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Supporting Information Text13

S1. Contributions to the Literature14

Our work contributes to a growing literature that addresses the selective labels problem when evaluating human decisions15

and AI recommendations. In particular, we consider an evaluation design in which the provision of AI recommendations is16

either randomized or assumed to be unconfounded while single-blinding the treatment assignment so that AI recommendations17

affect the outcome only through human decisions. We show that under this design, it is possible to evaluate the classification18

performance of human-alone, AI-alone, and human-with-AI decision-making systems. In contrast, related studies have been19

restricted to observational settings. For example, previous works exploit discontinuities at algorithmic thresholds and staggered20

roll-outs of algorithms (e.g. 1–5) or use survey evaluations (e.g., 6, 7).21

Several studies have advocated designs that use quasi-random assignment of cases to different decision-makers. They use the22

differing decision rates as an instrumental variable to estimate various performance measures of AI recommendations and/or23

human decision-makers (e.g. 8–11). Unlike these studies, which rely on two-stage least squares, our approach does not assume24

monotonicity (though their causal quantities of interest differ from ours). As a result, under the proposed experimental setting,25

we can guarantee the required identification assumptions by design. Furthermore, while related approaches have been used26

to evaluate algorithmic decisions, we also evaluate the relative performance of human decision-makers with and without AI27

recommendations, as well as the AI-alone decision-making system.28

Closest to our approach is (11), who compare AI-assisted human decisions to those of the algorithm by studying cases29

where humans override the algorithmic recommendation (see also 12). Our framework is also similar to the one proposed by30

(13), but we focus on a single potential outcome rather than joint potential outcomes, allowing us to avoid making additional31

assumptions.32

When point identification is not possible, we use partial identification to bound the quantities of interest (e.g., 14). This33

methodological development is related to partial identification approaches proposed by (15) and (16). In particular, (16)34

consider general approaches to partial identification of the predictive performance of classification algorithms. In contrast, we35

focus on comparing the predictive performance of the aforementioned three different decision-making systems that involve36

humans and/or AI, leading to different identification results and estimation strategies.37

Prior work has also considered classification ability measures that are related to ours. For example, in the pre-trial risk38

assessment setting, (11) consider the misconduct rate among released defendants; this corresponds to the false negative rate. (9)39

consider the proportion of individuals who are detained erroneously, i.e., the false discovery rate. Other work develops a more40

general framework. For instance, (16) consider a generalized notion of performance that includes functions of the confusion41

matrix as well as other measures like calibration and mean square error, which we do not consider here.42

In contrast to these approaches, (13) introduce a principal stratification framework that considers the joint set of potential43

outcomes and three principal strata of individuals: (1) preventable cases (Y (1), Y (0)) = (0, 1)) — individuals who would engage44

in misconduct only if released, (2) risky cases (Y (1), Y (0)) = (1, 1)) — individuals who would engage in misconduct regardless45

of the judge’s decision, and (3) safe cases (Y (1), Y (0) = (0, 0)) — individuals who would not engage in misconduct regardless46

of the detention decision. The authors focus on the effect of AI recommendation provision on the human decision, conditioned47

on these principal strata.48

(17) also introduce a related fairness notion, called principal fairness. These quantities—although relying on both potential49

outcomes—can be related to the loss function perspective we take. In particular, under the strong assumption that a positive50

decision entirely prevents a positive outcome (i.e. Y (1) = 0 for all individuals), there are only preventable and safe cases. In51

that case, the effect on the judge’s decision given that a case is preventable is the effect on the false positive rate, while the52

effect on the judge’s decision given that a case is safe is the effect on the false negative rate. Whether such a connection exists53

without the strong assumption that Y (1) = 0 is an open question.54

Our estimation strategy draws heavily on principles of doubly-robust estimation in randomized control trials and observational55

studies that leverage estimates of both the propensity score and outcome model to efficiently estimate treatment effects. See56

(18–20) for recent reviews and perspectives on the long literature on this subject. In addition, our estimation strategy for upper57

and lower bounds draws on extensions of the double-robust methodology to partially identified parameters. Examples of such58

work can be found in (21–24).59

Finally, our empirical results clarify whether providing judges with the PSA at the predisposition stage improves criminal60

justice outcomes. This is a question that has thus far lacked consistent evidence, both for the PSA specifically and for risk61

assessment tools more broadly. Three unpublished before-and-after studies of reform packages that included PSA adoption62

have reported conflicting findings. Two found statistically significant increases in the use of own recognizance release by 20 and63

11 percentage points, respectively, without corresponding changes in failure to appear (FTA), new criminal activity (NCA),64

or, in the only study to measure it, the number of days spent in predisposition detention (25, 26). A third study reported65

statistically significant reductions in FTA (from 30% to 24%), NCA (20% to 15%), and new violent criminal activity (NVCA,66

6% to 4%) following implementation of a similar PSA-based reform (27). A fourth study observed a temporary increase in67

own-recognizance decisions, a longer-term rise in FTA, and no meaningful changes in NCA or NVCA (28).68

Furthermore, the only randomized controlled trial (RCT) of a bail-stage risk assessment instrument that we are aware of —69

and indeed, the first RCT ever conducted in the legal field — found that providing a simple risk tool, along with a structured70

phone reminder program, increased the share of defendants released on their own recognizance from 14% to 60%, with no71

statistically significant change in FTA (29).72
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S2. Generic Loss Functions73

As a generic loss function, we can define separate weights for true positives `11, true negatives `00 and false positive `01 so that
the expected loss is given by R(`00, `01, `11) = `10q10 + `01q01 + `11q11 + `00q00 with a proper normalization constraint such as
`10 = 1. All of the quantities we have considered in the main text are special cases of this generic loss function. For example,
the difference in risk between the human-with-AI and human-alone systems is given by,

Rhuman+AI(`00, `01, `11)−Rhuman(`00, `01, `11)
= p10(D(1))− p10(D(0)) + `01(p01(D(1))− p01(D(0))) + `11 (p11(D(1))− p11(D(0)))

+ `00 (p00(D(1))− p00(D(0))) .

Now, recall that although the false positive proportion under each system p01(D(z)) is not identified, the difference between
p01(D(1)) and p01(D(0)) is identifiable as p01(D(1)) − p01(D(0)) = p00(D(0)) − p00(D(1)). We can similarly point identify
the difference in true positive proportions as p11(D(1))− p11(D(0)) = p10(D(0))− p10(D(1)). So, following the argument for
Theorem 1, we can point identify the difference in risk with the generic loss function as:

Rhuman+AI(`00, `01, `11)−Rhuman(`00, `01, `11)
= (1− `11) (p10(D(1))− p10(D(0))) + (`00 − `01) (p00(D(1))− p00(D(0))) .

We can similarly evaluate the human-with-AI vs AI-alone and human-alone vs AI-alone systems by following the partial74

identification arguments in Section D, and evaluate the decision-making systems independently directly using the results shown75

in Section S10.76

S3. Classification Risk of a Generic Decision-making System77

In Section D, we focus on the evaluation of an AI-alone decision-making system based on the specific AI recommendation A used78

in the experiment. For completeness, here we show how to evaluate the classification ability of any alternative decision-making79

system D∗ in itself that satisfies the following conditional independence D∗ |= Y (0) | A,X. Define such a decision-making80

system as f(a, x) := Pr(D∗ = 1 | A = a,X = x). The classification risk of this decision-making system D∗ can be written as,81

R(`01;D∗) = E [(1− f(A,X)) Pr(Y (0) = 1 | A,X) + `01f(A,X) Pr(Y (0) = 0 | A,X)] .82

The sharp bounds are given by the following theorem.83

Theorem S1 (Sharp Bounds on the classification risk of a generic stochastic decision-making system) Consider84

the decision making system f(a, x) := Pr(D∗ = 1 | A = a,X = x) that satisfies the conditional independence relation,85

D∗ |= Y (0) | X,A. The sharp bounds on its classification risk R(`01;D∗) are given by:86

R(`01;D∗) ∈

[
E
[
`01 · f(A,X) + {1− (1 + `01)f(A,X)}

[
gf (A,X) max

z′
Pr(Y = 1, D = 0 | A,X,Z = z′)87

+(1− gf (A,X)){1−max
z′

Pr(Y = 0, D = 0 | A,X,Z = z′)}
]]
,88

E
[
`01 · f(A,X) + {1− (1 + `01)f(A,X)}

[
gf (A,X){1−max

z′
Pr(Y = 0, D = 0 | A,X,Z = z′)}89

+(1− gf (A,X)) max
z′

Pr(Y = 1, D = 0 | A,X,Z = z′)
]]]

90

where gf (a, x) = 1{1− (1 + `01)f(a, x) ≥ 0}.91

S4. Technical Assumptions92

Assumption S1 For each z = 0, 1, we have:(
‖mD(z, ·)− m̂D(z, ·)‖2 + ‖mY (z, ·)− m̂Y (z, ·)‖2

)
× ‖e− ê‖2 = op(n−

1
2 ),

‖mY (z, ·)− m̂Y (z, ·)‖∞ = op(1), ‖mD(z, ·)− m̂D(z, ·)‖∞ = op(1), ‖e− ê‖∞ = op(1),

where for a given function f , ‖f‖22 = E[f(X)2] and ‖f‖∞ = supx∈X |f(x)|.93

Assumption S1 relates to the standard product-rate assumption for doubly-robust AIPW estimators, but it involves both94

the decision and outcome models because the compound outcome Wi involves the product of the decision and the outcome.∗ In95

a randomized experiment, the propensity scores are known, and so we only require that we consistently estimate the outcome96

models, with no particular rate requirement.97

∗To establish Theorem 2, it is sufficient to have only a rate requirement for a combination of the two models. For clarity, however, we give a somewhat stronger sufficient condition in Assumption S1.
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Assumption S2 There exist constants C > 0 and α > 0 such that:

Pr
(∣∣(1−mD(1− z,X, 0))mY (1− z, x, 0)− (1−mD(z, x, 0))mY (z, x, 0)

∣∣ ≤ t) ≤ Ctα,

Pr
(∣∣(1−mD(1− z,X, 0))(1−mY (1− z, x, 0))− (1−mD(z, x, 0))(1−mY (z, x, 0))

∣∣ ≤ t) ≤ Ctα.

