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S1 Distribution of Judge’s Decisions Given the PSA for Subgroups

S1.1 Female Arrestees
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(b) Control Group
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Figure S1: The Distribution of Judge’s Decisions Given the Pretrial Public Safety Assessment (PSA)
among the Cases in the Treatment (Top Panel) and Control (Bottom Panel) Groups Among Female
Arrestees.
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S1.2 Non-white Male Arrestees
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(b) Control Group
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Figure S2: The Distribution of Judge’s Decisions given the Pretrial Public Safety Assessment (PSA)
among the Cases in the Treatment (Top Panel) and Control (Bottom Panel) Groups Among Non-
white Male Arrestees.
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S1.3 White Male Arrestees
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(b) Control Group
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Figure S3: The Distribution of Judge’s Decisions Given the Pretrial Public Safety Assessment (PSA)
among the Cases in the Treatment (Top Panel) and Control (Bottom Panel) Groups Among White
Male Arrestees.
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S2 Subgroup Analysis for Age Groups

In this appendix, we conduct the subgroup analysis for different age groups.

S2.1 Age Distribution, Descriptive Statistics, and Average Causal Effects
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Figure S4: The Distribution of Age in the Treatment (Left Panel) and Control (Right Panel) Groups
Among Arrestees.

no PSA PSA

Signature Cash bond Signature Cash bond
bond ≤$1000 >$1000 bond ≤$1000 >$1000 Total (%)

22 or below 135 24 22 136 24 16 357
(7.1) (1.3) (1.2) (7.2) (1.3) (0.8) (18.9)

23 – 28 158 25 23 148 29 28 411
(8.4) (1.3) (1.2) (7.8) (1.5) (1.5) (21.7)

29 – 35 157 40 14 151 33 28 423
(8.3) (2.1) (0.7) (8.0) (1.7) (1.5) (22.3)

36 – 45 142 22 26 133 30 22 375
(7.5) (1.2) (1.4) (7.0) (1.6) (1.2) (19.9)

46 or above 113 21 21 137 14 19 325
(6.0) (1.1) (1.1) (7.2) (0.7) (1.0) (17.1)

Table 2: The Joint Distribution of Treatment Assignment, Decisions, and Age. The table shows the
number of cases in each category with the corresponding percentage in parentheses.

Figure S4 presents the distribution of age for the treatment and control groups. As expected, the
two distributions are similar. We observe that the age distribution is right skewed with many more
young arrestees. Table 2 presents the descriptive statistics for different age groups examined here.
We divide the arrestees into five subgroups with different ranges of age (aged 22 or below, between
23 to 28, between 29 to 35, between 36 to 45, 46 or above). Within each age group, the signature
bond appears to be the dominant decision.
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Figure S5: Estimated Average Causal Effects of PSA Provision on Judge’s Decisions and Outcome
Variables for First Arrest Cases (FTA, NCA, and NVCA). The results are based on the difference-
in-means estimator. The vertical bars represent the 95% confidence intervals. In the left figure, we
report the estimated average causal effect of PSA provision on the decision to charge a signature
bond (circles), a small cash bail ($1,000 dollars or less; triangles), and a large cash bail (greater than
$1,000; squares). In the right figure, we report the estimated average causal effect of PSA provision
on the three different outcome variables: FTA (open circles), NCA (open triangles), and NVCA
(open squares).

Figure S5 presents the estimated Intention-to-Treat (ITT) effects of PSA provision on judge’s
decisions (left panel) and arrestee’s behaviors (right panel). We find that PSA provision has little
effect on the judge’s decisions with the exception of the 29 – 35 years old group and the oldest group.
For the 29 – 35 years old group, the PSA appears to lead to a harsher decision while for the 46 or
older group the effect is the opposite. As for the effects on arrestee’s behavior, our analysis suggests
that PSA provision may increase NVCA among the 29 – 35 years old group though the estimate is
only marginally significant.

S2.2 Principal Stratum Proportion and Average Principal Strata Effects
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Figure S6: Estimated Proportion of Each Principal Stratum. Each plot represents the result using
one of the three outcome variables (FTA, NCA, and NVCA), where the blue, black, red, and brown
diamonds represent the estimates for safe, easily preventable, preventable, risky cases, respectively.
The solid vertical lines represent the 95% Bayesian credible intervals.

Figure S6 presents the estimated proportion of each principal stratum for different age groups.
We observe that the principal stratum size is similar across age groups with the safe cases being
the most dominant. The proportion of safe cases appears to be greater for older age groups though
the rate of increase is modest. The interpretation of Figure S7 is given in the last paragraph of
Section 4.2.
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Figure S7: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision. Each panel presents the age group-specific results for a different outcome variable. Each
column within a panel shows the estimated APCE of PSA provision for safe (blue), easily preventable
(black), preventable (red), and risky (brown) cases. For each of these principal strata, we report the
estimated APCE on the judge’s decision to impose a signature bond (circles), a small cash bail amount
of 1,000 dollars or less (triangles), and a large cash bail amount of greater than 1,000 (squares). The
vertical line for each estimate represents the Bayesian 95% credible interval.
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S3 Testing the Potential Existence of Spillover Effects

S3.1 Conditional Randomization Test

We examine the possible existence of spillover effects. In particular, we use a conditional random-
ization test to examine whether or not PSA provision of prior cases affects the judge’s decision in
later cases (e.g., Aronow, 2012; Athey, Eckles and Imbens, 2018; Candès et al., 2018). The basic idea
is to test whether the decision, Di, is conditionally independent of the treatment assignment of the
other cases whose court hearing date is prior to that of case i, given its own treatment assignment
status Zi. The judge made decision for 1, 891 cases on 274 different dates. Unfortunately, we do not
have information about the ordering of decisions within each hearing date. Let Oi ∈ {1, 2, . . . , 274}
denote the order of the hearing date of case i. Let Z̃i = |{i′ ∈ {1, 2, . . . , n} : Oi′ = Oi − 1}| denote
the proportion of treated cases whose hearing date order is immediately before that of case i. Then,
the null hypothesis is given by H0 : Z̃i ⊥⊥ Di | Zi. We conduct a conditional randomization test as
follows:

1. Create a new treatment assignment Z ′i as follows:

(a) For each i, if Oi is even then Z ′i = Zi

(b) For each i, if Oi is odd then randomly sample Z ′i ∼ Bernoulli(1/2)

Then compute Z̃ ′i based on Z ′i, i.e., Z̃ ′i = |{i′ ∈ {1, 2, . . . , n} : Oi′ = Oi − 1}|.

