
Supplement to “Policy Learning with Asymmetric Counterfactual
Utilities”

A Constrained optimization formulation

While we have arrived at the objective defined in Eqn (2) through a utility-based framework, we can

also characterize this decision problem in the following constrained form,

min
π

Pr(Y (π(X)) < Y (1))

subject to Pr(Y (π(X)) < Y (0)) ≤ δ,

E[π(X)] ≤ B,

(A.1)

where Pr(Y (π(X)) < Y (0)) = Pr(Y (1) = 0, Y (0) = 1, π(X) = 1) and Pr(Y (π(X)) < Y (1)) =

Pr(Y (1) = 1, Y (0) = 0, π(X) = 0) represent the probabilities that policy π gives a harmful treatment

or fails to give a useful treatment for a randomly selected member of the population, respectively.

In this formulation, the goal is to find a policy π that minimizes the expected proportion of false

negatives — failing to give a useful treatment — subject to a constraint on the expected proportion

of false positives — providing a harmful treatment — and the treatment budget — the proportion of

units treated. Thus, the decision problem given in Eqn (A.1) allows the policy maker to explicitly

state their preferences via the constraint on the number of false positives and the budget, rather than

implicitly through the utility function in Re01(π,ϖ). It is also possible to swap the constraints and

the objective to minimize the proportion of false positives subject to a constraint on the proportion of

false negatives. We can also interpret Eqn (A.1) through the lens of multiple testing, for each unit i

we have a null hypothesis H0i : Yi(1) < Yi(0), i.e. that unit i is harmed by treatment. We can view the

policy π(Xi) as determining whether to reject H0i or not. Then, the constraint on the proportion of

false positives in Eqn (A.1) is a scaling of the false detection rate, where the budget constraint limits

the number of rejections, and the objective is a measure of the average power under the alternative

H1i : Yi(1) > Yi(0).

However, note that Pr(Y (π(X)) < Y (0)) = E[π(X)e01(X)] and Pr(Y (π(X)) < Y (1)) = E[(1 −
π(X))(τ(x)+e01(X))]. Thus, we can view the expected utility lossRe01(π,ϖ) for a constant comparison

policy — either always or never providing treatment — as a Lagrangian relaxation of the decision

problem defined in Eqn (A.1), where some choice of the false-positive constraint δ and budget B will

correspond to a particular value of the utility ratio
ug−ul

ug
and cost ratio c

ug
. This is in contrast to

the regret relative to the oracle policy that maximizes the true value, which involves unidentifiable

terms in the relative weights on τ(x) and e01(x), so it cannot be written as a Lagrangian relaxation

of Eqn (A.1).

B Connection to maximin policies

Under the maximin approach, we find a policy π that maximizes the worst-case expected utility. In

this appendix we connect the minimax loss policies relative to never and always treating to maximin
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policies under particular choices of the utility. To do so, we need to specify the utilities under no

treatment, u(0; y1, y0). We consider two cases.

First, say that u(0; y1, y0) = 0 for all principal strata y1, y0. In that case, the expected utility is

V (π) = E [π(X) {ugτ(X) + (ug − ul)e01(X)− c}] = −Re(π, πO).

Therefore the maximin policy is equivalent to the minimax loss policy relative to never treating,

π∗
O
.

Alternatively, say that the utility function under no treatment mirrors that under treatment, i.e.,

u(0; 0, 0) = u(0; 1, 1) = 0, u(0; 0, 1) = ul, u(0; 1, 0) = −ug.

In this case, the expected utility is

V (π) = E [(π(X)− 1) {ugτ(X) + (ug − ul)e01(X)− c}]− c = −Re(π, π1)− c.

So, the maximin policy is equivalent to the minimax loss policy relative to always treating, π∗
1
.

C Algorithms for learning minimax loss policies when estimating

nuisance functions via empirical risk minimization

Algorithm 1 Estimated minimax policy π̂ relative to the always-treat policy π1 (when ug ≥ ul) and
the never-treat policy πO (when ug < ul)

Input: Policy classes Π and ∆+

Output: Estimated minimax policy π̂ relative to π1 or πO

1: Find δ̂+ by solving

min
δ∈∆+

− 1

n

n∑
i=1

δ(Xi)
{
Γ̂1(Xi, Di, Yi) + Γ̂0(Xi, Di, Yi)− 1

}
.

2: Compute weighting and cost functions

ĉϖ1 (x) = ug + δ̂+(x)(ul − ug), ĉ
ϖ
0 (x) = −ul − δ̂+(x)(ug − ul) and ĉϖ(x) = δ̂+(x)(ug − ul).

3: Find a policy π̂ ∈ argmin
π∈Π

R̂sup(π,ϖ).
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Algorithm 2 Empirical minimax policy π̂ relative to the oracle policy πo

Input: Policy classes Π, Π′, ∆+, and ∆τ

Output: Empirical minimax policy π̂ relative to the oracle πo

1: Find δ̂+ by solving

min
δ∈∆+

− 1

n

n∑
i=1

δ(Xi)
{
Γ̂1(Xi, Di, Yi) + Γ̂0(Xi, Di, Yi)− 1

}
.

2: if ug ≥ ul then
3: Find π̂1 via Algorithm 1 with policy class Π′.
4: Find π̂O by solving

min
π∈Π′

− 1

n

n∑
i=1

π(Xi)
[
ug

{
Γ̂1(Xi, Di, Yi)− Γ̂0(Xi, Di, Yi)

}
− c
]
.

5: else
6: Find π̂O via Algorithm 1 with policy class Π′.
7: Find π̂1 by solving

min
π∈Π′

− 1

n

n∑
i=1

π(Xi)
[
ug

{
Γ̂1(Xi, Di, Yi)− Γ̂0(Xi, Di, Yi)

}
− c
]
.

8: end if
9: Find δ̂τ by solving

min
δ∈∆τ

− 1

n

n∑
i=1

δ(Xi)
{
Γ̂1(Xi, Di, Yi)− Γ̂0(Xi, Di, Yi)

}
.

10: Compute weighting and cost functions ĉπ
o

1 (x), ĉπ
o

0 (x), ĉπ
o
(x) via Theorem 3.1.

11: Find the empirical minimax policy π̂ ∈ argmin
π∈Π

R̂sup(π, π
o).

D Asymmetric utilities based on observed outcomes

Although it is possible to construct asymmetric utilities without relying on principal strata (Babii

et al., 2021), doing so places additional restrictions on the structure of utilities. Consider the following

utility function based on observed outcomes alone, u(d, Y (d)) = u11dYi(d)+u10d{1−Yi(d)}+u01(1−
d)Y (d)+u00(1−d){1−Yi(d)}. This utility function includes the interaction between the decision and

the observed outcome. Indeed, for a binary decision and outcome, this represents the most general

utility that could be specified using the observed outcome.

Table D.1 summarizes the utility gain/loss for treating a unit that belongs to each principal stratum

under this setting. With an interaction term, this utility has different utility gains/losses in principal

strata (Y (1) = 1, Y (0) = 0) and (Y (1) = 0, Y (0) = 1), allowing for the asymmetry in the utilities as

required by the Hippocratic principle. This utility, however, still places restrictions on its structure.

In particular, it requires that the difference between the utility gains in principal strata (Y (1) =

1, Y (0) = 1) and (Y (1) = 0, Y (0) = 1) is the same as that between the utility losses in principal
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Yi(0) = 1 Yi(0) = 0

Yi(1) = 1
Harmless Useful

u11 − u01 u11 − u00

Yi(1) = 0
Harmful Useless

u10 − 2u01 u10 − u01 − u00

Table D.1: Asymmetric utilities gain/loss for treating a unit, u(1, Yi(1)) − u(0, Yi(0)) based on the
observed outcomes for each of the principal strata. The utility function is given by u(d, Yi(d)) =
u11dYi(d) + u10d{1 − Yi(d)} + u01(1 − d)Yi(d) + u00(1 − d){1 − Yi(d)}. Each cell corresponds to the
principal stratum defined by the values of the two potential outcomes, Yi(1) and Yi(0). Each entry
represents the utility gain/loss of treatment assignment, relative to no treatment, for a unit that
belongs to the corresponding principal stratum.

strata (Y (1) = 1, Y (0) = 0) and (Y (1) = 0, Y (0) = 0). Therefore, it might be violated if the difference

between harmful and harmless decisions is much greater than that between useful and useless decisions.

Thus, a fully general construction of asymmetric utilities requires the use of principal strata, and

defining the utility function based on both potential outcomes, u(d;Y (1), Y (0)), with utility functions

like the one above as a special case.

