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S.1 Additional methodological details

S.1.1 Plate Diagram of the Proposed Model

ypq

B γ

zpq uqpπp ψq

xp wqdpq

β1 β2

{p, q} ∈ Ep ∈ V1 q ∈ V2

Figure S.1: Plate diagram of the proposed model. Observed data represented as shaded nodes; hyperpa-
rameters presented as nodes outside plates.

S.1.2 Motivation for the proposed model components

The model components in Figure S.1 are most easily justified when considering the case of cosponsorship,

legislative productivity, and collaboration . Any modeling tool that hopes to produce plausible answers to

the puzzle of productivity and collaboration in times of nominal partisan division should allow researchers

to explore the heterogeneity of both legislator and bill attributes, as allowed by the xp and wq terms in our

model. Much as senators might differentially decide to cosponsor based on their personal characteristics, so

too might legislation attract cosponsorship based on its different content and the specific context in which

it is introduced. A useful model of cosponsorships thus allows the politics of coalition formation around

certain types of legislation to account for this heterogeneity.

Furthermore, it is important for such a model to capture how the interaction of different bill and senator

types can lead to cosponsorship collaborations beyond what would be expected from understanding the

coalitional dynamics that drive much of legislative politics, as allowed by the dpq term in Figure S.1. The

extant literature has identified two substantial predictors of cosponsorship decision that are defined at the

senator-bill dyad level, and that result in the kind of non-coalitional homophily and heterophily that is

common in social networks of different kinds.
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First, individual senators often trade favors with one another, such that cosponsorship may result from

quid pro quo behavior and norms of individual reciprocity — you cosponsored my bill before, I’ll cosponsor

yours now (Brandenberger, 2018; Harbridge-Yong, Volden, and Wiseman, 2023). Similarly, scholars have

increasingly stressed the role of Senate committees in forming support around legislation, finding evidence

that sitting in a committee involved in the life cycle of a bill can affect a legislator’s support for it (Porter

et al., 2005; Cirone and Van Coppenolle, 2018). Accordingly, a model that aims to capture the full set of

forces behind a bipartite network such as that formed by cosponsorships should account for these kinds of

naturally dyadic features that complement group-based drivers of edge formation.

S.1.3 Details of the Estimation Algorithm

To approximate the collapsed posterior proportional to Equation (6), we first define a factorized distribution

of the joint dyad-specific latent group membership variables (i.e. Z and U) as follows:

m(Z,U | Φ) =
∏

p,q∈V1×V2

m(zpq, upq | ϕpq) (S.1)

where Φ = {ϕpq}p,q∈V1×V2 are sum-to-one, (K1 ×K2)-dimensional variational parameters.

The goal of variational inference is to find, in the space of functions of the form given by Equation (S.1),

one that closely approximates (in KL divergence terms) the target posterior. This is equivalent to maximiz-

ing the evidence lower bound L(Φ) to Equation (6)with respect to vectors ϕpq:

ϕ̂pq = argmax
ϕpq

Em [log f(Y,Z,U, | B,β,γ)]− Em [logm(Z,U | Φ)]︸ ︷︷ ︸
L(Φ)

∝∼ {(αpg + C ′
pg)(αqg + C ′

qh)(θ
ypq
pq,g,h(1− θpq,g,h)

1−ypq)}g,h∈K1×K2

(S.2)

whereC ′
pg =

∑
q′∈V −q

2

∑K2
h′=1 ϕpq′,g,h′ is the expected value of the marginal countCpg under the variational

distribution (and similarly for C ′
qh). The approximation in the last line results from using a zeroth-order

Taylor series expansion of the expectation in place of calculating the computationally expensive integral

over the Poisson-Binomial distribution of the count statistics.

In addition to finding the posterior over mixed-membership vectors, we take an empirical Bayes ap-

proach and maximize the lower bound L(Φ) to obtain values of relevant hyper-parameters B, β and γ.
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After appropriate initialization (see below), then, the full lower bound optimization proceeds iteratively by

first updating the variational parameters according to Equation (S.2) (the E-step), and maximizing L(Φ)

w.r.t. to the hyper-parameters, holding ϕpq (and derived global counts Cpg and Cqh) constant at their most

recent value (the M-step), until the change in the lower bound is below a user-specified tolerance. As there

are no closed-form solution for these optimal values, we rely on a numerical optimization routine (required

gradients are available below). In what follows, we provide details on those steps.

S.1.3.1 E-step

E-step: Z and U

Variational parameters ϕpq are updated by restricting Equation (S.2) to terms that depend only on zpq and

upq and taking the logarithm of the resulting expression,

logP (Y,Z,U | B,β1,β2,γ,X1,X2,D)

= zpq,g

K2∑
h=1

uqq,h {Ypq log(θpqgh) + (1− Ypq) log(1− θpqgh)}+ log Γ(αpg + Cpg) + const.

Note thatCpg = C ′
pg+1(zpq,g = g) and that, for x ∈ {0, 1}, Γ(y+x) = yxΓ(y). As 1(zpq,g = g) ∈ {0, 1},

we can re-express log Γ(αpg+Cpg) = zpq,g log(αpg+C
′
pg)+log Γ(αpg+C

′
pg) and simplify the expression:

zpq,g

K2∑
h=1

uqp,h {Ypq log(θpqgh) + (1− Ypq) log(1− θpqgh)}+ zpq,g log
(
αpg + C ′

pg

)
+ const.

Then take the expectation under the variational distribution Q̃:

E
Q̃
{logP (Y,Z,U | B,β1,β2,γ,D,X1,X2)}

= zpq,g

K2∑
h=1

E
Q̃
(uqp,g)

(
Ypqt log(θpqgh) + (1− Ypq) log(1− θpqgh)

)
+ zpq,g E

Q̃

{
log

(
αpg + C ′

pg

)}
+ const.

The exponential of this corresponds to the (unnormalized) parameter vector of a multinomial distribution

Q̃(zpq | ϕpq).

The update for uqp is similarly derived. Restrict Equation (S.2) to terms that depend only on uqp (for

specific p, q nodes in V ) and taking the logarithm of the resulting expression,

logP (Y,Z,U | B,β1,β2,γ,X1,X2,D)
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= uqp,h

K1∑
g=1

zpq,g {Ypq log(θpqgh) + (1− Ypq) log(1− θpqgh)}+ log Γ(αqh + Cqh) + const.

