Supplement to “Policy Learning with Asymmetric Counterfactual
Utilities”

A Constrained optimization formulation

While we have arrived at the objective defined in Eqn (2) through a utility-based framework, we can

also characterize this decision problem in the following constrained form,

min Pr(Y (x(X)) < Y(1))
) <

)
subject to Pr(Y(7(X)) < Y (0)) <4, (A.1)
Elr(X)] < B,

where Pr(Y(n(X)) < Y(0)) = Pr(Y(1) = 0,Y(0) = 1,7n(X) = 1) and Pr(Y(n(X)) < Y(1)) =
Pr(Y(1) =1,Y(0) = 0,7(X) = 0) represent the probabilities that policy 7 gives a harmful treatment

or fails to give a useful treatment for a randomly selected member of the population, respectively.

In this formulation, the goal is to find a policy 7 that minimizes the expected proportion of false
negatives — failing to give a useful treatment — subject to a constraint on the expected proportion
of false positives — providing a harmful treatment — and the treatment budget — the proportion of
units treated. Thus, the decision problem given in Eqn (A.1) allows the policy maker to explicitly
state their preferences via the constraint on the number of false positives and the budget, rather than
implicitly through the utility function in R, (7, @). It is also possible to swap the constraints and
the objective to minimize the proportion of false positives subject to a constraint on the proportion of
false negatives. We can also interpret Eqn (A.1) through the lens of multiple testing, for each unit i
we have a null hypothesis Hy; : Y;(1) < Y;(0), i.e. that unit 7 is harmed by treatment. We can view the
policy 7(X;) as determining whether to reject Hy; or not. Then, the constraint on the proportion of
false positives in Eqn (A.1) is a scaling of the false detection rate, where the budget constraint limits

the number of rejections, and the objective is a measure of the average power under the alternative

However, note that Pr(Y(7(X)) < Y(0)) = E[n(X)eo1(X)] and Pr(Y(n(X)) < Y(1)) = E[(1 —
(X)) (7(x)4e01(X))]. Thus, we can view the expected utility loss Re,, (7, @) for a constant comparison
policy — either always or never providing treatment — as a Lagrangian relaxation of the decision

problem defined in Eqn (A.1), where some choice of the false-positive constraint § and budget B will

correspond to a particular value of the utility ratio uguful and cost ratio ;=. This is in contrast to
g g
the regret relative to the oracle policy that maximizes the true value, which involves unidentifiable

terms in the relative weights on 7(z) and eg;(x), so it cannot be written as a Lagrangian relaxation
of Eqn (A.1).
B Connection to maximin policies

Under the maximin approach, we find a policy 7w that maximizes the worst-case expected utility. In

this appendix we connect the minimax loss policies relative to never and always treating to maximin



policies under particular choices of the utility. To do so, we need to specify the utilities under no

treatment, u(0;y1,y0). We consider two cases.

First, say that u(0;y1,y0) = 0 for all principal strata yi,yo. In that case, the expected utility is
V(m) =E[n(X) {ug(X) + (ug — w)eo1 (X) — c¢}] = —Re(m, mp).

Therefore the maximin policy is equivalent to the minimax loss policy relative to never treating,

To-
Alternatively, say that the utility function under no treatment mirrors that under treatment, i.e.,
1(0;0,0) = u(0;1,1) =0, u(0;0,1) = wy, u(0;1,0) = —u,.
In this case, the expected utility is
V(r) =E[(7m(X) — 1) {ugm(X) + (ug — w)eo1 (X) — ¢}] —c = —Re(m,m1) — c.
So, the maximin policy is equivalent to the minimax loss policy relative to always treating, 7j.

C Algorithms for learning minimax loss policies when estimating

nuisance functions via empirical risk minimization

Algorithm 1 Estimated minimax policy # relative to the always-treat policy 7! (when ug > ;) and
the never-treat policy 7® (when uy < )

Input: Policy classes IT and Ay
Output: Estimated minimax policy # relative to 7! or 7
1: Find 4+ by solving

O

N R = ~

2: Compute weighting and cost functions

A ~
A~

6T (@) = uy + 84 () (wr — ug), & (&) = —uy — 84 () (g — wr) and & (z) = & () (g — u).

3: Find a policy 7 € arg min Rsup(Tr, w).
mell




Algorithm 2 Empirical minimax policy 7 relative to the oracle policy n°

Input: Policy classes II, IT', A, and A,
Output: Empirical minimax policy 7 relative to the oracle 7°
1: Find 4 by solving

L -~ -
i =, 20X {0, Dy, ¥i) + To(Xi, D1, Vi) — 1

2: if uy > u; then
3: Find 7y via Algorithm 1 with policy class IT'.
Find 7o by solving
n
i 1ZW(X)[U {f (X;, Dy, Vi) — Do(X;, D Y)} c}
min — — A . D;,Y;) — DY)\ —el.
rell! ni:l % g 1 7 iy L4 0 % iy L1
5: else
Find 7 via Algorithm 1 with policy class IT'.
Find 7y by solving
n
i 1Z7T(X)[u {f (X;,Di,Y:) — To(X;, D Y)} c}
min — — . . D;,Y;) — DY) L — el
relll n < 7 q 1 7 7y L1 0 % iy L
8: end if
9: Find 4, by solving

I -~ =

min — 21 d(X;5) {Fl(Xu D;,Y;) — To(X;, Dy, YE)} :
1=

10: Compute weighting and cost functions &7’ (z),é8" (), & (x) via Theorem 3.1.

11: Find the empirical minimax policy 7 € argminRg,p (7, 7°).
well

D Asymmetric utilities based on observed outcomes

Although it is possible to construct asymmetric utilities without relying on principal strata (Babii
et al., 2021), doing so places additional restrictions on the structure of utilities. Consider the following
utility function based on observed outcomes alone, u(d, Y (d)) = u11dY;(d) +ujod{1 — Y;(d)} +uo1 (1 —
d)Y (d) +upo(1 —d){1 —Yi(d)}. This utility function includes the interaction between the decision and
the observed outcome. Indeed, for a binary decision and outcome, this represents the most general

utility that could be specified using the observed outcome.

