
Appendices to “Sequential Monte Carlo for Sampling

Balanced and Compact Redistricting Plans”

Cory McCartan∗ Kosuke Imai†

March 30, 2023

A Proofs of Propositions

Lemma 4.1. The probability of splitting a valid new district Gi from an existing area G̃i−1 using
Algorithm 1 with parameter ki ≥ Ki is

q(Gi | G̃i−1,pop(Vi) ∈ [P−
i , P

+
i]) =

τ(Gi)τ(G̃i)

τ(G̃i−1)ki
|C(Gi, G̃i)|. (1)

Proof. Any spanning tree can be decomposed into two other trees and an edge joining them. Let
T ∪ e ∪ T ′ denote the spanning tree obtained by joining two other spanning trees, T and T ′, with
an edge e. Then Equation 3 can be written as

q(Gi | G̃i−1) =
∑

T (1)∈T (Gi)

T (2)∈T (G̃i)

∑
e∈C(T (1),T (2))

q(Gi | T (1) ∪ e ∪ T (2)) τ(G̃i−1)
−1.

Now, q(Gi | T (1) ∪ e ∪ T (2)) is determined by whether whether e∗ = e, i.e., if e is the edge selected
to be cut. If e has de in the top ki (if it induces one of the best ki balanced splits), then it has a
1/ki probability of being selected in step (c) and cut. If de is not in the top ki, then this probability
is zero.

Everything written to this point holds regardless of whether Gi is a valid district (i.e., satisfies
pop(Vi) ∈ [P−

i , P
+
i]). From here onwards we will restrict our attention to valid districts only. Notice

that the forward-looking bounds P−
i and P+

i are stricter than merely ensuring dev(Gi) ≤ D. That
is, conditional on pop(Vi) ∈ [P−

i , P
+
i], we must also have dev(Gi) ≤ D.

Therefore, if a sorted edge ej in any spanning tree induces such a balanced partition, we must
have j ≤ Ki, where as in the main text Ki counts the maximum number of such edges across all
possible spanning trees. Thus, so long as we set ki ≥ Ki, we will have de ≤ D.

Furthermore, across all spanning trees T (1) ∈ T (Gi) and T
(2) ∈ T (G̃i), and connecting edges e ∈

E(T (1), T (2)), the value of de is constant, since removing e induces the same districting. Combining
these two facts, we have, conditional on satisfying the bounds P−

i and P+
i ,

q(e∗ = e | T (1) ∪ e ∪ T (2),pop(Vi) ∈ [P−
i , P

+
i]) = k−1

i ,

∗Ph.D. candidate, Department of Statistics, Harvard University. 1 Oxford Street, Cambridge 02138. Email:
cmccartan@g.harvard.edu

†Professor, Department of Government and Department of Statistics, Harvard University. 1737 Cam-
bridge Street, Institute for Quantitative Social Science, Cambridge 02138. Email: imai@harvard.edu, URL:
https://imai.fas.harvard.edu/

1

mailto:cmccartan@g.harvard.edu
mailto:imai@harvard.edu
https://imai.fas.harvard.edu/

which does not depend on T (1), T (2), or e. We may therefore write the conditional sampling proba-
bility as

q(Gi | G̃i−1,pop(Vi) ∈ [P−
i , P

+
i]) =

∑
T (1)∈T (Gi)

T (2)∈T (G̃i)

∑
e∈C(T (1),T (2))

1

kiτ(G̃i−1)

=
τ(Gi)τ(G̃i)

τ(G̃i−1)ki
|C(Gi, G̃i)|, (2)

where as in the main text we let C(G,H) represent the set of edges joining nodes in a subgraph G
to nodes in a subgraph H.

Proposition 4.2. Let πS =
∑S

j=1 w
(j)δ[ξ(j)] be the weighted particle approximation generated by

Algorithm 2. Then for all measurable h on unlabeled plans, as S → ∞,

√
S(EπS

[h([ξ])]− Eπ[h([ξ])])
d−→ N (0, VSMC(h)),

for some asymptotic variance VSMC(h).
The proof proceeds by showing that the weights in Algorithm 2 are of a form derived from an

existing SMC algorithm with an established central limit theorem.