E Simulation study

As the results in Section 4.2 show, the misclassification rates of the underlying nuisance classifiers

are important in controlling the excess regret due to estimating the weighting and cost functions that

make up the worst-case regret. Additionally, although the minimax policies we consider are designed

to minimize the worst-case regret, in some cases it may be possible that the true, unidentifiable regret

may also be small. To inspect how the misclassification rates and the true regret behave in finite

samples as the sample size increases, we now conduct a brief simulation study, where we can know the

true values of the principal scores ey1y0(x).

We first generate n 1-dimensional i.i.d. covariates Xi ∼ N(0, 2). We then construct log-linear principal

scores as

ey1y0(x) =
exp (αy1y0 + xβy1y0)∑1

y′1=0

∑1
y′0=0 exp

(
αy′1y

′
0
+ xβy′1y′0

) ,
where (α00, α10, α01, α11) = (.2, .15, 0, 0), βy1y0 ∼ N(0, 40) for (y1, y0) ∈ {(0, 0), (1, 0), (0, 1)}, and

β11 = 0. We then jointly sample potential outcomes {Yi(1), Yi(0)} according to the principal scores

at covariate value Xi. In this simulation study, we consider a randomized control trial with binary

treatment Di sampled independently as Bernoulli random variables with probability one half.

For each value of sample size n ∈ {100, 500, 1000, 5000, 10000}, we draw 1,000 samples according to

the above data generating process. In each simulation run, we find the minimax optimal policy with

respect to the oracle following Algorithm 2 with zero cost c = 0, ug = 1, and ul varying between 0.6
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(a) Misclassification rate for nuisance classifiers
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(b) Regret of minimax policy relative to oracle

Figure E.1: Performance of nuisance classifiers and the minimax optimal policy relative to the oracle
across simulation runs. Panel (a) shows the misclassification rate for the nuisance classifiers δ̂+ (“More
likely in (1,1) stratum”) and δ̂τ (“Positive CATE”), as well as the minimax policy relative to the never-
treat policy for ul = 0.833. Panel (b) shows the true regret of the minimax optimal policy relative to
the oracle, in the sample, for ug = 1 and as ul varies between 0.5 and 1.5.

and 1.4, where the value of ul changes within each simulation run.

We use the IPW scoring function and restrict all policy classes to be the set of linear thresholds, solving

the optimization problem exactly by direct search. Figure E.1a shows the average misclassification

rate for the nuisance classifiers δ̂+ and δ̂τ , as well as the misclassification rate for the the minimax

policy relative to always treating for ul = 0.833. As we expect, we see that these misclassification

rates decrease as the sample size increases.

Figure E.1b shows the true regret of the minimax policy relative to the oracle as ul varies. Since the

oracle is the best possible policy, this regret is always positive. The regret does decrease along with the

sample size, reflecting both the decrease in the nuisance misclassification rate and the decrease in the

worst-case excess regret when the nuisance classifiers are known. Notice, however, that the regret does

stop decreasing after a certain point, flattening out at a different level depending on the asymmetry in

the utility function. In highly asymmetric settings where uℓ is small the regret is essentially flat. This

is due to the fundamental identifiability problem, and even with infinite data we cannot guarantee

that the true regret will be zero. In contrast, in the symmetric setting the regret continues to decrease

as the sample size increases.
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F Implementation details for application to RHC

F.1 Details on cross-fitting procedure

In the empirical application to Right Heart Catheterization in Section 5, we use a three-fold cross

fitting procedure to estimate the nuisance functions. We then use the plug-in method to estimate the

nuisance classifiers. Below we present this procedure step-by-step

1. Randomly split the data into three folds.

2. For each fold k = 1, 2, 3, estimate the outcome model m̂−k(·, ·) and d̂−k(·) on the two other folds

via gradient boosted decision stumps.

3. For each unit i, denote k[i] as the fold that it belongs to, then obtain estimates of the outcome

model m̂−k[i](w,Xi), the propensity score d̂
−k[i]
w (Xi), and the IP weight γ̂

−k[i]
w (Di, Xi).

4. Use these to construct cross-fit estimates of the DR scoring rule:

Γ̂−k[i]
w (Xi, Di, Yi) = m̂−k[i](w,Xi) + {Yi − m̂−k[i](w,Xi)}γ̂−k[i]

w (Xi, Di),

and cross-fit plug-in estimates of the classifiers

δ̂
−k[i]
+ (Xi) = 1{m̂−k[i](1, Xi) + m̂−k[i](0, Xi) ≥ 1},

δ̂−k[i]
τ (Xi) = 1{m̂−k[i](1, Xi)− m̂−k[i](0, Xi) ≥ 0},

π̂
−k[i]
O

(Xi) =


1

{
m̂−k[i](1, Xi)− m̂−k[i](0, Xi) ≥ c

ug

}
, ug ≥ ul,

1

{
m̂−k[i](1, Xi) ≥ ul

ug
m̂−k[i](0, Xi) +

c
ug

}
, ug < ul and δ̂

−k[i]
+ (Xi) = 0,

1

{
m̂−k[i](1, Xi) ≥ ug

ul
m̂−k[i](0, Xi) +

ul−ug+c
ul

}
, ug < ul and δ̂

−k[i]
+ (Xi) = 1,

π̂
−k[i]
1

(Xi) =


1

{
m̂−k[i](1, Xi)− m̂−k[i](0, Xi) ≥ c

ug

}
, ug < ul,

1

{
m̂−k[i](1, Xi) ≥ ul

ug
m̂−k[i](0, Xi) +

c
ug

}
, ug ≥ ul and δ̂

−k[i]
+ (Xi) = 0,

1

{
m̂−k[i](1, Xi) ≥ ug

ul
m̂−k[i](0, Xi) +

ul−ug+c
ul

}
, ug ≥ ul and δ̂

−k[i]
+ (Xi) = 1.

Then plug in the cross-fit classifiers into the formulas in Appendix H to create cross-fit estimates

of ĉ−k[i]ϖ(Xi).

5. Solve Eqn (10) with the cross-fit estimates:

π̂ ∈ argmin
π∈Π

− 1

n

n∑
i=1

π(Xi)
{
ĉ
−k[i]ϖ
1 (Xi)Γ̂

−k[i]
1 (Xi, Di, Yi) + ĉ

−k[i]ϖ
0 (Xi)Γ̂

−k[i]
0 (Xi, Di, Yi) + ĉ−k[i]ϖ(Xi)

}
.

F.2 Minimax loss policies using a subset of covariates

It is often that case that we wish to construct minimax loss decision rules that only use a subset of

the covariates V ⊂ X . To consider this case, define mV(w, v) ≡ E[Y (w) | V = v] to be the expected

potential outcome conditioned on the subset of covariates v. Applying Theorem 3.1 to this setting,
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we get that we can write the worst-case expected utility loss of π relative to ϖ as

Rsup(π,ϖ) = C − E [π(X) {cϖ1V(V )mV(1, V ) + cϖ0V(V )mV(0, V ) + cϖV (V )}] ,

where the weighting and cost functions cϖ1V(·), cϖ0V(·), cϖV (·) depend on the nuisance classifiers given

only the subset of the covariates V , i.e.

δ+V(v) = 1{mV(1, v) +mV(0, v) ≥ 1},

δτV(v) = 1{mV(1, v)−mV(0, v) ≥ 0},

π∗
OV(v) =


1

{
mV(1, v)−mV(0, v) ≥ c

ug

}
, ug ≥ ul,

1

{
mV(1, v) ≥ ul

ug
mV(0, v) +

c
ug

}
, ug < ul and δ+V(v) = 0,

1

{
mV(1, v) ≥ ug

ul
mV(0, v) +

ul−ug+c
ul

}
, ug < ul and δ+V(v) = 1,

π∗
1V(v) =


1

{
mV(1, v)−mV(0, v) ≥ c

ug

}
, ug < ul,

1

{
mV(1, v) ≥ ul

ug
mV(0, v) +

c
ug

}
, ug ≥ ul and δ+V(v) = 0,

1

{
mV(1, v) ≥ ug

ul
mV(0, v) +

ul−ug+c
ul

}
, ug ≥ ul and δ+V(v) = 1.

.

