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The use of AI, or more generally data-driven algorithms, has become ubiquitous in
today’s society. Yet, in many cases and especially when stakes are high, humans still
make final decisions. The critical question, therefore, is whether AI helps humans
make better decisions compared to a human-alone or AI-alone system. We introduce
a methodological framework to answer this question empirically with minimal
assumptions. We measure a decision maker’s ability to make correct decisions using
standard classification metrics based on the baseline potential outcome. We consider a
single-blinded and unconfounded treatment assignment, in which the provision of AI-
generated recommendations is assumed to be randomized across cases, conditional
on observed covariates, with final decisions made by humans. Under this study
design, we show how to compare the performance of three alternative decision-making
systems—human-alone, human-with-AI, and AI-alone. Importantly, the AI-alone
system encompasses any individualized treatment assignment, including those not used
in the original study. We also show when AI recommendations should be provided
to a human-decision maker, and when one should follow such recommendations. We
apply the proposed methodology to our own randomized controlled trial evaluating a
pretrial risk assessment instrument. We find that the risk assessment recommendations
do not improve the classification accuracy of a judge’s decision to impose cash bail.
Furthermore, replacing a human judge with algorithms—the risk assessment score and
a large language model in particular—yields worse classification performance.

algorithmic decision making | policy learning | risk scores | recommendation systems | fairness

AI, or more broadly data-driven algorithms, have found a wide range of applications,
including judicial decisions in the criminal justice system, treatment decisions in
medicine, and recommendations in online advertising. And yet, in many settings and
especially when stakes are high, humans still make final decisions. The critical question,
therefore, is whether AI recommendations help humans make better decisions compared
to a human alone or an AI alone (1).

Recent literature has largely focused on questions of whether AI recommendations
themselves are accurate or biased (2–6). However, AI recommendations may not improve
the accuracy of human decisions if, for example, the human decision-maker selectively
ignores them (7–9). Similarly, the fairness of an AI-assisted human decision-making sys-
tem depends on how the bias of the AI system interacts with that of the human decisions.

In this paper, we introduce a methodological framework for researchers to evaluate
whether the provision of AI recommendations helps humans make better decisions. We
formulate the notion of a decision-maker’s “ability” as a classification problem under the
potential outcomes framework of causal inference (10, 11). If AI recommendations are
helpful, their provision should improve a human decision-maker’s ability to correctly
classify potential outcomes.

For example, when deciding whether to impose cash bail on an arrestee or to release
them on their own recognizance (that is, released without depositing money with the
court), a judge must balance public safety and efficient court administration against
various costs of incarceration. Thus, the judge’s decision-making ability can be defined
as the degree to which they can correctly classify the as-yet unobserved arrestee’s behavior
upon release. A key question is, then, whether AI recommendations help a judge reduce
classification error.

A primary methodological challenge in evaluating the impact of various decision-
making systems is the selective labels problem; the decision-makers determine, by
making endogenous decisions, which potential outcomes are observed (12). In the
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aforementioned example, because judges decide which arrestees
to release on their own recognizance or subject to cash bail, we
cannot observe whether an arrestee who received the cash bail
decision would have committed a new crime if a judge were
to have released them without additional conditions. The fact
that human decisions may depend on factors unobservable to
researchers makes this evaluation problem difficult and distin-
guishes it from the standard AB testing evaluation framework.

To overcome this selective labels problem, we consider an
evaluation design where the provision of AI recommendations
is assumed to be, possibly conditional on observed covariates,
randomly assigned to human decision-makers across cases. Such
an evaluation design is feasible even in settings where, for legal
or other reasons, a human, rather than an AI system, must
make the final decisions. We consider a single-blinded treatment
assignment, which guarantees that the provision of AI recom-
mendations affects the outcome only through human decisions.

Under this design, we show that, without additional assump-
tions, it is possible to point-identify the difference in classification
risk, between the human-alone and human-with-AI systems, even
though the risk of each decision-making system is unidentifiable.
Moreover, although the proposed design does not include an AI-
alone decision-making system as one of the treatment conditions,
we derive sharp bounds on the classification ability differences
between an AI-alone system and a human-alone or human+AI
system. This approach enables us to evaluate the relative merit of
any AI-alone system regardless of whether it was used in the study.
We demonstrate that these bounds can be informative, allowing
performance comparison between these decision-making systems
without imposing additional assumptions.

Last, we derive optimal decision rules for when AI recommen-
dations should be provided to a human decision-maker and when
one should follow such recommendations. In the judicial example
above, we may be interested in identifying the types of cases for
which we should provide judges with AI recommendations. In
addition, we may also study when judges should follow an AI
recommendation and when they should ignore it.

Our empirical application is an experiment in which all identi-
fication assumptions are guaranteed by the design. However, the
methodology is also applicable to observational studies under an
additional assumption of unconfoundedness. Furthermore, the
proposed methodological framework is useful for dealing with
the selective labels problem in the statistical evaluation of any
decision-making system. For example, our framework can be used
to compare the ability of different human decision makers (13).

Finally, our methodology goes beyond the standard AB testing
approach, which typically evaluates how different decision-
making systems influence the outcome or the decision. Under the
AB testing framework, it is difficult to directly relate the effects on
the outcome with those on the decision, and to assess how these
causal effects jointly characterize the quality of a decision. In con-
trast, the proposed framework uses the potential outcome to link
these two causal effects through the concepts of false positives and
false negatives (in our application, they correspond to unnecessary
cash bail and own recognizance release followed by rearrest). Un-
like the AB testing framework, therefore, our approach directly
considers the relationship between decision and outcome (14).

1.1. Evaluation of the Public Risk Assessment Instrument. We
apply the proposed methodology to a randomized controlled trial
(RCT) to assess how an algorithmically generated pretrial risk as-
sessment instrument, called the Public Safety Assessment (PSA),
affects judges’ decisions at a criminal first appearance hearing

(1, 15). In Dane County, Wisconsin, where we conducted the
RCT, a judge at a first appearance hearing must decide whether
to release an arrestee on their own recognizance or to impose cash
bail as a condition of release. In this county, own recognizance re-
lease is called a “signature bond”—a term we will use in this paper.