Proof. We can associate our target measure π([ξ]) on unlabeled redistricting plans with a corre-
sponding measure on labeled plans

π̃(ξ) := ψ([ξ])−1π([ξ]),

so that the pushfoward measure obtained by mapping ξ 7→ [ξ] recovers π.
Our SMC algorithm will operate on labeled plans, targeting π̃, so that the resulting plans, when

considered as representatives of their corresponding unlabeled plans, will be representative of π in
the sense given by the theorem statement. Recall that a labeled redistricting plan ξ is just a tuple
of graph partitions (G1, G2, . . . , Gn). We begin by extending π̃(ξ) to a series of measures on partial
plans,

π̃i(G1, G2, . . . , Gi) :∝
i∏

j=1

τ(Gj)
ρτ(G̃j)

τ(G̃j−1)
1pop(Vj)∈[P−

j ,P+
j]

∝ τ(G̃j)

i∏
j=1

τ(Gj)
ρ1pop(Vj)∈[P−

j ,P+
j],

for 1 ≤ i ≤ n − 2, and where we have simplified the telescoping product in the second equality.
Recall that the G̃i are determined completely by G1, G2, . . . , Gi.

For i = n− 1, the above definition would yield

π̃n−1(G1, G2, . . . , Gi) ∝ τ(G̃n−1)

n−1∏
j=1

τ(Gj)
ρ1pop(Vj)∈[P−

j ,P+
j],= τ(ξ)τ(Gn)

1−ρ1dev(ξ)≤D,

which is close to but not quite the target measure. So we instead define πn−1 := π̃; i.e., we add the
additional terms exp(−J(ξ)) and ψ([ξ]) and adjust for τ(Gn)

1−ρ.

2

With these partial-plan measures defined, notice that the incremental weight w
(j)
i for partial

plans with 1 ≤ i ≤ n− 2 and pop(Vj) ∈ [P−
j , P

+
j] may be written as

w
(j)
i = τ(G

(j)
i)ρ−1 ki

|C(G(j)
i , G̃

(j)
i)|

=
τ(G

(j)
i)ρτ(G̃

(j)
i)

τ(G̃
(j)
i−1)

(
τ(G

(j)
i)τ(G̃

(j)
i)

τ(G̃
(j)
i−1)

|C(G(j)
i , G̃

(j)
i)|

ki

)−1

=
π̃i(G1, . . . , Gi)

π̃i−1(G1, . . . , Gi−1)q(Gi | G̃i−1,pop(Vi) ∈ [P−
i , P

+
i])

. (3)

For the final weighting at split i = n − 1, the incremental weight (i.e., not including the residual

previous weights
(∏n−2

i=1 w
(j)
i

)1−α

given by step (c) of Algorithm 2 is

exp
(
−J(ξ(j))

)
w

(j)
n−1ψ([ξ])

−1
(
τ(G

(j)
n−1)

)ρ−1

=
π̃n−1(G1, . . . , Gn−1)

π̃n−2(G1, . . . , Gn−2)q(Gn−1 | G̃n−2,pop(Vn−1) ∈ [P−
n−1, P

+
n−1])

,

since this weight includes exactly the same additional terms as π̃n−1 mentioned above. So in fact
Equation (3) holds for all 1 ≤ i ≤ n− 1.

These incremental weights are precisely those of the SMC partial rejection control algorithm
of Peters et al. (2012) (see also LeGland and Oudjane (2005)), with the weights set to zero for
invalid samples and the partial rejection threshold set to the minimum possible nonzero weight. So
after pushing forward to unlabeled plans, we gain immediately the theorem proved in that work (its
Equation 6), viz., that for all measurable h on unlabeled plans and as S → ∞, we have

√
S(EπS

[h([ξ])]− Eπ[h([ξ])])
d−→ N (0, VSMC(h)),

for asymptotic variance VSMC(h) given by Equation 7 of the same work.

B Additional Validation Example

This section reports the results of another validation study applied to a 50-precinct map taken from
the state of Florida. As in Section 5, we use the efficient enumeration algorithm of Fifield et al.
(2020) to obtain all possible redistricting maps with three and four contiguous districts, and use
these plans as a baseline to validate the proposed algorithm. The left plot of Figure 1 below shows
the validation map.