However, note that in order to use observable data, we must account for confounding, since in general

mV(w, v) ̸= E(Y | V = v,W = w) when V is a subset of X . We can however, still use the IPW or DR

scoring functions since mV(w, v) = E[Γw(X,D, Y ) | V = v]. So we can write the worst-case expected

utility loss in terms of the scoring functions—where we condition on X—and the nuisance classifiers

only conditioning on the subset of covariates V :

Rsup(π,ϖ) = C − E [π(V ) {cϖ1V(V )Γ1(X,D, Y ) + cϖ0V(V )Γ0(X,D, Y ) + cVϖ(V )}] ,

Constructing plug-in estimates of the nuisance classifiers involves estimatingmV(w, v) = E[Γw(X,D, Y ) |
V = v], which we can do by regressing the estimated DR scores on the subset of the covariates V , a

variant of the DR-learner (Kennedy, 2022).

Overall, this leads to the following steps:

1. Estimate the DR score Γ̂w(x, d, y) using all covariates X to account for confounding.

2. Estimate the expected potential outcomes given the subset of covariates V , m̂V(w, v) using the

DR-learner and regressing the estimates Γ̂w(Xi, Di, Yi) on V .

3. Form plug in estimates of the nuisance classifiers, e.g. δ̂τ (v) = 1{m̂V(1, v) − m̂V(0, v)} and

δ̂+(v) = 1{m̂V(1, v) + m̂V(0, v)− 1 ≥ 0}.

4. Get plug-in estimates of the weighting and cost functions ĉϖ1V(Vi), ĉ
ϖ
0V(Vi), ĉ

ϖ
V (Vi), using the

estimates of the nuisance classifiers.
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5. Find the policy π̂ : V → {0, 1} by solving

min
π∈Π

− 1

n

n∑
i=1

π(V )
{
ĉϖ1V(V )Γ̂1(X,D, Y ) + ĉϖ0V(V )Γ̂0(X,D, Y ) + ĉVϖ(V )

}
.

Finally, note that as in Section F.1 above, we can use cross-fit estimates here, where for each fold k,

both Γ̂−k
w and m̂−k

V are fit on data not in fold k. In principle we could do a multi-stage cross-fitting

procedure, where for each fold k, we further break up the fold into sub-folds and cross-fit m̂−k
V within

the fold k. We opt to use a simpler cross-fitting procedure here, noting that it may impact the quality

of the DR-learner estimate m̂−k
V .

G Additional figures
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Figure G.1: Plug-in estimate of the decision rule δ̂+(v) to classify whether mV(1, v) + mV(0, x) ≥ 1
using the estimated probability of survival and DNR status.
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fails to give a useful treatment (left panel) and where the policy gives a harmful treatment (right
panel), for linear minimax policies relative to never using RHC, as ul varies in [0.65, 1.2] and ug = 1.
The red point is the symmetric linear policy.
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H Additional results

Full statement of Theorem 3.1 Let π : X → {0, 1} be a deterministic policy. For comparison
policy ϖ ∈ {πO, π1}, the worst-case expected utility loss of π relative to ϖ is

Rsup(π,ϖ) = C − E [π(X) {cϖ1 (X)m(1, X) + cϖ0 (X)m(0, X) + cϖ(X)}]
= C − E [π(X) {cϖ1 (X)Γ1(X,D, Y ) + cϖ0 (X)Γ0(X,D, Y ) + cϖ(X)}] ,

(H.1)

where C is a constant that does not depend on π. For ug ≥ ul,

cπ
O

1 (x) = ul + (ug − ul)δτ (x) cπ
O

0 (x) = −ul − (ug − ul)δτ (x) cπ
O

(x) = −c,

cπ
1

1 (x) = ug + δ+(x)(ul − ug) cπ
1

0 (x) = −ul − δ+(x)(ug − ul) cπ
1

(x) = δ+(x)(ug − ul)− c,

and for ug < ul,

cπ
O

1 (x) = ug + δ+(x)(ul − ug) cπ
O

0 (x) = −ul − δ+(x)(ug − ul) cπ
O

(x) = δ+(x)(ug − ul)− c,

cπ
1

1 (x) = ul + (ug − ul)δτ (x) cπ
1

0 (x) = −ul − (ug − ul)δτ (x) cπ
1

(x) = −c.

Define π∗
O

≡ argminπ Rsup(π, π
O) and π∗

1
≡ argminπ Rsup(π, π

1) as the minimax expected utility loss
solutions relative to the never-treat policy and always-treat policy, respectively. The worst-case regret
relative to the oracle policy πo is of the form in Eqn (H.1) where for ug ≥ ul, cπ

o

1 (x)
cπ

o

0 (x)
cπ

o
(x)

 =(1− π∗
1(x))

 ul + (ug − ul)δτ (x)
−ul − (ug − ul)δτ (x)

−c

+ π∗
O(x)

 ug − (ug − ul)δ+(x)
−ul − (ug − ul)δ+(x)
(ug − ul)δ+(x)− c


+ (1− π∗

O(x))π
∗
1(x)

 ul + ug + (ug − ul)(δτ (x)− δ+(x))
−2ul − (ug − ul)(δτ (x) + δ+(x))

(ug − ul)δ+(x)− 2c

 ,

and for ug < ul, cπ
o

1 (x)
cπ

o

0 (x)
cπ

o
(x)

 =(1− π∗
1(x))

 ug − (ug − ul)δ+(x)
−ul − (ug − ul)δ+(x)
(ug − ul)δ+(x)− c

+ π∗
O(x)

 ul + (ug − ul)δτ (x)
−ul − (ug − ul)δτ (x)

−c


+ (1− π∗

O(x))π
∗
1(x)

 ul + ug + (ug − ul)(δτ (x)− δ+(x))
−2ul − (ug − ul)(δτ (x) + δ+(x))

(ug − ul)δ+(x)− 2c

 .

Corollary H.1 (Minimax regret relative to the always-treat policy). If ug ≥ ul, the minimax regret

solution to Equation (5), π∗
1
≡ argminπ Rsup(π, π

1), is

π∗
1(x) =

 1

{
m(1, x) ≥ ul

ug
m(0, x) + c

ug

}
, δ+(x) = 0,

1

{
m(1, x) ≥ ug

ul
m(0, x) +

ul−ug+c
ul

}
, δ+(x) = 1.

11



Otherwise, if ug < ul, it is given by the symmetric policy,

π∗
1(x) = 1

{
τ(x) ≥ c

ug

}
= πsymm(x).

Assumption H.1. There exists an α > 0 and a constant C such that for any t ≥ 0,

(a) Pr(|m(1, X) +m(0, X)− 1| ≤ t) ≤ Ctα.

(b) Pr(|m(1, X)−m(0, X)| ≤ t) ≤ Ctα.

(c) For ug > ul and c,

Pr (|{ug − (ug − ul)δ+(X)}m(1, X)− {ul + (ug − ul)δ+(X)}m(0, X) + (ug − ul)δ+(X)− c| ≤ t) ≤ Ctα.

(d) For ug > ul and c,

Pr(|{ul + (ug − ul)δτ (X)}τ(X)− c| ≤ t) ≤ Ctα.

Theorem H.2. Let ug ≥ ul, and define

L̂b(x) = {ul + δ̂τ (x)(ug − ul)}(m̂(1, x)− m̂(0, x))− c,

Ûb(x) = {ug − (ug − ul)δ̂+(x)}m̂(1, x)− {ul + (ug − ul)δ̂+(x)}m̂(0, x) + (ug − ul)δ̂+(x)− c,

and let π̂plug
O

(x) = 1{L̂b(x) ≥ 0} and π̂plug
1

(x) = 1{Ûb(x) ≥ 0} be the plug-in estimates of the minimax

optimal policies relative to never or always treating. Under Assumptions H.1(b) and H.1(d), the excess

worst case regret for π̂plug
O

relative to π∗
O

is

Rsup(π̂
plug
O

, πO)−Rsup(π
∗
O, π

O) ≤ 21+αCU∥m− m̂∥1+α
∞ ,

where U is a constant depending on the utility values, α, and C. Under Assumptions 2 and H.1(c),

the excess worst case regret for π̂plug
1

relative to π∗
1
is

Rsup(π̂
plug
1

, π1)−Rsup(π
∗
O, π

O) ≤ 21+αCU∥m− m̂∥1+α
∞ ,

where U is a constant depending on the utility values, α, and C.