If a judge assigns an arrestee a signature bond, the arrestee
need not deposit money with the court to achieve pretrial release.
For cash bail, the arrested individual must deposit the specified
amount with the court to be released. The decision between
signature bond and cash bail does not conclusively determine
whether an arrestee will achieve pretrial release. For example,
some arrestees assigned cash bail in fact pay it, and thus obtain
their pretrial freedom, while others assigned signature bonds
remain incarcerated because immigration or other criminal justice
authorities request a “hold” from the relevant jail.

The PSA provides information to the judge for each decision
regarding the arrested individual’s risk of 1) failure to appear
(FTA) at subsequent court dates, 2) new criminal activity (NCA),
and 3) new violent criminal activity (NVCA). In the RCT, the
judge receives the PSA for a randomly selected subset of all
first appearance/bail hearings (see ref. 15, for details of the PSA
instrument and experiment).

The PSA provides three numerical scores that correspond to its
classification of FTA, NCA, and NVCA risks. The FTA and NCA
risk scores have a total of six levels, while the NVCA risk score is
binary. Nine factors about prior criminal history as well as age,
which is the only demographic factor, serve as inputs to construct
the PSA’s scores; neither race nor gender is an input. Finally,
a deterministic formula called the decision-making framework
(DMF) combines the PSA’s three risk scores with other informa-
tion, such as a jurisdiction’s resources, to produce an overall
recommendation of either cash bail or signature bond. This
overall PSA-DMF recommendation is the focus of our analysis
in this paper. We analyze the interim data from this experiment.*

Table 1 compares the PSA recommendations with the judge’s
decisions (left table) and with the human-with-PSA decisions
(right). Each cell presents the proportion of the corresponding
cases with the number of such cases in parentheses. We find that
human decisions, with or without the PSA recommendations,
do not always agree with the PSA recommendations. Indeed, the
judge goes against the PSA recommendations in slightly more
than 30% of the cases. In cases of disagreement, the PSA rec-
ommendations tend to be harsher than human decisions. When
provided with PSA recommendations, the judge agrees with them
more often (by approximately 5.6 percentage points with the SE
of 2.0; see SI Appendix, Fig. S1). Even in these cases, there exists a
substantial amount of disagreement between the human decisions
and PSA recommendations. Similar to the human-alone vs. PSA-
alone comparison, when they disagree, the PSA recommenda-
tions tend to be harsher than the human-with-PSA decisions.

We evaluate whether PSA recommendations improve judges’
classification ability. In addition, we are interested in comparing
the classification ability of the PSA-alone decisions with that
of the human-alone decisions. As mentioned above, the key
challenge is the presence of selective labels: For cases where
the judge issued a cash bail decision, we do not observe the
counterfactual outcome (FTA, NCA, NVCA) under a signature
bond decision. The evaluation of the PSA-alone decision-making
system in itself is even more difficult because the experiment does
not have a PSA-alone condition. Our proposed methodological
framework shows how to overcome these challenges without

*This is a slightly updated version of the data originally analyzed by ref. 1 and has been
subsequently made publicly available by ref. 16.
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Table 1. Comparison between human decisions and PSA-generated recommendations

The left table compares the PSA recommendations (columns) against the judge’s decisions without PSA recommendations (rows). Similarly, the right table compares the PSA
recommendations (columns) with the decisions made by a human judge who was provided with PSA recommendations (rows). Each cell presents the proportion of corresponding
cases with the number of such cases in parentheses.

additional assumptions beyond those guaranteed by the experi-
mental design.

Our empirical analysis shows that PSA recommendations do
not significantly improve the classification ability of judge’s
decision-making. For example, the misclassification rate of
judge’s decisions is unchanged when the PSA recommendations
are provided. We also find that PSA-alone decisions perform
worse than human decisions. In particular, the PSA system yields
a greater proportion of false positives (that is, imposing cash bail
on an arrestee who would not commit a crime if released on their
own recognizance).

1.2. Related Literature. The existing literature on algorithmic
decision-making has primarily focused on three areas: i) the
performance evaluation of algorithms in terms of their underlying
classification tasks (e.g., refs. 17–20), ii) issues of algorithmic
fairness and the potential for biased algorithmic or human
recommendations (e.g., refs. 2–6, 21, and 22), and iii) under-
standing how humans incorporate algorithmic recommendations
into their decision-making (e.g., refs. 1, 8, 9, 23, and 24).

We focus on a question at the intersection of these three
areas. While other scholars have proposed using a classification
framework with selective labels to consider the performance
of algorithmic decision-making (e.g., refs. 18–20), we focus
on the relative gains of AI recommendations over human
decisions and show that they can be credibly identified under
an RCT, even though each decision-making system cannot be
evaluated in isolation. SI Appendix, Section S1 further explains
our contributions to the related literature.

2. Materials and Methods

In this section, we introduce a methodological framework for evaluating
statistically the relative performance of human-alone, human-with-AI, and AI-
alone decision-making systems.

2.1. Design and Assumptions. Let Ai represent the binary AI-generated
recommendation for case i. We assume that AI recommendations can be
computed for all cases. In our application, Ai = 1 means that AI recommends
cash bail while Ai = 0 indicates that AI recommends a signature bond. We
use Zi to denote the binary treatment variable, representing the provision of
such an AI recommendation. In our experiment, Zi = 1 indicates that a human
judge receives a PSA recommendation, whereas Zi = 0 means that no PSA
recommendation is given to the judge. We will also assume that we observe
case-level covariate information, denoted as Xi ∈ X , whereX is the support.

The proposed methodology can be generalized to settings with more
than two treatment conditions. For example, researchers may use different AI
recommendation systems or include an AI-alone decision system as a separate
treatment arm.

We use Di to denote the observed binary decision made by a human. Thus,
Di = 1 represents a judge’s decision to require cash bail as opposed to a

signature bond. Because the AI recommendation can affect the human decision,
we use potential outcomes notation and denote the decision under the treatment
condition Zi = z as Di(z). That is, Di(1) and Di(0) represent the decisions made
with and without an AI recommendation, respectively. The observed decision,
therefore, is given by Di = Di(Zi).

Last, let Yi denote the binary outcome of interest. Without loss of generality,
we assume that Yi = 1 represents an undesired outcome relative to Yi = 0.
In our empirical application, this variable represents whether or not an arrestee
FTA in court, or engages in NCA or NVCA.