Larger values of the margin parameter α imply that the difference in the bounds is often large, and so it is easy to classify98

which is tighter. Conversely, smaller values of α mean that the classification problem is harder because the difference between99

the bounds is often small. In the continuous case, if the covariates have a bounded density, then α >= 1 (30). Margin100

conditions such as this have been used when estimating partially identified parameters (21, 31–33) and for policy learning101

(23, 24, 34, 35). This margin condition, along with the following additional rate conditions, establish the asymptotical normality102

of the estimated bounds.103

Assumption S3 For z = 0, 1 and a = 0, 1,104

1.
(
‖mY (z, ·, 0)− m̂Y (z, ·, 0)‖2 + ‖mD(z, ·, a)− m̂D(z, ·, a)‖2

)
×‖ê(z, ·)−e(z, ·)‖2 = op

(
n−1/2), ‖mY (z, ·, 0)−m̂Y (z, ·, 0)‖∞ =105

op(1), and ‖mD(z, ·, a)− m̂D(z, ·, a)‖∞ = op(1)106

2. (‖m̂D(z, ·, 0)−mD(z, ·, 0)‖∞ + ‖m̂Y (z, ·, 0)−mY (z, ·, 0)‖∞)1+α = op

(
n−

1
2

)
107

The first rate condition in Assumption S3 is analogous to the rate condition in Assumption S1, but for the outcome and108

decision models conditional on the AI recommendation A. As before, in a randomized experiment, we only require consistency109

of the outcome and decision model estimates.110

In contrast, the second condition in Assumption S3 requires that we can estimate the outcome and decision models at a111

sufficiently fast rate to estimate the nuisance classifiers well. The margin parameter α determines how fast the rate needs to be.112

If the classification task is more difficult and α is small, then we will need to estimate the nuisance components at closer to the113

parametric n−1/2 rate; if the task is easier and α is large, then the rate can be slower. However, the required rate is always114

strictly slower than the parametric rate because α > 0. The knowledge of propensity score in a randomized experiment does115

not remove this requirement, though we can choose what covariates to include. Including more covariates can lead to more116

informative bounds, although estimation may become more challenging.117

S5. Exact Expressions of the Sharp Bounds of Theorem 3118

Lz(x) := (1 + `01)
{

max
z′

Pr(Y = 1, D = 0, A = 0 | Z = z′, X = x)− Pr(Y = 1, D = 0 | Z = z,X = x)
}

119

+`01 {Pr(D = 0, A = 1 | Z = z,X = x)− Pr(D = 1, A = 0 | Z = z,X = x)} ,120

Uz(x) := (1 + `01)
{

Pr(A = 0 | X = x)− Pr(Y = 1, D = 0 | Z = z,X = x)121

−max
z′

Pr(Y = 0, D = 0, A = 0 | Z = z′, X = x)
}

122

+`01 {Pr(D = 0, A = 1 | Z = z,X = x)− Pr(D = 1, A = 0 | Z = z,X = x)} .123

S6. Efficient Estimators of the Sharp Bounds124

The efficient estimators of the sharp bounds are based on the following two sets of efficient estimators. The first is for the
models of Y (1−D)(1−A) and (1− Y )(1−D)(1−A),

ϕ̂z1(Z,X,D,A, Y ) = (1−A)(1− m̂D(z,X, 0))m̂Y (z,X, 0) + 1{Z = z}(1−A)(1−D)
ê(z,X) (Y − m̂Y (z,X, 0))

− m̂Y (z,X, 0)1{Z = z}(1−A)
ê(z,X) (D − m̂D(z,X, 0)),

ϕ̂z0(Z,X,D,A, Y ) = (1−A)(1− m̂D(z,X, 0))(1− m̂Y (z,X, 0))− 1{Z = z}(1−A)(1−D)
ê(z,X) (Y − m̂Y (z,X, 0))

− (1− m̂Y (z,X, 0))1{Z = z}(1−A)
ê(z,X) (D − m̂D(z,X, 0)).

The second set is for the models of A(1−D), and (1−A)D,

ϕ̂Dz1(Z,X,D,A) = A(1− m̂D(z,X, 1))− 1{Z = z}
ê(Z,X) A(D − m̂D(z,X, 1))),

ϕ̂Dz0(Z,X,D,A) = (1−A)m̂D(z,X, 0) + 1{Z = z}
ê(Z,X) (1−A)(D − m̂D(z,X, 0)).
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As before, we remove the circumflexes to refer to the true uncentered influence functions. Finally, we estimate the upper and
lower bound as

L̂z = 1
n

n∑
i=1

(1 + `01) (ϕ̂z1(Zi, Xi, Di, Ai, Yi)− ϕ̂z(Zi, Xi, Di, Yi; 0))

+ `01
(
ϕ̂Dz1(Zi, Xi, Di, Ai, Yi)− ϕ̂Dz0(Zi, Xi, Di, Ai, Yi)

)
+ (1 + `01)ĝLz (Xi) (ϕ̂1−z,1(Zi, Xi, Di, Ai, Yi)− ϕ̂z1(Zi, Xi, Di, Ai, Yi)) ,

Ûz = 1
n

n∑
i=1

(1 + `01) (ϕ̂z1(Zi, Xi, Di, Ai, Yi)− ϕ̂z(Zi, Xi, Di, Yi; 0))

+ `01ϕ̂
D
z1(Zi, Xi, Di, Ai, Yi) + ϕ̂Dz0(Zi, Xi, Di, Ai, Yi)

− (1 + `01)ĝUz (Xi) (ϕ̂1−z,0(Zi, Xi, Di, Ai, Yi)− ϕ̂z0(Zi, Xi, Di, Ai, Yi)) .

S7. Exact Expressions of the Asymptotic Variances of Theorem 4125

VLz = E[{(1 + `01)(ϕz(Z,X,D,A, Y )− ϕz(Z,X,D, Y ; 0)) + `01(ϕDz1(Z,X,D,A, Y )− ϕDz0(Z,X,D,A, Y ))
+ (1 + `01)gLz (X) (ϕ1−z,1(Z,X,D,A, Y )− ϕz(Z,X,D,A, Y ))− Lz}2],

VUz = E[{(1 + `01)ϕz1(Z,X,D,A, Y )− ϕz(Z,X,D, Y ; 0) + `01ϕ
D
z1(Z,X,D,A, Y ) + ϕDz0(Z,X,D,A, Y )

+ (1 + `01)gUz (X) (ϕ1−z,0(Z,X,D,A, Y )− ϕz0(Z,X,D,A, Y ))}2].

S8. Minimizing the Excess Worst-case Risk126

We take an empirical risk minimization approach and find a policy π̂dec that minimizes our estimate of the worst-case excess127

risk by solving:128

π̂dec ∈ arg min
π∈Π

1
n

n∑
i=1

π(Xi) [(1 + `01) (ϕ̂01(Zi, Xi, Di, Ai, Yi)− ϕ̂0(Zi, Xi, Di, Yi; 0))

+ `01ϕ̂
D
01(Zi, Xi, Di, Ai, Yi) + ϕ̂D00(Zi, Xi, Di, Ai, Yi)

−(1 + `01)ĝU0 (Xi) (ϕ̂10(Zi, Xi, Di, Ai, Yi)− ϕ̂00(Zi, Xi, Di, Ai, Yi))] .

[S1]129

Due to the lack of point identification, we bound the excess worst-case risk of the estimated policy π̂dec versus the population130

policy π∗dec.131

Theorem S2 Under Assumptions 1, S1, S2, and S3, we have:

E[(π̂dec(X)− π∗dec)Uz(X)]

≤ C

(
1∑

z′=0

‖mY (z′, ·, 0)− m̂Y (z′, ·, 0)‖2 + ‖mD(z′, ·, 0)− m̂D(z′, ·, 0)‖2

+ ‖mY (z, ·)− m̂Y (z, ·)‖2 + ‖mD(z, ·)− m̂D(z, ·)‖2 + ‖mD(z, ·, 1)− m̂D(z, ·, 1)‖2
)

× ‖ê− e‖2 + 2C(‖m̂D(·, ·, 0)−mD(·, ·, 0)‖∞ + ‖m̂Y (·, ·, 0)−mY (·, ·, 0)‖∞)1+α

+
(

1 + 2
η

)
(4 + 6`01)Rn(Π) + t√

n
,

with probability at least 1− 2 exp(−t2/2).132

Theorem S2 shows that the error in the nuisance components and the complexity of the policy class control the excess worst-case133

risk. In contrast to the case of the estimated AI-recommendation provision rule π̂rec, however, the knowledge of the propensity134

score is not sufficient for the estimated AI-alone decision rule π̂rec to have low excess risk. As with Theorem 4, because135

optimizing for the worst-case excess risk involves estimating sharp bounds (and the nuisance classifier gUz (x)), the estimation136

error of the outcome and decision models enter into the bound alone.137
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S9. Lemmas138

We present two lemmas used to derive sharp bounds on classification risks and their differences. These lemmas provide sharp139

bounds on the two key unidentifiable quantities θa := Pr(Y (0) = 1, D = 1, A = a) and ξaz := Pr(Y (0) = 1, D(z) = 1, A = a).140

For notational simplicity, we omit covariates. However, the two lemmas continue to hold if we condition on covariates X.141

Lemma 1 Define θa := Pr(Y (0) = 1, D = 1, A = a) for a = 0, 1. Then, under Assumption 1, its sharp bounds are given by
θa ∈ [

¯
θa, θ̄a] where

¯
θa = max

z
Pr(Y = 1, D = 0, A = a | Z = z)− Pr(Y = 1, D = 0, A = a),

θ̄a = Pr(A = a)− Pr(Y = 1, D = 0, A = a)−max
z

Pr(Y = 0, D = 0, A = a | Z = z).

for a = 0, 1. These sharp bounds can be achieved simultaneously for a = 0, 1.142

Lemma 2 Define ξaz := Pr{Y (0) = 1, D(z) = 1, A = a} for a, z = 0, 1. Then, under Assumption 1, its sharp bounds are given
by ξaz ∈ [

¯
ξaz, ξ̄az] where

¯
ξaz = max

z′
Pr(Y = 1, D = 0, A = a | Z = z′)− Pr(Y = 1, D = 0, A = a | Z = z),

ξ̄az = Pr(A = a)− Pr(Y = 1, D = 0, A = a | Z = z)−max
z′

Pr(Y = 0, D = 0, A = a | Z = z′)

for a, z = 0, 1. These sharp bounds can be achieved simultaneously for a = 0, 1 given z = 0, 1.143

S10. Separate Evaluation of Each Decision-making System144

While we have focused on identifying and bounding the differences in classification risks of the three decision-making systems —145

human-alone, AI-alone, and human-with-AI, it is also possible to partially identify the classification risk of each decision-making146

system separately.147

Theorem S3 (Sharp bounds on the classification risk of each decision-making system) The sharp bounds on the148

risk of each decision-making system are given by:149

(a) Human-alone system:

RHuman(`01) ∈ [p10(D(0)) + `01 ·
¯
p01(D(0)), p10(D(0)) + `01 · p̄01(D(0))],

(b) Human-with-AI system

RHuman+AI(`01) ∈ [p10(D(1)) + `01 ·
¯
p01(D(1)), p10(D(1)) + `01 · p̄01(D(1))],

(c) AI-alone system:150

RAI(`01) ∈
[
max
z′

Pr(Y = 1, D = 0, A = 0 | Z = z′) + `01 ·max
z′

Pr(Y = 0, D = 0, A = 1 | Z = z′) ,151

Pr(A = 0)−max
z′

Pr(Y = 0, D = 0, A = 0 | Z = z′)152

+`01 ·
{

Pr(A = 1)−max
z′

Pr(Y = 1, D = 0, A = 1 | Z = z′)
}]

,153

where
¯
p01(D(z)) := Pr(D = 1 | Z = z)− ξ̄0z − ξ̄1z and p̄01(D(z)) := Pr(D = 1 | Z = z)−

¯
ξ0z −

¯
ξ1z with the following upper and

lower bounds of ξaz := Pr{Y (0) = 1, D(z) = 1, A = a}:

¯
ξaz = max

z′
Pr(Y = 1, D = 0, A = a | Z = z′)− Pr(Y = 1, D = 0, A = a | Z = z),

ξ̄az = Pr(A = a)− Pr(Y = 1, D = 0, A = a | Z = z)−max
z′

Pr(Y = 0, D = 0, A = a | Z = z′)

for a, z = 0, 1.154

Similarly, we can derive the partial identification bounds for non-linear classification measures, such as FNR, FPR, and FDR.155
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S11. Proofs156

A. Proof of Theorem 1. The law of total probability implies:

Pr(Y (0) = y) = py1(D(z)) + py0(D(z)), for z ∈ {0, 1}.