3

0.10

0.15

0.20

0.25

0.30

0.35

0.800 0.825 0.850 0.875 0.900
Fraction of edges kept

R
ep

ub
lic

an
 d

is
si

m
ila

rit
y

in
de

x

Figure 1: The 50-precinct Florida map used for validation (left) and the joint distribution of Republi-
can dissimilarity and compactness on the map over all partitions into four districts with dev(ξ) ≤ 0.10
(right).

There are 112,515,494 partitions of the map into four districts, 33,635 of which have dev(ξ) ≤
0.10. We evaluate the accuracy of the proposed algorithm, and compare it to the same MCMC
algorithm used in Section 6, across a range of target distributions, with ρ running from 0.8 to 1.2
The right plot of Figure 1 shows the joint distribution of compactness and the summary statistic
we use for the validation, the Republican dissimilarity index (Massey and Denton, 1988). With this
validation map, Republican dissimilarity is reasonably sensitive to the compactness of districts. This
makes dissimilarity a good test statistic for comparing distributions that differ primarily in their
average compactness.

For each target distribution, we sample 1,500 redistricting plans from both the SMC and MCMC
algorithms, and repeat the sampling four times in order to produce R̂ estimates. The MCMC
algorithm is initialized with a random SMC-drawn map and first run for 500 warm-up iterations. To
validate and compare the samples, we reweight the enumerated redistricting plans by τ(ξ)ρ, and then
produce quantile-quantile plots of the Republican dissimilarity index, which are shown in Figure 2.

Across the range of ρ values, the agreement between the SMC sample and target distributions
is excellent, even in the lower tail. The R̂ values for the SMC algorithm were also all less than
1.003. The MCMC algorithm fares well in general but has noticeable bias for ρ = 0.9 and ρ = 1.2,
and has some additional misses for the other target distributions as well, which manifest as small
protuberances in the quantile-quantile plot. The R̂ values for the MCMC algorithm were all less than
1.004, indicating that the overall location and scale of the Republican dissimilarity were estimated
well, but R̂ is not designed to capture these smaller-scale deviations from the target distribution.

Here and in Section 5, we validated and compared the SMC and MCMC algorithms with several
summary statistics. This reflects the applied use case for redistricting analysis. But it is also infor-
mative to study how well the SMC algorithm can target the actual distribution of plans themselves.
Of course, we cannot expect the algorithm to perform well in this regard if there are fewer samples
then there are plans, which is the case in almost all real-world problems. So we subset the enumer-
ated plans to those with dev(ξ) ≤ 0.01, of which there are just 38. We first generate 10,000 samples
from the SMC algorithm, targeting a distribution with ρ = 1. We measure the discrepancy between
the sampled distribution of the 38 plans and the enumerated set weighted to τ(ξ) with the total
variation distance, which is 0.0178 for this sample. Increasing the sample size to 50,000 decreases
the total variation distance to 0.0149.

4

0.15

0.20

0.25

0.30

0.35

0.15 0.20 0.25 0.30 0.35
True dissimilarity

S
am

pl
ed

 d
is

si
m

ila
rit

y
ρ = 0.8

0.20

0.25

0.30

0.35

0.15 0.20 0.25 0.30 0.35
True dissimilarity

S
am

pl
ed

 d
is

si
m

ila
rit

y

ρ = 0.9

0.20

0.25

0.30

0.35

0.20 0.25 0.30 0.35
True dissimilarity

S
am

pl
ed

 d
is

si
m

ila
rit

y

ρ = 1

0.20

0.25

0.30

0.35

0.20 0.25 0.30 0.35
True dissimilarity

S
am

pl
ed

 d
is

si
m

ila
rit

y

ρ = 1.1

0.20

0.25

0.30

0.35

0.20 0.25 0.30 0.35
True dissimilarity

S
am

pl
ed

 d
is

si
m

ila
rit

y
ρ = 1.2

Algorithm

MCMC

SMC

Figure 2: Quantile-quantile plots for 1,500 MCMC and SMC samples of Republican dissimilarity
across a range of target distributions with different compactness parameters ρ.