Re-express log Γ(αqh + Cqh) = uqp,h log(αqh + C ′
qh) + log Γ(αqh + C ′

qh) and simplify the expression:

uqp,h

K1∑
g=1

zpq,g {Ypq log(θpqgh) + (1− Ypq) log(1− θpqgh)}+ uqp,h log
(
α2qh + C ′

qh

)
+ const.

Take the expectation under the variational distribution Q̃:

E
Q̃
{logP (Y,Z,U | B,β1,β2,γ,D,X1,X2)}

= uqp,h

K1∑
g=1

E
Q̃
(zpq,g)

(
Ypq log(θpqgh) + (1− Ypq) log(1− θpqgh)

)
+ uqp,h E

Q̃

{
log

(
α2qh + C ′

qh

)}
+ const.

S.1.3.2 M-step

Lower Bound

Expression for the lower bound,

L(Q̃) = E
Q̃
[logP (Y,Z,U | B,γ,β1,β2,X1,X2,D)]− E

Q̃
[log Q̃(Z,U | Φ)]

=
∑
p∈V1

[
log Γ (ξp)− log Γ (ξp +N2)

]
+

∑
q∈V2

[
log Γ (ξq)− log Γ (ξq +N1)

]

+
∑
p∈V1

K1∑
g=1

[
E[log Γ(αpg + Cpg)]− log Γ(αpg)

]
+

∑
q∈V2

K2∑
h=1

[
E[log Γ(αqh + Cqh)]− log Γ(αqh)

]

+
∑

(p,q)∈V1×V2

K1∑
g=1

K2∑
h=1

ϕpq,gϕpq,h {Ypq log θpqgh + (1− Ypq) log(1− θpqgh)}

−
K∑

g,h=1

(Bgh − µgh)
2

2σ2gh
−

Jd∑
j=1

(γj − µγ)
2

2σ2γ
−

K1∑
g=1

J1x∑
j=1

(β1gj − µβ1)
2

2σ2β1

−
K2∑
h=1

J2x∑
j=1

(β2hj − µβ2)
2

2σ2β2

−
∑

(p,q)∈Vt

K1∑
g=1

K2∑
h=1

{ϕpq,g log ϕpq,g − ϕqp,h log(ϕqp,h)}

M-step 1: update for B

Restricting the lower bound to terms that contain Bgh (blockmodel), we obtain

L(Q̃) =
∑

p,q∈Et

K1∑
g=1

K2∑
h=1

ϕpq,gϕqp,h{Ypq log θpqgh + (1− Ypq) log(1− θpqgh)}
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−
K∑

g,h=1

(Bgh − µgh)
2

2σ2gh
+ const.

Optimize this lower bound with respect to Bgh using a gradient-based numerical optimization method. The

corresponding gradient is:

∂LBgh

∂Bgh
=

∑
p,q∈V1×V2

ϕpq,gϕqp,h (Ypq − θpqgh)−
Bgh − µBgh

σ2Bgh

M-step 2: update for γ

Restricting the lower bound to terms containing γ (dyadic coefficients), and recalling that θpqtgh = [1 +

exp(−Bgh − dpqtγ)]
−1, then:

L(Q̃) =
∑

p,q∈V1×V2

K1∑
g=1

K2∑
h=1

ϕpq,gϕqp,h {Ypq log θpqgh + (1− Ypq) log(1− θpqgh)}

−
Jd∑
j

(γj − µγ)
2

2σ2γ
+ const.

To optimize this expression w.r.t. γj (the jth element of the γ vector), we again use a numerical optimization

algorithm based on the following gradient,

∂L(Q̃)

γj
=

∑
p,q∈V1×V2

K1∑
g=1

K2∑
h=1

ϕpq,gϕqp,hdpqj (Ypq − θpqgh)−
γj − µγ
σ2γ

M-step 3: update for β1, β2

Let αpg = exp
(
x⊤
1 β1g

)
, ξp =

∑K1
g=1 αpg, αqh = exp

(
x⊤
2qβ2h

)
, and ξq =

∑K2
h=1 αqh. To find the optimal

value of β1g, roll all terms not involving the coefficient vector into a constant:

L(Q̃) =
∑
p∈V1

[log Γ(ξ1p)− log Γ(ξp +N2)]

+
∑
p∈V1

K1∑
g=1

[
E
Q̃2

[log Γ(αpg + Cpg)]− log Γ(αpg)
]

−
K1∑
g=1

J1x∑
j=1

(β1gj − µβ1)
2

2σ2β1

+ const.
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No closed form solution exists for an optimum w.r.t. β1gj , but a gradient-based algorithm can be imple-

mented to maximize the above. The corresponding gradient w.r.t. each element of β1g is:

∂L(Q̃)

∂β1gj
=

∑
p∈V1

αpgx1pj

(
E
Q̃2

[ψ̆(αpg + Cpg)− ψ̆(αpg)]

+
[
ψ̆(ξ1p)− ψ̆(ξ1p +N1)

])
−
β1gj − µβ1

σ2β1

where ψ̆(·) is the digamma function. Again, we can approximate expectations of non-linear functions of

random variables using a zeroth-order Taylor series expansion. The M-step for the regression coefficients

of the second family is similarly defined.

S.1.4 Stochastic variational inference

On the tth iteration, our algorithm completes the following steps:

1. Sample a subset of dyads Et ⊂ E, with corresponding sets of vertices V t
1 = {p : p, q ∈ Et} and

V t
2 = {q : p, q ∈ Et}.

2. Update all ϕpq:p,q∈Et according to Equation (S.2), and compute a set of intermediate global count

statistics (after normalization),

Ĉpg =
N2

|V t
2 |

∑
q′∈V t

2

K2∑
h′=1

ϕpq′,g,h′ ; Ĉqh =
N1

|V t
1 |

∑
p′∈V t

1

K1∑
g′=1

ϕp′q,g′,h

weighted to match the amount of information contained in the original network.