2. Regress Di on (1, Zi, Z̃
′
i) only using the subset of observations whose Oi is even. Let our test

statistic T be the squared term of estimate of coefficient of Z̃ ′i.

3. Repeat the above S times and compute (one-sided) p-value: 1
S

∑S
s=1 1{T (s) ≥ Tobs} where T (s)

is the test statistic for the sth iteration and Tobs is the observed test statistic.

p−value =  0.7107
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Figure S8: The Distributions of Test Statistics. The red vertical lines indicate the observed test
statistics.

Figures S8 presents the resulting distribution of our test statistics. The p-value is 0.71 for the
test statistics T , and thus we fail to reject the null hypothesis. That is, we find no statistically
significant evidence that the judge’s decision is influenced by PSA provision of the prior cases. This
is consistent with the assumption of no inference among the cases, which is made throughout our
analysis.
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S3.2 Power: A Simulation Analysis

We examine the power of the statistical test used above via a simulation study. Our simulation
procedure is as follows:

1. Regress Di on (1, Zi, Z̃i) using the ordinal logistic regression model based on the observed data.
Let ω denote the coefficient for Z̃i.

2. Choose a value of ω, and set the other model parameters to their estimated values. Using this
mode, generate Di with the same sample size and observed treatment variable.

3. Conduct the conditional randomization test as described in Section S3.1. Repeat this for 1, 000
times and calculate the proportion of rejecting the null hypothesis at the 0.05 level.

4. Repeat the above procedure for each value of ω ∈ {−1.5,−1,−0.5, 0, 0.5, 1, 1.5}.
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Figure S9: The Proportion of Rejecting the Null Hypothesis at the 0.05 Level.

Figures S9 presents the results of our simulation study for calculating the power of the test. Here,
if the proportion of treated cases whose hearing date order is immediately before is 1, the odds of
judges making harsher decision is expω times that of the arrestees whose proportion of treated cases
whose hearing date order is immediately before is 0. According to the simulation, the power of the
test reaches about 0.8 when ω = 1 or expω = 2.72. Thus, it is possible that with the given sample
size, only the relatively large effect can be detected. This suggests that we must interpret the result
of this test presented in Section S3.1 with caution.
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S4 Proofs of the Theorems

S4.1 Lemmas

To prove the theorems, we need some lemmas.

Lemma S1 Consider two random variables X and Y . Suppose that they have finite moments and
the support of Y contains that of X. Let f1(x) and f2(y) be their density functions. Then, any
function g(·),

E{g(X)} = E
{
f1(Y )

f2(Y )
g(Y )

}
.

Proof is straightforward and hence omitted.

Lemma S2 For a binary decision, Assumption 4 implies {Yi(1), Yi(0)}⊥⊥Di | Xi, Zi = z under As-
sumption 3. For an ordinal decision, Assumption 4 implies Ri⊥⊥Di | Xi, Zi = z under Assumption 6.

Proof of Lemma S2. For a binary decision, we have

Pr{Yi(1) = 1, Yi(0) = 1 | Di,Xi, Zi = z} = Pr{Yi(1) = 1 | Di,Xi, Zi = z}
= Pr{Yi(1) = 1 | Xi, Zi = z}
= Pr{Yi(1) = 1, Yi(0) = 1 | Xi, Zi = z},

where the first and third equality follow from Assumption 3 and the second equality follows from
Assumption 4. Similarly, we have

Pr{Yi(1) = 0, Yi(0) = 0 | Di,Xi, Zi = z} = Pr{Yi(0) = 0 | Di,Xi, Zi = z}
= Pr{Yi(0) = 0 | Xi, Zi = z}
= Pr{Yi(1) = 0, Yi(0) = 0 | Xi, Zi = z},

where the first and third equality follow from Assumption 3 and the second equality follows from
Assumption 4. As a result, {Yi(1), Yi(0)}⊥⊥Di | Xi, Zi = z because {Yi(1), Yi(0)} takes only three
values.

For a discrete decision Di taking values in {0, . . . , k}, we have

Pr(Ri = r | Di,Xi, Zi = z) = Pr(Ri ≥ r | Di,Xi, Zi = z)− Pr(Ri ≥ r + 1 | Di,Xi, Zi = z)

= Pr(Yi(r − 1) = 1 | Di,Xi, Zi = z)− Pr(Yi(r) = 1 | Di,Xi, Zi = z)

= Pr(Yi(r − 1) = 1 | Xi, Zi = z)− Pr(Yi(r) = 1 | Xi, Zi = z)

= Pr(Ri ≥ r | Xi, Zi = z)− Pr(Ri ≥ r + 1 | Xi, Zi = z)

= Pr(Ri = r | Di,Xi, Zi = z)

for r = 1, . . . , k, where the second and the fourth equality follow from the definition of Ri and the
third equality follows from Assumption 4. Similarly, we have

Pr(Ri = 0 | Di,Xi, Zi = z) = Pr(Yi(0) = 0 | Di,Xi, Zi = z)

= Pr(Yi(0) = 0 | Di, Zi = z)

= Pr(Ri = 0 | Di, Zi = z),

Pr(Ri = k + 1 | Di,Xi, Zi = z) = Pr(Yi(k) = 1 | Di,Xi, Zi = z)

= Pr(Yi(k) = 1 | Di, Zi = z)

= Pr(Ri = k + 1 | Di, Zi = z).