Table D.1 summarizes the utility gain/loss for treating a unit that belongs to each principal stratum
under this setting. With an interaction term, this utility has different utility gains/losses in principal
strata (Y (1) = 1,Y(0) = 0) and (Y(1) =0,Y(0) = 1), allowing for the asymmetry in the utilities as
required by the Hippocratic principle. This utility, however, still places restrictions on its structure.
In particular, it requires that the difference between the utility gains in principal strata (Y (1) =
1,Y(0) = 1) and (Y(1) = 0,Y(0) = 1) is the same as that between the utility losses in principal



N(O=1 Y0 =0

Harmless Useful
Yi(1) =1

U1 — UL U1l — UEO

Harmful Useless
Yi(1) =0

u1p — 2up1 U1 — Uo1 — U00

Table D.1: Asymmetric utilities gain/loss for treating a unit, u(1,Y;(1)) — u(0,Y;(0)) based on the
observed outcomes for each of the principal strata. The utility function is given by wu(d,Y;(d)) =
u11dY;(d) + ui0d{1 — Y;(d)} 4+ up1(1 — d)Y;(d) + uoo(1 — d){1 — Y;(d)}. Each cell corresponds to the
principal stratum defined by the values of the two potential outcomes, Y;(1) and Y;(0). Each entry
represents the utility gain/loss of treatment assignment, relative to no treatment, for a unit that
belongs to the corresponding principal stratum.

strata (Y(1) =1,Y(0) =0) and (Y (1) = 0,Y(0) = 0). Therefore, it might be violated if the difference
between harmful and harmless decisions is much greater than that between useful and useless decisions.
Thus, a fully general construction of asymmetric utilities requires the use of principal strata, and
defining the utility function based on both potential outcomes, u(d; Y (1),Y(0)), with utility functions

like the one above as a special case.

E Simulation study

As the results in Section 4.2 show, the misclassification rates of the underlying nuisance classifiers
are important in controlling the excess regret due to estimating the weighting and cost functions that
make up the worst-case regret. Additionally, although the minimax policies we consider are designed
to minimize the worst-case regret, in some cases it may be possible that the true, unidentifiable regret
may also be small. To inspect how the misclassification rates and the true regret behave in finite
samples as the sample size increases, we now conduct a brief simulation study, where we can know the

true values of the principal scores ey, 4, ().

We first generate n 1-dimensional i.i.d. covariates X; ~ N(0,2). We then construct log-linear principal

scores as
€Xp (ay1yo + xﬁywo)

1 1
>y=0 Zy(’):o exp (ayiy() + wﬂyi%)

where (g0, a10, 201, 011) = (.2,.15,0,0), Byy ~ N(0,40) for (yi,y0) € {(0,0),(1,0),(0,1)}, and
B11 = 0. We then jointly sample potential outcomes {Y;(1),Y;(0)} according to the principal scores

Cy1y0 (:C) = )

at covariate value X;. In this simulation study, we consider a randomized control trial with binary

treatment D; sampled independently as Bernoulli random variables with probability one half.

For each value of sample size n € {100, 500, 1000, 5000, 10000}, we draw 1,000 samples according to
the above data generating process. In each simulation run, we find the minimax optimal policy with

respect to the oracle following Algorithm 2 with zero cost ¢ = 0, uy = 1, and u; varying between 0.6
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Figure E.1: Performance of nuisance classifiers and the minimax optimal policy relative to the oracle
across simulation runs. Panel (a) shows the misclassification rate for the nuisance classifiers 3+ (“More
likely in (1,1) stratum”) and 6, (“Positive CATE”), as well as the minimax policy relative to the never-
treat policy for u; = 0.833. Panel (b) shows the true regret of the minimax optimal policy relative to
the oracle, in the sample, for u, = 1 and as v; varies between 0.5 and 1.5.

and 1.4, where the value of u; changes within each simulation run.

We use the IPW scoring function and restrict all policy classes to be the set of linear thresholds, solving
the optimization problem exactly by direct search. Figure E.la shows the average misclassification
rate for the nuisance classifiers 5+ and 4,, as well as the misclassification rate for the the minimax
policy relative to always treating for u; = 0.833. As we expect, we see that these misclassification

rates decrease as the sample size increases.

Figure E.1b shows the true regret of the minimax policy relative to the oracle as w; varies. Since the
oracle is the best possible policy, this regret is always positive. The regret does decrease along with the
sample size, reflecting both the decrease in the nuisance misclassification rate and the decrease in the
worst-case excess regret when the nuisance classifiers are known. Notice, however, that the regret does
stop decreasing after a certain point, flattening out at a different level depending on the asymmetry in
the utility function. In highly asymmetric settings where wu, is small the regret is essentially flat. This
is due to the fundamental identifiability problem, and even with infinite data we cannot guarantee
that the true regret will be zero. In contrast, in the symmetric setting the regret continues to decrease

as the sample size increases.



F Implementation details for application to RHC

F.1 Details on cross-fitting procedure

In the empirical application to Right Heart Catheterization in Section 5, we use a three-fold cross
fitting procedure to estimate the nuisance functions. We then use the plug-in method to estimate the

nuisance classifiers. Below we present this procedure step-by-step
1. Randomly split the data into three folds.

2. For each fold k = 1,2, 3, estimate the outcome model 77 *(-,-) and d~*(-) on the two other folds

via gradient boosted decision stumps.

3. For each unit ¢, denote k[i] as the fold that it belongs to, then obtain estimates of the outcome
model 0 (w, X;), the propensity score " ]( X;), and the IP weight 'ywkM(Di, Xi).

4. Use these to construct cross-fit estimates of the DR scoring rule:
and cross-fit plug-in estimates of the classifiers

o, ['< Xi) = 1w (1, X5) + M0, Xx;) > 13,
o7k (X)) = 1{m (1, X;) — (0, X;) > 0},

1 4m k1, X5) — k0, X;) > i}7 Ug 2> U,

il (X = & 1m0, X)) > a0, X 42 b g < and 574X =0,
1 {1, X5) > M0, X0) + et g < and 677 (X) = 1,

1 dm—Hi(1, X,) — k0, X,) > } ug < g,

]Ikm( ) 1 ki, x;) > u mfk z]( L Xo) + } g > w and 07 Mil(x,) =0,
1 {m (1, X;) > Zl R0, X5) + “"“}7 uy > w and §7"(XG) = 1.

Then plug in the cross-fit classifiers into the formulas in Appendix H to create cross-fit estimates
of éikmw(Xz)

5. Solve Eqn (10) with the cross-fit estimates:

ﬁGargmln—lZw(Xl) {él—k[l]W(X) [Z](X D; Y)_’_cok[l]w(X) —k[l](X“D“}/Z) Mw(Xz)}

n
mell i—1

F.2 Minimax loss policies using a subset of covariates

It is often that case that we wish to construct minimax loss decision rules that only use a subset of
the covariates V C X. To consider this case, define my(w,v) = E[Y (w) | V = v] to be the expected

potential outcome conditioned on the subset of covariates v. Applying Theorem 3.1 to this setting,



we get that we can write the worst-case expected utility loss of 7 relative to w as
Reup(m, @) = C = E[m(X) {3, (V)my(1, V) + 5o (V)my (0, V) + 5 (V)]

where the weighting and cost functions ¢,(-), ¢, (-), ¢ (-) depend on the nuisance classifiers given

only the subset of the covariates V, i.e.

o1y(v) = K{my(1,v) + my(0,v) > 1},
orv(v) = Hmy(1,v) —my(0,v) > 0},
1<my(1,v) —myp(0,v) > é}, ug > uy,
Top(v) =4¢ Limy(l,v) > L‘émy((),v) + u—cg} , ug < and 64p(v) =0,
1{my(l,v) > 7:‘T‘l’my(O,v) + %ﬁﬂ} , ug <u and d1p(v) =1,
( 1<my(1,v) —my(0,v) > é}, ug < uy,
mip(v) =49 L1imy(l,v) > %my(o,v) + 1769} , ug > u; and 04y (v) =0,
1{my(l,v) > Z—‘l’my(O,v) + %ﬁﬂ} , ug > and d1p(v) = 1.