3. Update global count statistics matrices using an online average that follows an appropriately decreas-

ing step-size schedule:

C(t)
p = (1− ρp,t)C

(t−1)
p + ρp,tĈp; C(t)

q = (1− ρq,t)C
(t−1)
q + ρq,tĈq

where step-size ρp,t = (τ + t)κ such that τ > 0 and κ ∈ (0.5, 1].

4. Update values of hyper-parameters Λ = {β,γ,B} by taking an “online” step in the direction of the

(noisy) Euclidean gradient of L(Φ) w.r.t Λ:

λ(t) = λ(t−1) + ρλ,t∇ΛL(t)(Φ)

7



with appropriate gradients given in Appendix.

Although different dyad sampling heuristics used for Step 1 can result in unbiased gradient estimates

(see Gopalan and Blei, 2013, for a few examples), we follow the scheme proposed by Dulac, Gaussier, and

Largeron, 2020, which is both simple to implement and has been found to work well in sparse settings. The

procedure is:

1. Sample node i in V uniformly at random.

2. Form a set s1 = {i, j : yij = 1,∀j ∈ V } (i.e., set of all connected dyads involving i). Form M

sets sm0 = {i, j : yij = 0, ∃j ∈ V } (i.e., a set of some disconnected dyads involving i), where each

set is of equal cardinality, and the disconnected dyads are sampled uniformly at random and with

replacement.

3. Sample, with equal probability, either s1 or any of the sm0 sets. This set of dyads constitutes a subnet-

work.

In our application, we set M = 10 and set |sm0 | be 1/M times the number of non-links between i and

every other vertex in the network.

After the algorithm converges, we can recover the mixed-membership vectors by computing their pos-

terior predictive expectations:

π̂pg =
Cpg + αpg

N2 +
∑K1

g′=1 αpg′
, ψ̂qh =

Cqh + αqh

N1 +
∑K2

h′=1 αqh′

S.1.5 Initial values for ϕ and ψ

Implementation of the model requires defining good starting values for the mixed-membership vectors.

While spectral clustering methods offer good starting values for π and ψ in the unipartite setting, applying

it to non-square affiliation matrices poses interesting challenges. To produce high-quality initial values in a

viable amount of time we rely on the co-clustering approach of (Govaert and Nadif, 2003), which estimates

a simpler, single-membership SBM using a fast EM algorithm.
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S.1.6 Standard error computation

We obtain measures of uncertainty around regression coefficients β and γ by evaluating the curvature of

the lower bound at the estimated optimal values for these hyper-parameters. When considering terms that

involve these hyper-parameters, the lower bound reduces to the expected value of the log-posterior taken

with respect to the variational distribution Q̃. Thus, evaluating the Hessian of the lower bound (and the

corresponding covariance matrix of the hyper-parameters) requires evaluating that expectation. Details of

the required Hessian are below.

S.1.6.1 Hessian for γ

Restricted to terms that involve γ, the typical element of the required Hessian is given by

∂2L(Q̃)

∂γj∂γj′
=

∑
p,q∈V1×V2

−dpqjdpqj′
[
θ̄pq(1− θ̄pq)

]
− σ−2

γ δjj′

where δjj′ is the Kronecker delta function, and the term

θ̄pq = E
Q̃
[θpq] = ϕ̂

⊤
pqB̂ϕ̂qp + d⊤

pqγ̂

is a closed-form solution to the expectation over the variational distribution of the model’s parameters.

S.1.6.2 Hessian for β1 and β2

In turn, and focusing on Family 1 coefficients, we can characterize the Hessian of the lower bound w.r.t. β1

with

∂2L(Q̃)

∂βgj∂βgj′
=

∑
p∈V1

xpjxpj′αpg

(
ψ̆(ξp)− ψ̆(αpg) + E

Q̃
[ψ̆(αpg + Cpg)]− ψ̆(ξp +N2)

+ αpg

(
ψ̆1(ξpg)− ψ̆1(αpg) + E

Q̃
[ψ̆1(αpq + Cpq)]− ψ̆1(ξp +N2)

))
− σ−2

β1
δjj′

for coefficients in the same group g, and

∂2L(Q̃)

∂βgj∂βhj′
=

∑
p∈V1

xpjxpj′αpgαph

(
ψ̆1(ξp)− ψ̆1(ξp +N2)

)
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for coefficients associated with different latent groups g and h. As before, we use ψ̆(·) to denote the

digamma function, and ψ̆1(·) to denote the trigamma function.

Unlike the Hessian for γ, there are no closed-form solutions for the expectations involved in these

expressions. To approximate them, we take S samples from the Poisson-Binomial distribution of Cpg,

C
(s)
pg , s ∈ 1, . . . , S, and let

E
Q̃
[ψ̆(αpg + Cpg)] ≈

1

S

∑
s

ψ̆(αpq + C(s)
pq ); E

Q̃
[ψ̆1(αpq + Cpq)] ≈

1

S

∑
s

ψ̆1(αpq + C(s)
pq )

The Hessian for the coefficients associated with Family 2, β2, is similarly approximated.

S.2 Simulation results

Setup. We simulate bipartite networks with unbalanced numbers of Senator and Bills nodes under 6 dif-

ferent scenarios, defined by overall network size and difficulty of the mixed-membership learning problem.

More specifically, we define small (i.e. 300 total nodes) and large (i.e. 3000 total nodes) networks, each with

twice as many Bill nodes as there are Senator nodes. In all instances, we define the edge-generating process

according to our model, using K1 = K2 = 2 latent groups for each of the node types, a single monadic pre-

dictor drawn independently from N(0, 1.5), and a single irrelevant dyadic predictor drawn from a standard

Normal distribution.

Scenario Difficulty Blockmodel Monadic Coefficients

Easy

0.85 0.01

0.01 0.99


−4.50 −4.50

0.00 0.00


Medium

0.65 0.35

0.20 0.75


 0.05 0.75

−0.75 −1.00


Hard

0.65 0.40

0.50 0.45


 0.00 0.00

−0.75 −1.00



Table S.1: Simulation scenarios, defining various levels of estimation difficulty
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Figure S.2: Mixed-Membership Recovery: Estimated and true mixed-membership vectors under the easy,
medium, and hard estimation scenarios. In all instances, recovery is excellent.

