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Marginal structural models (MSMs) are becoming increasingly popular as a tool for causal inference from longitudinal data. Unlike standard
regression models, MSMs can adjust for time-dependent observed confounders while avoiding the bias due to the direct adjustment for
covariates affected by the treatment. Despite their theoretical appeal, a main practical difficulty of MSMs is the required estimation of
inverse probability weights. Previous studies have found that MSMs can be highly sensitive to misspecification of treatment assignment
model even when the number of time periods is moderate. To address this problem, we generalize the covariate balancing propensity score
(CBPS) methodology of Imai and Ratkovic to longitudinal analysis settings. The CBPS estimates the inverse probability weights such that
the resulting covariate balance is improved. Unlike the standard approach, the proposed methodology incorporates all covariate balancing
conditions across multiple time periods. Since the number of these conditions grows exponentially as the number of time period increases,
we also propose a low-rank approximation to ease the computational burden. Our simulation and empirical studies suggest that the CBPS
significantly improves the empirical performance of MSMs by making the treatment assignment model more robust to misspecification.
Open-source software is available for implementing the proposed methods.

KEY WORDS: Causal inference; Covariate balancing propensity score; Inverse propensity score weighting; Observational studies; Se-
quential ignorability; Time-dependent treatments.

1. INTRODUCTION

Since its introduction by Robins (1999), marginal structural
models (MSMs) have quickly gained popularity among applied
researchers in biomedical and other fields as a tool for causal
inference from longitudinal data in observational studies. The
article that popularized MSMs in the field of epidemiology has
more than 1000 Google citations as of March 2014 (Robins,
Hernán, and Brumback 2000) and the method has been intro-
duced to other disciplines (e.g., Blackwell 2013). As explained
by Robins, Hernán, and Brumback (2000), when estimating the
causal effects of time-varying treatments, standard regression
models fail to appropriately adjust for time-dependent observed
confounders that are affected by previous treatments. In con-
trast, MSMs allow one to estimate the causal effects of different
treatment sequences while avoiding this post-treatment bias.

Despite their theoretical appeal, a main practical difficulty of
MSMs is the required estimation of inverse probability weights.
Using simulation and empirical studies, a number of previ-
ous studies have found that MSMs can be highly sensitive to
misspecification of treatment assignment model even when the
number of time periods is moderate (e.g., Mortimer et al. 2005;
Kang and Schafer 2007; Cole and Hernán 2008; Lefebvre, De-
laney, and Platt 2008; Howe et al. 2011). The effect of misspec-
ification can propagate across time periods because the inverse
probability weights used for MSMs are typically based on the
product of a propensity score estimated separately at each time
period.
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To address this problem, we introduce the covariate balanc-
ing propensity score (CBPS) methodology as an alternative es-
timation method for inverse probability weights of MSMs. The
CBPS was first introduced by Imai and Ratkovic (2014) to im-
prove the estimation of propensity score in the cross-section
setting. In this article, we generalize the CBPS methodology to
longitudinal data. In the cross-sectional case, inverse probabil-
ity weights reduce confounding bias through balancing pretreat-
ment covariates between treated and untreated observations. We
extend this logic to the longitudinal setting. We show that, at
every time period, MSM weights must balance across all po-
tential future treatment assignments, conditional on the past
treatment assignment. Therefore, unlike the standard approach,
the proposed methodology incorporates all covariate balanc-
ing conditions when estimating inverse probability weights. We
then use these balance conditions as estimating equations. The
resultant weights are robust in the sense that they improve co-
variate balance even when the treatment assignment model is
misspecified.

After briefly reviewing MSMs and their assumptions (Section
2), we describe the proposed CBPS methodology (Section 3).
We then conduct simulation studies to show that the CBPS
can dramatically improve the empirical performance of MSMs
when the treatment assignment model is misspecified (Section
4). In addition, we present an empirical application to show
that the CBPS achieves a greater degree of covariate balance
than the standard approach and yields substantively different
results (Section 5). The final section gives concluding remarks
and discusses future research agenda.

2. A REVIEW OF MARGINAL STRUCTURAL MODELS

In this section, we briefly review the marginal structural
models (MSMs) of Robins (1999). See Robins, Hernán, and
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Brumback (2000) and Blackwell (2013) for more detailed intro-
duction of MSMs. Suppose that we have a simple random sam-
ple of size n from a population. For each unit i = 1, 2, . . . , n,
repeated measurements are taken at each of J time periods.
Specifically, at each time period j = 1, 2, . . . , J , we observe
the time-dependent treatment variable Tij as well as the time-
dependent confounders Xij that are possibly affected by pre-
vious treatments. We assume that Xij is realized before the
treatment at time j and therefore is not affected by Tij . We fur-
ther assume that the treatment variable is binary where Tij = 1
(Tij = 0) implies unit i receives (does not receive) the treat-
ment at time j. Next, for each unit, we denote the treatment and
covariate history up to time j by T ij = {Ti1, Ti2, . . . , Tij } and
Xij = {Xi1, Xi2, . . . , Xij }, respectively. We also denote the set
of possible treatment and covariate values at time j as T j and
X j . Finally, we observe the outcome variable Yi for unit i at the
end of the study, that is, time J, after the treatment for the same
time period, that is, TiJ , is administered.