Corollary H.3. Let ug ≥ ul, π̂o be a solution to Equation (10) with alternative policy ϖ = πo and

with nuisance functions m̂ and d̂ fit on a separate sample and nuisance classifiers δ̂+(x) = 1{m(1, x)+

m(0, x) − 1 ≥ 0}, δ̂τ (m(1, x) − m(0, x) ≥ 0), π̂plug
O

, and π̂plug
1

, and let π∗
o be a solution to Equation

(5), with alternative policy ϖ = πo. Under the strict overlap condition in Assumption 1, the excess

12



worst-case regret of π̂o relative to π∗
o satisfies

Rsup(π̂0, π
o)−Rsup(π

∗
o , π

o) ≤ 2U1 ×
(
6 + η

η
×
(
2Rn(Π) +

t√
n

)
+ ∥m̂−m∥2∥γ̂ − γ∥2

)
+ 22+αCU2∥m̂−m∥1+α

∞ + (ug − ul)
t

2
√
n
,

with probability at least 1− 2 exp
(
− t2

2

)
, where U1 is a constant depending on the utility values, and

U2 is a constant depending on the utility values, α, and C.

Upper bounds on worst-case proportion of units given a harmful treatment or are failed

to be given a useful treatment.

First, note that

Pr(Y (π(X)) < Y (0)) = Pr(π(X) = 1, Y (0) = 1, Y (1) = 0) = E [π(X)e01(X)] ,

Pr(Y (π(X)) < Y (1)) = Pr(π(X) = 0, Y (0) = 0, Y (1) = 1) = E [(1− π(X))(τ(X) + e01(X))] .

Plugging in the upper and lower bounds on e01(X) in Section 3, we get the following upper bounds:

sup
e01(x)∈[L(x),U(x)]

Pr(Y (π(X)) < Y (0)) = E (π(X) [m(0, X) + δ+(X) {1−m(1, X)−m(0, X)}]) ,

sup
e01(x)∈[L(x),U(x)]

Pr(Y (π(X)) < Y (1)) = E ({1− π(X)} [m(1, X) + δ+(X) {1−m(1, X)−m(0, X)}]) .

I Continuous outcomes

Here we briefly consider extending our framework to the case with a binary decision D ∈ {0, 1} but

continuous potential outcomes (Y (0), Y (1)) ∈ R2. We define the utility function u(d; y1, y0) as before

and write the value function as

V (π) = E [u(0;Y (1), Y (0)) + π(X)× (u(1;Y (1), Y (0))− u(0;Y (1), Y (0)))] .

Defining ey1y0(x) as the conditional joint density of the potential outcomes given X = x, the expected

utility loss relative to ϖ is

V (ϖ)− V (π) = E
[
π(X)

∫
y1

∫
y0

(u(1; y1, y0)− u(0; y1, y0))ey1y0(x)dy0dy1

]
.

With continuous outcomes, there are many potential ways to choose the utility function. One option

is a utility function such that u(1; y1, y0)− u(0; y1, y0) = y1 − y0 − uℓ1{y1 < y0}. This is analogous to
the utility function with binary outcomes, with an explicit utility gain/loss associated with a harmful

(Y (1) < Y (0)) or useful (Y (1) > Y (0)) treatment. Defining the conditional probability of harm as

h(x) = Pr(Y (1) < Y (0) | X = x), we can write the expected utility loss as

V (ϖ)− V (π) = E [π(X){τ(x)− uℓh(x)}] .
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As in the binary case, we can use sharp bounds on the distribution of individual treatment effects

(Fan and Park, 2010), h(x) ∈ [Lh(x), Uh(x)], where

Lh(x) = max{sup
y
{F1(y | x)− F0(y | x)}, 0},

Uh(x) = 1 +min{inf
y
{F1(y | x)− F0(y | x)}, 0},

where F1(· | x), F0(· | x) are the marginal CDFs conditional on X = x for the potential outcomes

under treatment and control, respectively. Now we can again define the minimax expected utility loss

policy as the policy that solves

min
π

max
h(x)∈[L(x),U(x)]

E [π(X){τ(x)− ulh(x)}] .

While this again leads to a point-identifiable objective, we note two ways in which this problem is more

difficult than with binary outcomes. First, the upper and lower bounds on the probability of harm

involves the conditional CDFs of Y (1) and Y (0). These can be more difficult to estimate than the

conditional expected outcomes. Second, the bounds involve supremums and infimums over all y ∈ R.
This may require a more careful analysis and stronger assumptions in order to ensure that the default

plug-in approach that we suggest for the binary outcome case will lead to reasonable guarantees on

the excess expected utility loss.

J Proofs and derivations

J.1 Main results

Derivation of the expected utility loss First, notice that the expected utility of policy π is

V (π) = E

 1∑
y1=0

1∑
y0=0

ey1y0(X)u(0; y1, y0)

+ E

 1∑
y1=0

1∑
y0=0

π(X)ey1y0(X) {u(1; y1, y0)− u(0; y1, y0)}


︸ ︷︷ ︸

(∗)

.

The second term can be written as

(∗) = E [π(X) {e10(X)(ug − c)− e01(X)(ul + c)− e00(X)c− e11(X)c}]

= E [π(X)) {e10(X)ug − e01(X)ul − c(e10(X) + e01(X) + e00(X) + e11(X))}]

= E [π(X) {(τ(X) + e01(X))ug − e01(X)ul − c}]

= E [π(X) {ugτ(X) + (ug − ul)e01(X)− c}] ,

where we have used the fact that τ(x) = e10(x) − e01(x). So the expected utility loss of policy π

relative to policy ϖ is

V (ϖ)− V (π) = E [(ϖ(X)− π(X)) {ugτ(X) + (ug − ul)e01(X)− c}] .
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Proof of Theorem 3.1. Define b(x) = ugτ(x) + (ug − ul)e01(X)− c, and

Lb(x) = min
e(x)∈[L(x),U(x)]

{ugτ(x) + (ug − ul)e01(X)− c} ,

Ub(x) = max
e(x)∈[L(x),U(x)]

{ugτ(x) + (ug − ul)e01(X)− c} .

Note that the worst-case regret relative to the always and never treat policies are

Rsup(π, π
O) = −E[π(X)Lb(X)],

Rsup(π, π
1) = E[{1− π(X)}Ub(X)] = E[Ub(X)]− E[π(X)Ub(X)].

From this, we can find the unconstrained minimax regret policies

π∗
O = argmin

π
− E[π(X)Lb(X)] = 1{Lb(x) ≥ 0},

π∗
1 = argmin

π
− E[π(X)Ub(X)] = 1{Ub(x) ≥ 0}.

Now, the oracle policy is πo(x) = 1{b(x) ≥ 0}. So if Lb(x) ≥ 0 ⇔ π∗
O
(x) = 1 then πo(x) = 1 for all

possible values of the principal score e01(x). In this case,

max
e(x)∈[L(x),U(x)]

{πo(x)− π(x)}b(x) = {1− π(x)}Ub(x).

Similarly, if Ub(x) < 0 ⇔ π∗
1
(x) = 0 then πo(x) = 0, and

max
e(x)∈[L(x),U(x)]

{πo(x)− π(x)}b(x) = −π(x)Lb(x).

Finally, if Lb(x) < 0 and Ub(x) ≥ 0 (so π∗
O
(x) = 0 and π∗

1
(x) = 1), then the oracle policy can be either

0 or 1, πo(x) ∈ {0, 1}. Therefore,

max
e(x)∈[L(x),U(x)]

{πo(x)−π(x)}b(x) = max{(1−π(x))Ub(x),−π(x)Lb(x)} = Ub(x)−π(x){Ub(x)+Lb(x)}.

Putting together the pieces, the worst-case regret relative to the oracle is

Rsup(π, π
o) = E([π∗

O(X) + {1− π∗
O(X)}π∗

1(X)]Ub(X))

− E[π(X) {π∗
O(X)Ub(X) + (1− π∗

1(X))Lb(X) + (1− π∗
O(X))π∗

1(X)(Ub(X) + Lb(X))}],

and the unconstrained minimizer is

π∗
o = argmin

π
Rsup(π, π

o) =


π∗
1
(x), π∗

O
(x) = 1,

π∗
O
(x), π∗

1
(x) = 0,

1{Ub(x) ≥ −Lb(x)}, π∗
O
(x) = 0, π∗

1
(x) = 1.

Now notice that π∗
O
(x) = 1 ⇔ Lb(x) ≥ 0 ⇒ Ub(x) ≥ 0 ⇔ π∗

1
(x) = 1, and π∗

1
(x) = 0 ⇔ Ub(x) < 0 ⇒
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Lb(x) < 0 ⇔ π∗
O
(x) = 0, so we can simplify this to

π∗
o = argmin

π
Rsup(π, π

o) =


1, π∗

O
(x) = 1,

0, π∗
1
(x) = 0,

1{Ub(x) ≥ −Lb(x)}, π∗
O
(x) = 0, π∗

1
(x) = 1.