To simulate different levels of estimation difficulty, we vary both the blockmodel and the coefficients

associated with the mixed-membership vectors, which are set to be equal across the two node types. In the

“easy” scenario, memberships are barely mixed, and there is a clear difference in edge probabilities between

different groups of the different node types. In contrast, the “hard” scenario is such that all nodes have a

roughly equal probability of instantiating each block, and there is little difference in the probabilities of

forming edges between blocks, as given by the blockmodel. The “medium” scenario offers a more realistic,

in-between estimation problem. The specific values for scenarios are given in Table S.1.

Results. We begin by evaluating the accuracy of mixed-membership estimation by comparing true and

estimated mixed-membership vectors (after re-labeling the latter to match the known, simulated group labels

using the Hungarian algorithm). Correlations across node types and difficulty scenarios are demonstrated

in Figure S.2. Overall, our model retrieves these mixed-membership vectors with a high degree of accuracy

— even in regimes in which block memberships play a small role in the generation of edges, and regardless

of whether there is an asymmetry in the number of nodes in each family.
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Figure S.3: Posterior Predictive Goodness-Of-Fit: The figure shows, for a randomly chosen simulated
scenario, the extent to which the model can recover structural features of the observed network. The solid
red line traces the observed distribution of the different network motifs; solid black rectangles show the
central 90% distribution of values observed across 100 network replicates, obtained from the estimated
model posterior. A good fit is indicated by lines that always fall within black regions.

Next, we evaluate the accuracy of estimated node-level and dyadic coefficients by simulating derived

quantities of interest based on them, and compare these simulated quantities to their true counterparts, as one

would when conducting a goodness-of-fit analysis based on posterior predictive distributions. As is typical

in network modeling, these derived quantities are structural features of the network (e.g. Hunter, Goodreau,

and Handcock, 2008). Figure S.3 depicts three such features — node degree (by node family), the number

of partners shared by each dyad, and the minimum geodesic distance between nodes in the network. In

each panel, the red line traces the true distribution of these network statistics, while the black vertical bars

track their distribution across 100 network replicates, each generated using the estimated coefficients. If

the latter are correctly estimated, network replicates should have characteristics that reflect that on which

the estimation is based, and the red line should fall squarely within each vertical black rectangle. Overall,

network characteristics are well recovered by our model, although recovery of the degree distribution for the

bill nodes (i.e., the largest family) is less accurate than that of the legislator nodes (i.e., family with fewer

vertices).

To evaluate scalability of our approach, we conduct simulations under the “medium” difficulty scenario,

as described above. We hold all conditions constant, and increase the total size of the vertex set from 300 to

15,000, keeping twice as many vertices in the largest family as in the smallest family. In all instances, we let

the models run until convergence, using the stochastic variational inference procedure described above (in
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Figure S.4: Time per iteration for networks of different sizes: For medium difficulty scenario networks,
the plot shows time per iteration (in seconds) taken to fit our model to networks of different sizes.

each iteration, we sample 40% of nodes). Models took between 5 seconds and 9 hours to fully estimate,

taking anywhere between 100 and 450 iterations to converge. As the time to convergence is affected by

the stochastic nature of the estimation, Figure S.4 presents the time per iteration (in seconds) taken to fit

our model to networks of different sizes. Overall, although time per iteration increases as the network

size grows, even the largest network in our simulation can be reliably fit in under 10 hours on a desktop

computer.

Finally, we evaluate the frequentist properties of our estimates of uncertainty in regression parameters

by evaluating the extent to which they reflect the variability we can expect from repeated network sampling.

To do so, we sample 100 networks from each of our 6 scenarios, for a total of 600 simulated networks.

Figure S.5 shows, for each simulation scenario, the difference between our standard errors and the standard

deviation across coefficients estimated on each of the network replicates. For small networks, our standard

errors can be conservative — particularly for the set of coefficients associated with the smaller group of

Senator nodes. As the number of nodes increases, however, our estimated uncertainty more accurately

reflects the variability we would expect to see under repeated sampling.
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Figure S.5: Approximate Bias in Standard Errors: For each simulated network, the figure shows the
extent to which our approximate standard errors differ from the standard deviation of coefficients estimated
on simulated networks.

S.3 Additional empirical results

S.3.1 Cosponsorship degree distributions 107th Senate

Figure S.6 presents Senator and Bill degree distributions from the 107th Congress. Bipartite degree dis-

tribution calculations differ from unipartite ones in that they are separately conducted for each family, so

that senators can display different degree distributions compared to bills. Previous studies of cosponsorship

patterns in the U.S. congress have found this to be the case (e.g. Fowler, 2006), and our data reveal similar

differences.

Figure S.6 displays a summary of these distributions, plotting the midpoints of the degree histograms for

each vertex type. We plot both degrees and their observed relative frequencies (expressed as percentages) in

the log scale. When degree distributions follow the common power-law distribution (whereby p(x) ∝ x−λ

for a given degree x and λ > 0) that many other networks exhibit, such log-log plots tend to align with

negatively-sloped linear predictions.

This is clearly the case for the degree distribution of bills, depicted on the left panel of Figure S.6. The
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Figure S.6: Bill and Senator degree distributions. Degree distributions presented for Bills (left) and
Senators (center, in the bipartite network, and right, in the projected network) with a power law distribution
overlaid as a red curve (approximated by a linear log-log model). Whereas the power law fits the bill
degree distribution quite well, the degree distributions among senators (both in the bipartite graph and in the
projected network) differ dramatically from it, illustrating the kind of heterogeneity that can be lost when
aggregating over bills in the projection from bipartite to unipartite.