As a result, Ri⊥⊥Di | Xi, Zi = z. �

9



S4.2 Proof of Theorem 1

First, Assumption 3 implies,

Pr{Yi(0) = 0, Yi(1) = 0} = Pr{Yi(0) = 0}, Pr{Yi(0) = 1, Yi(1) = 1} = Pr{Yi(1) = 1},
Pr{Yi(0) = 1, Yi(1) = 0} = 1− Pr{Yi(0) = 0} − Pr{Yi(1) = 1}.

Second, we have

Pr{Di(z) = 1, Yi(0) = 0, Yi(1) = 0}
= Pr{Yi(0) = 0, Yi(1) = 0} − Pr{Di(z) = 0, Yi(0) = 0, Yi(1) = 0}
= Pr{Yi(0) = 0} − Pr{Di(z) = 0, Yi(0) = 0}
= Pr{Yi(0) = 0} − Pr{Di(z) = 0, Yi(Di(z)) = 0 | Zi = z}
= Pr{Yi(0) = 0} − Pr(Di = 0, Yi = 0 | Zi = z),

where the second equality follows from Assumption 3 and the third equality follows from Assump-
tion 1. Similarly, we can obtain

Pr{Di(z) = 1, Yi(0) = 1, Yi(1) = 1} = Pr{Di(z) = 1, Yi(1) = 1}
= Pr{Di(z) = 1, Yi(Di(z)) = 1 | Zi = z}
= Pr(Di = 1, Yi = 1 | Zi = z).

Therefore,

Pr{Di(z) = 1, Yi(0) = 1, Yi(1) = 0}
= pr{Di(z) = 1} − Pr{Di(z) = 1, Yi(0) = 0, Yi(1) = 0} − Pr{Di(z) = 1, Yi(0) = 1, Yi(1) = 1}
= pr{Di = 1 | Zi = z} − Pr{Yi(0) = 0}+ Pr(Di = 0, Yi = 0 | Zi = z)− Pr(Di = 1, Yi = 1 | Zi = z)

= Pr(Yi = 0 | Zi = z)− Pr{Yi(0) = 0}.

Finally, we have,

APCEp =
Pr{Di(1) = 1, Yi(0) = 1, Yi(1) = 0} − Pr{Di(0) = 1, Yi(0) = 1, Yi(1) = 0}

Pr{Yi(0) = 1, Yi(1) = 0}

=
Pr(Yi = 1 | Zi = 0)− Pr(Yi = 1 | Zi = 1)

Pr{Yi(0) = 1} − Pr{Yi(1) = 1}
,

APCEr =
Pr{Di(1) = 1, Yi(0) = 1, Yi(1) = 1} − Pr{Di(0) = 1, Yi(0) = 1, Yi(1) = 1}

Pr{Yi(0) = 1, Yi(1) = 1}

=
Pr(Di = 1, Yi = 1 | Zi = 1)− Pr(Di = 1, Yi = 1 | Zi = 0)

Pr{Yi(1) = 1}
,

and

APCEs =
Pr{Di(1) = 1, Yi(0) = 0, Yi(1) = 0} − Pr{Di(0) = 1, Yi(0) = 0, Yi(1) = 0}

Pr{Yi(0) = 0}

=
Pr(Di = 0, Yi = 0 | Zi = 0)− Pr(Di = 0, Yi = 0 | Zi = 1)

Pr{Yi(0) = 0}
.

�
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S4.3 Proof of Theorem 2

Assumption 4 and Lemma S2 imply,

E{Di(z) | Yi(1) = y1, Yi(0) = y0} = E [E{Di(z) | Xi, Yi(1) = y1, Yi(0) = y0} | Yi(1) = y1, Yi(0) = y0]

= E [E{Di(z) | Xi} | Yi(1) = y1, Yi(0) = y0] .

Based on Lemma S1,

E [E{Di(z) | Xi} | Yi(1) = y1, Yi(0) = y0]

= E
[

Pr{Xi | Yi(1) = y1, Yi(0) = y0}
Pr(Xi)

E{Di(z) | Xi}
]

= E

(
E

[
Pr{Xi | Yi(1) = y1, Yi(0) = y0}

Pr(Xi)
Di(z)

∣∣∣∣∣Xi

])

= E

(
E

[
Pr{Yi(1) = y1, Yi(0) = y0 | Xi}

Pr{Yi(1) = y1, Yi(0) = y0}
Di(z)

∣∣∣∣∣Xi

])

= E
[

Pr{Yi(1) = y1, Yi(0) = y0 | Xi}
Pr{Yi(1) = y1, Yi(0) = y0}

Di(z)

]
= E

[
Pr{Yi(1) = y1, Yi(0) = y0 | Xi}

Pr{Yi(1) = y1, Yi(0) = y0}
Di

∣∣∣∣∣Zi = z

]
, (S1)

where the last equality follows from Assumption 1. We can then obtain the expressions for APCEp,
APCEr, and APCEs by choosing different values of y1 and y0 in (S1). �

S4.4 Proof of Theorem 3

Assumption 1 implies,

Pr{Di(z) = d, Yi(d) = y} = Pr{Di(z) = d, Yi(Di(z)) = y | Zi = z} = Pr(Di = d, Yi = y | Zi = z).

Therefore,

Pr{Di(z) = 1 | Yi(0) = y} =
Pr{Di(z) = 1, Yi(0) = y}

Pr{Yi(0) = y}

=
Pr{Yi(0) = y} − Pr{Di(z) = 0, Yi(0) = y}

Pr{Yi(0) = y}

=
Pr{Yi(0) = y} − Pr(Di = 0, Yi = y | Zi = z)

Pr{Yi(0) = y}
.