We consider the use of single-blinded treatment assignment. In our
application, single-blinding means that an arrestee does not know whether
a judge receives an AI recommendation. In other words, we assume that the
provision of an AI recommendation, or lack thereof, can affect the outcome
only through the human decision. The assumption is violated if a judge
informs an arrestee about the AI recommendation, which in turn affects the
arrestee’s behavior directly other than through the judge’s decision. Formally,
let Yi(z, d) denote the potential outcome under the treatment condition Zi = z
and the decision Di = d. The single-blinded experiment assumption implies
Yi(0, d) = Yi(1, d) = Yi(d) for any d where the observed outcome is given by
Yi = Yi(Di(Zi)).

In sum, our evaluation design requires unconfoundedness, overlap, and
single-blinded treatment assignment.

Assumption 1. The study design satisfies:

1. Single-blinded treatment assignment: Yi(z, Di(z)) = Yi(z′, Di(z′)) for all
z, z′ such that Di(z) = Di(z′)

2. Unconfounded treatment assignment: Zi⊥⊥{Ai, {Di(z), Yi(d)}z,d∈{0,1}} |Xi
3. Overlap: e(x) := Pr(Zi = 1 | Xi = x) ∈ [�, 1− �] for � > 0

In RCTs, both unconfoundedness and overlap conditions are guaranteed to
be satisfied. In observational studies, these conditions are assumed to hold.
In addition, the treatment probabilities e(x) are unknown and therefore must
be estimated. We emphasize that the proposed methodology does not assume
unconfoundedness and overlap regarding the human decision D (i.e., for all
d, z, x, Yi(d) ⊥⊥ Di | Zi = z, Xi = x and Pr(Di = d | Zi = z, Xi = x) ∈
[�, 1 − �], where � > 0). This is an important advantage as human decisions
often depend on factors that are unobservable to researchers.

The notation above implicitly assumes no spillover effects across cases. In
our application, this means that a judge’s decision should not be influenced
by the treatment assignments of prior cases. To increase the credibility of this
assumption, we focus on first arrest cases (see section S3 of SI Appendix of ref. 1
for empirical evidence consistent with this assumption). Finally, we assume that
we have an independently identically distributed sample of cases with size n
from a target distributionP . In subsequent sections, we will omit the subscript
i from expressions whenever convenient.

2.2. Measures of Classification Ability. We now formalize the “classification
ability” of a decision-maker. We focus on the baseline potential outcome Y(0).
In our application, this corresponds to the outcome we would observe (e.g., NCA)
if an arrestee is released on their own recognizance (D = 0). The fact that the
PSA is designed to predict the behavior of an arrestee if released on their own
recognizance also justifies the focus on Y(0) in our application.
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Table 2. Confusion matrix for each combination of baseline potential outcome Y(0) and decision D∗

Each cell is assigned a loss `yd for y, d ∈ {0,1}. The loss is standardized by setting `10 = 1.

Table 2 shows the confusion matrix for all four possible pairs of Y(0) and a
generic decision D∗, which is different from the observed human decision D in
the study. If the baseline potential outcome is negative in the classification sense,
i.e., Y(0) = 0 (e.g., an arrestee would not be rearrested for a new crime under a
signature bond decision), and the decision is also negative D∗ = 0 (e.g., a judge
decides to assign a signature bond), then we call this instance a “true negative”
or TN. In contrast, if the baseline outcome is positive (i.e., an undesired outcome
in our application) and yet the decision is negative (e.g., a judge decides to
release the arrestee on their own recognizance), then this instance is called “false
negative” or FN (e.g., a person given a signature bond decision is rearrested
for a new crime). False positives (FP; a person given a cash bail decision would
not have been rearrested for a new crime under a signature bond decision) and
true positives (TP; a person given a cash bail decision would be rearrested for
a new crime under a signature bond decision) are similarly defined.

Using this confusion matrix, we can derive a range of classification ability
measures. To do so, we first assign a loss (or negative utility) to each cell of the
confusion matrix and then aggregate across cases. As shown in Table 2, let `yd
denote a loss that is incurred when the baseline potential outcome is Y(0) = y
and the decision is D∗ = d for y, d ∈ {0, 1}. Without loss of generality (no pun
intended), we set the loss of a false negative to one, i.e., `10 = 1.

This setup allows for both symmetric and asymmetric loss functions (25). If a
false positive (e.g., unnecessary cash bail) and a false negative (e.g., signature
bond, resulting in NCA) incur the same loss, i.e., `01 = 1, then the loss
function is said to be symmetric. An asymmetric loss function arises, for example,
if avoiding false negatives is deemed more valuable than preventing false
positives, i.e.,`01 < 1. To simplify the exposition, we will consider loss functions
where true negatives and true positives incur zero loss (i.e., `11 = `00 = 0;
see SI Appendix, Section S2 for a discussion of generic loss functions).

Once the loss function is defined, we compute the classification risk (or
expected classification loss) as the average of the false negative proportion
(FNP) and false positive proportion (FPP), weighted by their respective losses,

R(`01; D∗) := p10(D∗) + `01p01(D∗), [1]

where pyd(D∗) := Pr(Y(0) = y, D∗ = d) so that p10(D∗) and p01(D∗)
represent the overall FNP and FPP, respectively, under a decision-making system
D∗. When`01 = 1, the classification risk equals the misclassification rate, which
represents the overall proportion of incorrect decisions.

We use this measure of classification ability to evaluate three decision-making
systems: human-alone (D∗ = D(0)), human-with-AI (D∗ = D(1)), and AI-
alone (D∗ = A). We are particularly interested in contrasting the classification
abilities of these three systems. For example, the comparison of human-alone
and human-with-AI systems tells us whether AI recommendations are able to
improve human decision-making.

One important limitation of our framework and related approaches, however,
is that we only consider the baseline potential outcome rather than the
joint potential outcomes. The “correct” or “wrong” decision might depend
on both potential outcomes instead of the baseline potential outcome alone.
Unfortunately, in general, the consideration of joint potential outcomes requires
stronger assumptions than those considered under our approach (1). See SI
Appendix, Section S1 and ref. 14 for a further discussion of related studies.

2.3. Comparing Human Decisions with and without AI Recommenda-
tions. We first show how to compare the performance of human decisions with
and without AI recommendations under the above classification framework. We

first derive the key identification result and then present our estimation strategy.
We also propose a statistical hypothesis testing framework to compare different
loss functions.
2.3.1. Identification. As explained in Section 2.2, our primary methodological
challenge is the selective labels problem, which is commonly encountered in the
evaluation of decisions. Specifically, we observe the baseline potential outcome
under the negative decision Y(0) only for cases where the decision is actually
negative, i.e., D = 0.