plot also includes a red line with the predictions of linear log-log model, which shows a good approximation

to the pure power-law model if the estimated slope is negative. For bills, the fit of a power-law is almost

perfect, indicating that while most bills tend to attract few cosponsors, there is a long and heavy tail of bills

attracting a large number of them. It is precisely this heterogeneity that can result in substantial aggregation

bias when projecting the originally bipartite network. It also means that the cosponsorship network is likely

to exhibit scale invariance for the distribution of bill cosponsors (i.e., we can expect to see a similarly

shaped degree distribution if we consider a subset of bills) — justifying the analysis of subnetworks formed

by sampling the set of bills (as we do below).1

In contrast, the degree distributions of Senators (i.e., the distributions over the number of bills Senators

cosponsor) are far from being accurately described by a power-law. This is indicated by the fact that the red

line does not fit to the points well on the central and right panels of Figure S.6. Indeed, these distributions

are quite different from that of bills, suggesting that there is substantial heterogeneity in the number and

strength of connections between senators. This highlights the importance of considering the entire set of

senators when studying the structural characteristics of the cosponsorship network, and considering any

subset of legislators could result in a misrepresentation of the collaboration network. This difference with
1As pointed out by Fowler (2006), the distribution also exhibits an interesting deviation from a typical power-law right around

the 50 senator mark, indicating the strategic value of having a majority of senators cosponsoring a piece of legislation.
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respect to the degree distribution of bills also highlights the kind of information that is lost when bills are

aggregated over in the process of projecting from bipartite to unipartite networks, as is also evident on the

right-most panel of Figure S.6, which appears now to be a mixture of two distributions.

The bipartite network also can accomodate certain types of statistics for descriptive analysis that is not

applicable for unipartite networks. They include within-family edge-shared partners and family-specific k-

stars. Conversely, several common network statistics for unipartite graphs do not apply in bipartite network

settings, such as triangles (bipartite graphs cannot have triangles (Prömel, Schickinger, and Steger, 2002)),

or must be adjusted, such as path lengths (which must be even) or minimum degrees (Liu and Ma, 2018).

These considerations will play a role when conducting posterior predictive checks of model fit, as they

typically rely on evaluating how well a model captures these and other structural features of the modeled

network.

S.3.2 Model performance comparison

We compare our proposed approach to the most popular, readily available alternative model for bipartite

networks: the bipartite ERGM, implemented in the R package ergm (Handcock et al., 2023; Hunter, Hand-

cock, et al., 2008; Krivitsky et al., 2023). The bipartite ERGM uses a set of constraints and bipartite-specific

network statistics to adapt the canonical, one-model model to bipartite networks. Our goal is to evaluate

how well the bipartite ERGM can predict the cosponsorship network of the 107th Senate, using network

statistics only. We then compare it to how biMMSBM can fit the same data using only the blockmodel and

latent mixed membership vectors.

While we tried fitting the ERGM to the full dataset, we found all of the specifications we tried resulted

in failed convergence; the lack of scalability appears to be a major limitation of ERGM. As a result, we

focus on a subgraph formed by a random sample of 10% of observed edges. To this subgraph, we fit a

model that includes a term for the edge density, the census of 3-stars among senators (i.e., stars involving

exactly 1 bill and three senators), a geometrically weighted census of dyad-shared partners among bills (i.e.,

the distribution over numbers of shared senators for any pair of bills), and geometrically weighted degree
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distributions for both senators and bills.2 The latter terms are so-called dyad-dependent terms, and are

defined specifically for bipartite networks (Wang, Sharpe, et al., 2009; Wang, Pattison, and Robins, 2013).

After fitting the ERGM, all measures of MCMC performance indicated convergence.

For biMMSBM, we use 5 latent communities in each family (a number arrived at by evaluating the

AUROC generated by alternative models, as we do in the main analysis. We compare models with 2 − 2,

3− 3, 3− 5, and 5− 5 latent communities).

Model biMMSBM ERGM
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Figure S.7: Measures of predictive accuracy of bipartite ERGM and biMMSBM on subset of cosponsorship
network in the 107th Senate. The left panel shows the ROC curves for the ERGM (blue) and biMMSBM
(salmon); curves further from the 45-degree reference line indicate better model classification accuracy. The
right panel shows the calibration of the same models, with lines closer to the 45-degree line indicating a
better match between predicted edge probabilities and observed edge proportions (that is, better calibration).
Using both criteria, biMMSBM offers a better predictive fit to the cosponsorship data.

Figure S.7 offers evidence of better predictive accuracy obtained by biMMSBM on this network, as

indicated by a both a higher overall AUROC (0.66 vs. 0.59 obtained by the ERGM; left panel), and far

better calibration of predicted probabilities (Platt et al., 1999, after running a Platt correction for both sets

of predictions, [), as indicated by the alignment of the biMMSBM set of predicted probabilities with the
2We arrived at this particular specification through much trial and error, iterating over specifications that invariably hung or

failed to converge. This failure-prone process, often elided from descriptions of empirical exercises that rely on ERGM-type

models, is sometimes touted as a feature. Arriving at a specification that works, however, can only offer a weak proof of existence,

and even a perfectly specified model can result in an ill-defined probabilistic models (see, for instance, Chatterjee and Diaconis,

2013).
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corresponding empirical proportions of edges (right panel). These are both in-sample measures of fit, as the

fragility of the ERGM estimation prevented us from performing an out-of-sample evaluation.

S.3.3 Goodness of Fit
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Figure S.8: Posterior predictive goodness-of-fit checks, out-of-sample. Vertical black rectangles repre-

sent the interquantile range across 50 replicate networks. The red line in each panel denotes the observed

value in a network formed by a random 25% sample of cosponsorship decisions during the 107th Senate.

The model generally replicates structural features well, shown by overlap between black bars and red lines.

However, k-stars of bills are consistently underpredicted in the out-of-sample set.

We assess model performance by generating 50 replicates of the out-of-sample network from our

model’s posterior predictive distribution. We compare network-level statistics (e.g., degree distributions

of senators and bills, family-specific distributions of edge-shared partners and k-stars) between these repli-

cates and our test set. Figure S.8 displays the results, with black bars showing the interquartile range across

replicates and red lines indicating observed values in the test set. The model generally fits the out-of-sample
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Figure S.9: Out-of-Sample goodness-of-fit based on edge prediction quality: The figure demonstrates
that our biMMSBM model with K1 = K2 = 3 latent groups per family can adequately predict observed
edges in the bipartite cosponsorship network. The left panel shows the Receiver-Operating Characteristic
Curve in red, with curves closer to the upper-left corner indicating better predictive accuracy (here, the
area under the curve is 0.70, out of a maximum of 1). The right panel shows the calibration of predicted
probabilities (after standard Platt correction) in red, aligning with the 45-degree line for better predictive
calibration.

network well, with most red lines falling within their corresponding black bars, capturing structural features

without explicit specification. However, it tends to underpredict the distribution of k-stars among bills. The

model also demonstrates high predictive accuracy and calibration, predicting observed edges with higher

probabilities 70% of the time, as shown in Figure S.9.