The potential outcome framework of causal inference was
originally developed by Neyman (1923) and Rubin (1973) in
the cross-section setting, but Robins (1986) generalized it to
longitudinal analysis. Under this framework, we use Yi(t̄J ) to
represent the potential value of the eventual outcome variable
for unit i measured at time J under the entire treatment his-
tory T iJ = t̄J , where t̄J ∈ T J . Thus, the observed outcome is
given by Yi = Yi(T J ). Similarly, Xij (t̄j−1) denotes the poten-
tial values of covariates for unit i at each time period j under
the treatment history up to time j − 1, that is, T i,j−1 = t̄j−1.
Therefore, the observed values of covariates can be written as
Xij = Xij (T i,j−1) for unit i at time j. This setup relies upon the
consistency assumption that the potential values of outcome and
covariates for each unit are only functions of its own treatment
history up to that point in time. The assumption excludes the pos-
sible interference between units (but not between time periods),
implying that the potential values of outcome and covariates are
not influenced by the treatment history of other units.

MSMs are based on the assumption of sequential ignorability,
which states that the treatment assignment of unit i at time j is
exogenous given the treatment and covariate history of the same
unit up to that point in time. In other words, MSMs assume no
unmeasured confounding at each time period. This sequential
ignorability assumption can be formally written as

Yi(t̄J ) ⊥⊥ Tij | T i,j−1 = t̄j−1, Xij = x̄j (1)

at any time period j for a given treatment history t̄J =
{t̄j−1, tj , . . . , tJ } ∈ T J and covariate history x̄j ∈ X j . We also
assume that the conditional probability of treatment assignment
is bounded away from zero and one at each time period. That is,

0 < Pr(Tij = 1 | T i,j−1 = t̄j−1, Xij = x̄j ) < 1 (2)

at any time period j for a given treatment history t̄j−1 ∈ T j−1

and covariate history x̄j ∈ X j .
Under these assumptions, Robins (1999) showed that the

inverse-probability-of-treatment weighting can be used to con-
sistently estimate the marginal mean of any potential outcome,
that is, E{Yi(t̄J )} for any treatment sequence t̄J ∈ TJ . For the
reason that will become clear later, we first define the potential

value of this weight for unit i under treatment history t̄J as

wi(t̄J , XiJ (t̄J−1)) = 1

P (T iJ = t̄J | XiJ (t̄J−1))

=
J∏

j=1

1

P (Tij = tij | T i,j−1 = t̄j−1, Xij (t̄j−1))
.

(3)

This weight is typically small and therefore the estimates be-
come highly variable. Therefore, researchers commonly fol-
low the suggestion given in the literature and use the sta-
bilized weights of the form, w∗

i (t̄J , XiJ (t̄J−1)) = P (T iJ =
t̄J )/P (T iJ = t̄J | XiJ (t̄J−1)), when fitting the outcome model.
We denote the observed values of these weights as wi =
wi(T iJ ,XiJ ) and w∗

i = w∗
i (T iJ ,XiJ ).

In an observational study, these weights are unknown and
must be estimated. Typically, a parametric model is used to
estimate the conditional probability of treatment assignments
given the set of covariates,

w−1
i = πβ(T iJ ,XiJ ), (4)

where β is a finite-dimensional vector of unknown parameters.
A common choice of parametric model is the logistic regression
independently applied to each time period,

πβ(T iJ ,XiJ ) =
J∏

j=1

expit{(2Tij − 1)β�
j V

∗
ij }, (5)

where V
∗
ij = [T i,j−1 Xij ], expit(z) = {1 + exp(−z)}−1, and βj

is a vector of unknown coefficients. The numerator of the stabi-
lized weight is typically estimated using the sample proportion
for each treatment sequence.

Once the (stabilized) weights are estimated, the conditional
expectation of outcome is modeled as a function of treatment
history alone without covariates, that is, E(Yi | T iJ ). For ex-
ample, researchers may regress the outcome on the treatment
indicators from all periods. Robins (1999) showed that this
weighting approach yields a consistent estimate of the mean po-
tential outcome, that is, E{Yi(t̄J )} thereby allowing researchers
to compute the average outcome under any sequence of treat-
ment assignments over time.

3. THE PROPOSED METHODOLOGY

In this section, we propose an alternative estimation procedure
for the inverse-probability-treatment weight for MSMs. Unlike
the standard approach, we estimate the weight such that time-
dependent covariates are balanced across all appropriate sub-
populations. The proposed methodology generalizes the CBPS
of Imai and Ratkovic (2014) to the longitudinal data settings.
The key idea of the CBPS is to estimate the propensity score
such that the resulting covariate balance is improved. Therefore,
the CBPS is robust in the sense that even under a misspecified
treatment assignment model, the covariate balancing conditions,
which are used as estimating equations, are improved. In addi-
tion, since the proposed methodology focuses on the estimation
of the MSM weights, it can be combined with other approaches
to achieve the double-robustness property (Yu and van der Laan
2006) (see also Graham, Campos de Xavier Pinto, and Egel
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(2012) who developed a doubly robust estimator in the cross-
section setting). We begin by reviewing this methodology and
then show how to extend the CBPS to the causal analysis with
panel data.

3.1 The Single Time Period Case: A Review

We first review the CBPS in the cross-section setting. Imai
and Ratkovic (2014) proposed to estimate the propensity score
model such that the following covariate balance condition is
satisfied,

E

{
TiXi

πβ(1, Xi)
− (1 − Ti)Xi

πβ(0, Xi)

}
= 0. (6)

Imai and Ratkovic suggested that these moment conditions can
be used to estimate the propensity score model either via gener-
alized method of moments or empirical likelihood. Their sim-
ulation and empirical studies find that the CBPS significantly
improves the performance of standard propensity score estima-
tion. Several other methods have also been developed to improve
covariate balance (e.g., Hainmueller 2012; Graham, Campos de
Xavier Pinto, and Egel 2012), but to the best of our knowledge,
none has dealt with longitudinal data settings, to which we now
turn.