C Algorithm Implementation Details

C.1 Estimating Ki

A natural approach to estimating Ki is to draw a moderate number of spanning trees Ti ⊆ T (G̃i)
and compute ok(T) for each T ∈ Ti. The sample maximum, or the sample maximum plus some

small buffer amount, would then be an estimate of the true maximum K̂i and an appropriate choice
of ki. In practice, we find little noticeable loss in algorithmic accuracy even if ki < Ki. The following
proposition theoretically justifies this finding. As above, de represents the population deviation of
the district induced by removing edge e from a spanning tree.

Proposition C.1. The probability q(e = e∗ | F), i.e., the probability that an edge e is selected to be
cut at iteration i, given that the tree T containing e has been drawn, and that e would induce a valid
district, satisfies

max

{
0, q(de ≤ deki

| F)

(
1 +

1

ki

)
− 1

}
≤ q(e = e∗ | F) ≤ 1

ki
,

where F is the σ-field generated by {T, pop(Vi) ∈ [P−
i , P

+
i]}.

Proof. We can write

q(e = e∗ | F) = q(e = e∗, de ≤ deki
| F) =

1

ki
q(de ≤ deki

| F),

5

This holds because the edge e will not be cut unless de ≤ deki
, i.e., if e is among the top ki edges. We

then have immediately that q(e = e∗ | F) ≤ k−1
i . Additionally, using the lower Fréchet inequality,

we find the lower bound

q(e = e∗ | F) = q(e = e∗, de ≤ deki
| F)

≥ max
{
0, q(e = e∗ | F) + q(de ≤ deki

| F)− 1
}

= max

{
0,

1

ki
q(de ≤ deki

| F) + q(de ≤ deki
| F)− 1

}
= max

{
0, q(de ≤ deki

| F)

(
1 +

1

ki

)
− 1

}
.

If ki ≥ Ki, then q(e = e∗ | F) is exactly k−1
i , a fact which is used in the proof of Lemma 4.1.

This result, which is proved using a simple Fréchet bound, shows that as long as q(de ≤ deki
| F) is

close to 1, using k−1
i in Lemma 4.1 is a good approximation to the true sampling probability.

Having sampled Ti, we can compute for each value of k the sample proportion of trees where a
randomly selected edge e among the top k of edges of the tree is also among the top k for the other
trees—in effect estimating q(de ≤ deki

| F). We may then choose ki to be the smallest k for which
this proportion exceeds a pre-set threshold (e.g., 0.99). We have found that this procedure, repeated
at the beginning of each sampling stage, efficiently selects ki without compromising the ability to
sample from the target distribution.

C.2 Calculating ψ([ξ])

To calculate ψ([ξ]), we first observe that sequentially valid labelings of a particular unlabeled plan
are in bijective correspondence with certain increasing sequences of connected subgraphs of the
quotient graph G/ξ. Specifically, as noted in the text, for every 1 ≤ i ≤ n − 1, the subgraph
Ai := {i + 1, i + 2, . . . , n} of G/ξ is connected if and only if ξ is a sequentially valid labeling. Let
j = n − i; then the sequence Aj is increasing. Going from Aj to Aj+1 for any j involves adding a
vertex in G/ξ which is adjacent to Aj . This fact provides an easy scheme to generate the number
of sequentially valid labelings: for each vertex v in G/ξ, let A1 = {v}. Then pick a neighbor of A1

and add it to the set to form A2. Continue in this fashion until An−1 contains all but one vertex of
G/ξ. Undoing our bijection, this remaining vertex is labeled 1; the vertex added between An−2 and
An−1 is labeled 2, and so on.

Figure 3 illustrates this scheme on district-level graph for the Pennsylvania court-imposed plan.
We pick an arbitrary vertex, denoted by “A” in Figure 3(a). Then we pick a neighbor, denoted “B,”
and add it to the subgraph. We continue this way, adding the vertices indicated by the alphabetical
ordering, until we have covered the whole district-level graph. Then the last vertex added, “R,”
is labeled 1 in the district labeling, as shown in Figure 3(b). Vertex “Q” is labeled 2, and so on,
until vertex “A” is labeled 18. One can easily check that this labeling is sequentially valid—at every
point, the region of the map corresponding to unlabeled districts is contiguous.