Additionally, besides overall network statistics, we assess predictive quality using two metrics: ac-

curacy, quantified by the area under the receiver operating characteristic curve (ROC), and calibration,

comparing observed frequencies in a test set with model-predicted probabilities.

In Figure S.9, we show the out-of-sample ROC (left panel) as well as the prediction probability calibra-

tion plot (right panel).3 The area under the ROC curve is .7 (with the red curve on the left bending away
3We evaluate calibration after applying the standard Platt correction, which fits a logistic regression of observed outcomes on

the uncorrected predicted probabilities, and use the transformed scores (Platt et al., 1999; Rosenman, McCartan, and Olivella,

2023).
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from the dashed diagonal), and the model’s predictions are well calibrated (with the red curve on the right

almost aligning with the solid black diagonal).

S.3.4 Model outputs

S.3.4.1 Group memberships

Senior Democrats Senior Republicans Junior Power Brokers

Kennedy, Edward M. [MA] Helms, Jesse [NC] Corzine, Jon [NJ]
Sarbanes, Paul S. [MD] Nickles, Don [OK] Carnahan, Jean [MO]
Inouye, Daniel K. [HI] Craig, Larry E. [ID] Clinton, Hillary Rodham [NY]
Byrd, Robert C. [WV] Hatch, Orrin G. [UT] Dayton, Mark [MN]
Akaka, Daniel K. [HI] Lott, Trent [MS] Carper, Thomas R. [DE]

Biden Jr., Joseph R. [DE] Thurmond, Strom [SC] Stabenow, Debbie [MI]
Leahy, Patrick J. [VT] Gramm, Phil [TX] Miller, Zell [GA]
Hollings, Ernest F. [SC] Grassley, Charles E. [IA] Bayh, Evan [IN]
Dodd, Christopher J. [CT] Roberts, Pat [KS] Chafee, Lincoln D. [RI]
Baucus, Max [MT] Cochran, Thad [MS] Feingold, Russell D. [WI]

Table S.2: Senators with largest mixed-membership probabilities in each latent group.
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Uncontroversial Bipartisan Resolutions Contentious

SE 107 169 Resolution relative
to the death of the Honorable
Mike Mansfield, formerly a Sen-
ator from the State of Montana.

SJ 107 1 Joint resolution
proposing an amendment to the
Constitution of U.S. relating to
voluntary school prayer.

SN 107 1548 Bill to allow Di-
rector of CDC to award a grant
to create/maintain a website with
bioterrorism information.

SJ 107 22 Joint resolution ex-
pressing the sense of Senate and
House regarding the terrorist at-
tacks launched against the Unites
States on September 11, 2001.

SE 107 82 Resolution authoriz-
ing production of records by Per-
manent Subcommittee on Inves-
tigations of Committee on Gov-
ernmental Affairs.

SN 107 2842 Bill to amend
Older Americans Act of 1965;
authorize appropriations for
demonstration projects to pro-
vide supportive services to older
individuals in NORCs.

SE 107 292 Resolution express-
ing support for Pledge of Alle-
giance.

SE 107 54 Resolution authoriz-
ing expenditures by the commit-
tees of the Senate.

SN 107 2899 Atchafalaya Na-
tional Heritage Area Act

SE 107 354 Resolution relative
to the death of Paul Wellstone,
a Senator from the State of Min-
nesota.

SE 107 10 Resolution notifying
the House of Representatives of
the election of a President pro
tempore of the Senate.

SN 107 2918 Bill designate
USPS at 380 Main Street in
Farmingdale, New York, as
”Peter J. Ganci, Jr. Post Office
Building”.

SE 107 160 Resolution desig-
nating month of October 2001, as
”Family History Month”.

SE 107 77 Resolution to autho-
rize production of records by
Permanent Subcommittee on In-
vestigations of Committee on
Governmental affairs.

SN 107 1892 Bill to designate
facility of USPS at 375 Carlls
Path in Deer Park, New York, as
”Raymond M. Downey Post Of-
fice Building”.

SE 107 66 Resolution express-
ing sense of Senate regarding re-
lease of 24 US military personnel
being detained by China.

SE 107 9 Resolution notifying
POTUS of election of a President
pro tempore.

SN 107 1721 Bill to designate
building located at 1 Federal
Plaza as ”James L. Watson
United States Courthouse”.

SN 107 321 Dylan Lee James
Act (Family Opportunity Act of
2004)

SE 107 28 Resolution to autho-
rize testimony and legal repre-
sentation in State of Idaho v.
Fredrick Leroy Leas, Sr.

SN 107 1801 Bill to amend
chapter 36 of title 39, United
States Code, to provide for a
permanent postal rate.

SN 107 677 Bill to amend Inter-
nal Revenue Code of 1986.

SE 107 84 Resolution to autho-
rize representation by Senate Le-
gal Counsel in Timothy A. Holt
v. Phil Gramm.

SN 107 3176 Bill to amend the
Internal Revenue Code of 1986.

SN 107 697 Bill to modernize
financing of railroad retirement
system and provide enhanced
benefits to employees and bene-
ficiaries.

SC 107 27 Concurrent resolu-
tion expressing the sense of
Congress: 2008 Olympic Games
should not be held in Beijing un-
less China releases all political
prisoners [...].

SN 107 2634 Bill to establish
within the National Park Service
the 225th Anniversary of Amer-
ican Revolution Commemorative
Program.

SN 107 1707 Bill to amend ti-
tle XVIII of Social Security Act
to specify update for payments
under medicare physician fee
schedule for 2002 and to direct
the Medicare Payment Advisory
Commission to conduct a study.

SJ 107 5 Joint resolution ap-
pointment of Walter E. Massey
as a citizen regent of Board of
Regents of Smithsonian Institu-
tion.