To complete the proof, we need to compute Lb(x) and Ub(x). First, we begin with the case where

ug ≥ ul. In this case,

Lb(x) = {ul + (ug − ul)δτ (x)}τ(x)− c = {ul + (ug − ul)δτ (x)}m(1, x)− {ul + (ug − ul)δτ (x)}m(0, x)− c,

Ub(x) = {ug − (ug − ul)δ+(x)}m(1, x)− {ul + (ug − ul)δ+(x)}m(0, x) + (ug − ul)δ+(x)− c.

This gives the form of the worst-case regret relative to π1 and πO. For the worst-case regret relative

to the oracle, we collect terms to get cπ
o

1 (x)

cπ
o

0 (x)

cπ
o
(x)

 =


(ul + (ug − ul)δτ (x),−ul − (ug − ul)δτ (x),−c), π∗

1
(x) = 0,

(ug − (ug − ul)δ+(x),−ul − (ug − ul)δ+(x), (ug − ul)δ+(x)− c), π∗
O
(x) = 1,

(ul + ug + (ug − ul)(δτ (x)− δ+(x)),−2ul − (ug − ul)(δτ (x) + δ+(x)), (ug − ul)δ+(x)− 2c), π∗
O
(x) ̸= π∗

1
(x).

Now for the case where ug < ul, the lower and upper bounds switch:

Lb(x) = {ug − (ug − ul)δ+(x)}m(1, x)− {ul + (ug − ul)δ+(x)}m(0, x) + (ug − ul)δ+(x)− c,

Ub(x) = {ul + (ug − ul)δτ (x)}τ(x)− c = {ul + (ug − ul)δτ (x)}m(1, x)− {ul + (ug − ul)δτ (x)}m(0, x)− c.

For the worst-case regret relative to the oracle, we collect terms to get cπ
o

1 (x)

cπ
o

0 (x)

cπ
o
(x)

 =


(ug − (ug − ul)δ+(x),−ul − (ug − ul)δ+(x), (ug − ul)δ+(x)− c), π∗

1
(x) = 0,

(ul + (ug − ul)δτ (x),−ul − (ug − ul)δτ (x),−c), π∗
O
(x) = 1,

(ul + ug + (ug − ul)(δτ (x)− δ+(x)),−2ul − (ug − ul)(δτ (x) + δ+(x)), (ug − ul)δ+(x)− 2c), π∗
O
(x) ̸= π∗

1
(x).

For the Proofs of Theorems 4.1 H.2 and 4.2, we prove the result for the case where ug ≥ ul. The case

where ug < ul follows in the same way, with πO taking the place for π1

Proof of Theorem 4.1. This follows directly from combining Lemmas J.1 and J.2 below via the union

bound.

Proof of Theorem 4.2. This follows directly from combining Lemmas J.1 and J.3 below via the union

bound.

Proof of Corollary 4.3. This follows by combining Theorem 4.1 and Lemma J.4 below.
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Proof of Theorem H.2. This follows from Lemmas J.4 and J.5 below.

Proof of Corollary H.3. This follows by combining Theorem 4.2, Theorem H.2, and Lemma J.4 below.

J.2 Auxiliary lemmas

Lemma J.1. Let π̂ be a solution to Equation (10) with nuisance functions m̂ and d̂ fit on a separate

sample, and let π∗ be a solution to Equation (5). Under the strict overlap condition in Assumption 1,

the excess worst-case regret between π̂ and π∗ is bounded by

Rsup(π̂, ϖ)−Rsup(π
∗, ϖ) ≤ U ×

6 + η

η
×
(
2Rn(Π) +

t√
n

)
+
∑
w=0,1

∥γ̂w − γw∥2 ∥m̂(w, ·)−m(w, ·)∥2


+ sup

π∈Π

∣∣∣R̃(π, ĉ(·),m(·);ϖ)− R̃(π, c(·),m(·);ϖ)
∣∣∣ ,

with probability at least 1− exp
(
− t2

2

)
, where

R̃sup(π, c(·),m(·);ϖ) =
1

n

n∑
i=1

π(Xi) {c1(Xi)m(1, Xi) + c0(Xi)m(0, Xi) + c(Xi)} .

and U is a constant depending on the utility values.

Proof of Lemma J.1. First, note that the excess regret can be decomposed into

Rsup(π̂, ϖ)−Rsup(π
∗, ϖ) = Rsup(π̂, ϖ)− R̂sup(π̂, ϖ) + R̂sup(π̂, ϖ)− R̂sup(π

∗, ϖ)︸ ︷︷ ︸
≤0

+R̂sup(π
∗, ϖ)−Rsup(π

∗, ϖ)

≤ 2 sup
π∈Π

|R̂sup(π,ϖ)−Rsup(π,ϖ)|,

where we have used that π̂ minimizes R̂sup(π
∗, ϖ).

We further decompose R̂sup(π,ϖ)−Rsup(π,ϖ) into

R̂sup(π,ϖ)−Rsup(π,ϖ) = R̂sup(π,ϖ)− R̃(π, ĉ(·),m(·);ϖ) (a)

+ R̃(π, c(·),m(·);ϖ)−Rsup(π,ϖ) (b)

+ R̃(π, ĉ(·),m(·);ϖ)− R̃(π, c(·),m(·);ϖ)

We will now control terms (a) and (b), following closely the proof of Lemma 4 in Athey and Wager
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(2021). First note that we have the decompositions

Γ̂1(X,D, Y )−m(1, X) = m̂(1, X)−m(1, X) +
D

d̂(X)
{Y − m̂(1, X)}

= {m̂(1, X)−m(1, X)} ×
(
1− D

d(X)

)
+

D

d̂(X)
{Y −m(1, X)}

+

(
D

d̂(X)
− D

d(X)

)
× {m(1, X)− m̂(1, X)}

and

Γ̂0(X,D, Y )−m(0, X) = m̂(0, X)−m(0, X) +
1−D

1− d̂(X)
{Y − m̂(0, X)}

= {m̂(0, X)−m(0, X)} ×
(
1− 1−D

1− d(X)

)
+

1−D

1− d̂(X)
{Y −m(0, X)}

+

(
1−D

1− d̂(X)
− 1−D

1− d(X)

)
× {m(0, X)− m̂(0, X)} .

With this, we can compute the expectation of term (a):

E[(a)] = E
[
π(X)

(
ĉ1(X)

{
Γ̂1(X,D, Y )−m(1, X)

}
+ ĉ0(X)

{
Γ̂0(X,D, Y )−m(0, X)

})]
= E

[
π(X)ĉ1(X)

(
D

d̂(X)
− D

d(X)

)
× (m(1, X)− m̂(1, X))

]

+ E

[
π(X)ĉ0(X)

(
1−D

1− d̂(X)
− 1−D

1− d(X)

)
× (m(0, X)− m̂(0, X))

]
,

where we have used the fact that

E
[
π(X)ĉ1(X) (m̂(1, X)−m(1, X))×

(
1− D

d(X)

)]
= 0,

E

[
π(X)ĉ1(X)

D

d̂(X)
{Y −m(1, X)}

]
= 0,

E
[
π(X)ĉ0(X) {m̂(0, X)−m(0, X)} ×

(
1− 1−D

1− d(X)

)]
= 0,

E

[
π(X)ĉ0(X)

1−D

1− d̂(X)
{Y −m(0, X)}

]
= 0,

because ĉ, m̂, and d̂ come from a different sample.
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The expectation of term (b) is

E[(b)] = E[π(X) {c1(X)m(1, X) + c0(X)m(0, X) + c(X)}]−Rsup(π,ϖ) = 0.

Now define a function f : X → R as

fπ(x, d, y) ≡ π(x)
[
ĉ1(x)

{
Γ̂1(x, d, y)−m(1, x)

}
+ ĉ0(x)

{
Γ̂0(x, d, y)−m(0, x)

}]
+π(x) {c1(x)m(1, x) + c0(x)m(0, x) + c(x)}

and the function class F ≡ {fπ | π ∈ Π} as the set of all functions f as we vary π in Π.