As Section 4.4.2 mentioned, we adopt different strategies for calculating ψ([ξ]) when n ≤ 13 and
n > 13. When there are no more than 13 districts, we simply recurse down the tree of possibilities
for generating all sequentially valid plans. In the example of Figure 3, we have 18 options for the
first vertex in the subgraph. Once we have picked vertex “A”, then we could add “B” or “C”. If we
add “B”, then we could add “C”, “D”, or “G”.

Clearly this tree grows quite large very quickly. Fortunately, there are many duplicate nodes—in
our example, adding vertex B and then C in sequence produces the same subgraph as if we had
added C and then B. Thus by memoizing our counting function we can significantly reduce the
number of tree branches we must explore in full.

6

P

QR
M

N
L

O

J

K

F

ED

C

A

B

G

H

I

(a) Increasing subgraphs

3

21
6

5
7

4

9

8

13

1415

16

18

17

12

11

10

(b) Sequentially valid labeling

Figure 3: Schematic of the process to generate a sequentially valid labeling, using the district-level
graph for the Pennsylvania court-imposed plan. Subgraphs are built in alphabetical order in panel
(a): {A}, {A,B}, . . . , {A,B, . . . , Q}. This corresponds to a sequentially valid labeling shown in panel
(b).

When n > 13, it is no longer computationally feasible to perform the recursion for each sampled
plan in what will often be a large number of sampled plans. In these cases (it should be noted that
for the 2020 redistricting cycle, only nine states had more than 13 districts), we can only estimate the
number of sequentially valid labelings. To do so, we generate a large number of random sequentially
valid labelings by following the scheme outlined above, picking vertices of G/ξ to add to each Aj

uniformly at random. Since we observe the number of candidate vertices to add at each stage,
and because each set of choices produces a unique sequentially valid labeling, we can compute the
probability of drawing each sequentially valid labeling directly.

Denote the probability distribution created by this sampling scheme by psv, and the (not-
probability) measure which assigns mass 1 to all n! relabelings by µall. Our goal here is to estimate∫

1{σ is sequentially valid}dµall(σ)

the total number of sequentially valid labelings. This can be done with our sample from psv, since it
is supported on precisely the same set for which the indicator function takes a value of 1. We need
only take the mean of the inverse of the probability of each sampled labeling.

This importance sampling estimate is quite accurate, since the proposal support matches the
target support exactly, and there is not too much variation in the proposal probabilities. The
estimate can be made arbitrarily good by increasing the number of importance samples. This is
demonstrated in Figure 4, which shows how the bias in importance sampling estimates varies with
the number of importance samples and the overall size of the district-level graph. In our software,
we use on the order of 1,500 samples for n = 14 by default, and more when n is larger (e.g., around
3,000 for the n = 28 Florida congressional districts). These numbers are chosen to ensure that the
relative standard error (also known as the coefficient of variation) of the ψ([ξ]) estimate is controlled
to a reasonable amount, something we demonstrate next for the case of Pennsylvania.

For the district-level graph shown above in 3, we have logψ([ξ]) = 29.999, calculated exactly
using the recursive procedure described above. Using the importance sampling procedure with
2,000 samples, we estimate a value of 29.949. This corresponds to a relative error of 0.051. We can
also calculate the relative standard error of this example estimate with the delta method, which
yields 0.052. In other words, the importance sampling error in the estimate of ψ([ξ]) is on the order
of 5%. This is also small on the scale of the variation in ψ([ξ]) across plans: for the six comparison

7

11 vertices 12 vertices 13 vertices

8 vertices 9 vertices 10 vertices

5 vertices 6 vertices 7 vertices

300 1,000 3,000 10,000 300 1,000 3,000 10,000 300 1,000 3,000 10,000

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

Number of importance samples

B
ia

s i
n

lo
g

ψ
( ξ )

Figure 4: Bias in importance sampling estimates of logψ([ξ]) by the number of importance samples
and the number of vertices in the district-level graph. District-level graphs were selected as random
subsets of the graph shown in 3. Eight replicate experiments were performed for each importance
sample size and graph size. The vertical bars for each point span two standard errors in either
direction. Standard errors were calculated with the delta method.

plans used in the main text, logψ([ξ]) ranges from 28.456 to 30.317. So the error in the importance
sampling estimate (|29.949 − 29.999| = 0.05) is just 2.7% of the range of logψ([ξ]) across these six
plans.