Then, we have:

py1(D(1)) + py0(D(1)) = py1(D(0)) + py0(D(0)) =⇒ py1(D(1))− py0(D(0)) = py0(D(0))− py1(D(1)),

for y ∈ {0, 1}. Using this result, we obtain:

Rhuman+AI(`01)−Rhuman(`01) = p10(D(1)) + `01p01(D(1))− {p10(D(0)) + `01p01(D(0))}
= p10(D(1))− p10(D(0)) + `01 {p01(D(1))− p01(D(0))}
= p10(D(1))− p10(D(0))− `01 {p00(D(1))− p00(D(0))} . [S2]

Under Assumption 1, we have157

py0(D(z)) = E[Pr{Y (0) = y,D(z) = 0 | X}]158

= E[Pr{Y (0) = y,D(z) = 0 | Z = z,X}]159

= E[Pr{Y = y,D = 0 | Z = z,X}]. [S3]160

Plugging Eq. (S3) into Eq. (S2) yields the identification formula. �161

B. Proof of Theorem 2. Define βz and then rewrite it as

βz = E[Pr(Y = 1, D = 0 | Z = z,X)− `01 × Pr(Y = 0, D = 0 | Z = z,X)]

= E[(1−mD(z,X))mY (z,X)− `01 × (1−mD(z,X))(1−mY (z,X))]

= E[(1−mD(z,X)){(1 + `01)mY (z,X)− `01}]
= E[(1−D(z)){(1 + `01)Y (z)− `01}]
= E[E[W | X,Z = z]].

Using this, we can write the classification risk difference as Rhuman+AI(`01)−Rhuman(`01) = β1 − β0.162

Next, we define:

m(z, x; `01) := E[W | X = x, Z = z] = E[(1−D){(1 + `01)Y − `01} | X = x, Z = z].

Then, the (uncentered) efficient influence function is given by,163

ϕz(Z,X,W ; `01) = m(z, x; `01) + 1{Z = z}
e(z,X) (W −m(z,Xi; `01)).164

Now we write the compound outcome model as165

m(z, x; `01) = (1−mD(z, x)){(1 + `01)mY (z, x)− `01}.166

Plugging this expression along with W = (1−D){(1 + `01)Y − `01} into the efficient influence function yields

ϕz(Z,X,D, Y ; `01) = (1−mD(z,X)){(1 + `01)mY (z,X)− `01}

+ (1 + `01)1{Z = z}(1−D)
e(z,X) (Y −mY (z,X))

− {(1 + `01)mY (z,X)− `01}
1{Z = z}
e(z,X) (D −mD(z,X)).

Following the rubric for one-step estimators outlined in (19), it remains to show that the remainder bias is controlled
under the rate conditions in Assumption S1. Adding and subtracting terms, the bias of the one-step estimator β̂z :=
Pn{ϕ̂z(Z,X,D, Y ; `01)} is

E[β̂z − βz]

=E
[
(1− m̂D(z,X)){(1 + `01)m̂Y (z,X)− `01} − (1−mD(z,X)){(1 + `01)mY (z,X)− `01)}

+ (1 + `01)
(
e(z,X)
ê(z,X) − 1

)
(1−mD(z,X))(mY (z,X)− m̂Y (z,X))

− {(1 + `01)m̂Y (z,X)− `01}
(
e(z,X)
ê(z,X) − 1

)
(mD(z,X)− m̂D(z,X))
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+ (1 + `01)(1−mD(z,X))(mY (z,X)− m̂Y (z,X))

−{(1 + `01)m̂Y (z,X)− `01}(mD(z,X)− m̂D(z,X))
]

=E
[

(1 + `01)
(
e(z,X)− ê(z,X)

ê(z,X)

)
(1−mD(z,X))(mY (z,X)− m̂Y (z,X))

]
− E

[
{(1 + `01)m̂Y (z,X)− `01}

(
e(z,X)− ê(z,X)

ê(z,X)

)
(mD(z,X)− m̂D(z,X))

]
=E
[
e(z,X)− ê(z,X)

ê(z,X)
[
{(1 + `01)mY (z,X)− `01}(1−mD(z,X))

−{(1 + `01)m̂Y (z,X)− `01}(1− m̂D(z,X))
] ]

=E
[
e(z,X)− ê(z,X)

ê(z,X)
[
(1 + `01)(mY (z,X)− m̂Y (z,X)) + `01(mD(z,X)− m̂D(z,X))

−(1 + `01)(mY (z,X)mD(z,X)− m̂Y (z,X)m̂D(z,X))
] ]
.

Therefore, the absolute bias is bounded by167

|E[β̂z − βz]| ≤ C(‖mY (z, ·)− m̂Y (z, ·)‖2 + ‖mD(z, ·)− m̂D(z, ·)‖2)× ‖ê(z, ·)− e(z, ·)‖2,168

By Assumption S1 and (19) (Proposition 2), we can then write

β̂1 − β̂0 − (β1 − β0) = 1
n

n∑
i=1

ϕ1(Zi, Xi, Di, Yi)− ϕ0(Zi, Xi, Di, Yi)− (β1 − β0) + op
(
n−1/2) .

This leads to the desired result,169
√
n
(
β̂1 − β̂0 − (β1 − β0)

) d−→ N(0, V ),170

where V = E[(ϕ1(Z,X,D, Y )− ϕ0(Z,X,D, Y )− (β1 − β0))2].171

�172

C. Proof of Lemma 1. We first show that the joint distribution of (Y (0), D, Z,A) can be expressed in terms of θa and the173

observed data distribution. Since (D,Z,A) are observed, it suffices to show that Pr(Y (0) = 1 | D = 1, Z,A) can be expressed174

in terms of θa and the observed data distribution. We can write175

Pr(Y (0) = 1, A = a | Z = z) = Pr(Y (0) = 1, A = a)176

= Pr(Y (0) = 1, D = 1, A = a) + Pr(Y (0) = 1, D = 0, A = a)177

= θa + Pr(Y = 1, D = 0, A = a),178

where the first equality follows from Assumption 1. Therefore,

Pr(Y (0) = 1, D = 1, A = a | Z = z)
= Pr(Y (0) = 1, A = a | Z = z)− Pr(Y (0) = 1, D = 0, A = a | Z = z)
= θa + Pr(Y = 1, D = 0, A = a)− Pr(Y = 1, D = 0, A = a | Z = z). [S4]

This provides a unique expression of Pr(Y (0) = 1, D = 1, A = a | Z = z) in terms of θa and the observed data distribution.179

Next, we derive the sharp bounds on θa. Because Assumption 1 is already incorporated in Eq. (S4), we only need to solve180

the inequalities that Pr(Y (0) = 1, D = 1, A = a | Z = z) lie within [0,Pr(D = 1, A = a | Z = z)]:181

0 ≤ θa + Pr(Y = 1, D = 0, A = a)− Pr(Y = 1, D = 0, A = a | Z = z) ≤ Pr(D = 1, A = a | Z = z).182

This yields the following sharp lower and upper bounds:183

θa ≥ max
z

Pr(Y = 1, D = 0, A = a | Z = z)− Pr(Y = 1, D = 0, A = a),184

θa ≤ min
z
{Pr(Y = 1, D = 0, A = a | Z = z) + Pr(D = 1, A = a | Z = z)} − Pr(Y = 1, D = 0, A = a)185

= Pr(A = a)− Pr(Y = 1, D = 0, A = a)−max
z

Pr(Y = 0, D = 0, A = a | Z = z).186

The above derivation implies that for any observed data distribution of (Y,D,Z,A), there exists a complete data distribution187

of (Y (d), D(z), Z,A) such that θ0 and θ1 equal their upper or lower bounds simultaneously. �188
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Verifying sharpness of bounds in Lemma 1. We verify the sharpness of the bounds in Lemma 1 using an alternative method.189

Specifically, given that all of our constraints are linear equalities or inequalities, we can find the sharp bounds on θa via linear190

programming.191

Denote pyda(z) = Pr(Y (0) = y,D = d,A = a | Z = z), leading to 16 values of the joint distribution Pr(Y (0) = y,D = d,A =192

a, Z = z) = pyda(z) Pr(Z = z). While we can identify py0a(z) = Pr(Y = y,D = 0, A = a | Z = z) for a, y ∈ {0, 1}, we cannot193

identify py1a(z) for a, y ∈ {0, 1}. We have the following constraints corresponding to the three classes of constraints above:194

1. From the observed data, we can identify Pr(A = a,D = d | Z = z) for a, d, z ∈ {0, 1}, which gives us the following four195

equality constraints when D = 1:196

p01a(z) + p11a(z) = Pr(A = a,D = 1 | Z = z), a, z ∈ {0, 1}.197

2. Because the probabilities sum to one for each Z = z, we have the following two equality constraints:198

p010(z) + p011(z) + p110(z) + p111(z) = 1− {p000(z) + p001(z) + p100(z) + p101(z)}, z ∈ {0, 1}.199

3. The assumption Z⊥⊥(Y (0), A) implies Pr(Y (0) = y,A = a | Z = 0) = Pr(Y (0) = y,A = a | Z = 1) for all a, y ∈ {0, 1}.200

This gives four equality constraints:201

py1a(0)− py1a(1) = py0a(1)− py0a(0), a, y ∈ {0, 1}.202

4. Finally, we have the non-negativity constraints py0a(z) ≥ 0 for all a, y, z ∈ {0, 1}. Note that the constraint that the203

probabilities are bounded by 1 is redundant given the non-negativity and sum-to-one constraints.204

Overall, this leads to the constraint that Ap = b and p ≥ 0, where205

p = (p010(0), p011(0), p110(0), p111(0), p010(1), p011(1), p110(1), p111(1))206

is the eight dimensional vector of unknowns. A is a 10× 8 matrix of constraints of the form207

A =



1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1


,208

where the green rows correspond to the constraints imposed by observing the margins Pr(A = a,D = d | Z = z), the blue rows
correspond to the sum-to-one constraints for Z = 0 and Z = 1, and the red rows correspond to the constraint imposed by
conditional independence Z⊥⊥(Y (0), A). The 10 dimensional vector b is given by

b = (Pr(A = 0, D = 1 | Z = 0),Pr(A = 1, D = 1 | Z = 0),Pr(A = 0, D = 1 | Z = 1),Pr(A = 1, D = 1 | Z = 1),
1− (p000(0) + p001(0) + p100(0) + p101(0)), 1− (p000(1) + p001(1) + p100(1) + p101(1))

p000(1)− p000(0), p001(1)− p001(0), p100(1)− p100(0), p101(1)− p101(0))>.

Now note that we can express the parameter θa ≡ Pr(Y (0) = 1, D = 1, A = a) as

θa = Pr(Y (0) = 1, D = 1, A = a, Z = 0) + Pr(Y (0) = 1, D = 1, A = a, Z = 1)
= (1− Pr(Z = 1))p11a(0) + Pr(Z = 1)p11a(1)

So to find sharp bounds θ0 and θ1 we can solve the following linear programs:

max /min (0, 0, 1− Pr(Z = 1), 0, 0, 0,Pr(Z = 1), 0)
s.t. Ap = b, p ≥ 0.

max /min (0, 0, 0, 1− Pr(Z = 1), 0, 0, 0,Pr(Z = 1))
s.t. Ap = b, p ≥ 0.