With this notation, we can write the sum of terms (a) and (b) as

(a) + (b) =
1

n

n∑
i=1

fπ(Xi, Di, Yi)−Rsup(π,ϖ),

and from above the expectation of fπ(Xi, Di, Yi) is

E[fπ(X,D, Y )] = Rsup(π,ϖ) + E

[
π(X)ĉ1(X)

(
D

d̂(X)
− D

d(X)

)
× (m(1, X)− m̂(1, X))

]

+ E

[
π(X)ĉ0(X)

(
1−D

1− d̂(X)
− 1−D

1− d(X)

)
× (m(0, X)− m̂(0, X))

]
.

Putting together the pieces, we can write

|(a) + (b)| =

∣∣∣∣∣ 1n
n∑

i=1

fπ(Xi, Di, Yi)−Rsup(π,ϖ)

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

fπ(Xi, Di, Yi)− E[fπ(X,D, Y )] + E[fπ(X,D, Y )]−Rsup(π,ϖ)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

fπ(Xi, Di, Yi)− E[fπ(X,D, Y )]

∣∣∣∣∣
+

∣∣∣∣∣E
[
π(X)ĉ1(X)

(
D

d̂(X)
− D

d(X)

)
× (m(1, X)− m̂(1, X))

]∣∣∣∣∣
+

∣∣∣∣∣E
[
π(X)ĉ0(X)

(
1−D

1− d̂(X)
− 1−D

1− d(X)

)
× (m(0, X)− m̂(0, X))

]∣∣∣∣∣ .
Now notice that for ϖ ∈ {πO, π1, πo}, |c1(x)m(1, x) + c0(x)m(0, x) + c(x)|, |c1(x)|, and |c0(x)| are
bounded by some constant U depending on the utilities. From the decompositions above, by the strict
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overlap condition in Assumption 1, and because Yi ∈ {0, 1},∣∣∣Γ̂1(Xi, Di, Yi)−m(1, x)
∣∣∣ ≤ ∣∣∣∣{m̂(1, Xi)−m(1, Xi)} ×

(
1− Di

d(Xi)

)∣∣∣∣
+

∣∣∣∣∣ Di

d̂(Xi)
× {Yi −m(1, Xi)}

∣∣∣∣∣
+

∣∣∣∣∣
(

Di

d(Xi)
− Di

d̂(Xi)

)
× {m̂(1, Xi)−m(1, Xi)}

∣∣∣∣∣
≤ 1− η

η
∥m̂−m∥∞ +

1

η
+

∥∥∥∥1d − 1

d̂

∥∥∥∥
∞
∥m̂−m∥∞

≤ 1− η

η
+

1

η
+

1

η
− 1

1− η

≤ 3

η
.

Similarly,∣∣∣Γ̂0(Xi, Di, Yi)−m(0, x)
∣∣∣ ≤ 1− η

η
∥m̂−m∥∞ +

1

η
+

∥∥∥∥ 1

1− d
− 1

1− d̂

∥∥∥∥
∞
∥m̂−m∥∞ ≤ 3

η
.

This combines to give that for any x, d, y,

|fπ(x, d, y)| ≤ U × 6 + η

η
.

This also shows that the Rademacher complexity of F is:

Rn(F) = 2U × 6 + η

η
×Rn(Π).

So by Wainwright (2019) Theorem 4.2, for any n ≥ 1 and t ≥ 0,

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≤ 2U × 6 + η

η
×
(
2Rn(Π) +

t√
n

)
,

with probability at least 1− exp
(
− t2

2

)
.

Finally, notice that by the Cauchy-Schwarz inequality,∣∣∣∣∣E
[
π(X)ĉ1(X)

(
D

d̂(X)
− D

d(X)

)
× (m(1, X)− m̂(1, X))

]∣∣∣∣∣
≤ U

√√√√√E

( D

d̂(X)
− D

d(X)

)2
E

[
(m(1, X)− m̂(1, X))2

]
,
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and ∣∣∣∣∣E
[
π(X)ĉ0(X)

(
1−D

1− d̂(X)
− 1−D

1− d(X)

)
× (m(0, X)− m̂(0, X))

]∣∣∣∣∣
≤ U

√√√√√E

( 1−D

1− d̂(X)
− 1−D

1− d(X)

)2
E

[
(m(0, X)− m̂(0, X))2

]
.

Combining these two bounds gives the result.

Lemma J.2. For ug ≥ ul,

sup
π∈Π

∣∣∣R̃sup(π, ĉ,m;π∗
1)− R̃sup(π, c,m, π∗

1)
∣∣∣ ≤ (ug − ul)×

(
R+(δ̂+) +

t

2
√
n

)
,

with probability at least 1− e−
t2

2 .

Proof of Lemma J.2. First we have the bound,

R̃sup(π, ĉ,m;π∗
1)− R̃sup(π, c,m, π∗

1) =
ug − ul

n

n∑
i=1

π(Xi)
{
δ̂+(Xi)− δ+(Xi)

}
{m(1, Xi) +m(0, Xi)− 1}

≤ ug − ul
n

n∑
i=1

1

{
δ̂+(Xi) ̸= δ+(Xi)

}
|m(1, Xi) +m(0, Xi)− 1| .

Now note that

E
[
1

{
δ̂+(Xi) ̸= δ+(Xi)

}
|m(1, Xi) +m(0, Xi)− 1|

]
= R+(δ̂+)

For each i, since 1

{
δ̂+(Xi) ̸= δ+(Xi)

}
|m(1, Xi) +m(0, Xi)− 1| is bounded between 0 and 1, it is

sub-Gaussian with scale parameter 1. Furthermore, they are independent across i = 1, . . . , n, so by

the Hoeffding bound,

Pr

(
1

n

n∑
i=1

1

{
δ̂+(Xi) ̸= δ+(Xi)

}
|m(1, Xi) +m(0, Xi)− 1| ≤ R+(δ̂+) +

t√
n

)
≥ 1− exp

(
−2t2

)
.

Combining this with the deterministic bound above gives the result.
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Lemma J.3. For ug ≥ ul,

sup
π∈Π

∣∣∣R̃sup(π, ĉ,m;π∗
o)− R̃sup(π, c,m, π∗

o)
∣∣∣

≤ 2×
{
Rsup(π̂1, π

1)−Rsup(π
∗
1, π

1)
}
+ 2×

{
Rsup(π̂O, π

O)−Rsup(π
∗
O, π

O)
}

+(ug − ul)×
(
R+(δ̂+) +Rτ (δ̂τ ) +

t

2
√
n

)
,

with probability at least 1− 2e−
t2

2 .

Proof of Lemma J.3. Define

Ľb(x) = {ul + (ug − ul)δ̂τ (x)}m(1, x)− {ul + (ug − ul)δ̂τ (x)}m(0, x)− c,

Ǔb(x) = {ug − (ug − ul)δ̂+(x)}m(1, x)− {ul + (ug − ul)δ̂+(x)}m(0, x) + (ug − ul)δ̂+(x)− c,

Q(x) = π∗
O(x)Ub(x) + (1− π∗

1(x))Lb(x) + (1− π∗
O(x))π

∗
1(x)(Ub(x) + Lb(x)),

Q̃(x) = π̂O(x)Ub(x) + (1− π̂1(x))Lb(x) + (1− π̂O(x))π̂1(x)(Ub(x) + Lb(x)),

Q̌(x) = π̂O(x)Ǔb(x) + (1− π̂1(x))Ľb(x) + (1− π̂O(x))π̂1(x)(Ǔb(x) + Ľb(x)).

With these definitions, we can write

∣∣∣R̃sup(π, ĉ,m;π∗
o)− R̃sup(π, c,m, π∗

o)
∣∣∣ = ∣∣∣∣∣ 1n

n∑
i=1

π(X){Q(Xi)− Q̌(Xi)}

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

π(X){Q(Xi)− Q̃(Xi)}+
1

n

n∑
i=1

π(X){Q̃(Xi)− Q̌(Xi)}

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣Q(Xi)− Q̃(Xi)
∣∣∣+ 1

n

n∑
i=1

∣∣∣Q̃(Xi)− Q̌(Xi)
∣∣∣ .