Despite the selective labels problem, we show that it is possible to identify
the difference in classification risk between human decisions with and without AI
recommendations. To begin, the difference in classification risk between these
two decision-making systems is given by,

RHUMAN+AI(`01)− RHUMAN(`01)

= {p10(D(1))− p10(D(0))}+ `01{p01(D(1))− p01(D(0))},

where RHUMAN(`01) := R(`01; D(0)) and RHUMAN+AI(`01) :=
R(`01; D(1)) as defined in Eq. 1. Under Assumption 1, we can immediately
identify the effect of providing an AI recommendation on the FNP, i.e.,
p10(D(1))− p10(D(0)).

Unfortunately, the FPP, p01(D(z)), is not identifiable for z = 0, 1. Despite
this fact, we can identify the average effect of access to AI recommendations on
the FPP. Specifically, the sum of the FPP and the TNP equals Pr{Y(0) = 0} both
with (Z = 1) and without (Z = 0) an AI recommendation:

Pr{Y(0) = 0} = p01(D(1)) + p00(D(1)) = p01(D(0)) + p00(D(0)).

This implies that p01(D(1))− p01(D(0)) = p00(D(1))− p00(D(0)), which
is identifiable under Assumption 1. The following theorem formally states the
result.

Theorem 1. Under Assumption 1, we can identify the difference in risk
between human decisions with (Z = 1) and without (Z = 0) an AI
recommendation as:

RHUMAN+AI(`01)− RHUMAN(`01)

= E [Pr(Y = 1, D = 0 | Z = 1, X)− Pr(Y = 1, D = 0 | Z = 0, X)− `01

×
{

Pr(Y = 0, D = 0 | Z = 1, X)− Pr(Y = 0, D = 0 | Z = 0, X)
}]

.

2.3.2. Estimation. To estimate the difference in classification risk from the
identification result in Theorem 1, we first write the identified form as the
difference in means of a compound outcome: Wi := Yi(1 − Di) − `01(1 −
Yi)(1− Di). We can estimate this difference in classification risk via a variety of
approaches, including the simple difference-in-means estimator.

Here, we consider a more general estimation approach based on the
augmented inverse probability weighting (AIPW) estimator that can also be
applied to observational studies (26). We begin by defining two nuisance
components: i) the decision model mD(z, x) := Pr(D = 1 | Z = z, X = x)
and ii) the outcome model mY (z, x) := Pr(Y = 1 | D = 0, Z = z, X = x).
For notational simplicity, we also define the propensity score under the
treatment assignment z as e(z, x) := ze(x) + (1− z){1− e(x)} for a given
pretreatment covariate value x, where, again, e(x) := Pr(Z = 1 | X = x).
We assume that we estimate these nuisance components (and the propensity
score e(x)) on a separate sample (Assumption S1 in SI Appendix, Section S4).
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Once these nuisance components are estimated, we estimate the difference
in classification risk as

�̂ =
1
n

n∑
i=1

{
'̂1(Zi, Xi, Di, Yi; `01)− '̂0(Zi, Xi, Di, Yi; `01)

}
,

where '̂z are estimates of the (uncentered) influence function given by,

'̂z(Z, X, D, Y; `01)

:=
(

1− m̂D(z, X)
) {

(1 + `01)m̂Y (z, X)− `01

}
+ (1 + `01)

1(Z = z)(1− D)

ê(z, X)

(
Y − m̂Y (z, X)

)
−

{
(1 + `01)m̂Y (z, X)− `01

} 1(Z = z)
ê(z, X)

{
D− m̂D(z, X)

}
,

for z = 0, 1. We similarly define the true (uncentered) influence function as
'z(Z, X, D, Y; `01).

When rate and consistency conditions are satisfied, this estimator is
asymptotically normally distributed around the true classification risk difference.
Although for simplicity we assume that the nuisance components are fit on a
separate sample, this is not necessary. All results readily extend to cross-fit
estimators such as those we use in our application.

Theorem 2. Under Assumption 1 and Assumption S1 of SI Appendix,

√
n
[
�̂ − {RHUMAN+AI(`01)− RHUMAN(`01)}

] d
−→ N(0, V),

where V = E[{'1(Z, X, D, Y; `01) − '0(Z, X, D, Y; `01) − (RHUMAN+AI
(`01)− RHUMAN(`01))}

2].

We can estimate the asymptotic variance as:

V̂ =
1
n

n∑
i=1

(
'̂1(Zi, Xi, Di, Yi; `01)− '̂0(Zi, Xi, Di, Yi; `01)− �̂

)2
.

Then, we obtain Wald-type 1−� confidence intervals (CIs) as �̂±z1−�/2

√
V̂/n,

where z1−�/2 is the 1 − �/2 quantile of a standard normal distribution. The
results of Theorem 2 can also be used to construct a power analysis (see SI
Appendix, Section S14).
2.3.3. Comparing different loss functions. Whether one prefers the human
decision-making system with or without AI recommendations depends on the
chosen loss function (i.e., the value of `01 in Eq.1). Using Theorem 1, we can ask
under what loss functions we might prefer the human-with-AI decision-making
system over the human-alone system.

We first consider the following hypothesis test that for a given ratio of the
loss between false positives and false negatives `01, the risk is lower for the
human-with-AI system:

H0 : RHUMAN(`01) ≤ RHUMAN+AI(`01),
H1 : RHUMAN(`01) > RHUMAN+AI(`01).

Inverting this hypothesis test for the parameter `01 gives the values of the false
positive loss for which we cannot rule out the possibility that the human-alone
system is better than the human-with-AI system. Conversely, the region of `01
where we reject H0 gives the loss functions for which the human-alone system
is unlikely to be better than the human-with-AI system.

Similarly, if we flip the null and alternative hypotheses so that H1 becomes
the null hypothesis, the region where we can reject it gives the relative values of
the false positive loss that rule out the scenario that the human-with-AI system
is better. The remaining cases are ambiguous.

2.4. Comparing a Generic AI Decision-Making System with Human
Decisions. We next compare the classification ability of AI-alone decisions with
human-alone and human-with-AI systems. The proposed approach is extremely
general. In particular, we can analyze how any hypothetical AI-alone decision
system would perform compared to a human-alone or human-with-AI system.
This allows researchers to use data from a single study to evaluate different
individualized decision rules, as long as the AI decision can be computed for
any unit. For illustration, Section 3.6 compares the classification ability of a large
language model with that of a human judge.