There are 10 equations and 8 unknowns so some of the equality constraints are redundant. The matrix A has rank 6, so we
can reduce to the following 6 linearly independent constraints:

p010(0) + p110(0)= Pr(A = 0, D = 1 | Z = 0)
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p011(0) + p111(0)= Pr(A = 1, D = 1 | Z = 0)
p010(1) + p110(1)= Pr(A = 0, D = 1 | Z = 1)
p011(1) + p111(1)= Pr(A = 1, D = 1 | Z = 1)
p110(0)− p110(1)= p100(1)− p100(0)
p111(0)− p111(1)= p101(1)− p101(0).

Now note that these constraints decouple for a = 0 and a = 1 so we can solve two separate smaller linear programs, one for209

each value of a, to solve for sharp bounds on θa simultaneously. We can encode these constraints as a reduced 3×4 matrix Ã:210

Ã =

[1 1 0 0
0 0 1 1
0 1 0 −1

]
211

and the corresponding reduced right hand side constraint vector

b̃ = (Pr(A = a,D = 1 | Z = 0),Pr(A = a,D = 1 | Z = 1), p10a(1)− p10a(0))>

Redefining the vector of unknowns as p = (p01a(0), p11a(0), p01a(1), p11a(1))>, the reduced program is

max /min (1− Pr(Z = 1))p11a(0) + Pr(Z = 1)p11a(1)
s.t. Ãp = b̃, p ≥ 0.

This is a linear program in standard form, and so the optimal solution can be written in terms of an optimal basic feasible212

solution. For a set of basis elements B = {i1, i2, i3}, define ÃB as the 3×3 submatrix of Ã that has the columns indexed by B213

and pB as the subvector of p with elements indexed by B. If ÃB is non-singular and Ã−1
B b̃ ≥ 0, the basic feasible solution214

defined by the basis B is pB = Ã−1
B b̃ and pi = 0 for all i /∈ B.215

Since the linear program achieves its optimal value at at least one basic feasible solution, to find sharp bounds on θa we can216

directly enumerate all possible bases (or equivalently, all vertices of the polyhedron defined by the constraints Ãp = b̃ and217

p ≥ 0). There are
(4

3

)
= 4 possible bases. For each of these bases, we can compute the corresponding basic feasible solution218

and what the value of θa is for this solution.219

The four basic solutions are:

p(i) =

p10a(0)− p10a(1) + Pr(A = a,D = 1 | Z = 0)
p10a(1)− p10a(0)

Pr(A = a,D = 1 | Z = 1)
0

 ,

p(ii) =

p10a(0)− p10a(1) + Pr(A = a,D = 1 | Z = 0)− Pr(A = a,D = 1 | Z = 1)
p10a(1)− p10a(0) + Pr(A = a,D = 1 | Z = 1)

0
Pr(A = a,D = 1 | Z = 1)

 ,

p(iii) =

 Pr(A = a,D = 1 | Z = 0)
0

p10a(1)− p10a(0) + Pr(A = a,D = 1 | Z = 1)
p10a(0)− p10a(1)

 ,

p(iv) =

 0
Pr(A = a,D = 1 | Z = 0)

p10a(1)− p10a(0) + Pr(A = a,D = 1 | Z = 1)− Pr(A = a,D = 1 | Z = 0)
p10a(0)− p10a(1) + Pr(A = a,D = 1 | Z = 0)

 .

We now plug these possibilities into the expression for θa, noting that due to the constraint that p11a(0) = p11a(1) + p10a(1)−220

p1a0(0), we can write θa as221

θa = p11a(1) + p10a(1)− Pr(Y = 1, D = 0, A = a),222

so we can simply plug in the value of p11a(1) from each basic solution. This gives the following four possibilities:

θ(i)
a = Pr(Y = 1, D = 0, A = a | Z = 1)− Pr(Y = 1, D = 0, A = a),

θ(ii)
a = Pr(A = a)− Pr(Y = 0, D = 0, A = a | Z = 1)− Pr(Y = 1, D = 0, A = a),

θ(iii)
a = Pr(Y = 1, D = 0, A = a | Z = 0)− Pr(Y = 1, D = 0, A = a),

θ(iv)
a = Pr(A = a)− Pr(Y = 0, D = 0, A = a | Z = 0)− Pr(Y = 1, D = 0, A = a).
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Now note that θ(ii)
a − θ(i)

a = Pr(A = a,D = 1 | Z = 1) ≥ 0 and θ(iv)
a − θ(iii)

a = Pr(A = a,D = 1 | Z = 0) ≥ 0, so the maximum223

value is either θ(ii)
a or θ(iv)

a and the minimum value is either θ(i)
a or θ(iii)

a .224

Finally, we check feasibility. Note that p(i) and p(iii) cannot both be feasible. If 0 ≤ p10a(1)− p10a(0) ≤ Pr(A = a,D = 1 |225

Z = 0) then the minimal solution is θ(i) and if −Pr(A = a,D = 1 | Z = 1) ≤ p10a(1)− p10a(0) < 0, then the minimal solution226

is θ(iii). This gives that the sharp lower bound on θa is227

max
z

Pr(Y = 1, D = 0, A = a | Z = z)− Pr(Y = 1, D = 0, A = a).228

Similarly p(ii) and p(iv) cannot both be feasible at the same time. Note that since p00a(z) + p10a(z) = Pr(D = 0, A = a | Z = z)
and Z⊥⊥(Y (0), A), we have

p10a(0)− p10a(1) + Pr(A = a,D = 1 | Z = 0)− Pr(A = a,D = 1 | Z = 1)
= Pr(A = a | Z = 0)− Pr(A = a | Z = 1) + p00a(1)− p00a(0)
=p00a(1)− p00a(0),

and similarly that

p10a(1)− p10a(0) + Pr(A = a,D = 1 | Z = 1) = Pr(D = 1, A = a | Z = 0) + p00a(0)− p00a(1)
p10a(0)− p10a(1) + Pr(A = a,D = 1 | Z = 0) = p00a(1)− p00a(0) + Pr(A = a,D = 1, | Z = 1).

So, if 0 ≤ p00a(1)− p00a(0) ≤ Pr(A = a,D = 1 | Z = 0) then the maximal solution is θ(ii) and if −Pr(A = a,D = 1 | Z = 1) ≤229

p00a(1)− p00a(0) < 0, then the maximal solution is θ(iv). This gives that the sharp upper bound on θa is230

Pr(A = a)− Pr(Y = 1, D = 0, A = a)−max
z

Pr(Y = 0, D = 0, A = a | Z = z).231

which matches exactly with the bounds in Lemma 1. This verifies the sharpness of our bounds.232

Finally, note that this analysis yields additional feasibility constraints that −Pr(A = a,D = 1 | Z = 1) ≤ p10a(1)−p10a(0) ≤233

Pr(A = a,D = 1 | Z = 0) and −Pr(A = a,D = 1 | Z = 1) ≤ p00a(1) − p00a(0) ≤ Pr(A = a,D = 1 | Z = 0). These234

are conditions that ensure the sharp lower bound is less than or equal to the sharp upper bound, i.e. that θ(iv)
a ≥ θ

(i)
a and235

θ
(ii)
a ≥ θ(iii)

a (we have already seen that θ(ii)
a ≥ θ(i)

a and θ(iv)
a ≥ θ(iii)

a ). If these feasibility conditions are not satisfied then the236

lower bound will be above the upper bound, indicating that there is a failure of some assumptions of the model, for instance if237

Z is not independent of Y (0) and A or if Z has a direct effect on the outcome.238

D. Proof of Lemma 2. By combining Lemma 1 with Eq. (S4), the desired sharp bounds on Pr(Y (0) = 1, D(z) = 1, A = a) =239

Pr(Y (0) = 1, D = 1, A = a | Z = z) follow immediately. These bounds can also be attained simultaneously for z = 0, 1, because240

the bounds on θ0 and θ1 can be attained simultaneously (Lemma 1). �241

E. Proof of Theorem 3. To simplify the notation, we will focus on bounding the quantities without conditioning on the242

covariates X (and assuming that provision Z is independent of (A, {D(z), Y(d)}z,d∈{0,1})). The proof conditional on X is243

analogous. We express the risks under the three decision-making systems in terms of the observed data distribution and244

Pr(Y (0) = 1, D(z) = 1, A = a). For the AI-alone system, we have245

RAI(`01) = Pr(Y (0) = 1, A = 0) + `01 × Pr(Y (0) = 0, A = 1)246

= Pr(Y = 1, D = 0, A = 0 | Z = z) + Pr(Y (0) = 1, D(z) = 1, A = 0) +247

+`01 × {Pr(Y = 0, D = 0, A = 1 | Z = z) + Pr(Y (0) = 0, D(z) = 1, A = 1)} . [S5]248

The second equality holds for both z = 0, 1 due to independence between (Y (0), A) and Z. Similarly, for the human-alone249

system, we have250

RHuman(`01) = Pr(Y = 1, D = 0 | Z = 0)
+ `01 × {Pr(Y (0) = 0, D(0) = 1, A = 1) + Pr(Y (0) = 0, D(0) = 1, A = 0)} .

[S6]251

Finally, for the human-with-AI system, we have252

RHuman+AI(`01) = Pr(Y = 1, D = 0 | Z = 1)
+ `01 × {Pr(Y (0) = 0, D(1) = 1, A = 1) + Pr(Y (0) = 0, D(1) = 1, A = 0)} .

[S7]253

From Eq. (S5) with z = 0 and Eq. (S6), we have254

RAI(`01)−RHuman(`01)255

= Pr(Y (0) = 1, D(0) = 1, A = 0) + Pr(Y = 1, D = 0, A = 0 | Z = 0)− Pr(Y = 1, D = 0 | Z = 0)256

+`01 × {Pr(Y = 0, D = 0, A = 1 | Z = 0)− Pr(Y (0) = 0, D(0) = 1, A = 0)}257

= Pr(Y (0) = 1, D(0) = 1, A = 0)− Pr(Y = 1, D = 0, A = 1 | Z = 0)258
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+`01 × {Pr(Y = 0, D = 0, A = 1 | Z = 0)− Pr(D(0) = 1, A = 0) + Pr(Y (0) = 1, D(0) = 1, A = 0)}259