However, note that in order to use observable data, we must account for confounding, since in general
my(w,v) #E(Y |V =v,W = w) when V is a subset of X. We can however, still use the IPW or DR
scoring functions since my(w,v) = E[I", (X, D,Y) | V = v]. So we can write the worst-case expected
utility loss in terms of the scoring functions—where we condition on X—and the nuisance classifiers

only conditioning on the subset of covariates V:

Raup(m, @) = C = E[r(V) {ciu,(V)I'1(X, D, Y) + c5u(V)To(X, D, Y) + V= (V)}],

Constructing plug-in estimates of the nuisance classifiers involves estimating my (w,v) = E[T",, (X, D,Y) |
V' = v], which we can do by regressing the estimated DR scores on the subset of the covariates V', a
variant of the DR-learner (Kennedy, 2022).

Overall, this leads to the following steps:
1. Estimate the DR score L', (z,d,y) using all covariates X to account for confounding.

2. Estimate the expected potential outcomes given the subset of covariates V', my(w,v) using the

DR-learner and regressing the estimates fw(Xi, D;,Y;)on V.

3. Form plug in estimates of the nuisance classifiers, e.g. 0-(v) = 1{ry(1,v) — 1m(0,v)} and
o4 (v) = 1{ry(1,v) + mp(0,v) — 1 > 0}.

4. Get plug-in estimates of the weighting and cost functions ¢3,(V;), ¢, (Vi), ¢ (Vi), using the

estimates of the nuisance classifiers.



5. Find the policy 7 : V — {0,1} by solving

. 1 - ATT f ~ATT - A )0
min = 3 7(V) {e5(V)E1 (X, D,Y) + G(V)o(X, D, Y) + &= (V) }

=1

Finally, note that as in Section F.1 above, we can use cross-fit estimates here, where for each fold k,
both f;k and m;’“ are fit on data not in fold k. In principle we could do a multi-stage cross-fitting
procedure, where for each fold k, we further break up the fold into sub-folds and cross-fit m;’“ within
the fold k. We opt to use a simpler cross-fitting procedure here, noting that it may impact the quality

of the DR-learner estimate m;k

G Additional figures
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Figure G.1: Plug-in estimate of the decision rule d4 (v) to classify whether my(1,v) + my(0,z) > 1
using the estimated probability of survival and DNR status.
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H Additional results

Full statement of Theorem 3.1 Let 7 : X — {0,1} be a deterministic policy. For comparison
policy @ € {n®, 71}, the worst-case expected utility loss of 7 relative to w is

Rgp(m, @) = C —E [n(X) {cFT(X)m(1, X) + cf(X)m(0, X) + c¥(X)}]

=C—-E[r(X){F(X)T1(X,D,Y)+ cF(X)I'o(X,D,Y) 4+ c*(X)}], (H.1)
where C' is a constant that does not depend on 7. For ug, > v,
7 (z) = w + (ug — u)dr(x) G (z) = —u — (ug — u)d-(x) ™ (z) = ¢,
T (x) = ug + 04 () (w — uy) & (x) = —wy— 8 (@) (ug — w) ™ (z) = 04 (2) (ug — w) —
and for ug < u,
T (@) = ug + 84 (2) (w; — uy) A (x) =~y — 8 (x)(ug — ) ™ (x) = 04 (x) (ug —w) —
T (x) = w + (ug — w)dr(x) A (x) = —u — (ug — u)d-(x) ™ (z) = —c.

Define 7, = arg min,. Reyp(m, 70) and 7} = arg min,; Reyp (7, 71) as the minimax expected utility loss
solutions relative to the never-treat policy and always-treat policy, respectively. The worst-case regret
relative to the oracle policy 7 is of the form in Eqn (H.1) where for uy > uy,

" () wi + (g — w)3- (x) g — (g — ) ()
@) | =1 - mi@) | —u— (g~ w)dr(@) |+ mpe) |~ (g — w)ds ()
™ (x) o (g — )54 () —
wi + g + (g — w) (57 () — 6.(1))
+ (1= mp(@)mi() | —2u— (g — w)(6r(2) + 64 (2)) ||
(g — w)3 () — 2

" () g — (g — u)d () wr + (g — u)3- (2)
' (x) | = =mi(@) | —w— (g~ w)di (@) | +mp() [ —w— (g — w)d(2)
() (g — )5 (2) — ¢ o
wr -+ g + (g — ) (5 () — 5. ()
F (1= mh@)mi@) | 2 (- )6 () + 64 (@)

5.
()

(ug —up)o4(x) — 2¢

Corollary H.1 (Minimax regret relative to the always-treat policy). If uy > u;, the minimax regret

solution to Equation (5), 7% = arg min,, Reyp(m,71), is

* H{m(L2) > ftm0.2) + £, de(a) =0,
ﬂ—ﬂ(x) = u u;—ug+c
1{m(1,2) > “m(0,z) + 7} 5i(z) =1.

u

11



Otherwise, if uy < vy, it is given by the symmetric policy,

m(z) =1 {T(x) > C} = SYmm ().

Ug

Assumption H.1. There exists an a > 0 and a constant C' such that for any ¢ > 0,
(a) Pr(jm(1,X)+m(0,X) —1| <t) < Ct°.
(b) Pr(jm(1,X) —m(0,X)| <t) < Ct™.