3.2 The Two Time Period Case

To convey the intuition for the proposed methodology, we
first present the CBPS for the case of two time periods before
discussing the general case of more than two time periods. Sup-
pose that for each unit i, we observe the outcome variable Yi

measured at the end of study, the binary treatment variable Tij ,
and a vector of confounders Xij for each time period j = 1, 2.
Further assume that we are interested in using MSMs to estimate
the marginal mean of potential outcome measured at the end of
the second period, E{Yi(t̄2)}, where t̄2 can take any of the four
possible values, that is, t̄2 ∈ T2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Covariate Balancing Conditions. We derive the moment
conditions based on the covariate balancing property of the
weight for MSMs. To do this, we first express these mo-
ment conditions as functions of the (potential) weight defined
in Equation (3). Specifically, at the first time period, across
all four possible treatment histories, the weight should bal-
ance the mean of the baseline covariate, Xi1. Formally, for all
t̄2 = (t1, t2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, we have

E(Xi1) = E
[
1{Ti1 = t1, Ti2 = t2}wi(t̄2, Xi2(t1))Xi1

]
. (7)

This gives the total of three moment conditions because the
above equality holds across four different treatment histories
and one such equality is redundant.

While there exist numerous equivalent ways to represent these
three moment conditions, we choose the following orthogonal
representation, which can be written in a compact notation using
the observed weight instead of its potential values,

E{(−1)Ti1wiXi1} = 0 (8)

E{(−1)Ti2wiXi1} = 0 (9)

E{(−1)Ti1+Ti2wiXi1} = 0. (10)

Table 1. Orthogonal representation of covariate balancing moment
conditions in the two time period case

Treatment history: (t1, t2)

Time period (0,0) (0,1) (1,0) (1,1) Moment condition

Time 1 + + − − E
{
(−1)Ti1wiXi1

} = 0
+ − + − E

{
(−1)Ti2wiXi1

} = 0
+ − − + E

{
(−1)Ti1+Ti2wiXi1

} = 0
Time 2 + − + − E

{
(−1)Ti2wiXi2

} = 0
+ − − + E

{
(−1)Ti1+Ti2wiXi2

} = 0

NOTES: The first and second time periods have three and two moment conditions, respec-
tively. There are four distinct values of treatment history with tj representing the value
of the treatment variable at time j. The symbols, “+” and “−,” in these four treatment
history columns show whether the weighted average of covariates among units with a
certain treatment history is added or subtracted when formulating the moment condition.
Within each time period, row vectors of +’s and −’s for the treatment history combina-
tions are orthogonal to one another. The last column represents the corresponding moment
condition.

This orthogonal representation of covariate balancing condi-
tions is summarized in the first three rows of Table 1. In the
table, if we treat + and − as +1 and −1, row vectors for each
time period are orthogonal to each other.

The covariate balancing conditions at the second time period
are similar to those at time 1, except that the covariates measured
at time 2 are possibly functions of the treatment at time 1,
that is, Xi2 = Xi2(Ti1). This means that the covariate balancing
conditions will be conditional on the observed treatment value
at time 1. Using the potential outcomes notation, for all t̄2 =
{t1, t2}, we can write these covariate balancing conditions as
follows:

E{Xi2(t1)} = E
[
1{Ti1 = t1, Ti2 = t2}wi(t̄2, Xi2(t1))Xi2(t1)

]
.

(11)

Because Xi2(t1) is observed only when Ti1 = t1, the above co-
variate balancing equation implies that Xi2 should be balanced
across treatment values at time 2 conditional on the treatment
value realized at time 1.

Similar to the baseline covariate case, we use the orthogo-
nal representation, which in this case yields the following two
moment conditions,

E
{
(−1)Ti2wiXi2

} = 0 (12)

E
{
(−1)Ti1+Ti2wiXi2

} = 0. (13)

The bottom two rows of Table 1 summarize this result. While
at time 1 both Ti1 and Ti2 are varied to generate three moment
conditions, only Ti2 is varied at time 2. By now, readers may
realize the benefit of our orthogonal representation: as shown
in Section 3.3, its compact notation allows one to easily extend
the proposed methodology to the general case of more than two
time periods.

Estimation. Since the number of moment conditions exceeds
the number of parameters to be estimated, we use the general-
ized method of moments (GMM; Hansen 1982) estimation to
combine the covariate balancing conditions derived above. Our
optimal GMM estimator is given by

β̂ = argmin
β∈�

vec(G)�W−1vec(G), (14)

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 0
4:

54
 0

8 
N

ov
em

be
r 

20
15

 



1016 Journal of the American Statistical Association, September 2015

where the sample moment conditions are given by

G = 1

n

n∑
i=1

[
(−1)Ti1wiXi1 (−1)Ti2wiXi1 (−1)Ti1+Ti2wiXi1

0 (−1)Ti2wiXi2 (−1)Ti1+Ti2wiXi2

]
, (15)

and their covariance W is given by

W = 1

n

n∑
i=1

E

⎧⎪⎨⎪⎩
⎡⎢⎣ 1 (−1)Ti1+Ti2 (−1)Ti2

(−1)Ti1+Ti2 1 (−1)Ti1

(−1)Ti2 (−1)Ti1 1

⎤⎥⎦
⊗w2

i

[
Xi1X

�
i1 Xi1X

�
i2

Xi2X
�
i1 Xi2X

�
i2

] ∣∣∣ Xi1, Xi2

⎫⎪⎬⎪⎭. (16)

The expectation in Equation (16) can be calculated analyt-
ically, for example, for the logistic regression case (Imai and
Ratkovic 2014).

