− .1−Si/π

′
β.Xi/

1−πβ.Xi/

}
=0: .26/

In addition, if the propensity score is correct, then appropriately weighting the covariates
in the experimental sample will make their distribution similar to that of the weighted non-
experimental sample,

1
N

N∑
i=1

{
SiX̃i

πβ.Xi/
− .1−Si/X̃i

1−πβ.Xi/

}
=0, .27/

where X̃i =f.Xi/ is an M-dimensional vector-valued function of covariates.
Finally, the moment conditions given in equations (26) and (27) can be combined under the

GMM or EL framework as done in Section 2 to estimate the propensity score.

5. Concluding remarks

Propensity score matching and weighting methods have become popular tools for applied
researchers in various disciplines who conduct causal inference in observational studies. The
propensity score methodology also has been extended to various other settings including lon-
gitudinal data, non-binary treatment regimes and the generalization of experimental results.
Despite this development, little attention has been paid to the question of how the propensity
score should be estimated (see McCaffrey et al. (2004) for an exception). This is unfortunate
because a slight misspecification of the propensity score model can result in substantial bias of
estimated treatment effects.

The CBPS methodology proposed enables the robust and efficient parametric estimation of
the propensity score by directly incorporating the key covariate balancing property of propensity
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scores. We exploit this property and estimate the propensity score within the familiar framework
of GMMs or EL.

Although we provide some empirical evidence that the CBPS can dramatically improve the
performance of propensity score weighting and matching methods, some remaining issues merit
future research. First, although the CBPS is relatively robust to model misspecification, its
successful application requires scientists to identify a complete set of confounders. Thus, model
selection methods should be developed for propensity score estimation. Second, there are various
potential extensions beyond those described in this paper. For example, the CBPS can be applied
to improve propensity score estimation for marginal structural models in the longitudinal setting
(Robins et al., 2000). Another potential application is the estimation of average treatment effects
from the instrumental variable estimate (Angrist and Fernandez-Val, 2010). These and other
potential extensions are currently being explored by us.
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