As a result, we have

APCEp =
Pr(Di = 0, Yi = 1 | Zi = 0)− Pr(Di = 0, Yi = 1 | Zi = 1)

Pr{Yi(0) = 1}
,

APCEs =
Pr(Di = 0, Yi = 0 | Zi = 0)− Pr(Di = 0, Yi = 0 | Zi = 1)

Pr{Yi(0) = 0}
.

�
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S4.5 Proof of Theorem 5

Using the law of total expectation, we have

E[1{Di(z) ≥ r} | Ri = r] = E(E[1{Di(z) ≥ r} | Xi, Ri = r] | Ri = r)

= E(E[1{Di(z) ≥ r} | Xi] | Ri = r)

= E
(

Pr(Xi | Ri = r)

Pr(Xi)
E[1{Di(z) ≥ r} | Xi]

)
= E

(
Pr(Ri = r | Xi)

Pr(Ri = r)
E[1{Di(z) ≥ r} | Xi]

)
= E

[
Pr(Ri = r | Xi)

Pr(Ri = r)
1{Di(z) ≥ r}

]
= E

[
Pr(Ri = r | Xi)

Pr(Ri = r)
1{Di ≥ r} | Zi = z

]
,

where the second equality follows from Assumption 4 and Lemma S2, and the last equality follows
from Assumption 1. Thus,

APCEp(r) = E{wr(Xi)1(Di ≥ r) | Zi = 1} − E{wr(Xi)1(Di ≥ r) | Zi = 0}.

We can prove the expression for APCEs similarly. �

S5 Details of the Bayesian Estimation

We only consider the algorithm for sensitivity analysis with ordinal decision since the computation
of the original analysis is straightforward by setting the sensitivity parameters to zero. Consider the
model given in Equations (7) and (8). We can write Equation (7) in terms of the observed data as,

D∗i = βZZi + X>i βX + ZiX
>
i βZX + εi1, (S2)

where

Di =



0 D∗ ≤ θZi,1

1 θZi,1 < D∗i ≤ θZi,2

...
...

k − 1 θZi,k−1 < D∗i ≤ θZi,k

k θZi,k < D∗i

.

We then consider Equation (8). For r = 0, . . . , k, because Ri ≥ r + 1 is equivalent to Yi(r) = 1, we
have

Pr{Y (r) = 1} = Pr(R∗i > δr) = Pr(X>i αX + εi2 > δr) = Pr(−δr + X>i αX + εi2 > 0).

Therefore, we can introduce a latent variable Y ∗(r), and write

Y ∗i (r) = −δr + X>i αX + εi2, (S3)

where Yi(r) = 1 if Y ∗i (r) > 0 and Yi(r) = 0 if Y ∗i (r) ≤ 0. We can further write Equation (S3) in
terms of the observed data as

Y ∗i = −
k∑
r=0

δr1(Di = r) + X>i αX + εi2, (S4)

12



where Yi = 1 if Y ∗i > 0 and Yi = 0 if Y ∗i ≤ 0.
Combining Equations (S2) and (S4), we have

D∗i = βZZi + X>i βX + ZiX
>
i βZX + εi1, (S5)

Y ∗i = −
k∑
d=0

δd1(Di = d) + X>i αX + εi2, (S6)

where (
εi1
εi2

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
,

and

Di =



0 D∗ ≤ θZi,1

1 θZi,1 < D∗i ≤ θZi,2

...
...

k − 1 θZi,k−1 < D∗i ≤ θZi,k

k θZi,k < D∗i

, Yi =

{
0 Y ∗i ≤ 0

1 Y ∗i > 0

with δd ≤ δd′ for d ≤ d′.
We choose multivariate normal priors for the regression coefficients, (βZ , β

>
X , β

>
ZX) ∼N2p+1(0,ΣD)

and αX ∼ Np(0,ΣR). We choose the priors for θ and δ in the following manner. We first choose
a normal prior for θz1 and δ0, θz1 ∼ N(0, σ20) and δ0 ∼ N(0, σ20) for z = 0, 1. We then choose
truncated normal priors for other parameters, θzj ∼ N(0, σ20)1(θzj ≥ θz,j−1) for j = 2, . . . , k and
δl ∼ N(0, σ20)1(δl ≥ δl−1) for l = 1, . . . , k. In this way, we guarantee that θ’s and δ’s are increasing.
In our empirical analysis, we choose ΣD = 0.01 · I2p+1, ΣR = 0.01 · Ip, and σ0 = 10.

Treating Y ∗i and D∗i as missing data, we can write the complete-data likelihood as

L(θ, β, δ, α)

=
n∏
i=1

Li(θ, β, δ, α)

∝
n∏
i=1

exp

− 1

2(1− ρ2)

(D∗ −X>i βX − βZZi − ZiX>i βZX)2 +

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}2

−2ρ(D∗ −X>i βX − βZZi)

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}])
.

Imputation Step. We first impute the missing data given the observed data and parameters.
Using R package tmvtnorm, we can jointly sample Y ∗i and D∗i . Given (Di, Yi, Zi,X

>
i , θ, β, α, δ),

(D∗i , Y
∗
i ) follows a truncated bivariate normal distribution whose means are given by X>i βX+βZZi+

ZiX
>
i βZX and −

∑k
d=0 δd1(Di = d) + X>i αX , and whose covariance matrix has unit variances and

correlation ρ where D∗ is truncated within interval [θzd, θz,d+1] if Zi = z and Di = d (we define
θ0 = −∞ and θk+1 =∞) and Y ∗i is truncated within (−∞, 0) if Yi = 0 and [1,∞) if Yi = 1.
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Posterior Sampling Step. The posterior distribution is proportional to

n∏
i=1

exp

− 1

2(1− ρ2)

(D∗ −X>i βX − βZZi − ZiX>i βZX)2 +

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}2

−2ρ(D∗ −X>i βX − βZZi − ZiX>i βZX)

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}])

· exp

{
−

(βZ , β
>
X , β

>
ZX)Σ−1D (βZ , β

>
X , β

>
ZX)>

2

}
· exp

(
−
α>XΣ−1R αX

2

)

· exp

(
− θ

2
11

2σ20

)
exp

(
− δ20

2σ20

) k∏
j=2

{
exp

(
−
θ21j
2σ20

)
1(θ1j ≥ θ1,j−1)

}
k∏
l=1

{
exp

(
−
δ2l

2σ20

)
1(δl ≥ δl−1)

}

· exp

(
− θ

2
01

2σ20

) k∏
j=2

{
exp

(
−
θ20j
2σ20

)
1(θ0j ≥ θ0,j−1)

}
.