3.3 The General Longitudinal Case

We now extend the above formulation to the general case with
more than two time periods, that is, j = 1, 2, . . . , J . We first
generalize the covariate balancing conditions derived above and
then propose the optimal GMM estimator. We also consider a
low-rank approximation to address a computational challenge
when the number of time periods is large.

Covariate Balancing Conditions. We characterize the covari-
ate balancing conditions in the general case with an arbitrary
number of time periods J ≥ 2. Recall that in the two time pe-
riod case, the weight for MSMs balances the covariates at the
first time period across all potential values of the entire treat-
ment vector. At the second time period, however, the weight
only balances covariates across the treatment values at that time
period among the units who receive the same treatment value in
the first time period. In general, the weight balances covariates
at a given time period across all potential combinations of the
current and future treatment conditions given the past treatment
sequence.

Formally, for a given time period j and fixed past treatment
sequence up to that point t̄j−1, we can write the covariate bal-
ancing conditions across all treatment sequences of the current
and future time periods t j = {tj , tj+1, . . . , tJ } as

E{Xij (t̄j−1)}
= E[1{T j−1 = t̄j−1, T ij = t j }wi(t̄J , XiJ (t̄J−1))Xij (t̄j−1)],

(17)

where T ij = {Tij , Ti,j+1, . . . , TiJ } represents a vector of ob-
served current and future treatment conditions.

In the two time period case, the balance conditions are char-
acterized in terms of the sums and differences of wiXij across
all groups defined by a distinct value of the entire treatment
sequence. We generalize that formulation here. Specifically, for
each time period, we use the orthogonal representation of the co-
variate balancing conditions given in Equation (17) by aliasing
the past treatment effects on the covariates at time j. Since there
exists a total of 2J−j+1 potential current and future treatments,
Equation (17) implies 2J−j+1 − 1 orthogonal constraints given
a particular history of treatment up to time j − 1, that is, t̄j−1.
There are a total of 2j−1 possible treatment histories and hence
all together we have (2J − 2j−1) covariate balancing conditions
for each time period j.

To formalize this idea, we use the theoretical framework de-
veloped for analyzing and designing randomized experiments
based on the 2J full factorial design (see, e.g., Box, Hunter, and
Hunter 2005). In Table 2, we present a running example of the
case with J = 3 where the first three columns present the design
matrix in Yates order with +’s and −’s indicating the presence
and absence of the treatment at each time period, respectively. It
is well recognized that the full 2J factorial design can be repre-
sented by Hadamard matrix of order 2J . Recall that Hadamard
matrix of order n, denoted by Hn, is an n × n matrix of +1’s
and −1’s whose rows are orthogonal to one another, implying
that H�

n Hn = nIn.
To construct a Hadamard matrix that corresponds to the full

2J factorial design, let D be the 2J × J “negative” design matrix
of +1’s and −1’s sorted in Yates order,

D = [d0, d1, d2, d12, d3, d13, d23, d123, d4, d14, . . . ]� , (18)

where d0 is a J-dimensional column vector of 1’s and dj is a
column vector of length J, where the elements of set j indicate
the indexes of the elements of the vector with −1 and the other
elements of the vector are 1’s. For example, when J = 3, we
have d12 = (−1,−1, 1)�. Thus, +’s and −’s in Table 2 corre-
spond to −1’s and +1’s in D, respectively. Let cj be the jth
column of D so that D = [c1, c2, . . . , cJ ].

Further, denote the common component of dj and ck by djk .
For a subset t of NJ = {1, . . . , J }, let the Hadamard product,
denoted by ht , of columns ck with k ∈ t be a 2J -dimensional
column vector with its jth element being

∏
k∈t djk . Then, the

Hadamard matrix of order 2J can be constructed by collecting
in Yates order all the Hadamard products of the columns of D.
The result is given by the following 2J × 2J matrix,

H2J = [h0, h1, h2, h12, h3, h13, h23, h123, h4, h14, . . . ] , (19)

where h0 is a column vector of +1’s. This matrix in the case of
J = 3 is given in the middle columns of Table 2.

The Hadamard matrix representation allows us to enumerate
all the covariate balancing moment conditions in a systematic
way regardless of the number of time periods. Moreover, the
successive multiplication procedure used for the construction
of this Hadamard matrix directly justifies the notation used in
Equations (12) and (13). In fact, it has long been known that
this Hadamard matrix representation can be used to compute the
mod 2 discrete Fourier transform (Good 1958). For example, the
second and sixth rows of Table 2 correspond to the following
covariate moment conditions,

E{(−1)Ti1wiXij } = 0 (20)

E{(−1)Ti1+Ti3wiXij } = 0. (21)

That is, one can use the design matrix to form the treatment
variables that enter the exponent of −1 in the compact expres-
sion of the covariate balancing moment conditions. In sum, the
2J factorial experiment framework allows us to directly gen-
eralize the orthogonal representation of the covariate moment
conditions given in Section 3.2 to the general case with more
than two time periods.