= (1 + `01)× Pr(Y (0) = 1, D(0) = 1, A = 0)− Pr(Y = 1, D = 0, A = 1 | Z = 0)260

+`01 × {Pr(Y = 0, D = 0, A = 1 | Z = 0)− Pr(D = 1, A = 0 | Z = 0)}261

= (1 + `01)× {Pr(Y (0) = 1, D(0) = 1, A = 0)− Pr(Y = 1, D = 0, A = 1 | Z = 0)}262

+`01 × {Pr(D = 0, A = 1 | Z = 0)− Pr(D = 1, A = 0 | Z = 0)} .263

Using Lemma 2, we obtain264

RAI(`01)−RHuman(`01)265

≥ (1 + `01)×
{

max
z

Pr(Y = 1, D = 0, A = 0 | Z = z)− Pr(Y = 1, D = 0 | Z = 0)
}

266

+`01 × {Pr(D = 0, A = 1 | Z = 0)− Pr(D = 1, A = 0 | Z = 0)}267

and268

RAI(`01)−RHuman(`01)269

≤ (1 + `01)×
{

Pr(A = 0)− Pr(Y = 1, D = 0 | Z = 0)−max
z

Pr(Y = 0, D = 0, A = 0 | Z = z)
}

270

+`01 × {Pr(D = 0, A = 1 | Z = 0)− Pr(D = 1, A = 0 | Z = 0)} .271

Similarly, from Eq. (S5) with z = 1 and Eq. (S7), we have272

RAI(`01)−RHuman+AI(`01)273

= (1 + `01)× {Pr(Y (0) = 1, D(1) = 1, A = 0)− Pr(Y = 1, D = 0, A = 1 | Z = 1)}274

+`01 × {Pr(D = 0, A = 1 | Z = 1)− Pr(D = 1, A = 0 | Z = 1)} .275

Again, using Lemma 2, we have the desired result:276

RAI(`01)−RHuman+AI(`01)277

≥ (1 + `01)×
{

max
z

Pr(Y = 1, D = 0, A = 0 | Z = z)− Pr(Y = 1, D = 0 | Z = 1)
}

278

+`01 × {Pr(D = 0, A = 1 | Z = 1)− Pr(D = 1, A = 0 | Z = 1)}279

and280

RAI(`01)−RHuman+AI(`01)281

≤ (1 + `01)×
{

Pr(A = 0)− Pr(Y = 1, D = 0 | Z = 1)−max
z

Pr(Y = 0, D = 0, A = 0 | Z = z)
}

282

+`01 × {Pr(D = 0, A = 1 | Z = 1)− Pr(D = 1, A = 0 | Z = 1)} .283

�284

F. Proof of Theorem 4. Beginning with the lower bound, we write

E[Lz(X)]
= (1 + `01)E[Pr(Y = 1, D = 0, A = 0 | Z = z,X)− Pr(Y = 1, D = 0 | Z = z,X)]

+ `01E [Pr(D = 0, A = 1 | Z = z,X)− Pr(D = 1, A = 0 | Z = z,X)]
+ (1 + `01)E[gL(X)(Pr(Y = 1, D = 0, A = 0 | Z = 1− z,X)− Pr(Y = 1, D = 0, A = 0 | Z = z,X))]

= (1 + `01)ϑL1z + `01ϑ
L
2z + (1 + `01)ϑL3z,

where

ϑL1z = E
[
(1−mA(X))

{
(1−mD(z,X, 0))mY (z,X, 0)− (1−mD(z,X))mY (z,X)

}]
,

ϑL2z = E
[
mA(X)

{
1−mD(z,X, 1)− (1−mA(X))mD(z,X, 0)

}]
,

ϑL3z = E
[
gLz (X)(1−mA(X))

{
(1−mD(1− z,X, 0))mY (1− z,X, 0)− (1−mD(z,X, 0))mY (z,X, 0)

}]
.

We show how to estimate each in turn. First, we estimate ϑL1z as285

ϑ̂L1z = 1
n

n∑
i=1

(ϕ̂z1(Zi, Xi, Di, Ai, Yi)− ϕ̂z(Zi, Xi, Di, Yi; 0))286
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In the proof of Theorem 2, we have controlled the second term, so it suffices to consider the first term. Note that it
is equivalent to the AIPW estimate with the compound outcome W̃ = (1 − D)Y restricted to where A = 0, because
E[W̃ | X = x, Z = z] = (1−mD(z, x, 0))mY (z, x, 0), A |= Z | X, and the (uncentered) efficient influence function is

ϕz1(Z,X, W̃ ) = (1−A)(1−mD(z,X, 0))mY (z,X, 0)

+ 1{Z = z}(1−A)
e(z,X)

{
(1−D)Y − (1−mD(z,X, 0))mY (z,X, 0)

}
= (1−A)(1−mD(z,X, 0))mY (z,X, 0) + 1{Z = z}(1−A)(1−D)

e(z,X) (Y −mY (z,X, 0))

− 1{Z = z}(1−A)mY (z,X, 0)
e(z,X) (D −mD(z,X, 0)).

Now, we control the remainder bias term,

E[ϕ̂z1(Z,X,D,A, Y )− (1−mA(X))(1−mD(z,X, 0))mY (z,X, 0)]

= E
[
(1−mA(X))

{
(1− m̂D(z,X, 0))m̂Y (z,X, 0)− (1−mD(z,X, 0))mY (z,X, 0)

}]
+ E

[
(1−mA(X))e(z,X)(1−mD(z,X, 0))

ê(z,X) (mY (z,X, 0)− m̂Y (z,X, 0))
]

− E
[

(1−mA(X))mY (z,X, 0) ez(X)
ê(z,X) (mD(z,X, 0)− m̂D(z,X, 0))

]
where mA(x) := Pr(A = 1 | D = 0, X = x). Following the proof of Theorem 2, this is equal to

E
[

(1−mA(X))
(
e(z,X)− ê(z,X)

ê(z,X)

)
(1−mD(z,X, 0))(mY (z,X)− m̂Y (z,X))

]
+ E

[
(1−mA(X))(1− m̂Y (z,X, 0))

(
e(z,X)− ê(z,X)

ê(z,X)

)
(mD(z,X, 0)− m̂D(z,X, 0)).

]
≤C(‖mY (z, ·, 0)− m̂Y (z, ·, 0)‖2 + ‖mD(z, ·, 0)− m̂D(z, ·, 0)‖2)× ‖ê(z, ·)− e(z, ·)‖2

Next, we estimate ϑL2z with287

ϑ̂L2z = 1
n

n∑
i=1

ϕ̂Dz1(Zi, Xi, Di, Ai, Yi)− ϕ̂Dz0(Zi, Xi, Di, Ai, Yi).288

This is the standard AIPW estimator for the mean of (1−D(z)) restricted to A = 1 (ϕ̂Dz1) minus the mean of D(z) restricted
to A = 0 (ϕ̂Dz0). From the standard product term decomposition for the doubly robust estimator of a mean with missing
outcomes, we can see that the bias is

E[ϑ̂L2z − ϑL2z] = E
[

(1−mA(X))
(
e(z,X)− ê(z,X)

ê(z,X)

)
(mD(z,X, 0)− m̂D(z,X, 0))

]
+ E

[
mA(X)

(
e(z,X)− ê(z,X)

ê(z,X)

)
(mD(z,X, 1)− m̂D(z,X, 1))

]
≤ C

(
‖mD(z, ·, 0)− m̂D(z, ·, 0)‖2 + ‖mD(z, ·, 1)− m̂D(z, ·, 1)‖2

)
× ‖ê(z, ·)− e(z, ·)‖2

Finally, we estimate ϑL3z with289

ϑ̂L3z = 1
n

n∑
i=1

ĝLz (Xi) (ϕ̂1−z,1(Zi, Xi, Di, Ai, Yi)− ϕ̂z1(Zi, Xi, Di, Ai, Yi)) .290

To make the results more compact, let

f(x) = (1−mA(x))
{

(1−mD(1− z, x, 0))mY (1− z, x, 0)− (1−mD(z, x, 0))mY (z, x, 0)
}
,

f̂(x) = (1−mA(x))
{

(1− m̂D(1− z, x, 0))m̂Y (1− z, x, 0)− (1− m̂D(z, x, 0))m̂Y (z, x, 0)
}
.

To compute the bias, notice that

E[ϑ̂L3z − ϑ3z] = E [ĝLz (X) (ϕ̂1−z,1(Z,X,D,A, Y )− ϕ̂z1(Z,X,D,A, Y ))]− E[gLz (X)f(X)]
= E [(ĝLz(X)− gLz (X)) f(X)] + E [ĝLz (X) (ϕ̂1−z,1(Z,X,D,A, Y )− ϕ̂z1(Z,X,D,A, Y )− f(X))]
≤ E [(ĝLz(X)− gLz (X)) f(X)]
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+ C

(
1∑

z′=0

‖mY (z′, ·, 0)− m̂Y (z′, ·, 0)‖2 + ‖mD(z′, ·, 0)− m̂D(z′, ·, 0)‖2

)
× ‖ê(z, ·)− e(z, ·)‖2

where the final inequality follows from the same arguments about ϑ̂L1z above. Next, notice that gLz (x) = 1{f(x) ≥ 0}, and if
ĝLz (x) 6= gLz (x), then

|f(x)| ≤ |f(x)− f̂(x)|

≤ |1−mD(1− z, x, 0)mY (1− z, x, 0)− (1− m̂D(1− z, x, 0))m̂Y (1− z, x, 0)|

+ |1−mD(z, x, 0)mY (z, x, 0)− (1− m̂D(z, x, 0)m̂Y (z, x, 0)|

≤ 2 max
z′
|m̂D(z′, x, 0)−mD(z′, x, 0)|+ 2 max

z′
|m̂Y (z′, x, 0)−mY (z′, x, 0)|.

Following the argument in (30), this implies that

E [(ĝLz(X)− gLz (X)) f(X)]
≤ E [1 {ĝLz(X) 6= gLz (X)} |f(X)|]

≤ E
[
1

{
|f(X)| ≤ |f(X)− f̂(X)|

}
|f(X)|

]
≤ E

[
1

{
|f(X)| ≤ |f(X)− f̂(X)|

}
|f(X)− f̂(X)|

]
≤ 2(‖m̂D(·, ·, 0)−mD(·, ·, 0)‖∞ + ‖m̂Y (·, ·, 0)−mY (·, ·, 0)‖∞) Pr(|f(X)| ≤ |f(X)− f̂(X)|)

≤ 2C(‖m̂D(·, ·, 0)−mD(·, ·, 0)‖∞ + ‖m̂Y (·, ·, 0)−mY (·, ·, 0)‖∞)1+α

Putting together the pieces, under Assumptions S1, S2, and S3, we have

L̂z = 1
n

n∑
i=1

(1 + `01)(ϕz1(Zi, Xi, Di, Ai, Yi)− ϕz(Zi, Xi, Di, Yi; 0))

+ `01(ϕDz1(Zi, Xi, Di, Ai, Yi)− ϕDz0(Zi, Xi, Di, Ai, Yi))

+ (1 + `01)gLz (Xi) (ϕ1−z,1(Zi, Xi, Di, Ai, Yi)− ϕz1(Zi, Xi, Di, Ai, Yi)) + op(n−1/2),

Thus, we have the desired result,291
√
n(L̂z − Lz)

d−→ N(0, VLz ),292

where

VLz =E
[
{(1 + `01)(ϕz(Z,X,D,A, Y )− ϕz(Z,X,D, Y ; 0)) + `01(ϕDz1(Z,X,D,A, Y )− ϕDz0(Z,X,D,A, Y ))

+(1 + `01)gLz (X) (ϕ1−z,1(Z,X,D,A, Y )− ϕz(Z,X,D,A, Y ))− Lz}2
]
.