Unlike the comparison between human-alone and human-with-AI systems,
we cannot point-identify the risk difference without imposing additional
assumptions. This is because the proposed evaluation design does not have
a treatment arm where an AI system makes decisions without human input.
We do, however, observe AI recommendations for all cases since they can be
readily computed. Below, we leverage this fact and derive informative bounds
on the difference in classification risk between AI and human (with or without AI
recommendations) decisions.
2.4.1. Partial identification. The fundamental problem here is that we do not
observe the potential outcome under AI decisions Yi(Ai) when human decisions
in the study (with or without AI recommendations) disagree with AI decisions, i.e.,
Ai 6= Di. For example, Table 1 shows that in our application, the judge disagrees
with AI recommendations in more than 25% of the cases. Furthermore, human
decision-makers may disagree with AI decisions for reasons not observable by
the researcher. To evaluate the AI-alone system, therefore, we must deal with
this distinct selective labels problem.

The classification risk of the AI-alone system is defined as:

RAI(`01) := R(`01; A) = p10(A) + `01p01(A).

Because the study does not contain an AI-alone treatment arm, each term of the
above equation is a mixture of identifiable and nonidentifiable parts:

pya(A) = Pr(Y(0) = y, A = a, D = 1) + Pr(Y(0) = y, A = a, D = 0),

where the first term is not identifiable. As a result, without further assumptions,
the classification risk of an AI-alone system cannot be identified.

However, we can partially identify the differences in classification risk between
AI-alone and human-alone/human-with-AI decision-making systems, focusing
on the cases where AI recommendations differ from human decisions. Theorem 3
provides sharp (shortest possible) bounds on the range of possible values that
risk differences can take on (see Theorems S1 and S2 in SI Appendix, Section S3
for the sharp bounds on the classification risk of a generic AI decision system).

Theorem 3. Under Assumption 1, the risk differences are sharply bounded by
the following:

E[L0(X)] ≤ RAI(`01)− RHUMAN(`01) ≤ E[U0(X)],
E[L1(X)] ≤ RAI(`01)− RHUMAN+AI(`01) ≤ E[U1(X)],

where the exact expressions of Lz(x) and Uz(x) are given in SI Appendix,
Section S5.

The expressions of the lower and upper bounds involve the intersection of the
bounds implied by each treatment arm, showing how randomization allows us
to combine information across both arms. The width of the bounds is equal to,

E{Uz(X)− Lz(X)} = (1 + `01)E
{

Pr(A = 0 | X)

− max
z′

Pr(Y = 1, D = 0, A = 0 | Z = z′, X)

− max
z′

Pr(Y = 0, D = 0, A = 0 | Z = z′, X)

}
.

The bounds tend to be narrow when the judge’s decisions (with or without AI
recommendations) align with the AI recommendations. Note that only cases
with D = 0 matter because we focus on the potential outcome Y(0).
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2.4.2. Estimation. We now turn to estimation. Again, we consider a general
approach that is applicable to observational studies. We define additional
nuisance components corresponding to the decision and outcome models,
while also conditioning on the AI recommendation A: mD(z, x, a) := Pr(D =

1 | Z = z, X = x, A = a) and mY (z, x, a) := Pr(Y = 1 | D = 0, Z = z, X =
x, A = a). Estimating the sharp bounds derived in Theorem 3 is complex,
requiring i) the determination of which treatment choice z′ achieves a tighter
bound and ii) the estimation of the bound given the optimal choice of treatment
arm z′.

Tackling the first component, for each covariate value x ∈ X , we can
characterize whether using z′ = z or z′ = 1 − z results in a greater lower
bound with a nuisance classifier:

gLz (x) = 1{(1− mD(1− z, x, 0))mY (1− z, x, 0)

≥ (1− mD(z, x, 0))mY (z, x, 0)},

where gLz (x) = 0 denotes that the optimal choice is z′ = z and gLz (x) = 1
denotes that it is z′ = 1− z. Similarly, we can characterize the choice of z′ for
the least upper bound with another nuisance classifier,

gUz (x) = 1{(1− mD(1− z, x, 0))(1− mY (1− z, x, 0))

≥ (1− mD(z, x, 0))(1− mY (z, x, 0))}.

We estimate these nuisance classifiers by first estimating mD(z, x, a) and
mY (z, x, a), then plugging these estimates into the formulas for the nuisance
classifiers.

For the second step, we estimate the bound corresponding to the choice
of z′ using an efficient AIPW estimator. We do this by noting that we can
write the conditional probabilities in Theorem 3 as conditional expectations of
compound outcomes: Y(1−D)(1−A), (1−Y)(1−D)(1−A), (1−A)D, and
A(1− D). The final estimator uses the two sets of influence function estimates.
We provide the exact expressions of these estimators of the sharp lower and
upper bounds, denoted by L̂z and Ûz , in SI Appendix, Section S6.

Toestimatetheboundswell,weneedthepluginnuisanceclassifier tocorrectly
classify which treatment arm to use for the bound. Systematic misclassification
will lead to bias. One way to characterize the complexity of the classification
problem is via a margin condition (27) that quantifies how often the difference
between the two bounds is small. We formally state this margin condition as
Assumption S2 in SI Appendix, Section S4. Together with a set of rate conditions
presented as Assumption S3 in the same SI Appendix, we can establish the
asymptotic normality of the estimated bounds.

Theorem 4. Under Assumption 1 and Assumptions S1–S3 of SI Appendix, the
estimated bounds are asymptotically normal,

√
n(L̂z − Lz)

d
−→ N(0, VLz ),

√
n(Ûz − Uz)

d
−→ N(0, VUz ),

where the exact expressions of the asymptotic variances, VLz and VUz , are given
in SI Appendix, Section S7.

Finally, to obtain CIs via Theorem 4, we first estimate the asymptotic variances
bytakingtherequiredsamplevariancesofestimatednuisancefunctionstoobtain
V̂Lz and V̂Uz . We follow ref. 28 and compute the lower and upper 1− � CIs for
the lower and upper bounds, respectively. We then create a CI for the partially

identified set as
[̂

Lz − z1−�

√
V̂Lz /n, Ûz + z1−�

√
V̂Uz /n

]
.