(c) For ug > u; and c,

Pr (g — (g — w84 (X)}m(1, X) — {us + (g — w0)84 (X)}m(0, X) + (g — w)3+(X) — | < ) < C12.
(d) For ug > u; and c,

Pr([{w + (ug —w)d-(X)}7(X) — | < t) < Ct°.
Theorem H.2. Let uy > v, and define

Lo(a) = {u + 5, (2)(u — w)}(m(1,2) — i(0,2)) — c,

Up(x) = {ug — (ug — w)8y (@) }rin(1, 2) — {u + (ug — w)ds (2)}rie(0, 2) + (ug —u)ds (2) =,

and let 72"8(z) = 1{Ly(x) > 0} and 72" () = 1{U,(x) > 0} be the plug-in estimates of the minimax
optimal policies relative to never or always treating. Under Assumptions H.1(b) and H.1(d), the excess

. pl . .
worst case regret for #D)"® relative to 7 is

R (A28, 70 — Raup (18, 70) < 2M4CU || — || 1,

where U is a constant depending on the utility values, «, and C. Under Assumptions 2 and H.1(c),

~pl : :
the excess worst case regret for A} ° relative to 7 is

~pl ~
Reup (7} ue 7r]1) — Reup (7, 7T®) < 21+°‘C'U|]m — m”éja,

where U is a constant depending on the utility values, «, and C.

Corollary H.3. Let uy > u;, 7, be a solution to Equation (10) with alternative policy @ = 7 and
with nuisance functions 7 and d fit on a separate sample and nuisance classifiers 64 (z) = 1{m(1,z) +
m(0,z) —1 > 0},0-(m(1,z) — m(0,z) > 0),7??01%, and ﬁglug, and let 7} be a solution to Equation

(5), with alternative policy @ = 7°. Under the strict overlap condition in Assumption 1, the excess

12



worst-case regret of 7, relative to 7 satisfies
. o £ o 6+n t . .
Rsup (70, 7°) = Roup(m5, 7°) < 2U1 X | == X { 2Ru(I) + —= | + [l — mlfa[[¥ = 72
1 Vn
+ 22+aCU2Hm o m||1+a +

u Uu
© g ! 2\/7;’

with probability at least 1 — 2 exp (—%), where Uj is a constant depending on the utility values, and

U, is a constant depending on the utility values, «, and C.

Upper bounds on worst-case proportion of units given a harmful treatment or are failed
to be given a useful treatment.
First, note that

Pr(Y(m(X)) < Y(0)) = Pr(m(X)
Pr(Y(n(X)) <Y(1)) = Pr(n(X)

LY Y (1) =0) = E[r(X)eo1 (X)],
0, Y 1) =E[1—m(X))(7(X) + eo(X))]-

17
(0) = 07

~—
|

Plugging in the upper and lower bounds on ey (X ) in Section 3, we get the following upper bounds:

sup  Pr(Y(m(X)) < Y(0)) = E (r(X) [m(0, X) + 51 (X) {L = m(L, X) — m(0, X)}]).
eo1(z)€[L(z),U(z)]

swp PV (r(X)) < Y(1)) = E({1 - w(X)} (1, X) + 8+ (X) {1 — m(1, X) — m(0, X)}]).
eo1(z)€[L(z),U(x)]

I Continuous outcomes

Here we briefly consider extending our framework to the case with a binary decision D € {0,1} but
continuous potential outcomes (Y (0),Y (1)) € R%. We define the utility function u(d;y1, o) as before

and write the value function as
V() =E[u(0;Y(1),Y(0)) + m(X) x (u(1;Y(1),Y(0)) — u(0;Y(1),Y(0)))].

Defining ey, 4, () as the conditional joint density of the potential outcomes given X = z, the expected

utility loss relative to w is

V(@) = Vi) =700 [ [ (ultisn.0) = 0.0y o)
1 0

With continuous outcomes, there are many potential ways to choose the utility function. One option

is a utility function such that w(1;y1,v0) — w(0;y1,%0) = y1 — Yo — uel{y1 < yo}. This is analogous to

the utility function with binary outcomes, with an explicit utility gain/loss associated with a harmful

(Y(1) < Y(0)) or useful (Y(1) > Y(0)) treatment. Defining the conditional probability of harm as

h(z) =Pr(Y (1) < Y(0) | X = x), we can write the expected utility loss as

V(w) = V() = E[r(X){r(z) — uh(x)}].
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As in the binary case, we can use sharp bounds on the distribution of individual treatment effects
(Fan and Park, 2010), h(x) € [Ly(z), Uy (z)], where

Ly(z) = max{sgp{Fl(y | z) — Fo(y | 2)},0},

Un(z) = 1+ min{inf{ Fi(y | z) — Fo(y | 2)}, 0},

where Fi(- | z), Fo(- | ) are the marginal CDFs conditional on X = x for the potential outcomes
under treatment and control, respectively. Now we can again define the minimax expected utility loss

policy as the policy that solves

min max E|n(X){r(x) —uh(z)}].
T h(z)€[L(z),U(z)] [ (X){7(x) h(z)}]

While this again leads to a point-identifiable objective, we note two ways in which this problem is more
difficult than with binary outcomes. First, the upper and lower bounds on the probability of harm
involves the conditional CDFs of Y (1) and Y (0). These can be more difficult to estimate than the
conditional expected outcomes. Second, the bounds involve supremums and infimums over all y € R.
This may require a more careful analysis and stronger assumptions in order to ensure that the default
plug-in approach that we suggest for the binary outcome case will lead to reasonable guarantees on

the excess expected utility loss.

J Proofs and derivations
J.1 Main results

Derivation of the expected utility loss First, notice that the expected utility of policy 7 is

1 1

V(r) Z Z eyryo (X)u(0;y1,50) | +E | DD w(X)eyiyo(X) {u(1;91,90) — u(0391,50)}

y1=0yo=0 y1=0 yp=0

(%)

The second term can be written as

() = E[r(X) {e10(X)(ug — ) — eor(X)(w + ¢) — eo(X)c — e11(X)c}]
= E [7(X)) {e10(X)ug — o1 (X)ur — c(e10(X) + eo1(X) + eoo(X) + €11(X))}]
= E [7(X) {(7(X) + eo1(X))ug — eo1(X)w — c}]
= E [7(X) {ugm(X) + (ug — w)eor (X) — c}],

where we have used the fact that 7(x) = ejo(x) — ep1(z). So the expected utility loss of policy =

relative to policy w is

V(w) = V(r) = E[(@(X) — 7(X)) {ug7(X) + (ug — w)eor(X) — c}].
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Proof of Theorem 3.1. Define b(x) = u,7(x) + (ug — u)eo1(X) — ¢, and

Ly(x) = e {ugT(z) 4 (ug — w)eor (X) — ¢},
Up(x) = max | {ugr(x) + (ug — w)ep1 (X) — ¢} .

e(z)€[L(z),U(z)
Note that the worst-case regret relative to the always and never treat policies are
Raup(m,77) = —E[m(X) Ly(X)],
Roup(m, 7") = E[{1 — 7(X)}Up(X)] = E[Up(X)] — E[r(X)Up(X)].
From this, we can find the unconstrained minimax regret policies

mp = argmin — E[r(X)Ly(X)] = 1{Ly(z) > 0},

™

m = argmin — E[n(X)Uy(X)] = 1{Up(x) > 0}.