Therefore, this full 2J factorial design framework clearly
shows which covariate balancing moment conditions are bind-
ing at any given time period for the estimation of the weight
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Table 2. Orthogonal representation of covariate balancing moment conditions in the three time period case using the 23 factorial
experiment framework

Treatment history: (t1, t2, t3)
Design matrix Time periods

(0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1)
Ti1 Ti2 Ti3 h0 h1 h2 h12 h13 h3 h23 h123 1 2 3

− − − + + + + + + + + � � �
+ − − + − + − + − + − � � �
− + − + + − − + + − − � � �
+ + − + − − + + − − + � � �
− − + + + + + − − − − � � �
+ − + + − + − − + − + � � �
− + + + + − − − − + + � � �
+ + + + − − + − + + − � � �
NOTES: The first three columns show the design matrix of the factorial experiment in Yates order where the symbol “+” (“−”) represents the presence (absence) of each treatment
factor. The next eight columns show the Hadamard matrix of this factorial experiment based on this design matrix that corresponds to the eight distinct values of treatment history with
tj representing the value of the treatment variable at time j. The symbols, “+” and “−,” in these eight treatment history columns also indicate the orthogonal representation of covariate
balancing moment conditions. Finally, the symbols �(�) in the last three columns indicate that the corresponding covariate balancing moment condition is (not) binding for each time
period.

for MSMs. As noted above, the stabilized weight balances co-
variates measured at time j across all possible current and future
treatments but it does not balance across past treatments. The co-
variate balancing moment conditions, which correspond to the
effects of past treatments and their interactions, are not binding.
These conditions can be easily identified by the design matrix.
For example, in Table 2, we see that the second row, corre-
sponding to the main effect of time 1 treatment, that is, Ti1,
is not binding for time 2 covariates Xi2. Similarly, for time 3
covariates, the moment conditions corresponding to the effects
of Ti1 and Ti2 as well as their interaction are not binding. In
general, for covariates measured at time j, the first 2j−1 rows
of Hadamard matrix H2J can be ignored when constructing the
covariate balancing moment conditions.

Estimation. As in the two time period case, we use the GMM
to combine all the covariate balancing conditions. We begin by
defining the following matrices for covariates:

X̃ = [
X̃1, X̃2, . . . , X̃n

]�
, (22)

where X̃i = [wiXi1, wiXi2, . . . , wiXiJ ]� is a (K × J )-
dimensional column vector of covariates for unit i. Next, we

construct the n × (2J − 1) model matrix based on the design
matrix D arranged in Yates’ order as

M = [M1, M2, . . . , Mn] , (23)

where Mi = [mi0,mi1,mi2,mi12,mi3,mi13,mi23,mi123,mi4,

mi4, . . . ]� is a (2J − 1)-dimensional column vector with
mi0 = 1 and mit = (−1)

∑
k∈t Tik for t ∈ {1, 2, 12, 3, 13, 23, 123,

4, 14, . . . }. For example, mi23 equals (−1)Ti2+Ti3 and mi123

equals (−1)Ti1+Ti2+Ti3 . In fact, the ith row of M is given by
the row of the Hadamard matrix in Table 2 that corresponds to
the treatment sequence of the ith observation.

Given this notation, our optimal GMM estimator is given by
Equation (14) with the following generalized definitions of the
sample balancing condition and their conditional covariance,

G = 1

n

n∑
i=1

(
M�

i ⊗ X̃i

)
R (24)

W = 1

n

n∑
i=1

E
(
MiM

�
i ⊗ X̃iX̃

�
i | Xi

)
, (25)

Ti1 Ti2 Ti3

Xi1 Xi2 Xi3

(a) Simulation 1

Ti1 Ti2 Ti3

Xi1 Xi2 Xi3

(b) Simulation 2

Figure 1. Treatment variable data-generating process in simulation studies. In the first set of simulations summarized by the diagram of
panel (a), a relatively simple treatment assignment model is used and we only misspecify the functional form while maintaining the correct lag
structure. In the second set of simulations summarized by the diagram of panel (b), a more complex data-generating process is used and we
examine the impact of incorrectly specifying the lag structure. The results of these simulations are given in Figures 2 and 3, respectively
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Figure 2. Impact of treatment assignment model misspecification based on simulations with correct lag structure. Two cases are considered
where the treatment assignment model is either correctly specified (first and third rows) or misspecified (second and fourth rows). In the latter
scenario, the regression model is misspecified while the correct lag structure is maintained. The first three columns show the bias and root mean
squared error (RMSE) for the estimated regression coefficients of the three treatment variables (one for each of the three time periods) from the
marginal structural model. The final column presents the bias and RMSE for the estimated mean potential outcome, E(Yi(t1, t2, t3)), averaged
across eight unique treatment sequences. Overall, CBPS (thick solid lines) and CBPS with low-rank approximation (thick dash lines) outperform
the GLM (thin dot-dashed lines) when the model is misspecified. The dotted lines represent the results for the estimates based on the true weights.

where R represents the “selection” matrix, which identifies the
binding covariate balancing conditions for each time period and
“zeros” them out. This matrix is formally defined as

R = [R1 R2 . . . RJ ], where

Rj =
[

02j−1×2j−1 02j−1×(2J −2j−1)

0(2J −2j−1)×2j−1 I2J −2j−1

]
(26)

for each j = 1, . . . , J . As mentioned earlier, the expectation
in Equation (25) can be evaluated analytically for the logistic
regression case.

When the number of time periods is large, the inversion of
W can be computationally expensive because its dimension,
which is {(2J − 1) × JK} × {(2J − 1) × JK}, increasing ex-
ponentially as a function of J. Here, we derive a low-rank ap-
proximation to the full covariance matrix as a way to overcome
this computational difficulty. To do this, we assume that the
correlation across balance conditions is zero. Note that when
this assumption does not hold, the resulting GMM estimator
is still consistent but no longer efficient. In our simulation and
empirical studies (see Sections 4 and 5), we find that the empir-
ical performance is not greatly affected by this approximation
especially in a large sample size.