2.4.3. Comparing different loss functions. Similarly to Section 2.3, we can
conduct a statistical hypothesis test to examine how the preference of the AI-
alone system over the human-alone (or human-with-AI) system depends on the
magnitude of loss `01 assigned to false positives relative to false negatives. For
example, to test whether the human-alone system is preferable to the AI-alone
system, the null and alternative hypotheses are given by

H0 : RAI(`01) ≤ RHUMAN(`01), H1 : RAI(`01) > RHUMAN(`01). [2]

If we reject H0 for a given value of `01, the human-alone system is likely to have
a lower risk than the AI-alone system.

Since the classification risk difference is only partially identified, we test the
null hypothesis that its lower bound is less than or equal to zero, H0 : L0 ≤ 0
vs. the alternative hypothesis H1 : L0 > 0. If we reject this null hypothesis, then
we know that RAI(`01) − RHUMAN(`01) ≥ L0 > 0, implying that the risk of
the AI-alone system is likely to be greater than that of the human-alone system
and hence the latter is preferable. Similarly, if we reject the null hypothesis of
H0 : U0 ≥ 0 in favor of the alternative hypothesis H1 : U0 < 0, we prefer the
AI-alone system over the human-alone system. As explained above, inverting
these hypothesis tests will give us a range of loss functions under which the data
either support preferring the human-alone or AI-alone systems (there will also
be a region where the preference is ambiguous).

2.5. Policy Learning. We now consider whether these decision-making
systems perform better in some cases than others, and how to derive rules
for choosing which one to use. We first discuss learning when to provide
AI recommendations and then analyze when human decision-makers should
follow AI recommendations.
2.5.1. Learning when to provide AI recommendations. We first address the
question of when to provide AI recommendations. The simplest approach would
be to find a treatment policy that minimizes the expected number of negative
outcome events, subject to a constraint on the maximum number of cash bail
decisions. While this approach is reasonable, it is not clear how to specify this
constraint in practice. Instead, we directly minimize the classification risk so that
AI recommendations are provided only for the cases where they improve human
decisions.

Let � : X → {0, 1} be a covariate-dependent policy that determines
whether to provide the AI recommendation (�(x) = 1) or not (�(x) = 0).
Here, the covariate spaceX may include the AI recommendation A. We consider a
class of policiesΠ, each of which combines the human-alone and human-with-AI
systems. The classification risk of policy � ∈ Π is given by,

RREC(`01;�)

:= p10(D(�(X))) + `01p01(D(�(X)))

= RHUMAN(`01) + E
[
�(X)

{
p10(D(1) | X)− p10(D(0) | X)

− `01 × (p00(D(1) | X)− p00(D(0) | X))
}]

,

where pyd(D∗ | X) = Pr(Y(0) = y, D∗ = d | X) and we have used
Theorem 1 to write the classification risk in terms of observable components.

Our goal is to find an optimal policy in Π that minimizes the classification
risk,

�∗REC ∈ arg min�∈ΠRREC(`01;�). [3]

We estimate this policy by solving the following empirical risk minimization
problem with doubly robust estimators:

�̂REC ∈ arg min
�∈Π

1
n

n∑
i=1

�(Xi) ('̂1(Zi, Xi, Di, Yi; `01)

−'̂0(Zi, Xi, Di, Yi; `01)) .

The following theorem bounds the excess risk of this learned policy, i.e., the
difference in classification risk between the best combined decision rule �∗REC
and the empirical rule �̂REC .

Theorem 5. Under Assumption 1 and Assumptions S1–S3 of SI Appendix,
we have

RREC(�̂REC ; `01)− RREC(�∗REC ; `01)

≤ C

 1∑
z=0

‖mY (z, ·)− m̂Y (z, ·)‖2 + ‖mD(z, ·)− m̂D(z, ·)‖2)


× ‖ê− e‖2 +

(
1 +

4
�

)
(1 + `01)Rn(Π) +

t
√

n
,

with probability at least 1 − 2 exp(−t2/2), where Rn(Π) :=

EX,"
[

sup�∈Π
∣∣∣ 1

n
∑n

i=1 "i�(Xi)
∣∣∣] is the population Rademacher complexity

of the policy class Π.
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Theorem 5 shows that the estimated policy will have low excess risk if the
nuisance components are estimated well and the policy class is not too complex.
The first component of the bound is related to the product-error rate seen in
doubly robust policy learning (29). As in Section 2.3, due to the compound
nature of the outcome, we can bound the excess risk in terms of the error rates
for the outcome and decision models. In a randomized experiment, if we use
the known propensity score (i.e., ê = e), this entire product term will disappear.

The analyst chooses the complexity of the policy class; flexible decision
rules will be harder to estimate than simple ones, but simple, transparent
rules are often preferred at the cost of potentially larger risk. As an example, if
the policy class Π has a finite VC dimension v, the Rademacher complexity is
Rn(Π) = O(

√
v/n) (30, Section 5).

2.5.2. Learning when human decision-makers should follow AI recommen-
dations. We next turn to learning when a human decision-maker should follow
AI recommendations. We consider a policy � that determines when a human
decision-maker should decide on their own (�(x) = 0) or simply follow the
AI recommendation (�(x) = 1). The classification risk for a given policy � is a
combination of the risk under the human-alone and the AI-alone system:

RDEC(`01;�)

:= p10(̃D) + `01p01(̃D)

= RHUMAN(`01) + E
[
�(X)

{
p10(A | X)− p10(D(0) | X)

+ `01(p01(A | X)− p01(D(0) | X))
}]

.

where D̃ = A�(X) + D(0)(1 − �(X)). As in Section 2.4, the expected risk
has several unidentifiable terms. Therefore, we take a conservative approach
and consider finding the decision rule that minimizes the worst-case excess risk
relative to the human-alone system:

�∗DEC ∈ arg min
�∈Π

E[�(X)U0(X)], [4]

where U0(x) is the upper bound on the conditional risk difference derived in
Theorem 3. This worst-case criterion requires strong evidence that the AI-alone
decision is better before (hypothetically) overriding human decisions. It takes the
human-alone decision as the baseline and only follows the AI recommendation
if it will lead to a lower loss even in the worst case.

In SI Appendix, Section S8, we show how to minimize an estimate of the
worst-case risk. We also analyze the error of this empirical risk minimization
approach as done in Theorem 5.