We first sample (βZ , β
>
X , β

>
ZX). From the posterior distribution, we have

f(βZ , β
>
X , β

>
ZX | ·)

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[
(D∗i −X>i βX − βZZi − ZiX

>
i βZX)2

−2ρ(D∗i −X>i βX − βZZi − ZiX
>
i βZX)

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}])
· exp

{
− (βZ , β

>
X , β

>
ZX)>Σ−1

D (βZ , β
>
X , β

>
ZX)

2

}

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[
(βZ , β

>
X , β

>
ZX)(Zi,X

>
i , ZiX

>
i )>(Zi,X

>
i , ZiX

>
i )(βZ , β

>
X , β

>
ZX)> − 2D∗i (Zi,X

>
i , ZiX

>
i )(βZ , β

>
X , β

>
ZX)>

+2ρ

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}
(Zi,X

>
i , ZiX

>
i )(βZ , β

>
X , β

>
ZX)>

])
· exp

{
− (βZ , β

>
X , β

>
ZX)>Σ−1

D (βZ , β
>
X , β

>
ZX)

2

}
.

Therefore, we can sample

(βZ , β
>
X , β

>
ZX)> | · ∼Np+1(µ̂D, Σ̂D),

where

Σ̂D =

{
1

1− ρ2
n∑
i=1

(Zi,X
>
i , ZiX

>
i )>(Zi,X

>
i , ZiX

>
i ) + Σ−1D

}−1
,

µ̂D = Σ̂D

(
1

1− ρ2
n∑
i=1

(Zi,X
>
i , ZiX

>
i )>

[
D∗i − ρ

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}])
.

We then consider sampling αX . We have

f(αX | ·)

∝
n∏

i=1

exp

− 1

2(1− ρ2)

{Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}2

−2ρ(D∗i −X>i βX − βZZi − ZiX
>
i βZX)

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}])
· exp

(
−α
>
XΣ−1

R αX

2

)

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[
α>XX>i XiαX − 2

{
Y ∗i +

k∑
d=0

δd1(Di = d)

}
XiαX + 2ρ(D∗i −X>i βX − βZZi − ZiX

>
i βZX)XiαX

])
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· exp

(
−α
>
XΣ−1

R αX

2

)
.

Therefore, we can sample

αX | · ∼Np(µ̂R, Σ̂R),

where

Σ̂R =

{
1

1− ρ2
n∑
i=1

X>i Xi + Σ−1R

}−1
,

µ̂R = Σ̂R

(
1

1− ρ2
n∑
i=1

Xi

[{
Y ∗i +

k∑
d=0

δd1(Di = d)

}
− ρ(D∗i −X>i βX − βZZi − ZiX>i βZX)

])
.

To sample δ’s, we write
∑k

d=0 δd1(Di = d) = δ0 +
∑k

d=1(δd − δd−1)1(Di ≥ d) and denote
Wi = (1,1(Di ≥ 1), . . . ,1(Di ≥ k)) and δ = (δ0, δ1 − δ0, . . . , δk − δk−1). Thus, we have

f(δ | ·)

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[{
Y ∗i + Wiδ −X>i αX

}2

− 2ρ(D∗i −X>i βX − βZZi − ZiX
>
i βZX)

{
Y ∗i + Wiδ −X>i αX

}])

· exp

(
− δ20

2σ2
0

) k∏
l=1

{
exp

(
− δ2l

2σ2
0

)
1(δl − δl−1 ≥ 0)

}

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[
δ>W>

i Wiδ + 2
(
Y ∗i −X>i αX

)
Wiδ − 2ρ(D∗i −X>i βX − βZZi − ZiX

>
i βZX)Wiδ

])

· exp

(
− δ20

2σ2
0

) k∏
l=1

{
exp

(
− δ2l

2σ2
0

)
1(δl − δl−1 ≥ 0)

}

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[
δ>W>

i Wiδ + 2
(
Y ∗i −X>i αX

)
Wiδ − 2ρ(D∗i −X>i βX − βZZi − ZiX

>
i βZX)Wiδ

])

· exp

(
−δ
>C>Cδ

2σ2
0

) k∏
l=1

1(δl − δl−1 ≥ 0),

where C is a (k+1)× (k+1) lower triangular matrix with all non-zero entries equal to 1. Therefore,
we can draw from a truncated normal distribution with mean and covariance matrix

Σ̂δ =

{
1

1− ρ2
n∑
i=1

W>
i Wi +

C>C

σ20

}−1
,

µ̂δ = Σ̂δ

[
1

1− ρ2
n∑
i=1

W>
i

{
ρ(D∗i −X>i βX − βZZi − ZiX>i βZX)−

(
Y ∗i −X>i αX

)}]
,

where the 2-th to (k + 1)-th element is truncated within interval [0,∞). We can then transform δ
to obtain (δ0, δ1, . . . , δk).

Finally, we sample

θz1 | · ∼ TN(0, σ20; max
i:Zi=z,Di=0

D∗i , min
i:Zi=z,Di=1

(D∗i , θ2)).