Specifically, our low-rank approximation to the covariance
matrix is given by

W̃ = 1

n

n∑
i=1

I ⊗ X̃iX̃
�
i = I ⊗ X̃�X̃, (27)

where the variances in this new matrix are identical to those in
the original W matrix of Equation (25) but certain covariances
are zero. Then, our GMM estimator is given by

β̂ = argmin
β∈�

vec(G)�{I ⊗ X̃�X̃}−1vec(G) (28)

= argmin
β∈�

trace{R�M�X̃(X̃�X̃)−1X̃�MR}. (29)

Thus, this approximation approach avoids the Kronecker prod-
uct and the inversion of a large matrix.

3.4 Extension to Multiple Binary Treatments

The method described above naturally extends to the setting
where there exist multiple binary treatments. Indeed, dynamic
treatment regimes considered in this article is essentially a spe-
cial case of J multiple binary treatments. The only difference
is that for dynamic treatment regimes some of the covariate
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balancing conditions are not binding as indicated by zero el-
ements of G matrix in Equations (15) and (24). In contrast,
for multiple binary treatments, all of these covariate balancing
conditions are binding. However, aside from this difference, the
estimation for the case of multiple binary treatments proceeds
in an identical manner.

4. SIMULATION STUDIES

We conduct four sets of simulation studies to assess the em-
pirical performance of the proposed CBPS estimation. First, we
show that when the treatment assignment model is correctly
specified, the proposed methodology does as well as the stan-
dard maximum likelihood estimation. Second, we also examine
several scenarios where the treatment assignment model is mis-
specified in terms of either the lag structure or the functional
form of the covariates (or both). We find that the CBPS signifi-
cantly reduces the bias and mean squared error of the standard
method in each of these model misspecification scenarios.

In all four simulation scenarios, we consider the case of three
time periods, that is, J = 3, and use four different sample sizes
n = 500, 1000, 2500, and 5000. Across these four simulations,
we vary both whether the lag structure and functional form for
the treatment assignment model are properly modeled. Figure 1
summarizes the treatment variable data-generating processes
used in our simulations. In the first set of simulations summa-
rized by the diagram of panel (a), a relatively simple treatment
assignment model is used and we only misspecify the functional
form while maintaining the correct lag structure. The treatment-
generating process in this setup is a function of exogenous co-
variates and the immediately previous observed treatment level.

In practice, however, both the treatment variables and the co-
variates may be affected by more than the immediately previous
time period. In the second set of simulations, summarized by the
diagram of panel (b), a more complex data-generating process
is used and we examine the impact of incorrectly specifying the
lag structure. The treatment-generating process here is a func-
tion of exogenous covariates and all previous observed treatment
levels. All simulations use the identical outcome variable model.

Specifically, in the first set of simulations, for time
j, we use the covariates Xij = (Zij1 · Uij , Zij2 · Uij , |Zij3 ·
Uij |, |Zij4 · Uij |)�, where each Zijk is an iid draw from
the standard normal distribution, and Uij is constructed
as Uij = 2 + (2Ti,j−1 − 1)/3 for j = 2, 3 and Uij = 1 for
j = 1. The treatment assignment model is given by
Pr(Tij = 1) = expit{−Ti,j−1 + γ �Xij + (−1/2)j }, where γ =
(1,−0.5, 0.25, 0.1)� and Ti0 = 0. Finally, the outcome model
is defined as Yi = 250 − 10 · ∑3

j=1 Tij + ∑3
j=1 δ�Xij + vi

where δ = (27.4, 13.7, 13.7, 13.7)� and vi is a normal dis-
turbance with mean zero and standard deviation five. To con-
sider the functional form misspecification, we use the follow-
ing nonlinear transformation of the covariates, X∗

ij = (X3
ij1, 6 ·

Xij2, log(Xij3), 1/Xij4)� and estimate the treatment assignment
model with these covariates. The misspecification was selected
to induce skew in the transformed covariates. In our experience,
logistic regression estimated propensity scores can be particu-
larly sensitive to misspecifications with skewed covariates.

In the second set of simulations, we consider a misspecifi-
cation of lag structure. The current treatment level is generated

from a function of all previous observed treatment levels and
covariates, but only the covariates from the current period and
the treatment from the most immediately previous time pe-
riod are used in estimating the weights. As with the first two
simulations, we also consider the misspecification of func-
tional forms using a nonlinear transformation. Specifically,
the treatment assignment in the second set of simulations is
given by Pr(Tij = 1) = expit{∑j

j ′=1(Ti,j ′−1 + γ �Xij ′ )/2j−j ′ +
(−1/2)j }. The true treatment assignment model is a func-
tion of the entire covariate and treatment history for each
observation, but each method is applied using the most im-
mediate covariates and treatment. To generate our covari-
ates for this set of simulations, we adjust Uij such that
Uij = ∏j−1

j ′=1

{
2 + (2Tij ′ − 1)/3

}
for j = 2, 3 and Uij = 1 for

j = 1. The new set of covariates are then constructed as
Xij = (Zij1Uij , Zij2Uij , |Zij3Uij |, |Zij4Uij |)� so that they are
a function of all past treatments. The outcome model is the
same as the one used for the first set of simulations except
that the definition of Xij is different. As before, we assess
each methods’ performance when using the correct covariates,
Xij , and the covariates after a mild nonlinear transformation,
X∗

ij = {(Zij1Uij )3, 6 · Zij2Uij , log |Zij3Uij |, 1/|Zij4Uij |}�.
To evaluate the performance of our proposed CBPS methodol-

ogy, we simulate 2500 datasets using the aforementioned data-
generating processes. We then fit a logistic regression model
(GLM) as the treatment assignment model independently for
each time period using correct and incorrect model specifica-
tions as discussed above. We also fit the same exact logistic
model using the proposed CBPS estimation but in two ways:
first with the fully efficient covariance matrix (CBPS) and with
its low-rank approximation (CBPS-Approximate). Finally, the
marginal structural model (MSM) weights are constructed from
each of the fitted models and then we regress the outcome vari-
able on all three treatment variables using the stabilized MSM
weights. The resulting regression coefficients are then compared
with the numerical estimates of true regression coefficients ob-
tained from a large number of simulations with the true treatment
assignment probabilities.