Turning to the upper bound, notice that

E[Uz(X)]

=(1 + `01)E
[
(1−mA(X))−mD(z,X)mY (z,X)− (1−mA(X))(1−mD(z,X, 0))(1−mY (z,X, 0))

]
+ `01E

[
mA(X)(1−mD(z,X, 1))− (1−mA(X))mD(z,X, 0)

]
+ (1 + `01)E[gUz (X)(1−mA(X))

× {(1−mD(1− z,X, 0))(1−mY (1− z,X, 0))− (1−mD(z,X, 0))(1−mY (z,X, 0))}]

=(1− `01)E
[
(1−mA(X))(1−mD(z,X, 0)mY (z,X, 0)− (1−mD(z,X))mY (z,X)

]
+ `01E[mA(X)(1−mD(z,X, 1))] + E[(1−mA(X)mD(z,X, 0))]

− (1 + `01)E[gUz (X)(1−mA(X))

× {(1−mD(1− z,X, 0))(1−mY (1− z,X, 0))− (1−mD(z,X, 0))(1−mY (z,X, 0))}]

=(1 + `01)ϑU1z + ϑU2z − (1 + `01)ϑU3z,

where

ϑU1z = E[(1−mA(X))(1−mD(z,X, 0)mY (z,X, 0)− (1−mD(z,X))mY (z,X)]

ϑU2z = `01E[mA(X)(1−mD(z,X, 1))] + E[(1−mA(X)mD(z,X, 0))]

ϑU3z = E[gUz (X)(1−mA(X))((1−mD(1− z,X, 0))(1−mY (1− z,X, 0))− (1−mD(z,X, 0)(1−mY (z,X, 0))))]
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Notice that ϑU1z = ϑL1z above, which we have already analyzed. Next, we estimate ϑU2z with293

ϑ̂U2z = 1
n

n∑
i=1

`01ϕ̂
D
z1(Zi, Xi, Di, Ai, Yi) + ϕ̂Dz0(Zi, Xi, Di, Ai, Yi).294

Following the decomposition for ϑ̂L2z − ϑL2z above, we can see that295

E[ϑ̂U2z − ϑU2z] ≤ C
(
‖mD(z, ·, 0)− m̂D(z, ·, 0)‖2 + ‖mD(z, ·, 1)− m̂D(z, ·, 1)‖2

)
× ‖ê(z, ·)− e(z, ·)‖2,296

for some C > 0. Finally, we estimate ϑU3z with297

ϑ̂U3z = 1
n

n∑
i=1

ĝUz (Xi) (ϕ̂1−z,0(Zi, Xi, Di, Ai, Yi)− ϕ̂z0(Zi, Xi, Di, Ai, Yi)) .298

The analysis of E[ϑ̂U3z − ϑU3z] follows that of E[ϑ̂L3z − ϑL3z], with 1−mY (z,X, 0) and 1− m̂Y (z,X, 0) replacing mY (z,X, 0) and299

m̂Y (z,X, 0) throughout. Putting together the pieces as with L̂z above gives the desired result.300

�301

G. Proof of Theorem 5. Denote the objective in Eq. (3) as R̂rec(π; `01). Notice that

Rrec(π̂rec; `01)−Rrec(π∗rec; `01)

= Rrec(π̂rec; `01)− R̂rec(π̂rec; `01) + R̂rec(π̂rec; `01)− R̂rec(π∗rec; `01)︸ ︷︷ ︸
≤0

+ R̂rec(π∗rec; `01)−Rrec(π∗rec; `01)

≤ 2 sup
π∈Π
|R̂rec(π; `01)−Rrec(π; `01)|

≤ 2 sup
π∈Π
|R̂rec(π; `01)− E[R̂rec(π; `01)]|+ 2 sup

π∈Π
|E[R̂rec(π; `01)]−Rrec(π; `01)|,

where the first inequality uses the fact that π̂ minimizes R̂rec(π; `01). Now, R̂rec(π; `01) − E[R̂rec(π; `01)] is a mean-zero302

empirical process. In addition, note that since A,D, Y are all binary, the elements of R̂rec are bounded by
(
1 + 4

η

)
(1 + `01).303

Therefore, by (36), Theorem 4.2,304

2 sup
π∈Π
|V̂ (π)− E[V̂ (π)] ≤

(
1 + 4

η

)
(1 + `01)Rn(Π) + t√

n
,305

with probability at least 1− exp
(
− t

2

2

)
.306

It remains to control supπ∈Π |E[R̂rec(π; `01)] − Rrec(π; `01)|. Recall that we have bounded each of the components of307

E[R̂rec(π; `01)]−Rrec(π; `01) in the proof of Theorem 2. Combining those bounds, along with the fact that π(x) ∈ [0, 1] for all308

x ∈ X , gives the result.309

�310

H. Proof of Theorem S1. We first derive the sharp bounds on Pr(Y (0) = 1 | A). We can express this quantity in terms of θ1311

and θ0:312

Pr(Y (0) = 1 | A = a) = Pr(Y (0) = 1, D = 1, A = a) + Pr(Y (0) = 1, D = 0, A = a)
Pr(A = a)313

= θa + Pr(Y = 1, D = 0, A = a)
Pr(A = a) .314

From Lemma 1, we have the sharp bounds on Pr(Y (0) = 1 | A = a):315

Pr(Y (0) = 1 | A = a) ≥ max
z′

Pr(Y = 1, D = 0 | A = a, Z = z′)316

Pr(Y (0) = 1 | A = a) ≤ 1−max
z′

Pr(Y = 0, D = 0 | A = a, Z = z′).317

Following the similar procedure with X in the conditioning set, we can obtain the bounds on Pr(Y (0) = 1 | A = a,X):318

Pr(Y (0) = 1 | A = a,X) ≥ max
z′

Pr(Y = 1, D = 0 | A = a,X,Z = z′)319

Pr(Y (0) = 1 | A = a,X) ≤ 1−max
z′

Pr(Y = 0, D = 0 | A = a,X,Z = z′).320
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Observe that we can write the expression of R(`01;D∗) as follows:321

R(`01;D∗) = E [{1− f(A,X)}Pr(Y (0) = 1 | A,X) + `01f(A,X) Pr(Y (0) = 0 | A,X)]322

= E [`01 · f(A,X) + {1− (1 + `01)f(A,X)}Pr(Y (0) = 1 | A,X)] .323

Plugging the bounds on Pr(Y (0) = 1 | A = a,X) into the expression, we have the bounds on R(`01;D∗):324

R(`01;D∗) ≥ E
[
`01 · f(A,X) + {1− (1 + `01)f(A,X)}

[
gf (A,X) max

z′
Pr(Y = 1, D = 0 | A,X,Z = z′)325

+{1− gf (A,X)}{1−max
z′

Pr(Y = 0, D = 0 | A,X,Z = z′)}
]

326

R(`01;D∗) ≤ E
[
`01 · f(A,X) + {1− (1 + `01)f(A,X)}

[
gf (A,X){1−max

z′
Pr(Y = 0, D = 0 | A,X,Z = z′)}327

+{1− gf (A,X)}max
z′

Pr(Y = 1, D = 0 | A,X,Z = z′)
]]
.328

where gf (a, x) = 1{1− (1 + `01)f(a, x) ≥ 0}. �329

I. Proof of Theorem S2. Define V̂ (π) as the objective in Eq. (S1) and V (π) = E[π(X)Uz(X)]. Following the proof of Theorem 5,
notice that

V (π̂)− V (π∗) ≤ 2 sup
π∈Π
|V̂ (π)− V (π)|

≤ 2 sup
π∈Π
|V̂ (π)− E[V̂ (π)]|+ 2 sup

π∈Π
|E[V̂ (π)]− V (π)|,

because π̂ minimizes V̂ (π). As in the proof of Theorem 5, V̂ (π)− E[V̂ (π)] is a mean-zero empirical process and since A,D, Y330

are all binary, the elements of V̂ are bounded by
(
1 + 2

η

)
(4 + 6`01).† Therefore, by (36), Theorem 4.2,331

2 sup
π∈Π
|V̂ (π)− E[V̂ (π)] ≤

(
1 + 2

η

)
(4 + 6`01)Rn(Π) + t√

n
,332

with probability at least 1− exp
(
− t

2

2

)
.333

It remains to control supπ∈Π |E[V̂ (π)]−V (π)|. To do so, notice that we have bounded each of the components of E[V̂ (π)]−V (π)334

in the proof of Theorem 4. Combining those bounds, along with the fact that π(x) ∈ [0, 1] for all x ∈ X , gives the desired result.335

�336

J. Proof of Theorem S3. The proof follows immediately from Lemma 2. �337

S12. Prompt Used for the Large Language Model338

You are a judge in Dane County, Madison, Wisconsin and are asked to decide whether or not an arrestee should be released339

on their own recognizance or be required to post a cash bail. If you think the risk of unnecessary incarceration is too high,340

then the arrestee should receive own recognizance release. On the other hand, you should assign cash bail if the following341

risks are too high: the risk of failure to appear at subsequent court dates, the risk of engaging in new criminal activity, and342

the risk of engaging in new violent criminal activity. You are provided with the following 12 characteristics about an arrestee343

(label - description): [description of PSA inputs]. This arrestee has the following characteristics (label - arrestee’s value):344

[arrestee’s PSA inputs]. Should this arrestee be released on their own recognizance or given cash bail? Please provide your345

answer in binary form (0 for released on their own recognizance and 1 for cash bail), followed by a detailed explanation of your346

decision. Example: binary decision - reason.347

†To see this, note that
∣∣ϕ̂z1(Zi, Xi, Di, Ai, Yi)

∣∣ ≤ 1 + 2
η

, and similarly for the other components of V̂ (π).
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S13. Additional Empirical Results348
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Fig. S1. Subgroup Analysis of Estimated Impact of AI Recommendations on Agreement between Human Decisions and AI Recommendations. The figure shows the extent of
agreement between judges and AI recommendations when provided to the judges, compared to when it is not. Each panel presents overall and subgroup-specific results using
the difference in means estimates of an indicator 1{Di = Ai}. For each quantity of interest, we report a point estimate and its corresponding 95% confidence interval for
the overall sample (red circle), non-white and white subgroups (blue triangle), and female and male subgroups (green square). The results show that judges agree with AI
recommendations more often, especially for white and male arrestees.
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Fig. S2. Subgroup Analysis of Estimated Impact of AI Recommendations on Human Decisions for the Cases where AI Recommends Cash Bail (A = 1). The figure shows how
the human judge overrides the AI recommendation of cash bail in terms of true negative proportion (TNP), false negative proportion (FNP), and their differences. We adjust
for the baseline disagreement between the human-alone and AI-alone systems by setting the human-alone system as the baseline. Each panel presents the overall and
subgroup-specific results for a different outcome variable. For each quantity of interest, we report a point estimate and its corresponding 95% confidence interval for the overall
sample (red circle), non-white and white subgroups (blue triangle), and female and male subgroups (green square). The results shows no statistically significant evidence that
the judge correctly overrides the AI recommendation of cash bail.
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Fig. S3. Subgroup Analysis of Estimated Impact of AI Recommendations on Human Decisions for the Cases where AI Recommends Signature Bond (A = 0). The figure
shows how human judge overrides the AI recommendation of signature bond in terms of true positive proportion (TPP), false positive proportion (FPP), and their differences.
We adjust for the baseline disagreement between the human-alone and AI-alone systems by setting the human-alone system as the baseline. Each panel presents the overall
and subgroup-specific results for a different outcome variable. For each quantity of interest, we report a point estimate and its corresponding 95% confidence interval for the
overall sample (red circle), non-white and white subgroups (blue triangle), and female and male subgroups (green square). The results show no statistically significant evidence
that the judge correctly overrides the AI recommendation of signature bond.
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Fig. S4. Estimated Bounds on Difference in Classification Ability between AI-alone and Human-with-AI Decision Making Systems. The figure shows misclassification rate, false
negative proportion, and false positive proportion. Each panel presents the overall and subgroup-specific results for a different outcome variable. For each quantity of interest,
we report estimated bounds (thick lines) and their corresponding 95% confidence interval (thin lines) for the overall sample (red), non-white and white subgroups (blue), and
female and male subgroups (green). The results indicate that AI-alone decisions are less accurate than human judge’s decisions with AI recommendations in terms of the false
positive proportion.
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Fig. S5. Estimated Preference for Human-with-AI over AI Decision-Making Systems. The figure illustrates the range of the ratio of the loss between false positives and false
negatives, `01, for which one decision-making system is preferable over the other. A greater value of the ratio `01 implies a greater loss of false positive relative to that of false
negative. Each panel displays the overall and subgroup-specific results for different outcome variables. For each quantity of interest, we show the range of `01 that corresponds
to the preferred decision-making system; human-with-AI (green lines), and ambiguous (dotted lines). The results suggest that the human-with-AI system is preferred over the
AI-alone system when the loss of false positive is about the same as or greater than that of false negative. The AI-alone system is never preferred within the specified range of
`01.
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Fig. S6. Estimated Bounds on the Difference in Classification Ability between Llama3 and Human-alone Decisions. The figure shows the differences in terms of misclassification
rate, false negative proportion, and false positive proportion. Each panel presents the overall and subgroup-specific results. For each quantity of interest, we report estimated
bounds (thick lines) and their corresponding 95% confidence interval (thin lines) for the overall sample (red), non-white and white subgroups (blue), and female and male
subgroups (green). The results indicate that Llama3 decisions are less accurate than human judge’s decisions in terms of the false positive proportion and the overall
misclassification rate.
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Table S1. Estimated Values of the Empirical Risk Minimization Problem under the Optimal Policy. The table presents the estimated values
of the empirical risk minimization problem as described in Eq. (3) for the second and third columns, and in Eq. (4) for the fourth and fifth
columns. The second and fourth columns correspond to the results regarding policy class with an increasing monotonicity constraint, while
the third and fifth columns represent those with a decreasing monotonicity constraint. For instance, for the NCA as an outcome, the optimal
policy regarding whether to provide PSA recommendations with the increasing monotonicity constraint results in a 0.0101 decrease in the
difference in misclassification rate relative to not providing PSA recommendations.