™

Now, the oracle policy is 7°(z) = 1{b(x) > 0}. So if Ly(z) > 0 & 75 (x) = 1 then 7°(x) = 1 for all

possible values of the principal score e (x). In this case,

max - {77(x) — 7(2)}b(a) = {1~ 7(x)} Vi (o).

e(z)€[L(z),U(z

Similarly, if Up(z) < 0 < 73 (z) = 0 then 7°(z) = 0, and

() = w(@)}b() = ~r(x) L),

Finally, if Ly(z) < 0 and Up(x) > 0 (so 75 (x) = 0 and 7} (x) = 1), then the oracle policy can be either
0or 1, 7°(x) € {0,1}. Therefore,

e () — () o) = mae((1 = (@) Vi), ~(x)Lo(z)} = Ui(x) = w(x) (U (x) + Lo(a)}

Putting together the pieces, the worst-case regret relative to the oracle is

Rsup(m, ) = E([mp (X) + {1 — 7 (X) }r1 (X)]Up (X))
— E[m(X) {mo (X)Up(X) + (1 = m1 (X)) Ly(X) + (1 — 7 (X)) (X) (Un(X) + Ly (X))},

and the unconstrained minimizer is
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Liy(z) < 0 & 75 (x) = 0, so we can simplify this to

1, To(x) =1,
T, = arg minRg,p (7, 1°) = 0, 7 (xz) =0,
HUs(x) = —Lo(x)}, mp(x) =0,75(z) =1

To complete the proof, we need to compute Ly(z) and Up(x).
Ug = Uj.

First, we begin with the case where
In this case,

+ (ug — w)0-(2)}7(z) — c = {w; + (u
— (ug — w)d4 () m(1, ) — {w + (uq

{w g — u)dr(z)ym(L, x) — {ur + (ug — w)dr(x)}m(0, z) — ¢,
{ug — w)d (@) hm(0,) + (uy — w)ds () — c.
This gives the form of the worst-case regret relative to 7! and 7®. For the worst-case regret relative

to the oracle, we collect terms to get

(u + (ug — w)o-(z), —w — (ug — w)d-(x), —c), mi(z) = 0,
=9 (ug = (ug —w)d4(z), — (ug—Uz)5+( x), (ug —w)dy(z) = c), o (7) = 1,
(ur + ug + (ug — wr)( T( ) 04 (2)), =2u — (ug — w)(0-(2) + 01.(2)), (ug — w)dy (x) — 2¢), 75 (x) # 77 (x)

Now for the case where u, < 1, the lower and upper bounds switch:

(fv) = {ug = (ug =)o (2) }m(1, 2) = {w + (ug =)o+ (2)}m(0, ) + (ug — w)d4(z) = ¢,
{w + (ug —w)dr(2)}7(2) — ¢ = {w + (ug — w)o-(x)ym(1, ) — {u + (ug — w)dr (x)}m(0, ) —c.

For the worst-case regret relative to the oracle, we collect terms to get

(ug — (ug — w)o4(x), —ug — (ug — w)d4(x), (ug — w)o4 () — c), mi(z) =0,
= (w + (ug —w)or(z), —u; — (ug — uy)dr(z), —c), T

) 5
(ur + g + (1tg — ) (37 () — 64 (2)), ~2u1 — (g — ) (0 () + 0. (2), (g — ) () — 2¢), 5y

O

For the Proofs of Theorems 4.1 H.2 and 4.2, we prove the result for the case where u, > u;. The case

where ug < u; follows in the same way, with mp taking the place for my

Proof of Theorem 4.1. This follows directly from combining Lemmas J.1 and J.2 below via the union
bound. O

Proof of Theorem 4.2. This follows directly from combining Lemmas J.1 and J.3 below via the union
bound. O

Proof of Corollary 4.3. This follows by combining Theorem 4.1 and Lemma J.4 below. O
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Proof of Theorem H.2. This follows from Lemmas J.4 and J.5 below. O

Proof of Corollary H.3. This follows by combining Theorem 4.2, Theorem H.2, and Lemma J.4 below.
O

J.2 Auxiliary lemmas

Lemma J.1. Let 7 be a solution to Equation (10) with nuisance functions 7 and d fit on a separate
sample, and let 7* be a solution to Equation (5). Under the strict overlap condition in Assumption 1,

the excess worst-case regret between 7 and 7* is bounded by

. N 6+77
Ruup(#,) = Ruug(”, ) < U x 4 5 (m( ) S 1 — vl (e, ) — maw, )]l
w=0,1

+ frlellf)l R(ﬂ',é('), m(), w) - R(ﬂ-v C()7m(),w)

)

with probability at least 1 — exp (—%), where

n

Rgup(m, c(-),m *ZW ) {en(Xi)m(1, X5) 4 co(Xi)m(0, X5) 4 c(X4)} -

§H

and U is a constant depending on the utility values.

Proof of Lemma J.1. First, note that the excess regret can be decomposed into

~ ~ A~ A~

Raup (7, ) — Rsup (1", @) = Reup (7, @) — Reup (T, @) + Reup(7, @) — Reup (7", @) +Reup (7", @) — Rsup (7™, @)

<0
< 25up | Roup (7, @) — Reup(m, @),
mell
where we have used that 7 minimizes Rsup(w*, w).
We further decompose Ryup (7, @) — Reup(, @) into
Roup(m, @) — Raup(m, @) = Ryup(m, @) — R(m, &(), m("); w) (a)
+ R(m, c(-), m(-); @) — Reup (7, @) (b)
+ R(Tra é()v m(), ’ZD) - R(ﬂ-a C(')a m()7 w)

We will now control terms (a) and (b), following closely the proof of Lemma 4 in Athey and Wager
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(2021). First note that we have the decompositions

) D )
[ (X,D,Y) —m(1,X) = m(1,X) — m(1,X) + 53] (v — (1, X)}

= {m(1,X) — m(L, X)} x <1— D)) + Al))( (Y —m(1,X)}

d(X d(X)
D D 5
N (dm ) M)) < {m(1, X) — (1, X)}
and
To(X,D,Y) —m(0,X) = (0, X) — m(0, X) + S {Y — (0, X)}
o(X, D, m(0, X) = m(0, m(0, = aX) miy,

:{m(OaX)—m(O,X)}x<1 1—D> 1-D

1o dX) + L dx) {Y —=m(0,X)}

1-D 1-D .
+ (1—62()() - 1_d(X)) x {m(0, X) — (0, X)}.