SN 107 3045 Bill to amend Fed-
eral Water Pollution Control Act
to provide for protection and en-
hancement of environmental in-
tegrity and social and economic
benefits of Finger Lakes Region
in New York.

Table S.3: Bills with largest mixed-membership probabilities in each latent group.
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S.3.4.2 Model estimated coefficients

Blockmodel estimates 1 Uncontroversial Bills 2 Bipartisan Resolutions 3 Contentious Bills

1 Democrat 1.0000 0.5969 0.4110
2 Republican 0.9998 0.4345 0.3084
3 Junior Power Brokers 1.0000 0.6187 0.4687

Coefficient Name Estimate SE

Dyadic predictors
No reciprocity history -5.8241 0.0596

Log proportional reciprocity 1.7849 0.0101

Shared committee 1.3246 0.0343

Model Summary Statistics
Lower bound -462.1155

Number of dyads 260667
% Obs. in Each Family 1 Block 0.223 0.374 0.403
% Obs. in Each Family 2 Block 0.062 0.434 0.504

Table S.4: biMMSBM Estimated Coefficients: Blockmodel, Dyadic. Point estimates and approximate
standard errors of coefficients in the dyadic regression equation show that reciprocity norms and shared
committee duties between bill sponsors and potential co-sponsors enhance co-sponsorship likelihood.
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Group Coefficient Name Estimate SE

1 Democrat

1 Democrat Intercept 6.0405 1.2906

Seniority 0.6182 0.6851

Ideology 1 -5.2906 1.3044

Ideology 2 2.4779 1.2908

Party-Republican -3.3740 1.3014

Sex-Male 0.6249 1.2853

2 Republican

2 Republican Intercept 5.7276 1.2883

Seniority 0.4713 0.6851

Ideology 1 7.1225 1.2959

Ideology 2 1.5571 1.2907

Party-Republican 4.2359 1.2910

Sex-Male 1.1646 1.2847

3 Junior Power Brokers

3 Junior Power Brokers Intercept 22.2967 1.2868

Seniority -0.8769 0.6851

Ideology 1 -3.9223 1.2951

Ideology 2 -6.1953 1.2901

Party-Republican -1.6291 1.2908

Sex-Male -1.0508 1.2844

Table S.5: biMMSBM Estimated Coefficients: Senator monadic. Point estimates of coefficients in the scale of

linear predictor, along with their corresponding approximate standard errors.
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Group Coefficient Name Estimate SE

1 Uncontroversial Bills

1 Uncontroversial Bills Intercept 1.7158 0.1418

Topic:Legal 0.7253 0.1207

Topic:Social programs Public goods -0.0511 0.0733

Topic:Security 0.9412 0.2094

Topic:Gov operations 0.5139 0.1506

Topic:Other -0.8196 0.0814

Sponsor Seniority -0.0581 0.0065

Sponsor Ideology 1 0.3522 0.2702

Sponsor Ideology 2 0.0254 0.1571

Sponsor Party-Republican -0.2950 0.1996

Sponsor Sex-Male -0.4922 0.0971

Second Phase 0.3407 0.0934

Third Phase 0.0213 0.0625

2 Bipartisan Resolutions

2 Bipartisan Resolutions Intercept 3.8623 0.1251

Topic:Legal 0.6426 0.1037

Topic:Social programs Public goods -0.1534 0.0654

Topic:Security 0.9192 0.1632

Topic:Gov operations 0.5713 0.1218

Topic:Other -1.3325 0.0728

Sponsor Seniority -0.0540 0.0057

Sponsor Ideology 1 0.4956 0.2449

Sponsor Ideology 2 -0.1777 0.1457

Sponsor Party-Republican -0.4312 0.1797

Sponsor Sex-Male -0.4587 0.0864

Second Phase 0.6710 0.0803

Third Phase 0.4733 0.0556

3 Contentious Bills

3 Contentious Bills Intercept 4.1264 0.1251

Topic:Legal 0.6044 0.1037

Topic:Social programs Public goods -0.0325 0.0653

Topic:Security 0.8943 0.1634

Topic:Gov operations 0.6980 0.1219

Topic:Other -1.4841 0.0728

Sponsor Seniority -0.0672 0.0057

Sponsor Ideology 1 0.6429 0.2447

Sponsor Ideology 2 -0.2636 0.1454

Sponsor Party-Republican -0.6676 0.1795

Sponsor Sex-Male -0.5427 0.0864

Second Phase 0.8368 0.0803

Third Phase 0.7067 0.0555

Table S.6: biMMSBM Estimated Coefficients: Bill monadic. Point estimates of coefficients in the scale of linear

predictor, along with their corresponding approximate standard errors.
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S.3.5 Degree centrality and senator memberships

Estimate Std. Error t value

Baseline: Power Brokers 6503.731 1026.778 6.3341

Senior Democrats -1818.510 1761.168 -1.0326

Senior Republicans -1406.040 1511.945 -0.9300

Note:

Multiple R2: 0.01356 Adjusted R2: -0.00678 F stat: 0.667

Table S.7: Regression of senator between centrality on group assignment probabilities. Baseline is

Group 3, which is positively correlated with between centrality.

S.3.6 Comparison with the unipartite network model

We compare the results of our model against those of a unipartite network model — the modal current ap-

proach to studying bipartite data as discussed in our introduction. For direct comparison, we use a unipartite

(and static) version of our model, known as dynMMSBM (Olivella, Pratt, and Imai, 2022). We project the

bipartite network data onto a unipartite weighted network, in which the weight of edges between senators

is given by the number of bills they cosponsor together.4

For fair comparison, we keep the model specification as similar to the one used in our bipartite network

analysis as possible: three latent groups of senators, and the same set of senator-specific covariates. In

addition, we use the estimated senator mixed-membership vectors from biMMSBM as the initial values of

the corresponding vectors in the unipartite model. This increases our confidence that any difference in the

learned grouping of legislators is a result of the data aggregation process, rather than the differences of

model specification and estimation.