Whether to provide Whether to follow

Outcome Increasing Decreasing Increasing Decreasing

NCA -0.0101 -0.0085 -0.0035 0

Eli Ben-Michael, D. James Greiner, Melody Huang, Kosuke Imai, Zhichao Jiang, and Sooahn Shin 23 of 36



S14. Power Analysis349

When designing their own experiments, researchers can use the results in the main text to perform a power analysis. For
example, consider the setting in which researchers are interested in estimating the difference in classification risk between the
human-with-AI and human-alone decision-making systems. Formally, let T (0)

n denote the test statistic under the null hypothesis
that β = 0 (i.e., there is no difference in the risks between humans with AI and humans alone:

T (0)
n = β̂ − 0

V̂/
√
n
.

Denoting power as B(β∗):

B(β∗) = Pβ∗
(
T (0)
n > kα

)
≈ 1− Φ

(
kα −

β∗

V/
√
n

)
, [S8]

where the second line is due to the asymptotic normality of β̂ (i.e., Theorem 2), and kα corresponds to a critical value at a350

specified α value.351

We can apply this power analysis to our preliminary data (see Table S2), analyzed in the main manuscript. We calibrate V
using our preliminary data. Researchers can also invert Eq. (S8) to solve for the minimum sample size needed for a specified
power B(β∗):

n >
V

β∗2

(
kα − Φ−1 {1−B(β∗)}

)2
.

24 of 36 Eli Ben-Michael, D. James Greiner, Melody Huang, Kosuke Imai, Zhichao Jiang, and Sooahn Shin



Table S2. Example of a power analysis for difference in risk. We calibrate V using our preliminary sample (where the estimated standard
error is 0.036).

Difference in Risk
Sample Size 0.01 0.05 0.1 0.15 0.2 0.35
100 0.03 0.05 0.09 0.16 0.25 0.61
250 0.03 0.07 0.17 0.33 0.53 0.94
500 0.03 0.11 0.30 0.57 0.82 1.00
1000 0.04 0.17 0.53 0.86 0.98 1.00
2000 0.05 0.30 0.82 0.99 1.00 1.00
5000 0.07 0.62 0.99 1.00 1.00 1.00
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S15. No Cash Bail Decisions352

What happens if we never assign a cash bail decision to an arrestee? We use the proposed methodology to compare the353

classification performance of no cash bail decisions to that of human decisions. This analysis is of interest given that the efficacy354

of cash bail in deterring negative behavior is hotly debated (e.g., 37). Following the methodology introduced in Section 1.D.,355

we invert the hypothesis test using the bounds on the difference in classification risk to estimate the range of the relative loss of356

false positives (`01) that would lead us to prefer the no-cash-bail decisions over human-alone decisions and vice versa.357

Figure S7 shows that no-cash-bail decisions are preferred over the human-alone system when the cost of false positives is358

roughly more than twice as high as that of false negatives. For non-white and male arrestees, however, when the cost of false359

negatives is substantially higher than that of false positives, human decisions are preferred over the no-cash-bail decisions. For360

instance, for non-white arrestees, the no-cash-bail decisions are preferred over the human-alone decisions when `01 ≥ 1.87,361

whereas the human-alone system is preferred when `01 ≤ 0.092. Similar results are obtained for male arrestees. This finding362

is due to the fact that the judge’s decisions result in substantially higher false positive rates compared to the no-cash-bail363

decisions across various outcomes and subgroups, while the false negative rate is statistically significantly lower in the judge’s364

decisions for non-white and male arrestees (see Figure S8).365
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Fig. S7. Estimated Preference for Human-alone Decisions over No-cash-bail Decisions. The figure illustrates the range of the relative loss between false positives and false
negatives, `01, for which one decision-making system is preferable over the other. A greater value of the ratio `01 implies a greater loss of false positive relative to that of false
negative. Each panel displays the overall and subgroup-specific results for different outcome variables. For each quantity of interest, we show the range of `01 that corresponds
to the preferred decision-making system; no-cash-bail (pink lines), human-alone (green lines), and ambiguous (dotted lines). The results suggest that the no-cash-bail system is
preferred over the human-alone system when the loss of false positive is approximately more than twice higher than that of false negative.
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Fig. S8. Estimated Bounds on Difference in Classification Ability between no-cash-bail and Human-alone Decisions. The figure shows the misclassification rate, false negative
proportion, and false positive proportion. Each panel presents the overall and subgroup-specific results for a different outcome variable. For each quantity of interest, we report
estimated bounds (thick lines) and their corresponding 95% confidence interval (thin lines) for the overall sample (red), non-white and white subgroups (blue), and female and
male subgroups (green). The results indicate that human judge’s decisions are less accurate than no-cash decisions in terms of the false positive proportion.
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S16. Another Application Study366

In this section, we apply our proposed methodology to the data from (38) to evaluate the accuracy of decisions made by367

crowdworkers who were tasked with the prediction of future re-arrests of criminal offenders, with and without the assistance of368

an algorithmic recommendation tool.369

This application differs from the one presented in the main text in important ways. In particular, the actual decisions were370

made by one decision-maker, and as a result, there was no random assignment of multiple decision-makers. While such a design371

is less ideal, it is still a special case of our framework, where all observations are assigned to one decision-maker. Therefore, our372

methodology is still applicable, even though the resulting bounds tend to be wider.373

A. Setup and Data. (38) investigates how algorithmic risk assessment instruments (RAI) influence human decision-making374

in the context of criminal justice. The authors conducted a vignette-based experiment, in which participants, recruited via375

Amazon Mechanical Turk (MTurk), were tasked with predicting future re-arrests of criminal offenders. Participants were376

presented with the description of each case (demographics, current charge, and criminal history), and received additional377

information about an RAI recommendation for a randomly selected subset of cases. The study evaluated whether and how the378

participants integrated algorithmic recommendations into their judgments. A key finding of the study was that participants379

did not anchor their predictions to the RAI’s outputs.380

We revisit the study to evaluate the performance of three different decision-making systems—MTurk participant alone,381

MTurk participant with RAI, and RAI alone systems—compared to the actual incarceration decisions made by judges. In the382

experiment, participants were asked “Do you think the defendant was rearrested in the three years following release?” and383

answered by “Yes” or “No.” Participants were randomly assigned to one of the two conditions: one without RAI provision and384

the other with RAI provision. The study trained its own RAI using Lasso regression to predict three-year post-release re-arrest385

based on demographic characteristics, current charges, and prior criminal history (see Section 3.1.2 of the original study for386

further details). The set of offenders used in the original study comes from a private dataset provided by the Pennsylvania387

Commission on Sentencing, from which the authors selected a subset of the cases whose race, as recorded in the data, was388

either White or Black. The study uses a sample of 3, 521 observations, which were further selected through stratified random389

sampling based on race, sex, age, and re-arrest status.‡390

We note similarities and differences between this study and our main application study. First, the RAI was not provided to391

judges when making their actual decisions, implying that in our notation Zi = 0 for all i under this setting. While this is not392

ideal, it is a special case of our framework, making the proposed methodology applicable. Second, like our study, we observe393

(Zi, Di, Yi, Ai, Xi) for each observation (i.e., offender) i, where Di = 1 if the offender was incarcerated and 0 otherwise; Yi = 1394

if the offender was re-arrested within three years from the time of release from prison or imposition of community supervision,395

and 0 otherwise; Ai = 1 if the RAI predicted re-arrest and 0 otherwise; and Xi denotes the offender’s race (White or Black)396

and the demographics (gender and race) of the participant.397

Third, for a subset of the cases, we observe how MTurk participants predicted the outcome with and without the RAI’s398

recommendation. In the original vignette experiment, MTurk participants were randomly assigned to one of two treatment399

groups: “anchoring” and “non-anchoring”. Under the anchoring condition, participants were shown the offender’s profile along400

with the RAI prediction in the same vignette. In the non-anchoring condition, participants were first asked to predict the401

occurrence of a rearrest based only on the offender’s profile; after submitting their initial response, they were then shown the402

RAI prediction and were allowed to revise their prediction. In our reanalysis, we use answers from the anchoring condition403

to evaluate the MTurk participant with RAI decision-making system. Specifically, we use a subset of observations that were404

shown to a single participant assigned to the anchoring group, resulting in a total of 1, 022 observations (we drop cases that405

were shown to multiple participants for simplicity). In addition, we analyze initial responses submitted before exposure to the406

RAI’s prediction to evaluate the MTurk participant-alone decision-making system, using the same set of observations (i.e.,407

1, 022 offenders). Lastly, we note that MTurk participants were asked to predict rearrest, which may be substantively different408

from making an actual incarceration decision.409

Table S3 presents the contingency table for the outcome and the different decision-making systems, while Table S4 presents the410

contingency table for the RAI recommendation and the other decision-making systems. We find that the RAI recommendation411

is generally more lenient than judges’ decisions; in 27% of the cases the RAI predicted no rearrest even though the offender was412

incarcerated—the rate of disagreement that is larger than that of the disagreement in the opposite direction (12%).413

B. Results. We evaluate the aforementioned decision-making systems, applying our framework (the results of Theorem 3 in414

particular). Figures S9 through S11 show the estimated bounds on the difference in classification ability between the judge’s415

decisions and the MTurk participant’s decisions. We find that the bounds include zero in all cases. Thus, we cannot determine416

with confidence whether any alternative decision-making system (RAI alone, MTurk participant alone, and MTurk participant417

with RAI systems) is more accurate than judges’ decisions. However, there is some suggestive evidence that the MTurk418

participant (with or without RAI) has a higher false positive proportion and a lower false negative proportion, when compared419

to the judge.420

‡The main text states that they use a sample of 3, 523 offenders, while the replication materials include 3, 521 observations.
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Table S3. Contingency table for the outcome and decisions.