With this, we can compute the expectation of term (a):

E[(a)] = E [W(X) (el (X) {fl(x, D,Y) —m(l, X)} +éo(X) {fO(X, D,Y) —m(0, X)})}

R D D R
. 1-D 1-D .

where we have used the fact that

E [w(X)él(X) (11, X) — m(1, X)) x (1 - 1;() —0,

i)

E | 7(X)é1 (X) = (Y —m(1, X)}| =0

) Rl B

E [W(X)éo(X) {1(0, X) — m(0, X)} x <1 - 11—7¢Z(DX)> 0,
) 1-D I

E |m(X)in(X)— e (v - m(O,X)}_ —0,

because ¢, m, and d come from a different sample.
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The expectation of term (b) is
E[(b)] = E[n(X) {c1(X)m(1, X) + co(X)m(0, X) + ¢(X)}] — Rsup(m, @) = 0.
Now define a function f: X — R as

fr(@.dy) = w(@) |e() {Li(e.dy) —m(l2)} + o) { Lol d,y) —m(0,2) ]
+m(x) {c1(x)m(1, x) + co(x)m(0, ) + c(z)}
and the function class F = {f; | = € I} as the set of all functions f as we vary 7 in II.

With this notation, we can write the sum of terms (a) and (b) as

(@)+ () = = 3 f2(Xe, D1, Vi) — Raplm, ),
=1

and from above the expectation of f(X;, D;,Y;) is

E[f+(X, D, Y)] = Raup(m, ) + E | 7(X)ex(X) ( é(’; - d(DX)> % (m(1, X) — (1, X))]
. 1-D 1-D .
+E [7(X)éo(X) (1 e ~3 —d(X)> x (m(0, X) m(O,X))]

Putting together the pieces, we can write
1 n
|(a) + (b)| = |= Z ffr(Xia D;, }/z) - Rsup(Tra w)‘
" =1

— % > fo(Xi, D3 Vi) = E[f(X, D,Y)] + E[fx(X,D,Y)] — Raup(r, w)|
=1

< |23 £ (X0 DY)~ Bl (X, D, V)
i=1
R D D .
+ |E |m(X)ér(X) (cZ(X) — d(X)) x (m(1, X) —m(l,X))”
. 1-D 1-D .
+ |E |7(X)éo(X) (1 i) 1 —d(X)) x (m(0, X) —m(O,X))] ‘

Now notice that for w € {7n® 7, 7°}, |e1(z)m(1,z) + co(z)m (0, x) + c(x)|, |c1(x)|, and |co(x)| are

bounded by some constant U depending on the utilities. From the decompositions above, by the strict
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overlap condition in Assumption 1, and because Y; € {0,1},

0y (X;, Dy, Vi) — m(l,x)‘ < ‘{m(l,Xi) —m(1,X;)} x (1 D >‘

d(X;)
D;
+ (X)) x {Y; — m(l,Xi)}|
- <d£éi) - J(if.)) x {m(1, X;) —m(1, X;)}

1—n,. 1 It 1
< ——lm—mlles + =+ |5 —=|| lh—mlw
U d o0
1-n 1 1 1
<— 4o -——
U non l-=n
3
< —.
n
Similarly,
) 1—1n 1 1 1 3
To(X;, Di,Y;) — m(0,2)| < — 2| — St ll———] - <=,
006 DY) = m(0.0)] < i e+ % | g = | <2
This combines to give that for any z,d, v,
6+
’fﬂ(l:?day”gUX n
n
This also shows that the Rademacher complexity of F is:
6+n
Rn(F) =2U x —— x Ry, (II).
n
So by Wainwright (2019) Theorem 4.2, for any n > 1 and ¢ > 0,
1 @ 6+ n t
sup |— f(X) —E[f(X)]| <2U x X <2R (H)+>,
fer n; ' Ui " vn

with probability at least 1 — exp (—%)

Finally, notice that by the Cauchy-Schwarz inequality,

D D

E [7(X)é (X) (d(X) - d(X)) x (m(1,X) — m(l,X))] ‘




and

E | r(X)é0(X) (1 1_;5() - 1_;&) % (m(0, X) — m(o,X))] ‘
2
1-D 1-D . 2
<U |E (1_J(X)_1_d(x)> E[(m(o,X)_m(o,X))]
Combining these two bounds gives the result. O

Lemma J.2. For ug > uy,

. _ . i
sup | Reup (7, ¢, m; m]) — Rsup(m, ¢, m, m7)| < (ug — wy) X <R+(5+) + > ,

mell 2\/73
t2
with probability at least 1 —e™ 2.

Proof of Lemma J.2. First we have the bound,

Rup (1, &,m; ) — Rgup(m, ¢, m, ) = Ug ; il Z?T(XZ‘) {5+(Xi) - 5+(Xi)} {m(1, X;) +m(0, X;) — 1}
=1
< BT {800 # 64X Im(1, XG) +m(0, %) — 1].
=1

Now note that

E[1{8,(X0) # 6, (X0) } Im(1, X0) +m(0, X;) — 1] = R4(5:)

For each i, since 1 {5+(XZ) # 5+(XZ-)} |m(1, X;) +m(0, X;) — 1| is bounded between 0 and 1, it is
sub-Gaussian with scale parameter 1. Furthermore, they are independent across ¢ = 1,...,n, so by
the Hoeffding bound,

Pr (711 Z 1 {5+(Xi) # 5+(Xi)} Im(1, X;) +m(0,X;) — 1| < Ry (04) + \/tﬁ> > 1 — exp (—22) .

i=1

Combining this with the deterministic bound above gives the result.
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Lemma J.3. For u, > v,

Rsup(ﬂ', ¢, m;m,) — Reup(m,c,m, 7))

sup
mell

< 2% {Ryup(F1, ™) — Rup(75, 71) } + 2 X { Ryup (70, ) — Reup (7, ) }

g =) x (ReG) 4 Brld) 4 5 ).

2

with probability at least 1 — %7,

Proof of Lemma J.3. Define

Ly(z) = {ur + (ug — w)dr () }m(1, ) — {u + (ug — w)dr(x)}m(0, z) — ¢

Up(x) = {ug — (ug — up)ds (2)}m(1, ) = {ug + (ug — w)dy () }m(0,2) + (ug — w)dy () — ¢,
Q(z) = 7o (2)Up(x) + (1 — my () Lo(x) + (1 — 7o (2))m1 (2) (Up(x) + Lo (x)),

Q(x) = fip(2)Up(z) + (1 — @1 (2)) Ly(2) + (1 — 7o ()7 (2) (Uy(2) + Lo(2)),

Q(z) = 7o (2)Up(z) + (1 — 71 (2)) Lo() + (1 — 7o ()71 (2) (Us(x) + Ly()).