We then sample

θzj | · ∼ TN(0, σ20; max
i:Zi=z,Di=j−1

(D∗i , θj−1), min
i:Zi=z,Di=j

(D∗i , θj+1))

15



for j = 2, . . . , k − 1, and

θzk | · ∼ TN(0, σ20; max
i:Zi=z,Di=k−1

(D∗i , θk−1), min
i:Zi=z,Di=k

D∗i ).

The MCMC gives the posterior distributions of the parameters and therefore we can obtain
the posterior distributions of Pr(Di | Ri,Xi = x, Zi = z) and Pr(Ri | Xi = x). As a result, for
r = 1, . . . , k, we have

APCEp(r) = Pr{Di(1) ≥ r | Ri = r} − Pr{Di(0) ≥ r | Ri = r}

=
E {Pr(Di(1) ≥ r,Ri = r | Xi)}

E{Pr(Ri = r | Xi)}
− E {Pr(Di(0) ≥ r,Ri = r | Xi)}

E{Pr(Ri = r | Xi)}
,

APCEs = Pr{Di(1) = 0 | Ri = 0} − Pr{Di(0) = 0 | Ri = 0}

=
E {Pr(Di(1) = 0, Ri = 0 | Xi)}

E{Pr(Ri = 0 | Xi)}
− E {Pr(Di(0) = 0, Ri = 0 | Xi)}

E{Pr(Ri = 0 | Xi)}
.

We can calculate the conditional probabilities Pr{Di(z), Ri | Xi} and Pr(Ri | Xi) based on the
posterior sample of the coefficients, and then replace the expectation with the empirical average to
obtain the estimates.

S6 Optimal PSA Provision

In this appendix, we consider the optimal PSA provision rule and conduct an empirical analysis.
Let ξ be a PSA provision rule, i.e., ξ(x) = 1 (the PSA is provided) if x ∈ B1 and ξ(x) = 0 (the
PSA is not provided) if x ∈ B0, where X = B0

⋃
B1 and B0 ∩ B1 = ∅. The judges will make their

decisions based on the PSA and other available information included in Xi = x. To consider the
influence of the PSA on judges’ decision, we define δi1 the potential decision rule of case i if the
judge received the PSA and δi0 if not. Thus, δiz(x) = d if x ∈ Xi,zd where Xi,zd is a partition of the

covariate space with X =
⋃k
d=0Xi,zd and Xi,zd ∩Xi,zd′ = ∅ for z = 0, 1. Although we allow the judge

to make a different decision even if the observed case characteristics Xi are identical, we assume
that the judges’ decisions are identically distributed given the observed case characteristics and PSA
provision. That is, we assume Pr{δiz(x) = d} = Pr{δi′z(x) = d} for fixed x, z and i 6= i′, where the
probability is taken with respect to the super population of all cases.

Given this setup, we derive the optimal PSA provision rule. We consider the 0–1 utility Ui(ξ) =
1{δi,ξ(Xi)(Xi) = Ri}. This utility equals one, if the judge makes the most lenient decision to prevent
an arrestee from engaging in NCA (NVCA or FTA), and equals zero otherwise. As before, we begin
by rewriting the expected utility in the following manner,

E{Ui(ξ)} = E
[
1{Ri = δi,ξ(Xi)(Xi)}

]
=

k∑
r=0

E
[
1{Ri = r, δi,ξ(Xi)(Xi) = r}

]
=

k∑
r=0

1∑
z=0

E[1{Ri = r, δiz(Xi) = r,Xi ∈ Bz}].

Under the unconfoundedness assumption, we can write,

E[1{Ri = r, δiz(Xi) = r,Xi ∈ Bz}] = E[Pr(Ri = r | Xi) · Pr{δiz(Xi) = r | Xi} · 1{Xi ∈ Bz}]
= E[er(Xi) · Pr{δiz(Xi) = r} · 1{Xi ∈ Bz}].

16



Because in the experiment, the provision of the PSA is randomized, we can estimate Pr{δiz(Xi) =
r} = Pr(Di = r | Zi = z,Xi) from the data. Therefore, we obtain

E{Ui(ξ)} =
∑
z=0,1

E

([
k∑
r=0

er(Xi) · Pr(Di = r | Zi = z,Xi)

]
· 1{Xi ∈ Bz}

)
.

Then, the optimal PSA provision rule is,

ξ(x) = argmax
z=0,1

hz(x) where hz(x) =
k∑
r=0

er(x) · Pr(Di = r | Zi = z,Xi). (S7)

Thus, we can use the experimental data to derive the optimal PSA provision rule.

S7 Frequentist Analysis

In this appendix, we implement frequentist analysis and present the results. We fit the model defined
in Equation (S4) with probit regression. Recall that for r = 0, . . . , k, Ri ≥ r + 1 is equivalent to
Yi(r) = 1. Hence, we can estimate the conditional probabilities er(Xi) for each r = 0, . . . , k + 1
based on the estimates of the regression coefficients,

êr(x) = Φ(−δ̂r−1 + x>α̂X)− Φ(−δ̂r + x>α̂X), for r = 1, . . . , k,

êk+1(x) = Φ(−δ̂k + x>α̂X),

ê0(x) = 1− Φ(−δ̂0 + x>α̂X),

where Φ(·) denotes the cumulative distribution function of the standard normal distribution. We
estimate APCEp(r) and APCEs using Hajek estimator as follows,

ÂPCEp(r) =

∑
i ŵr(Xi)1(Di ≥ r)1(Zi = 1)∑

i ŵr(Xi)1(Zi = 1)
−
∑

i ŵr(Xi)1(Di ≥ r)1(Zi = 0)∑
i ŵr(Xi)1(Zi = 0)

,

ÂPCEs =

∑
i ŵ0(Xi)1(Di = 0)1(Zi = 1)∑

i ŵ0(Xi)1(Zi = 1)
−
∑

i ŵ0(Xi)1(Di = 0)1(Zi = 0)∑
i ŵ0(Xi)1(Zi = 0)