Figure 2 presents the results from the first set of simulations
where the misspecification of treatment assignment model is
confined to the functional form and the correct lag structure
is maintained. The first three columns show that the bias (up-
per two rows) and root mean squared error or RMSE (bottom
two rows) for the estimated regression coefficients of the three
treatment variables (one for each of the three time periods, i.e.,
β̂1, β̂2, and β̂3, respectively) from the MSM. That is, we use
a weighted linear regression where the outcome is regressed
on three treatments using the MSM weights. The final column
presents the bias and RMSE for the estimated mean potential
outcome, E(Yi(t1, t2, t3)), averaged across eight unique treat-
ment sequences. These estimates are obtained by calculating
the weighted average of the outcome using the subset of data
for each treatment sequence.

When the treatment assignment model is correctly specified,
all methods have small bias (the first row) and small RMSE (third
row) for all quantities of interest. For one parameter in a small
sample size, CBPS with the low-rank approximation (thick dash
line) has a greater bias than other methods. It is also interesting
to note that CBPS is slightly more efficient than the GLM. This
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Figure 3. Impact of treatment assignment model misspecification based on simulations with incorrect lag structure. Two cases are considered.
In the first scenario, the lag structure is incorrectly specified. In the latter scenario, additionally the functional form is misspecified by transforming
covariates. The first three columns show the bias and root mean squared error (RMSE) for the estimated regression coefficients of the three
treatment variables (one for each of the three time periods) from the marginal structural model. The final column presents the bias and RMSE for
the estimated mean potential outcome, E(Yi(t1, t2, t3)), averaged across eight unique treatment sequences. Overall, CBPS (thick solid lines) and
CBPS-Approximate (thick dash lines) outperform the GLM (thin dot-dashed lines) when the model is misspecified. The dotted lines represent
the results for the estimates based on the true weights.

finding is consistent with the theoretical result of Hirano, Im-
bens, and Ridder (2003), which implies that overparameterizing
the propensity score model by adding moment conditions can
sometimes lead to efficiency gains. However, when the model
is misspecified, the bias and RMSE are large and even grow in
sample size for GLM (thin dot-dashed lines). In contrast, CBPS
with the fully efficient covariance matrix (thick solid line) and
CBPS with the low-rank approximation have much smaller bias
and RMSE across parameters. Unlike the GLM, both the bias
and RMSE do not grow in sample size, thereby outperforming
the standard estimation technique.

In the first row of Figure 3, the misspecified lag structure in-
duces noticeable bias across all methods, with the CBPS meth-
ods showing modest gains in bias (first row) and RMSE (third

row). When the lag structure is misspecified and additionally
the covariates are transformed (second and fourth rows), the
standard GLM estimation leads to much larger bias and RMSE
and this bias increases in the sample size. In contrast, the CBPS
methods minimize the impact of model misspecification and
stays within a reasonable range for bias and RMSE across all
quantities of interest.

5. AN EMPIRICAL APPLICATION

We now illustrate the proposed methodology through an em-
pirical application. Blackwell (2013) had applied the MSM to
the data from political science to estimate the impact of neg-
ative advertisements on election outcomes. Here, we analyze
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Figure 4. Absolute imbalance for each covariate balancing condition by time period. The results are compared between the logistic regression

(vertical axis) and the CBPS (horizontal axis). The imbalances for all balance conditions appear together in the top left plot, and they are broken
out by time period in the remaining five plots. Points above the 45◦ line indicate that a better balance is achieved for the CBPS than the logistic
regression. Overall, the covariate balance achieved by the logistic regression tends to be worse than the CBPS.

a subset of his data. Specifically, we examine the five weeks
leading to the elections, using a total of 58 U.S. Senate and 56
gubernatorial candidates from 114 races that were held during
the years 2000, 2002, 2004, and 2006. During this time, there
were 126 races total in which ads were aired during the last five
weeks. Five races are dropped due to missing data, and, follow-
ing the original author, seven additional noncompetitive races
were dropped so as to make the common support assumption
more credible.

In each week t = 1, . . . , 5 leading up to the election, can-
didate i may run negative campaign (Tit = 1) or remain pos-
itive (Tit = 0). The time-varying covariates Xit include the
Democratic share of the polls, proportion of voters undecided,
campaign length, and the lagged and twice lagged treatment
variables for each week. In addition, we use the time-invariant
covariates including baseline Democratic voteshare, baseline
proportion undecided, and indicators for election year, incum-
bency status, and type of office. The original study fit a single
logistic regression model to all time periods, including a linear
time trend. In contrast, we allow the coefficients in the model
to be different for each time period. We find that the added
flexibility yields significantly better covariate balance.