Working with the first term:

Q(z) — Qz) = (71 (x) — 7} (2)Up(2) — (71 (2)Fo(x) — 7} (@) (2)) (Us(2) + Lo(2)) + (Fo(2) — 75 (2))Up(x)
= (o (z) = mp(x)) x (=Ly(x)my(z) + (1 — 77 (2))Up(2)) (%)
+ (1 () = mp(2)) x (=Lp(2) 7o (2) + (1 = To () Us(2)) ()

Notice that 7j(z) = 0 & Up(z) < 0, since Ly(x) < Up(x), this implies that when nj(xz) = 0,
|Up(z)| < |Lp(x)|. Therefore,
()| < Ao () # 7o (2) H Lo ()]
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Similarly, if 73 (z) = 1, then 0 < Ly(x) < Up(x), so |Ly(x)| < |Up(x)]. So,

()| < W{Au(2) # 71 (2)} H{Fo(2) = Fo (@)} — Le(2)mo(x) + (1 — 7 (7)) Up())|
+ o (z) # mop (2) {7 () # m1 ()} — To(2) Ly(z) + (1 — To (2))Us(z)]
< Wi () # mp () H{7o(z) = 7o (2) HUp(2)]
+ o (z) # mp (@) {7 () # 71 (%)} Lo(2)| + W{To(2) # 7o ()} 1{7 (z) # 71 (2)}Up(z)]
< Wiu () # mp (@) HU(2)] + HTo(2) # mp (@) HEp(2)] + U (2) # 71 (2) }Us(2))|
< 2l{m(z) # 71 (2) HUp(2)] + W7o (z) # 7 (2) H Lo ()]

Putting together the pieces, we get that

Q) — Q)| < 21{o(2) # 7 ()} Lo(2)| + 21{#1 (2) # 7 (2) }Up(2)|-

So the expectation is bounded by two regret terms:

E [; > lecx - acx)
=1

<2E [H{7p(X) # 7o (X) HLp(X)[] + 2E [1{71(X) # 71 (X) HUp(X)|]
=2 X {Raup(71,7) = Reup(75, 71} + 2 X { Reup (70, 7®) — Raup (s, 7).

is bounded between 0 and u, — 1, so by the Hoeffding bound it concentrates

Next, ‘Q(Xi) - QX))
around its expectation:

Pr (i S Jec) - aex)
=1

> 1 2t°
—exp| ——m= ).
N P (ug — uy)?

Now for the second term:

A * A * t
< 2{Rsup(W]Ia Wﬂ) - Rsup(ﬂ]la '/T]l)} + 2{Rsup(7T(D7 77@) - Rsup(W(Dv 77@)} + \/ﬁ>

Q) = Q)| = |(Ly(@) — Ly())(1 = 71 + (1 = 70)71) + (Up(x) — Up(2))(Fo + (1 — 7o) 7))
< |Ly(x) = Ly(@)| + [Up(2) — Uy()].

To re-write this, notice that

|Ly(x) = Ly(2)| = (ug = w)1{o-(x) # 6-(2)}m(1,2) — m(0, )],
|Us(x) = Uy ()| = (ug = w)1{d4(x) # 64 (2)}m(L, 2) + m(0,z) - 1].

Q(z) — Q)|

Ug — Uy

< 15, (2) # 8- (@)} m(L, 2) — m(0,2)| + 1{5 (2) # 6+ (2)}m(1,2) + m(0,) — 1.
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Taking the expectation, we see that it is bounded by:

—ulnz‘ Xi)

<E[1{5:(2) # 8-(X)}m(1, X) = m(0, X)|

+E[1{8,(X) # 84 (@)} Im(1, X) +m(0, X) - 1]
= R+(5+) + RT(ST)'

Again noting that |Q(X;) — Q(X;)| is bounded between 0 and u, — u;, and applying the Hoeffding

inequality gives

Pr (:L Zz; ‘Q(Xz) - Q(Xz) < (ug - Ul) X <R+($+) + RT(ST) + })) > 1—exp (*2t2) :

n

Combining these two bounds via the union bound gives the result.

O

Lemma J.4. Let 0, (z) = 1{m(1,z) + m(0,2) — 1 > 0} and é,(z) = 1{m(1,z) — m(0,2)}. Under

Assumption 2,

Ry (51) <27l — ml| 3,
Pr(0,(X) # 64 (X)) < 2°Clli — m||%.

Under Assumption H.1(b),

R-(6;) < 2'°C|m — m)|| 1 F,
Pr(6-(X) # 6:(X)) < 2°C|l — m||%.

Proof of Lemma J.4. This Lemma directly follows Lemma 5.1 in Audibert and Tsybakov (2007). Note
that if 64 (2) # 04 (x), then the error is greater than the margin, i.e.,

(1, z) — m(1,2) + m(0,z) —m(0,z)| > |m(1,X) +m(0,X) — 1
So,

Pr(8, (X) # 84 (X)) < Pr(fi(1, X) — m(L, X) + (0, X) — m(0, X)| > [m(L, X) +m(0, X) — 1]
< C(r(L,) = m(L, Yoo + 10, ) = m(0, ) o0
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By a similar argument,

Ry () = Ry (07) =B [1{6,(X) # 8,(X) } Im(1, X) +m(0, X) — 1]

<E[1{]m(1,X) —m(1,X) +m(0,X) —m(0,X)| > |m(1,X) +m(0,X) — 1}
x |m(1,X) +m(0,X) —1|]

<E[1{|m(1, X) —m(1,X) +m(0, X) —m(0,X)| > |m(1, X) +m(0,X) — 1|}
x [m(1, X) — m(1, X) +m(0, X) — m(0, X)]]

< (in(1,) = m(1,llse + [172(0, -) = m(0, )]|c)
x Pr(|m(1, X) — m(1, X) + m(0, X) — m(0, X)| > |m(1, X) + m(0, X) — 1|)

< O(lrin(L,-) = m(L, ) + [7(0, ) —m(0,)[loc) .

Similarly, if 6, (2) # 0,(z), then

Im(1,z) —m(l,z) — m(0,x) + m(0,z)| > |m(1,z) — m(0, x)|.