,

where ŵr(x) = êr(x)/{ 1n
∑

i êr(Xi)}. We use bootstrap to compute the 95% confidence interval.
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Figure S10: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision based on Frequentist Analysis. Each panel presents the overall and subgroup-specific results
for a different outcome variable. Each column within a panel shows the estimated APCE of PSA
provision for safe (blue), easily preventable (black), preventable (red), and risky (brown) cases. For
each of these principal strata, we report the estimated APCE on the judge’s decision to impose a
signature bond (circles), a small cash bail amount of 1,000 dollars or less (triangles), and a large
cash bail amount of greater than 1,000 (squares). The vertical line for each estimate represents the
95% credible interval.
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Figure S11: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision based on Frequentist Analysis with Random Effects. Each panel presents the overall and
subgroup-specific results for a different outcome variable. Each column within a panel shows the
estimated APCE of PSA provision for safe (blue), easily preventable (black), preventable (red), and
risky (brown) cases. For each of these principal strata, we report the estimated APCE on the judge’s
decision to impose a signature bond (circles), a small cash bail amount of 1,000 dollars or less
(triangles), and a large cash bail amount of greater than 1,000 (squares). The vertical line for each
estimate represents the 95% credible interval.

Figures S10 presents the estimated APCE of PSA provision on the three ordinal decision cate-
gories, separately for FTA and NCA within each principal stratum. The results for NVCA are not
presented due to the fact that the number of events is too small for an informative subgroup analysis.
The results are largely consistent with those of the Bayesian analysis presented in the main text. As
a robustness check for the assumption of no interference among the cases, Figure S11 presents the
estimated APCE of PSA provision with the model including random effects for the hearing date of
the case, and the results are the same. Figure S12 presents the results for each age group similar to
the one in Appendix S2.
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Figure S12: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision based on Frequentist Analysis. Each panel presents the age group-specific results for a
different outcome variable. Each column within a panel shows the estimated APCE of PSA provision
for safe (blue), easily preventable (black), preventable (red), and risky (brown) cases. For each of
these principal strata, we report the estimated APCE on the judge’s decision to impose a signature
bond (circles), a small cash bail amount of 1,000 dollars or less (triangles), and a large cash bail
amount of greater than 1,000 (squares). The vertical line for each estimate represents the 95%
credible interval.
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S8 Nonparametric Sensitivity Analysis

We consider a nonparametric sensitivity analysis for the ordinal decision under the monotonicity
assumption (Assumption 6). We introduce the following sensitivity parameters, ξrdz(x) for r, d =
0, . . . , k and z = 0, 1, to characterize the deviation from the unconfoundedness assumption,

ξrdz(x) =
Pr{Yi(r) = 1 | Di(z) = d,Xi = x}
Pr{Yi(r) = 1 | Di(z) = 0,Xi = x}

,

which is equal to 1 for all (r, d, z) and x when the unconfoundedness assumption holds.
We can directly relate the parametric sensitivity parameter ρ to the parameters of the nonpara-

metric sensitivity analysis. Because Ri ≥ r+1 is equivalent to Yi(r) = 1, we can obtain the following
formula from Equations (7) and (8),

Pr{Yi(r) = 1 | Di(z) = d,Xi = x} =
Pr(θzd < βZz + x>βX + zx>βZX + εi1 ≤ θz,d+1, δr < x>αX + εi2)

Pr(θzd < βZz + x>βX + zx>βZX + εi1 ≤ θz,d+1)
,

where θz0 = −∞ and δk+1 = ∞. Together with Proposition S1, we can express the sensitivity
parameters in the nonparametric sensitivity analysis ξrdz(x) in terms of the model parameters given
in Equations (7) and (8). Thus, the parametric sensitivity analysis, while much simpler, imposes
restrictions on the nonparametric counterpart.

The following proposition gives the identification formulas for Pr{Di(z) = d | Ri = r} for all
(r, d, z) with any given value of ξrdz(x).

Proposition S1 Under Assumptions 1, 2, and 6, if ξrdz(x) is known for all (r, d, z) and x, then
we have

Pr{Di(z) = d | Ri = r} =
E [Pr{Yi(r − 1) = 1 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(r − 1) = 1 | Xi = x} − Pr{Yi(r) = 1 | Xi = x}]

−E [Pr{Yi(r) = 1 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(r − 1) = 1 | Xi = x} − Pr{Yi(r) = 1 | Xi = x}]

for r = 1, . . . , k and all (d, z), and

Pr{Di(z) = d | Ri = k + 1} =
E [Pr{Yi(k) = 1 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(k) = 1 | Xi = x}]
,

Pr{Di(z) = d | Ri = 0} =
E [Pr{Yi(0) = 0 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(0) = 0 | Xi = x}]

for all (d, z), where

Pr{Yi(r) = 1 | Di(z) = d,Xi = x} =
ξrdz(x)

ξrrz(x)
· Pr(Yi = 1 | Zi = z,Di = r,Xi = x),

Pr{Yi(r) = 1 | Xi = x} =

∑k
d=0 ξrdz(x) Pr(Di = d | Zi = z,Xi = x)

ξrrz(x)

·Pr(Yi = 1 | Zi = z,Di = r,Xi = x).

Proof: The randomization of treatment assignment (Assumption 1) implies,

Pr{Yi(r) = 1 | Di(z) = r,Xi = x} = Pr(Yi = 1 | Zi = z,Di = r,Xi = x).
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Therefore, with given values of ξrdz(x), we have,

Pr{Yi(r) = 1 | Di(z) = d,Xi = x} =
ξrdz(x)

ξrrz(x)
· Pr(Yi = 1 | Zi = z,Di = r,Xi = x),

Pr{Yi(r) = 1 | Xi = x} =

k∑
d=0

Pr{Yi(r) = 1 | D(z) = d,Xi = x}Pr{D(z) = d | Xi = x}

=

∑k
d=0 ξrdz(x) Pr(Di = d | Zi = z,Xi = x)

ξrrz(x)

·Pr(Yi = 1 | Zi = z,Di = r,Xi = x).