3. Results

We now use the proposed methodology to analyze the exper-
iment described in Section 1.1, focusing on evaluating three

different decision-making systems—human-alone, PSA-alone,
and human-with-PSA systems. Since we analyze only interim
data, the results reported below should be interpreted as an
illustration of the proposed methodology rather than the final
analysis results from our RCT.

3.1. Setup. The dataset comprises a total of 1, 891 first arrest
cases, in which judges made decisions on whether to impose a
signature bond (Di = 0) or cash bail (Di = 1). We dichotomize
the PSA recommendation: Ai = 1 if it recommends a cash bail
and Ai = 0 if the recommendation is a signature bond. We use
the following case-level covariatesX : gender (male or female), race
(white or non-white), the interaction between gender and race,
age, inputs for the PSA recommendation including variables for
current/past charges and prior convictions, three PSA risk scores,
and the overall PSA recommendation.

The provision of the PSA recommendation is randomized.
In other words, the decision-maker in the treatment group is a
human judge who is given the PSA recommendation (Zi = 1),
whereas in the control group, the same human judge makes
decisions without the PSA recommendation (Zi = 0). We use
the true propensity score, e(z, x) = 0.5, for the estimation
throughout the analysis.

Given the space constraint, we present the results for NCA,
where Yi = 1 indicates an incidence of NCA, and Yi = 0
indicate absence. Among the cases, 40% are white males, 39%
are non-white males, 13% are white females, and 8% are non-
white females. The proportion of NCAs is 25%.

3.2. PSA Recommendations Do Not Improve Human Decisions.
We begin by estimating the impact of providing PSA rec-
ommendations on human decisions. Specifically, we use the
method described in Section 2.3 to estimate the difference in
misclassification rates between decisions made by the human
judge alone and those made with the PSA recommendation.
Recall that the misclassification rate is equivalent to the symmetric
loss function, i.e., R(1; D∗).

Fig. 1 presents the estimated impact of PSA recommendations
on human decisions in terms of the misclassification rate, FNP,
and FPP. We find that the PSA recommendations do not
significantly improve the judge’s decisions. Indeed, none of
the classification risk differences between the judge’s decisions
with and without the PSA recommendations are statistically
significant, though the estimates are relatively precise.
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Misclassification Rate False Negative Proportion False Positive Proportion

Overall Non−white White Female Male Overall Non−white White Female Male Overall Non−white White Female Male
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Fig. 1. Estimated impact of PSA recommendations on human decisions. The figure shows how PSA recommendations change a human judge’s cash bail
decisions in terms of misclassification rate, FNP, and FPP. The outcome variable is NCA. For each quantity of interest, we report a point estimate and its
corresponding 95% CI for the overall sample (red circle), non-white and white subgroups (blue triangle), and female and male subgroups (green square). The
results show that the PSA recommendations do not significantly improve the judge’s decisions.
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SI Appendix, Figs. S2 and S3 examine how often the judge
correctly overrides the PSA recommendations by conducting a
subgroup analysis based on whether or not the PSA recommends
cash bail. For example, for the cases with Ai = 1, a true negative
implies that the judge issues a signature bond decision against the
PSA recommendation of cash bail to an arrestee who would not
commit misconduct if released on their own recognizance. By
comparing the true negative proportions between the human-
alone and human-with-PSA system, we can adjust for the
baseline disagreement between the human and PSA decisions.
The estimates are qualitatively similar to those presented in Fig. 1,
implying that the judge does not necessarily override the PSA
recommendations correctly.

3.3. PSA-Alone Decisions Are Less Accurate Than Human De-
cisions. Next, we compare the classification performance of
PSA-alone decisions with that of human decisions, using the
proposed methodology described in Section 2.4. Specifically, we
estimate the upper and lower bounds of the differences in the
misclassification rate, FNP, and FPP between PSA-alone and
human decisions (with and without PSA recommendations).

Fig. 2 shows that the PSA-alone system results in a substantially
higher overall FPP, compared to the judge’s decisions. The
finding holds for non-white and male arrestees. For non-white
arrestees, the misclassification rates are also significantly higher
for the PSA-alone system than the human-alone system. For
the FNP, the differences between the PSA-alone and human-
alone systems are generally not statistically significant. This
finding implies that the PSA system is generally harsher than the
human judge, resulting in a greater number of unnecessary cash
bail decisions across subgroups and different outcome variables.
Similar results are obtained when comparing the PSA-alone and
human-with-PSA systems (see SI Appendix, Fig. S4).

3.4. Human Decisions Are Preferred Over a PSA-Alone System
When the Cost of False Positives Is High. Next, we analyze how
one’s loss function determines their preference over different
decision-making systems. Specifically, we invert the hypothesis
test using the bounds on the difference in classification risk
derived in Theorem 3. This analysis allows us to estimate the
range of the loss of FPs (`01), relative to the loss of FNs, which
would lead us to prefer human decisions over the PSA-alone
system.

We invert the hypothesis test shown in Eq. 2 over the range
of values, `01 ∈ [0.01, 100] using the 0.05 significance level. For
each candidate value of `01, we conduct two one-sided hypothesis
tests; one right-tailed and the other left-tailed, using the z-score of
the lower and upper bounds of the difference in misclassification
rates, respectively. If the left-tailed test null hypothesis, H0 :
U0 ≥ 0, is rejected (and thus the right-tailed test is not), the
classification risk of the human-alone system is likely to be greater
than that of PSA-alone system, suggesting a preference for the
PSA-alone system over human decisions. Conversely, if the right-
tailed test of null hypothesis H0 : L0 ≤ 0 is rejected, it indicates a
preference for the human-alone system. If neither test is rejected,
the preference is ambiguous.

Fig. 3 shows that the human-alone system is preferred over
the PSA-alone system when the loss of FP is about the same as
or greater than that of FN. Overall, the human-alone system is
preferred over the PSA-alone system when `01 ≥ 1.78. Similar
results are observed across various non-white and male subgroups.
Exceptions are white and female arrestees, where we observe
ambiguous results. Qualitatively similar results are also obtained
when comparing the PSA-alone and human-with-PSA systems
(see SI Appendix, Fig. S5), though we find that the results are
ambiguous for white and male arrestees.