By the same argument as above,

Pr(8;(X) # 87(X)) < C(llrin(1, ) = m(L, )l + [lria(1, ) = m(L,-)]|),

and

R (5:) = Ry (6;) = B [1{8-(Xi) # 6:(X) } Im(1, X3) = m(0, X3)|

< E[1{m(1, X) ~ (1, X) = m(0, X) + (0, X)| = [m(1, X) = m(0, X)]}
X Im(1, X) = m(0, X)]

<E[1{m(1,X) —m(1,X) —m(0,X) + m(0,X)| > |m(1, X) — m(0, X)|}
x [m(1,X) — (1, X) — m(0, X) + (0, X)]]

< (ri(1,) = m(1, Yoo + 170, ) = m(0, ) )
x Pr(lm(1, X) — (1, X) — m(0, X) + m(0, X)| > |m(1, X) — m(0, X)|)

< C(llim(1,) = m(L, oo + 170, ) = m(0, ) loc) =

Lemma J.5. Let uy > ;. Define
Ly(x) = {w + 0, (x)(ug — w) Hrn(1, ) —10(0,2)} — ¢,
O () = {ug — (g — w)d () }in(1, 2) — {1 + (g — )B4 (2)}0(0,2) + (g — )b (2) — c.

and let 72"8(z) = 1{Ly(z) > 0} and #2"*8(x) = 1{U,(z) > 0} be the plug-in estimates of the minimax
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optimal policies relative to never or always treating. Under Assumption H.1(d), the excess worst case

regret for ﬁgug relative to mg, is

R (", 1)~ Raup (s, 1) < g O(2lm—1t] )42y Clm—rit] e Pr (8-(X) # 6-(X) ) +(utg—w) R+ (5.
Under Assumption H.1(c), the excess worst case regret for 7rp1ug relative to 7] is

R (7%, 1)~ R (1, 1) < g C(2m—1i]0) +*4 20, C m—tlow Pr (84(X) # 84(X) )+ (ug—) R (52

Proof of Lemma J.5. First, as in the proof of Lemma J.4, note that Aplug( ) # 75 (x) implies that
| Ly(x) — Ly(x)| > |Ly(x)|. Now, if 4. (z) = 6 («), then

1L4(z) — Bal)| = 1((1 — 6 (a))un + 6o ) (1, ) — (1, ) — m(0, ) + (0, )|
< uglm(1l,z) —m(1l,z) — m(0,z) 4+ (0, z)],

because |(1—06-(x))u;+ - (x)ug| = |ug+ (ug —u;)d-(X)| < max{ug,w;} < ugy in the case where ug > u;.
If 6, () # 6-(x) and 6,(2) = 1, we have that

1Ly(2) — Eala)] = [iam(1, 2) (1, 2) — m(0, 2) + (0, 2)) + (g — ) (m(1, 2) — m(0, 2))
< wm(l,z) —m(1l,z) — m(0,z ]

+
< ug]m(l,x) - m(].,l‘) - m(O,x) +n (O,LE)’
Similarly, if 6, (z) # 6,(z) and 6, (z) = 0,

| Lo(@) = Lo(@)| = [ug(m(1,2) = 1ia(1, ) = m(0,2) + 1in(0,2)) — (ug — w)(m(1, ) — m(0,z))|
< uglm(1,z) —m(l,z) —m(0,z) + m(0,z)| + (ug — u;)|m(1,z) — m(0, z)|.

Putting together the pieces, we get that

Raup(7)"®,7°) = Rup(m, 7°) = E [1{#D" # 75} Lo(@)
< B [1{|Ly(X) = Lo(X)] = [Ly(X)HL(X)]]
< E[1{|L(X) = Ly(X)| = [Ly(X)HE(X) = Lo(X)]]
= E [ 1{ILy(X) = Ly(X)| = |Ly(X) [HLy(X) = Ly(X) [1{5-(X) = 8-(X)}]
(+)
+E [1{L(X) = Lo(X)] 2 [Lo(X)HEo(X) = Lo(X)|1{8,(X) # 6,(X)}]
)
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By Hélder’s inequality and the margin condition (Assumption H.1(d)), the first term is

() <E[I{|((1 = 0r(x))w + 6-(X)ug)(m(1,z) — m(l,z) —m(0,z) +m(0,z))| > |L(X)|}
x [m(1,X) —m(1,X) —m(0,X) + m (0, X)|]

< E [1{ug|m(1,z) — m(1,z) — m(0,z) + m(0,z)| >
x |m(1,X) —m(1,X) —m(0,X) + m(0, X)|]

< E [1{ug|m(1,z) —m(l,z) — m(0,z) + m(0,z)| >

< Cug (2||m — m|yoo)1+a.

[L(X)[}

[L(X)[}] % 2[m =]l

Similarly, we can bound the second term as

(#) < B [ILy(X) = Ly(X)1{8,(X) # 6-(X)}]
<E [ug|m(1,X) — (1, X) — m(0, X) + (0, X)|L{5,(X) £ 5T(X)}]
+ (g = w)E [[m(1, X) = m(0, X)[1{3,(X) # 6,(X)}]

< uy2C||m — 11| oo Pr (&(X) v 6T(X)) + (ug — u) Ry (5,).

Combining these two terms gives the first result.

Now, also note that ﬁﬂplug(:r) 4 7% () implies that |Uy(z) — Uy(z)| > |Uy(z)|. We again break this error
term into cases depending on 6, (z) and 0 (x). First, if 64 (x) = 6, (z), then

|ug(m(1,2) — (1, 2)) — w(m(0, ) —m(0,2))], 04 (x)
ur(m(1, ) — (L, x)) = ug(m(0,2) — (0, 2))[, 5+ (2)

Us(z) — Di(a)| = { X

< uglm(1,z) — m(1,z)| + uglm(0, z) — m(0, ).

If 6. (z) # 04 (x)

—m(0,2)) + (ug — w)(m(1,z) + m(0,z) — 1)|, ()
(0,2))] = (ug — w)(m(1,z) + m(0,z) — 1), d4(x) =
<uglm(1,z) — m(1,z)| + ug|m(0, ) — m(0, )| + (ug — w)|m(1,z) + m(0,z) — 1|.

lug(m(1,z) —m(l,2)) —w(m(0,z 0
0,z 1

>

x ~U T) = )
‘Ub( ) Ub( )’ { |ul(m(1’x)_m(1’x))—u9(m( )

)

Mirroring the decomposition above, we have that
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Raup(75"%, ) = Ruup(n, 7*) = B [1{#Y" £ 73 }|Up(a)
< E [1{U(X) = Tp(X)] = |U5(X) [HU(X)
< B [H{|U(X) = Ty(X)| = [0(X)[HU(X) = Ty(X)]]
= E [ 1{|U5(X) = Ty(X)| = |U(X) [HUL(X) = Ty(X) (1455 (X) = 6, (X)}]
+E [H{|T(X) = To(X)| = [U(X)HU(X) = Tp(X)[1{01(X) # 04(X)}

< E [1{uglm(1, X) — (1, X)| + ug|m(0, X) — (0, X)| > |Up(X)[}
x (tgm(1, X) — i1, X)| + uglm(0, X) — (0, X)])]
+E [uglm(1, @) - 1i(1,2) [ 1{5; (X) # 6, (X)}]
+E [uglm (0, 2) — 1i(0,) [ 1{5:.(X) # 6, (X)}]
+E | (g — w)m(1,2) +m(0,2) = 11{5,(X) # 84 (X)}]
< uGC(2]m — i oo) 1 + ugC2{fm — oo P(5+ (X) # 64(X))
+ (ug — w) R4 (04).
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