Incarceration (Di) RAI (Ai) MTurk Participant MTurk Participant+RAI

1 0 1 0 1 0 1 0

Rearrest (Yi)
1 770 (22%) 708 (20%) 808 (23%) 670 (19%) 140 (14%) 295 (29%) 131 (13%) 304 (30%)
0 1198 (34%) 845 (24%) 1681 (48%) 362 (10%) 265 (26%) 322 (32%) 276 (27%) 311 (30%)

Note: “1” means incarceration and “0” means release.
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Table S4. Agreement between the RAI recommendation and decisions.

Incarceration (Di) MTurk Participant MTurk Participant+RAI

1 0 1 0 1 0

RAI (Ai)
1 612 (17%) 420 (12%) 263 (26%) 35 (3%) 274 (27%) 24 (2%)
0 941 (27%) 1548 (44%) 354 (35%) 370 (36%) 341 (33%) 383 (37%)

Note: “1” means incarceration and “0” means release.
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Fig. S9. Estimated Bounds on the Difference in Classification Ability between RAI and Judge’s Decisions. The figure shows the differences in terms of misclassification rate,
false negative proportion, and false positive proportion. Each panel presents the overall and subgroup-specific results. For each quantity of interest, we report estimated
bounds (thick lines) and their corresponding 95% confidence interval (thin lines) for the overall sample (red), Black and White offenders (blue). The results indicate that we
cannot determine whether RAI decisions are more (or less) accurate than human judge’s decisions.
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Fig. S10. Estimated Bounds on the Difference in Classification Ability between MTurk Paritipant and Judge’s Decisions. The figure shows the differences in terms of
misclassification rate, false negative proportion, and false positive proportion. Each panel presents the overall and subgroup-specific results. For each quantity of interest, we
report estimated bounds (thick lines) and their corresponding 95% confidence interval (thin lines) for the overall sample (red), Black and White offenders (blue). The results
indicate that we cannot determine whether MTurk participants are more (or less) accurate than human judge’s decisions.
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Fig. S11. Estimated Bounds on the Difference in Classification Ability between MTurk Participant with RAI and Judge’s Decisions. The figure shows the differences in terms of
misclassification rate, false negative proportion, and false positive proportion. Each panel presents the overall and subgroup-specific results. For each quantity of interest, we
report estimated bounds (thick lines) and their corresponding 95% confidence interval (thin lines) for the overall sample (red), Black and White offenders (blue). The results
indicate that we cannot determine whether MTurk participants with RAI are more (or less) accurate than human judge’s decisions.

34 of 36 Eli Ben-Michael, D. James Greiner, Melody Huang, Kosuke Imai, Zhichao Jiang, and Sooahn Shin



References421

1. R Berk, An impact assessment of machine learning risk forecasts on parole board decisions and recidivism. J. Exp.422

Criminol. 13, 193–216 (2017).423

2. A Albright, If you give a judge a risk score: evidence from kentucky bail decisions. Law, Econ. Bus. Fellows’ Discuss. Pap.424

Ser. 85 (2019).425

3. MT Stevenson, JL Doleac, Algorithmic risk assessment in the hands of humans (2022) Available at SSRN: https:426

//ssrn.com/abstract=3489440.427

4. A Coston, A Rambachan, A Chouldechova, Characterizing fairness over the set of good models under selective labels in428

International Conference on Machine Learning. (PMLR), pp. 2144–2155 (2021).429

5. L Guerdan, A Coston, ZS Wu, K Holstein, Ground (less) truth: A causal framework for proxy labels in human-algorithm430

decision-making in Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency. pp. 688–704431

(2023).432

6. J Miller, C Maloney, Practitioner compliance with risk/needs assessment tools: A theoretical and empirical assessment.433

Crim. Justice Behav. 40, 716–736 (2013).434

7. J Skeem, N Scurich, J Monahan, Impact of risk assessment on judges’ fairness in sentencing relatively poor defendants.435

Law human behavior 44, 51 (2020).436

8. J Kleinberg, H Lakkaraju, J Leskovec, J Ludwig, S Mullainathan, Human decisions and machine predictions. The quarterly437

journal economics 133, 237–293 (2018).438

9. W Dobbie, J Goldin, CS Yang, The effects of pre-trial detention on conviction, future crime, and employment: Evidence439

from randomly assigned judges. Am. Econ. Rev. 108, 201–240 (2018).440

10. D Arnold, W Dobbie, P Hull, Measuring Racial Discrimination in Bail Decisions. Am. Econ. Rev. 112, 2992–3038 (2022).441

11. V Angelova, WS Dobbie, C Yang, Algorithmic recommendations and human discretion, (National Bureau of Economic442

Research), Technical report (2023).443

12. M Hoffman, LB Kahn, D Li, Discretion in hiring. The Q. J. Econ. 133, 765–800 (2018).444

13. K Imai, Z Jiang, DJ Greiner, R Halen, S Shin, Experimental evaluation of algorithm-assisted human decision-making:445

Application to pretrial public safety assessment. J. Royal Stat. Soc. Ser. A: Stat. Soc. 186, 167–189 (2023).446

14. CF Manski, Identification for prediction and decision. (Harvard University Press), (2009).447

15. A Rambachan, Identifying prediction mistakes in observational data. The Q. J. Econ. 139, 1665–1711 (2024).448

16. A Rambachan, A Coston, E Kennedy, Counterfactual risk assessments under unmeasured confounding. arXiv preprint449

arXiv:2212.09844 (2022).450

17. K Imai, Z Jiang, Principal fairness for human and algorithmic decision-making. Stat. Sci. 38, 317–328 (2023).451

18. O Hines, D , Oliver, DO , Karla, , S Vansteelandt, Demystifying Statistical Learning Based on Efficient Influence452

Functions. The Am. Stat. 76, 292–304 (2022).453

19. EH Kennedy, Semiparametric doubly robust targeted double machine learning: a review. (Chapman and Hall/CRC), pp.454

207–236 (2024).455

20. A Ahrens, et al., An Introduction to Double/Debiased Machine Learning (2025) arXiv:2504.08324 [econ].456

21. EH Kennedy, S Balakrishnan, M G’Sell, Sharp instruments for classifying compliers and generalizing causal effects. The457

Annals Stat. 48, 2008 – 2030 (2020).458

22. AW Levis, M Bonvini, Z Zeng, L Keele, EH Kennedy, Covariate-assisted bounds on causal effects with instrumental459

variables. arXiv preprint arXiv:2301.12106 (2023).460

23. R d’Adamo, Orthogonal policy learning under ambiguity. arXiv preprint arXiv:2111.10904 (2021).461

24. E Ben-Michael, K Imai, Z Jiang, Policy learning with asymmetric counterfactual utilities. J. Am. Stat. Assoc. 119,462

3045–3058 (2024).463

25. CM Brooker, Yakima pretrial pre-post implementation study (https://justicesystempartners.org/wp-content/uploads/2015/04/464

2017-Yakima-Pretrial-Pre-Post-Implementation-Study-FINAL-111517.pdf) (2017) Pretrial Justice Institute.465

26. C Redcross, B Henderson, L Miratrix, E Valentine, Evaluation of pretrial justice system reforms that use the pub-466

lic safety assessment: Effects in mecklenburg county, north carolina, report 1 (https://www.mdrc.org/work/publications/467

evaluation-pretrial-justice-system-reforms-use-public-safety-assessment) (2019) MDRC.468

27. C Lowenkamp, M DeMichele, LK Warren, Replication and extension of the lucas county psa project (https://papers.ssrn.469

com/sol3/papers.cfm?abstract_id=3727443) (2020) RTI International.470

28. MT Stevenson, Assessing risk assessment in action. Minn. Law Rev. 103, 303–384 (2019).471

29. CE Ares, A Rankin, H Sturz, The manhattan bail project: An interim report on the use of pre-trial parole. New York472

Univ. Law Rev. 38, 67–95 (1963).473

30. JY Audibert, AB Tsybakov, Fast learning rates for plug-in classifiers. The Annals Stat. 35, 608 – 633 (2007).474

31. N Kallus, What’s the harm? sharp bounds on the fraction negatively affected by treatment. Adv. Neural Inf. Process.475

Syst. 35, 15996–16009 (2022).476

32. AW Levis, EH Kennedy, L Keele, Nonparametric identification and efficient estimation of causal effects with instrumental477

variables. arXiv preprint arXiv:2402.09332 (2024).478

33. V Semenova, Aggregated Intersection Bounds and Aggregated Minimax Values (2024) arXiv:2303.00982.479

34. M Qian, SA Murphy, Performance guarantees for individualized treatment rules. The Annals Stat. 39, 1180 – 1210 (2011).480

35. AR Luedtke, MJ van der Laan, Statistical inference for the mean outcome under a possibly non-unique optimal treatment481

Eli Ben-Michael, D. James Greiner, Melody Huang, Kosuke Imai, Zhichao Jiang, and Sooahn Shin 35 of 36

https://ssrn.com/abstract=3489440
https://ssrn.com/abstract=3489440
https://ssrn.com/abstract=3489440
https://justicesystempartners.org/wp-content/uploads/2015/04/2017-Yakima-Pretrial-Pre-Post-Implementation-Study-FINAL-111517.pdf
https://justicesystempartners.org/wp-content/uploads/2015/04/2017-Yakima-Pretrial-Pre-Post-Implementation-Study-FINAL-111517.pdf
https://justicesystempartners.org/wp-content/uploads/2015/04/2017-Yakima-Pretrial-Pre-Post-Implementation-Study-FINAL-111517.pdf
https://www.mdrc.org/work/publications/evaluation-pretrial-justice-system-reforms-use-public-safety-assessment
https://www.mdrc.org/work/publications/evaluation-pretrial-justice-system-reforms-use-public-safety-assessment
https://www.mdrc.org/work/publications/evaluation-pretrial-justice-system-reforms-use-public-safety-assessment
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3727443
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3727443
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3727443


strategy. The Annals Stat. 44, 713 – 742 (2016).482

36. MJ Wainwright, High-Dimensional Statistics: A Non-Asymptotic Viewpoint, Cambridge Series in Statistical and Proba-483

bilistic Mathematics. (Cambridge University Press), (2019).484

37. A Ouss, M Stevenson, Does cash bail deter misconduct? Am. Econ. Journal: Appl. Econ. 15, 150–182 (2023).485

38. R Fogliato, A Chouldechova, Z Lipton, The impact of algorithmic risk assessments on human predictions and its analysis486

via crowdsourcing studies. Proc. ACM on Human-Computer Interact. 5, 1–24 (2021).487

36 of 36 Eli Ben-Michael, D. James Greiner, Melody Huang, Kosuke Imai, Zhichao Jiang, and Sooahn Shin


	Contributions to the Literature
	Generic Loss Functions
	Classification Risk of a Generic Decision-making System
	Technical Assumptions
	Exact Expressions of the Sharp Bounds of Theorem 3
	Efficient Estimators of the Sharp Bounds
	Exact Expressions of the Asymptotic Variances of Theorem 4
	Minimizing the Excess Worst-case Risk
	Lemmas
	Separate Evaluation of Each Decision-making System
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem S1
	Proof of Theorem S2
	Proof of Theorem S3

	Prompt Used for the Large Language Model
	Additional Empirical Results
	Power Analysis
	No Cash Bail Decisions
	Another Application Study
	Setup and Data
	Results