Finally, we note that the procedures used here to calculate ψ([ξ]) can also be applied to partial
plans. Notating this formally is more difficult, but a partial plan can be viewed as a (unbalanced)
plan with fewer districts. Calculating ψ for these partial plans and incorporating them into the SMC
weights in Algorithm 2 improves the sampling efficiency without changing the target distribution,
as long as each partial ψ’s contribution to the weights is canceled in the following iteration. This is
the approach taken by our software implementation.

C.3 Stabilizing Importance Weights

When ρ ̸= 1 or when the constraints imposed by J are severe, there can be substantial variance in
the importance sampling weights. For large maps with ρ = 0, for instance, the weights will generally
span hundreds if not thousands of orders of magnitude. This reflects the general computational
difficulty in sampling uniformly from constrained graph partitions. As Najt et al. (2019) show,
sampling of node-balanced graph partitions is computationally intractable in the worst case. In
such cases, the importance sampling estimates will be highly variable, and resampling based on

8

these weights may lead to degenerate samples with only one unique map.
When the importance weights are variable but not quite so extreme, we find it useful to truncate

the normalized final weights (such that their mean is 1) from above at a value wmax at the end of
sampling. The theoretical basis for this maneuver is provided by Ionides (2008), who proved that
as long as wmax → ∞ and wmax/S → 0 as S → ∞, the resulting estimates are consistent and
have bounded variance (since the truncation occurs only after the final SMC step, these conclusions,
which were made in the context of importance sampling, carry over.) One such choice we have
found to work well for the weights generated by this sampling process is wmax = S0.4/100, though
for particular maps other choices of exponent and constant multiplier may be superior.

Truncation is no panacea, however. As with any method that relies on importance sampling, it
is critical to examine the distribution of importance weights to ensure that they will yield acceptable
resamples.

C.4 Computational Complexity

The two asymptotically slowest steps of the SMC algorithm are computing τ(Gi) for every dis-
trict Gi and drawing a spanning tree using Wilson’s algorithm for each iteration. All other steps,

such as computing de and |C(G(j)
i , G̃

(j)
i)|, are linear in the number of vertices, and are repeated at

most once per iteration.1 Computing τ(Gi) requires computing a determinant, which currently has
computational complexity O(|Vi(ξ)|2.373) though most implementations are O(|Vi(ξ)|3). Since this
must be done for each district of size roughly m/n, the total complexity for sampling one plan is
O(n · (m/n)2.373). For the spanning trees, the expected runtime of Wilson’s algorithm is the mean
hitting time of the graph, which is O(m2) in the worst case. So the total complexity for each sam-
ple is roughly O(nm2 +m2.373n−1.373) (ignoring the random rejection procedure). Note that when
ρ = 1, we need not compute τ(Gi), and the total complexity is roughly O(nm2).

References

Fifield, B., Imai, K., Kawahara, J., and Kenny, C. T. (2020). The essential role of empirical validation
in legislative redistricting simulation. Statistics and Public Policy, 7(1):52–68.

Ionides, E. L. (2008). Truncated importance sampling. Journal of Computational and Graphical
Statistics, 17(2):295–311.

LeGland, F. and Oudjane, N. (2005). A sequential particle algorithm that keeps the particle system
alive. In 2005 13th European Signal Processing Conference, pages 1–4. IEEE.

Massey, D. S. and Denton, N. A. (1988). The dimensions of residential segregation. Social forces,
67(2):281–315.

Najt, L., Deford, D., and Solomon, J. (2019). Complexity and geometry of sampling connected
graph partitions. arXiv preprint arXiv:1908.08881.

Peters, G. W., Fan, Y., and Sisson, S. A. (2012). On sequential monte carlo, partial rejection control
and approximate bayesian computation. Statistics and Computing, 22(6):1209–1222.

1To compute de, we walk depth-first over the tree and store, for each node, the total population of that node and
the nodes below it. This allows for O(1) computation of de for all edges.

9

	Proofs of Propositions
	Additional Validation Example
	Algorithm Implementation Details
	Estimating Ki
	Calculating ([])
	Stabilizing Importance Weights
	Computational Complexity