From the above two terms, we have

Pr{Di(z) = d | Ri = r}

=
E [Pr{Di(z) = d,Ri = r | Xi = x}]

E {Pr(Ri = r | Xi = x)}

=
E [Pr{Di(z) = d, Yi(r − 1) = 1 | Xi = x} − Pr{Di(z) = d, Yi(r) = 1 | Xi = x}]

E [Pr{Yi(r − 1) = 1 | Xi = x} − Pr{Yi(r) = 1 | Xi = x}]

=
E [Pr{Yi(r − 1) = 1 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(r − 1) = 1 | Xi = x} − Pr{Yi(r) = 1 | Xi = x}]

−E [Pr{Yi(r) = 1 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(r − 1) = 1 | Xi = x} − Pr{Yi(r) = 1 | Xi = x}]

for r = 1, . . . , k, where the first equality follows from the law of total expectation, and the second
equality follows from Assumption 6.

Similarly, we can obtain

Pr{Di(z) = d | Ri = k + 1}

=
E [Pr{Di(z) = d,Ri = k + 1 | Xi = x}]

E {Pr(Ri = k + 1 | Xi = x)}

=
E [Pr{Di(z) = d, Yi(k) = 1 | Xi = x}]

E [Pr{Yi(k) = 1 | Xi = x}]

=
E [Pr{Yi(k) = 1 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(k) = 1 | Xi = x}]
,

Pr{Di(z) = d | Ri = 0}

=
E [Pr{Di(z) = d,Ri = 0 | Xi = x}]

E {Pr(Ri = 0 | Xi = x)}

=
E [Pr{Di(z) = d, Yi(0) = 0 | Xi = x}]

E [Pr{Yi(0) = 0 | Xi = x}]

=
E [Pr{Yi(0) = 0 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(0) = 0 | Xi = x}]
.

�
Using this result, we can compute the APCE with any given value of ξrdz(x). Unfortunately,

this nonparametric sensitivity analysis requires the specification of too many sensitivity parameters,
making it unsuitable for practical use.
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S9 Parametric Sensitivity Analysis Results

In this appendix, we implement sensitivity analysis for unconfoundedness assumption (Assumption 4)
and present the results. For nonparametric sensitivity analysis, we estimate Pr(Yi = 1 | Zi = z,Di =
r,Xi = x) and Pr(Di = d | Zi = z,Xi = x) using the model defined in Equations (S5) and (S6).
Figures S13, S14, and S15 show the results for the parametric sensitivity analysis. The patterns
of the estimated APCEs of PSA provision with different sets of sensitivity parameters are generally
consistent with those in the case where the unconfoundedness assumption holds.
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Figure S13: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision with ρ = 0.05. Each panel presents the overall and subgroup-specific results for a different
outcome variable. Each column within a panel shows the estimated APCE of PSA provision for
safe (blue), easily preventable (black), preventable (red), and risky (brown) cases. For each of these
principal strata, we report the estimated APCE on the judge’s decision to impose a signature bond
(circles), a small cash bail amount of 1,000 dollars or less (triangles), and a large cash bail amount
of greater than 1,000 (squares). The vertical line for each estimate represents the Bayesian 95%
credible interval.
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Figure S14: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision with ρ = 0.1. Each panel presents the overall and subgroup-specific results for a different
outcome variable. Each column within a panel shows the estimated APCE of PSA provision for
safe (blue), easily preventable (black), preventable (red), and risky (brown) cases. For each of these
principal strata, we report the estimated APCE on the judge’s decision to impose a signature bond
(circles), a small cash bail amount of 1,000 dollars or less (triangles), and a large cash bail amount
of greater than 1,000 (squares). The vertical line for each estimate represents the Bayesian 95%
credible interval.
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Figure S15: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision with ρ = 0.3. Each panel presents the overall and subgroup-specific results for a different
outcome variable. Each column within a panel shows the estimated APCE of PSA provision for
safe (blue), easily preventable (black), preventable (red), and risky (brown) cases. For each of these
principal strata, we report the estimated APCE on the judge’s decision to impose a signature bond
(circles), a small cash bail amount of 1,000 dollars or less (triangles), and a large cash bail amount
of greater than 1,000 (squares). The vertical line for each estimate represents the Bayesian 95%
credible interval.
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S10 Additional Results for Optimal Decision

(a) The cases whose DMF recommendation is a signature bond
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(b) The cases whose DMF recommendation is a cash bond
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Figure S16: Estimated Proportion of Cases for Which Cash Bond is Optimal. Each column repre-
sents the results based on one of the three outcomes (FTA, NCA, and NVCA). The top (bottom)
panel shows the results for the cases whose DMF recommendation is a signature (cash) bond. Unlike
Figure 6, which uses the overall DMF recommendation, the results are based on the separate DMF
recommendation for each outcome. In each plot, the contour lines represents the estimated propor-
tion of cases, for which a cash bond is optimal, given the cost of an unnecessarily harsh decision (c1;
y-axis) and that of a negative outcome (c0; x-axis). A grey area represents a greater proportion of
such cases.
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S11 Additional Results for the Comparison between Judge’s De-
cisions and DMF Recommendations

(a) Treatment Group
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(b) Control Group
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Figure S17: Estimated Difference in the Expected Utility under Selected Values of Cost Parameters
between Judge’s Decisions and DMF Recommendations for the Treatment (top row) and Control
(bottom row) Group. Each column represents the results base on one of the three outcomes, given
the cost of an unnecessarily harsh decision (c1; each panel) and that of a negative outcome (c0;
x-axis). A positive value implies that the judge’s decision yields a higher expected utility (i.e.,
more optimal) than the corresponding DMF recommendation. The vertical line for each estimate
represents the Bayesian 95% credible interval.
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