We consider three approaches: the logistic regression, the
CBPS based on the optimal covariance matrix (CBPS), and

the CBPS based on the low-rank approximation (CBPS-
Approximate). For the CBPS and CBPS-approx approaches, we
use the two-step and continuously updating GMM estimators,
respectively. Note that the computational time for the CBPS was
seven times as long as that for the CBPS-Approximate.

We begin by assessing the degree of covariate balance
achieved by the logistic regression and the CBPS. Since there
are 12 covariates per time period, we have a total of 1548 =∑5

j=1 12 × (25−2j−1) different covariate balancing conditions.
As shown in Section 3, these moment conditions are implied
by the fact that at each time period, conditional on the past
treatment history, the MSM weights should balance covariates
across all future potential treatment sequences. We characterize
the imbalance as the absolute value of the balance conditions
for each balance condition G.

Figure 4 presents the absolute imbalance for each covariate
balancing condition based on the logistic regression (vertical
axis) and the CBPS (horizontal axis). The imbalance of all bal-
ance conditions appear together in the top left plot, and they are
broken out by week in the remaining five plots. Points above the
45◦ line indicate that a better covariate balance is achieved for
the CBPS than the logistic regression. The logistic regression
produces greater imbalance more than 78% of the time, and this
pattern is consistent over time, ranging from 75.6% in time 2 to
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Table 3. Estimated average causal effects of negative advertising on
candidate’s voteshare

CBPS CBPS
GLM CBPS CBPS (Approximate) GLM CBPS (Approximate)

(Intercept) 55.69∗ 57.14∗ 57.38∗ 55.61∗ 57.08∗ 57.31∗
(4.58) (1.83) (2.24) (3.06) (1.67) (1.96)

Negative 3.02 5.86 2.80
(time 1) (4.51) (5.27) (4.72)

Negative 3.54 2.71 4.81
(time 2) (9.61) (9.21) (9.80)

Negative −2.82 −3.93 −4.45
(time 3) (12.44) (10.89) (13.62)

Negative −8.22 −9.72 −8.69
(time 4) (10.19) (7.75) (10.81)

Negative −1.62 −1.98∗ −1.91
(time 5) (0.96) (0.95) (0.99)

Negative −1.18−1.35∗ −1.43∗
(cumulative) (0.67) (0.38) (0.45)

R2 0.05 0.14 0.10 0.03 0.10 0.08
F statistics 1.03 3.44 2.49 3.08 12.43 10.06

NOTES: The left three columns present the estimated average causal effects of the time-
specific decision to engage in negative advertising. The right three columns contain the
estimated causal effects of the cumulative number of periods that the candidate has gone
negative. All results are based on weighted linear regressions. The weights are estimated
using the logistic regression (GLM), the CBPS with the optimal covariance matrix, and
the CBPS with low-rank approximation (CBPS-Approximate). ∗ indicates statistical sig-
nificance at the 0.05 level.

81.3% in time 4. Relative to the CBPS, the logistic regression
has both a greater average absolute imbalance (0.84 versus 0.24)
and a larger spread in absolute imbalance (2.05 versus 0.65).

Table 3 presents the estimated impact of negative advertising
on candidate’s voteshare. The left three columns present the es-
timated average causal effects of the time-specific decision to
engage in negative advertising. The right three columns contain
the estimated causal effects of the cumulative number of peri-
ods that the candidate has gone negative. All results are based
on weighted linear regressions. The weights are estimated us-
ing the logistic regression (GLM), the CBPS with the optimal
covariance matrix, and the CBPS with low-rank approximation
(CBPS-Approximate). While these results are somewhat simi-
lar across the methods, there are some differences. In particular,
when using the CBPS and CBPS-Approximate, the effects of
negative advertisement are estimated appear to be more strongly
negative than the GLM: the magnitude of estimates effects is
larger and standard errors tend to be smaller. The R2 and F
statistics are also greater when the weights are estimated using
the CBPS and CBPS-Approximate. Finally, the low-rank ap-
proximation approach for the CBPS does not alter the results
significantly.

6. CONCLUDING REMARKS

In this article, we have extended the CBPS methodology of
Imai and Ratkovic (2014) to the estimation of inverse probability
weights for marginal structural models (MSMs), a popular tool
in the analysis of longitudinal data. The proposed methodology
estimates these weights by improving the resulting covariate bal-
ance. This is an important advantage because checking covariate
balance, after fitting the treatment assignment models, is a diffi-
cult task even when the number of time periods is moderate. As
a result, detecting model misspecification is much more chal-

lenging in longitudinal data settings than simple cross-sectional
data settings.

In addition, because the MSM weights are constructed by
multiplying the inverse of the estimated propensity scores from
each time period, MSMs can be highly sensitive to the mis-
specification of treatment assignment models. In contrast, the
CBPS methodology provides a robust estimation method for
inverse probability weights by maximizing covariate balance.
Our simulation and empirical studies illustrate the effectiveness
of the proposed method over the standard maximum likelihood
estimation.

One possible future research agenda is the extension of the
proposed methodology to nonparametric estimation using em-
pirical likelihood. The MSM weights are often estimated us-
ing a parametric model but better covariate balance might be
achieved by using a more flexible estimation approach. Another
important and yet unresolved question concerns the selection of
covariate balancing conditions when there exist many such con-
ditions. As we have shown, the number of covariate balancing
conditions grow exponentially as the number of time periods
increases. Under this scenario, the data will become sparse and
some treatment sequences have extremely small number of ob-
servations. Here, the application of moment selection methods
may be useful. We plan to investigate how the proposed CBPS
methodology performs in such a situation and develop effective
strategies for addressing this issue.

[Received May 2013. Revised May 2014.]
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