3.5. Optimally Combining PSA Recommendations with Human
Decisions. Next, we investigate how to optimally integrate PSA
recommendations into human decisions by applying the methods
developed in Section 2.5. Specifically, we solve the empirical risk
minimization problems outlined in Eqs. 3 and 4, respectively.
Here, we consider a policy class that maps FTA, NCA, and
NVCA risk scores to a binary decision, subject to a monotonicity
constraint (either increasing or decreasing). For example, under
an increasing monotonicity constraint, if any of the three risk
scores increases, the resulting binary rule should not decrease
(i.e., a decision of D = 1 cannot then be altered to D = 0). We
consider the NCA as the outcome.

The left plot of Fig. 4 shows when one should provide PSA
recommendations to a human judge (indicated by dark blue)
under this monotonicity constraint. We find that providing a
PSA recommendation is advisable only when the FTA and NCA
risk scores are relatively high and the NVCA flag is 1. The
right plot shows when a human judge should follow the PSA
recommendation (indicated by dark orange), again under the
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Fig. 2. Estimated bounds on difference in classification ability between PSA-alone and Human-alone decisions. The figure shows the misclassification rate,
FNP, and FPP. The outcome variable is NCA. For each quantity of interest, we report estimated bounds (thick lines) and their corresponding 95% CI (thin lines)
for the overall sample (red), non-white and white subgroups (blue), and female and male subgroups (green). The results indicate that PSA-alone decisions are
less accurate than human judge’s decisions in terms of the FPP.
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Fig. 3. Estimated preference for human-alone decisions over PSA-alone decision-making system. The figure illustrates the range of the ratio of the loss
between false positives and false negatives, `01, for which one decision-making system is preferable over the other. A greater value of the ratio `01 implies a
greater loss of false positive relative to that of false negative. The figure displays the overall and subgroup-specific results. For each quantity of interest, we
show the range of `01 that corresponds to the preferred decision-making system; human-alone (green lines), and ambiguous (dotted lines). The results suggest
that the human-alone system is preferred over the PSA-alone system when the loss of false positive is about the same as or greater than that of false negative.
The PSA-alone system is never preferred within the specified range of `01.

monotonicity constraint. Our finding suggests that unless the
FTA and NCA risk scores are relatively high and the NVCA flag
is 1, a human judge should not follow the PSA recommendations
and should instead use their judgment.

In sum, both the provision and decision rules suggest that
one should not provide PSA input for the vast majority of
cases. Rather, PSA should only be provided (or followed) in
extreme cases where arrestees have many risk factors present.
We emphasize that the magnitude of the improvement due
to these optimal policies is small (see SI Appendix, Table S1).
Our analysis shows that under the monotonicity constraint, the
optimal provision of PSA recommendations results in a decrease
of 0.01 in the misclassification rate when compared to not

providing PSA recommendations for any case. Similarly, the
optimal policy regarding when to follow PSA recommendations,
under the monotonicity constraint, results in a decrease of 0.004
in the worst-case difference in the misclassification rate relative
to not following PSA recommendations at all.

3.6. AI-Alone Decisions Are Less Accurate Than Human Deci-
sions. It is natural to ask whether or not an alternative algorithmi-
cally generated risk score would perform better than the PSA. As
an illustration, we compare the classification ability of AI-alone
decisions with that of human decisions, using an open-source
large language model, Llama3 (31) to generate AI decisions.
We prompt the model to provide binary recommendations—
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Fig. 4. Optimally Combining Human Decisions with PSA recommendations when NCA is the outcome. The left plot shows an estimated optimal policy for
determining when to provide PSA recommendations to a human judge. The right plot shows an estimated optimal policy regarding when a human decision-
maker should follow PSA recommendations. Each shaded area represents the optimal policy for specific combinations of risk scores: light shading indicates a
decision rule of “not provide” (Left) or “do not follow” (Right), while dark shading indicates a decision rule of “provide” (Left) or “follow” (Right). Unshaded areas
represent combinations of risk scores that are not possible. The number of observations for each combination is also shown.
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whether to impose cash bail or release—based on the same set of
PSA inputs for each arrestee. Here, we use deterministic decoding
so that Llama3 always returns the same output for a given prompt
(32). SI Appendix, Section S12 presents the prompt we use.

Using the methodology of Section 2.4, we estimate the upper
and lower bounds of the differences in the misclassification
rate, FNP, and FPP between Llama3 and human decisions.
SI Appendix, Fig. S6 shows that the Llama3 decisions result
in substantially higher FPP, compared to the judge’s decisions.
This finding holds across the overall sample and within every
subgroup. The results suggest that the recommendations by
Llama3 are generally harsher than the human judge, yielding a
greater number of unnecessary cash bail decisions. For FNP, the
differences between Llama3 and human decisions are generally
not statistically significant.

4. Discussion

We have introduced a methodological framework for evaluating
empirically the performance of three different decision-making
systems: human-alone, AI-alone, and human-with-AI systems.
We formalized the classification ability of each decision-making
system using standard confusion matrices based on potential
outcomes. We then showed that under single-blinded and uncon-
founded treatment assignment, we can directly identify the dif-
ferences in classification ability between human decision-makers
with and without AI recommendations. Furthermore, we derived
partial identification bounds to compare the differences in clas-
sification ability between AI-alone and human decision-making
systems and separately evaluate the performance of each system.

To illustrate the power of the proposed methodological
framework, we applied our framework to the data from our
own RCT whose goal is to evaluate the impact of the PSA risk
assessment scores on a judge’s decision to impose a cash bail or
release arrestees on their own recognizance. We compared the
human-alone and human-with-PSA decisions and found little

to no impact of providing PSA recommendations. Our compar-
ison of the human decision-maker with the PSA-alone system
suggests, based on the baseline potential outcome and around
40% of the RCT’s enrolled cases, that PSA-alone decisions may
underperform as compared to human decisions, resulting in a
greater proportion of unnecessarily harsh decisions. All together,
these empirical findings suggest that integrating algorithmic
recommendations into judicial decision-making warrants careful
consideration and rigorous empirical evaluation.

There are several exciting future methodological research
directions. The proposed methodological framework can be
extended to common settings where decisions and outcomes are
nonbinary (14). Another possible extension is the consideration
of joint potential outcomes as done in ref. 1 and the dynamic
settings where multiple decisions and outcomes are observed over
time. Finally, the proposed methodology and its extensions can
be applied to a variety of real-world settings where AI decision-
making systems have been integrated or considered for future use.

Data, Materials, and Software Availability. Replication code and data
have been deposited in Harvard Dataverse (https://doi.org/10.7910/DVN/
KMM8WN) (16).
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