Working with the first term:

Q(x)− Q̃(x) = (π̂1(x)− π∗
1(x))Ub(x)− (π̂1(x)π̂O(x)− π∗

1(x)π
∗
O(x))(Ub(x) + Lb(x)) + (π̂O(x)− π∗

O(x))Ub(x)

= (π̂O(x)− π∗
O(x))× (−Lb(x)π

∗
1(x) + (1− π∗

1(x))Ub(x)) (∗)

+ (π̂1(x)− π∗
1(x))× (−Lb(x)π̂O(x) + (1− π̂O(x))Ub(x)) (∗∗)

Notice that π∗
1
(x) = 0 ⇔ Ub(x) ≤ 0, since Lb(x) ≤ Ub(x), this implies that when π∗

1
(x) = 0,

|Ub(x)| ≤ |Lb(x)|. Therefore,
|(∗)| ≤ 1{π̂O(x) ̸= π∗

O(x)}|Lb(x)|.
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Similarly, if π∗
O
(x) = 1, then 0 ≤ Lb(x) ≤ Ub(x), so |Lb(x)| ≤ |Ub(x)|. So,

|(∗∗)| ≤ 1{π̂1(x) ̸= π∗
1(x)}1{π̂O(x) = π̂O(x)}| − Lb(x)π

∗
O(x) + (1− π∗

O(x))Ub(x)|

+ 1{π̂O(x) ̸= π∗
O(x)}1{π̂1(x) ̸= π∗

1(x)}| − π̂O(x)Lb(x) + (1− π̂O(x))Ub(x)|

≤ 1{π̂1(x) ̸= π∗
1(x)}1{π̂O(x) = π̂O(x)}|Ub(x)|

+ 1{π̂O(x) ̸= π∗
O(x)}1{π̂1(x) ̸= π∗

1(x)}|Lb(x)|+ 1{π̂O(x) ̸= π∗
O(x)}1{π̂1(x) ̸= π∗

1(x)}|Ub(x)|

≤ 1{π̂1(x) ̸= π∗
1(x)}|Ub(x)|+ 1{π̂O(x) ̸= π∗

O(x)}|Lb(x)|+ 1{π̂1(x) ̸= π∗
1(x)}|Ub(x)|

≤ 21{π̂1(x) ̸= π∗
1(x)}|Ub(x)|+ 1{π̂O(x) ̸= π∗

O(x)}|Lb(x)|.

Putting together the pieces, we get that

|Q(x)− Q̃(x)| ≤ 21{π̂O(x) ̸= π∗
O(x)}|Lb(x)|+ 21{π̂1(x) ̸= π∗

1(x)}|Ub(x)|.

So the expectation is bounded by two regret terms:

E

[
1

n

n∑
i=1

∣∣∣Q(Xi)− Q̃(Xi)
∣∣∣] ≤ 2E [1{π̂O(X) ̸= π∗

O(X)}|Lb(X)|] + 2E [1{π̂1(X) ̸= π∗
1(X)}|Ub(X)|]

= 2× {Rsup(π̂1, π
1)−Rsup(π

∗
1, π

1)}+ 2× {Rsup(π̂O, π
O)−Rsup(π

∗
O, π

O)}.

Next,
∣∣∣Q(Xi)− Q̃(Xi)

∣∣∣ is bounded between 0 and ug − ul, so by the Hoeffding bound it concentrates

around its expectation:

Pr

(
1

n

n∑
i=1

∣∣∣Q(Xi)− Q̃(Xi)
∣∣∣ ≤ 2{Rsup(π̂1, π

1)−Rsup(π
∗
1, π

1)}+ 2{Rsup(π̂O, π
O)−Rsup(π

∗
O, π

O)}+ t√
n

)

≥ 1− exp

(
− 2t2

(ug − ul)2

)
.

Now for the second term:

|Q̃(x)− Q̌(x)| =
∣∣(Lb(x)− Ľb(x))(1− π̂1 + (1− π̂O)π̂1) + (Ub(x)− Ǔb(x))(π̂O + (1− π̂O)π̂1)

∣∣
≤ |Lb(x)− Ľb(x)|+ |Ub(x)− Ǔb(x)|.

To re-write this, notice that

|Lb(x)− Ľb(x)| = (ug − ul)1{δ̂τ (x) ̸= δτ (x)}|m(1, x)−m(0, x)|,

|Ub(x)− Ǔb(x)| = (ug − ul)1{δ̂+(x) ̸= δ+(x)}|m(1, x) +m(0, x)− 1|.

So,

|Q̃(x)− Q̌(x)|
ug − ul

≤ 1{δ̂τ (x) ̸= δτ (x)}|m(1, x)−m(0, x)|+ 1{δ̂+(x) ̸= δ+(x)}|m(1, x) +m(0, x)− 1|.
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Taking the expectation, we see that it is bounded by:

1

ug − ul

1

n

n∑
i=1

∣∣∣Q̃(Xi)− Q̌(Xi)
∣∣∣ ≤ E

[
1{δ̂τ (x) ̸= δτ (X)}|m(1, X)−m(0, X)|

]
+ E

[
1{δ̂+(X) ̸= δ+(x)}|m(1, X) +m(0, X)− 1|

]
= R+(δ̂+) +Rτ (δ̂τ ).

Again noting that |Q̃(Xi) − Q̌(Xi)| is bounded between 0 and ug − ul, and applying the Hoeffding

inequality gives

Pr

(
1

n

n∑
i=1

∣∣∣Q̃(Xi)− Q̌(Xi)
∣∣∣ ≤ (ug − ul)×

(
R+(δ̂+) +Rτ (δ̂τ ) +

t√
n

))
≥ 1− exp

(
−2t2

)
.

Combining these two bounds via the union bound gives the result.

Lemma J.4. Let δ̂+(x) = 1{m̂(1, x) + m̂(0, x) − 1 ≥ 0} and δ̂τ (x) = 1{m̂(1, x) − m̂(0, x)}. Under

Assumption 2,

R+(δ̂+) ≤ 21+αC∥m̂−m∥1+α
∞ ,

Pr(δ̂+(X) ̸= δ+(X)) ≤ 2αC∥m̂−m∥α∞.

Under Assumption H.1(b),

Rτ (δ̂τ ) ≤ 21+αC∥m̂−m∥1+α
∞ ,

Pr(δ̂τ (X) ̸= δτ (X)) ≤ 2αC∥m̂−m∥α∞.

Proof of Lemma J.4. This Lemma directly follows Lemma 5.1 in Audibert and Tsybakov (2007). Note

that if δ̂+(x) ̸= δ+(x), then the error is greater than the margin, i.e.,

|m̂(1, x)−m(1, x) + m̂(0, x)−m(0, x)| ≥ |m(1, X) +m(0, X)− 1|

So,

Pr(δ̂+(X) ̸= δ+(X)) ≤ Pr(|m̂(1, X)−m(1, X) + m̂(0, X)−m(0, X)| ≥ |m(1, X) +m(0, X)− 1|)

≤ C(∥m̂(1, ·)−m(1, ·)∥∞ + ∥m̂(0, ·)−m(0, ·)∥∞)α.
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By a similar argument,

R+(δ̂+)−R+(δ+) = E
[
1

{
δ̂+(X) ̸= δ+(X)

}
|m(1, X) +m(0, X)− 1|

]
≤ E [1 {|m̂(1, X)−m(1, X) + m̂(0, X)−m(0, X)| ≥ |m(1, X) +m(0, X)− 1|}

× |m(1, X) +m(0, X)− 1|]

≤ E [1 {|m̂(1, X)−m(1, X) + m̂(0, X)−m(0, X)| ≥ |m(1, X) +m(0, X)− 1|}

× |m(1, X)− m̂(1, X) +m(0, X)− m̂(0, X)|]

≤ (∥m̂(1, ·)−m(1, ·)∥∞ + ∥m̂(0, ·)−m(0, ·)∥∞)

× Pr(|m̂(1, X)−m(1, X) + m̂(0, X)−m(0, X)| ≥ |m(1, X) +m(0, X)− 1|)

≤ C(∥m̂(1, ·)−m(1, ·)∥∞ + ∥m̂(0, ·)−m(0, ·)∥∞)1+α.

Similarly, if δ̂τ (x) ̸= δτ (x), then

|m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)| ≥ |m(1, x)−m(0, x)|.

By the same argument as above,

Pr(δ̂τ (X) ̸= δτ (X)) ≤ C(∥m̂(1, ·)−m(1, ·)∥∞ + ∥m̂(1, ·)−m(1, ·)∥∞)α,

and

Rτ (δ̂τ )−Rτ (δτ ) = E
[
1

{
δ̂τ (Xi) ̸= δτ (Xi)

}
|m(1, Xi)−m(0, Xi)|

]
≤ E [1 {|m(1, X)− m̂(1, X)−m(0, X) + m̂(0, X)| ≥ |m(1, X)−m(0, X)|}

× |m(1, X)−m(0, X)|]

≤ E [1 {|m(1, X)− m̂(1, X)−m(0, X) + m̂(0, X)| ≥ |m(1, X)−m(0, X)|}

× |m(1, X)− m̂(1, X)−m(0, X) + m̂(0, X)|]

≤ (∥m̂(1, ·)−m(1, ·)∥∞ + ∥m̂(0, ·)−m(0, ·)∥∞)

× Pr(|m(1, X)− m̂(1, X)−m(0, X) + m̂(0, X)| ≥ |m(1, X)−m(0, X)|)

≤ C(∥m̂(1, ·)−m(1, ·)∥∞ + ∥m̂(0, ·)−m(0, ·)∥∞)1+α.

Lemma J.5. Let ug ≥ ul. Define

L̂b(x) = {ul + δ̂τ (x)(ug − ul)}{m̂(1, x)− m̂(0, x)} − c,

Ûb(x) = {ug − (ug − ul)δ̂+(x)}m̂(1, x)− {ul + (ug − ul)δ̂+(x)}m̂(0, x) + (ug − ul)δ̂+(x)− c.

and let π̂plug
O

(x) = 1{L̂b(x) ≥ 0} and π̂plug
1

(x) = 1{Ûb(x) ≥ 0} be the plug-in estimates of the minimax
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optimal policies relative to never or always treating. Under Assumption H.1(d), the excess worst case

regret for π̂plug
O

relative to π∗
O

is

Rsup(π̂
plug
O

, πO)−Rsup(π
∗
O, π

O) ≤ uαgC(2∥m−m̂∥∞)1+α+2ugC∥m−m̂∥∞ Pr
(
δ̂τ (X) ̸= δτ (X)

)
+(ug−ul)Rτ (δ̂τ ).

Under Assumption H.1(c), the excess worst case regret for π̂plug
1

relative to π∗
1
is

Rsup(π̂
plug
1

, π1)−Rsup(π
∗
O, π

O) ≤ uαgC(2∥m−m̂∥∞)1+α+2ugC∥m−m̂∥∞ Pr
(
δ̂+(X) ̸= δ+(X)

)
+(ug−ul)R+(δ̂+).

Proof of Lemma J.5. First, as in the proof of Lemma J.4, note that π̂plug
O

(x) ̸= π∗
O
(x) implies that

|Lb(x)− L̂b(x)| ≥ |Lb(x)|. Now, if δ̂τ (x) = δτ (x), then

|Lb(x)− L̂b(x)| = |((1− δτ (x))ul + δτ (x)ug)(m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x))|

≤ ug|m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)|,

because |(1−δτ (x))ul+δτ (x)ug| = |ul+(ug−ul)δτ (X)| ≤ max{ug, ul} ≤ ug in the case where ug ≥ ul.

If δ̂τ (x) ̸= δτ (x) and δτ (x) = 1, we have that

|Lb(x)− L̂b(x)| = |ul(m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)) + (ug − ul)(m(1, x)−m(0, x))|

≤ ul|m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)|+ (ug − ul)|m(1, x)−m(0, x)|

≤ ug|m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)|+ (ug − ul)|m(1, x)−m(0, x)|.

Similarly, if δ̂τ (x) ̸= δτ (x) and δτ (x) = 0,

|Lb(x)− L̂b(x)| = |ug(m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x))− (ug − ul)(m(1, x)−m(0, x))|

≤ ug|m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)|+ (ug − ul)|m(1, x)−m(0, x)|.

Putting together the pieces, we get that

Rsup(π̂
plug
O

, πO)−Rsup(π
∗
O, π

O) = E
[
1{π̂plug

O
̸= π∗

O}|Lb(x)|
]

≤ E
[
1{|Lb(X)− L̂b(X)| ≥ |Lb(X)|}|L(X)|

]
≤ E

[
1{|Lb(X)− L̂b(X)| ≥ |Lb(X)|}|Lb(X)− L̂b(X)|

]
= E

[
1{|Lb(X)− L̂b(X)| ≥ |Lb(X)|}|Lb(X)− L̂b(X)|1{δ̂τ (X) = δτ (X)}

]
(∗)

+ E
[
1{|Lb(X)− L̂b(X)| ≥ |Lb(X)|}|Lb(X)− L̂b(X)|1{δ̂τ (X) ̸= δτ (X)}

]
.

(∗∗)
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By Hölder’s inequality and the margin condition (Assumption H.1(d)), the first term is

(∗) ≤ E [1{|((1− δτ (x))ul + δτ (X)ug)(m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x))| ≥ |L(X)|}

× |m(1, X)− m̂(1, X)−m(0, X) + m̂(0, X)|]

≤ E [1{ug|m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)| ≥ |L(X)|}

× |m(1, X)− m̂(1, X)−m(0, X) + m̂(0, X)|]

≤ E [1{ug|m(1, x)− m̂(1, x)−m(0, x) + m̂(0, x)| ≥ |L(X)|}]× 2∥m− m̂∥∞
≤ Cuαg (2∥m− m̂∥∞)1+α.

Similarly, we can bound the second term as

(∗∗) ≤ E
[
|Lb(X)− L̂b(X)|1{δ̂τ (X) ̸= δτ (X)}

]
≤ E

[
ug|m(1, X)− m̂(1, X)−m(0, X) + m̂(0, X)|1{δ̂τ (X) ̸= δτ (X)}

]
+ (ug − ul)E

[
|m(1, X)−m(0, X)|1{δ̂τ (X) ̸= δτ (X)}

]
≤ ug2C∥m− m̂∥∞ Pr

(
δ̂τ (X) ̸= δτ (X)

)
+ (ug − ul)Rτ (δ̂τ ).

Combining these two terms gives the first result.

Now, also note that π̂plug
1

(x) ̸= π∗
1
(x) implies that |Ub(x)− Ûb(x)| ≥ |Ub(x)|. We again break this error

term into cases depending on δ̂+(x) and δ+(x). First, if δ̂+(x) = δ+(x), then

|Ub(x)− Ûb(x)| =

{
|ug(m(1, x)− m̂(1, x))− ul(m(0, x)− m̂(0, x))|, δ+(x) = 0

|ul(m(1, x)− m̂(1, x))− ug(m(0, x)− m̂(0, x))|, δ+(x) = 1

≤ ug|m(1, x)− m̂(1, x)|+ ug|m(0, x)− m̂(0, x)|.

If δ̂+(x) ̸= δ+(x)

|Ub(x)− Ûb(x)| =

{
|ug(m(1, x)− m̂(1, x))− ul(m(0, x)− m̂(0, x)) + (ug − ul)(m(1, x) +m(0, x)− 1)|, δ+(x) = 0

|ul(m(1, x)− m̂(1, x))− ug(m(0, x)− m̂(0, x))| − (ug − ul)(m(1, x) +m(0, x)− 1), δ+(x) = 1

≤ ug|m(1, x)− m̂(1, x)|+ ug|m(0, x)− m̂(0, x)|+ (ug − ul)|m(1, x) +m(0, x)− 1|.

Mirroring the decomposition above, we have that
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Rsup(π̂
plug
1

, π1)−Rsup(π
∗
1, π

1) = E
[
1{π̂plug

1
̸= π∗

1}|Ub(x)|
]

≤ E
[
1{|Ub(X)− Ûb(X)| ≥ |Ub(X)|}|Ub(X)|

]
≤ E

[
1{|Ub(X)− Ûb(X)| ≥ |Ub(X)|}|Ub(X)− Ûb(X)|

]
= E

[
1{|Ub(X)− Ûb(X)| ≥ |Ub(X)|}|Ub(X)− Ûb(X)|1{δ̂+(X) = δ+(X)}

]
+ E

[
1{|Ub(X)− Ûb(X)| ≥ |Ub(X)|}|Ub(X)− Ûb(X)|1{δ̂+(X) ̸= δ+(X)}

]
≤ E [1{ug|m(1, X)− m̂(1, X)|+ ug|m(0, X)− m̂(0, X)| ≥ |Ub(X)|}

× (ug|m(1, X)− m̂(1, X)|+ ug|m(0, X)− m̂(0, X)|)]

+ E
[
ug|m(1, x)− m̂(1, x)|1{δ̂+(X) ̸= δ+(X)}

]
+ E

[
ug|m(0, x)− m̂(0, x)|1{δ̂+(X) ̸= δ+(X)}

]
+ E

[
(ug − ul)|m(1, x) +m(0, x)− 1|1{δ̂+(X) ̸= δ+(X)}

]
≤ uαgC(2∥m− m̂∥∞)1+α + ugC2∥m− m̂∥∞P (δ̂+(X) ̸= δ+(X))

+ (ug − ul)R+(δ̂+).
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