Figure S.10 presents the main quantities of interest from this comparison: the estimated blockmodel
4dynMMSBM can accommodate such weighted networks by using a binomial likelihood, where the weights are modeled as

“successes” among a number of trials equal to the number of bills two senators could have cosponsored together.
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Figure S.10: Results from fitting a MMSBM to the projected cosponsorship network. After fitting a

unipartite MMSBM to the projected cosponsorship network in the 107th Senate, we recover a blockmodel of

group interaction probabilities (left panel) and a set of group membership probabilities for Senators (right

panel). As expected, the model produces groups that are mostly aligned with partisanship and ideology, as

indicated by the ideological distributions of likely members depicted next to each estimated block. We also

find evidence of high intra-group collaboration probabilities (especially among Democrats), and very low

probabilities of connecting across partisan groups, painting a picture of a highly polarized session.

between the three discovered groups of senators in the left panel (i.e., the propensity of members of any of

these groups to collaborate with a member of another latent group) and the composition of these groups in

the right panel (i.e., the extent to which different senators are likely to be in any of the three groups).

In contrast to the results shown in Figures S.10a and S.10b offer a picture of a polarized, relatively non-

cooperative session of Congress, divided clearly along partisan lines — exactly as we expected from our

discussion of the issues brought about by the aggregation process involved in projecting a bipartite network

onto a unipartite one (see Section 2.1).

While the unipartite model could accommodate three different groups of senators under its specification,

the data support membership primarily into two of those latent blocks, leaving the third group essentially
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empty. Furthermore, membership into these two blocks is strongly aligned with partisanship, as the bulk

of Democratic senators (depicted as blue circles on the right panel of Figure S.10) concentrate on one

vertex of the ternary plot (with liberal Democrat Barbara Boxer being estimated as the senator most likely

to instantiate this latent group), while the majority of Republican senators (depicted as red circles) tend to

concentrate on another. Those senators who tend to have a minimal likelihood of instantiating the “Empty!”

block tend to be Republican ideologues, led by the notoriously conservative Jessee Helms (R-NC).

Moreover, the unipartite model identifies only a moderate amount of collaboration across the aisle,

yielding the estimated probability of about .18 that a member of the latent “Democratic” group is connected

in the projected unipartite network to a menber of the “Republican” group. In contrast, the probability of a

connection between two members of the same partisan latent group is estimated to be about .99, as indicated

by the darker-shaded loops in the blockmodel on the left of Figure S.10. While Democrats enjoyed a slight

majority after senator Jeffords decided to leave the Republican party (suggesting that the cohesive majority

managed to move legislation along), this picture of polarization painted by the unipartite model gives few

clues as to why the 107th Senate was able to remain as productive as it was.

In sum, relying on the projected network of cosponsorships not only misses the rich and nuanced infor-

mation about legislative collaboration that individual bills have to offer, but it also distorts what we can learn

about the nature of legislative coalitions. Using a unipartite model to study naturally bipartite data results

in an artificially inflated sense of clustering and group cohesion — a risk that becomes even more pressing

when we are interested in group dynamics and polarization that drive processes of network formation.

S.3.7 Alternative model specifications

Separating block membership and covariate estimation Our proposed model allows for joint inference

of block membership and predictor effects. It also allows for inclusion of different predictors. To illustrate

these possibilities, we restrict the biMMSBMmodel to infer only block membership or only predictor effects.

Findings are briefly summarized below:

1. Block membership only. Here no predictors contribute to variation in cosponsorship; instead infor-

mation is highly concentrated on the block memberships, which are the same for every senator/bill for
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each respective family of blocks. We find that senators who fall into any of the senator latent groups

are likely to have a tie with a bill that instantiates the second bill latent group (ranging 0.613-0.765);

all other block-to-block interactions are limited (ranging 0.004-0.042). This model suggests low lev-

els of tie formation for bills that fall into any latent group outside of group 2 — a departure from the

original joint estimation of results in our main model. The full table of model estimates is shown in

Table S.8.

2. Same-state effects. In this setting, we incorporate a dyadic predictor for same-state membership

between a senator a sponsor of a bill. In this specification, the same-state indicator appears as a

strong predictor of a cosponsorship link. Despite this, it is still possible to discern similar results

with respect to the discovered groups of legislators and bills. The model estimates are shown in

Tables S.9-S.12.

Coefficient Standard.Error

Monadic: Senator intercepts

10.6352 0.4101

6.5183 0.4100

6.0022 0.4097

Monadic: Bill intercepts

2.2122 0.0233

0.0932 0.0235

1.5949 0.0239

Blockmodel

Bill 1 Bill 2 Bill 3

Senator 1 0.0103 0.7649 0.0020

Senator 2 0.0122 0.7555 0.0180

Senator 3 0.0041 0.6130 0.0416

Table S.8: Only Block Membership Full Model Coefficients. Coefficient point estimates in linear predic-

tor scale, with corresponding approximate standard errors.
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Table S.9: Same-State Full Model Coefficients: Senator Monadic. Coefficient point estimates in linear

predictor scale, with corresponding approximate standard errors.

Group Coefficient.Name Estimate SE

Senator predictors

1 Democrat Intercept 9.6722 1.2719

Seniority 0.0229 0.3889

Ideology 1 -6.7897 1.2818

Ideology 2 2.6573 1.2866

Party-Republican -4.8794 1.4720

Sex-Male -0.6568 1.2605

2 Junior Power Brokers Intercept 20.1595 1.2715

Seniority -0.9228 0.3889

Ideology 1 -1.0970 1.2781

Ideology 2 -7.2593 1.2872

Party-Republican -1.3287 1.3154

Sex-Male -1.1748 1.2605

3 Republican Intercept 4.2601 1.2716

Seniority 0.8223 0.3889

Ideology 1 1.7553 1.2792

Ideology 2 4.7461 1.2862

Party-Republican 1.6111 1.3155

Sex-Male 1.0517 1.2606
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Table S.10: Same-State Full Model Coefficients: Bill Monadic. Coefficient point estimates in linear-

predictor scale, with corresponding approximate standard errors.

Group Coefficient.Name Estimate SE

Bill predictors

1 Contentious Bills Intercept 11.2669 0.1137

Topic:Legal 0.8587 0.0303

Topic:Social programs Public goods 0.8151 0.0555

Topic:Security 0.8096 0.0709

Topic:Gov operations 0.5672 0.0675

Topic:Other -5.5515 0.0981

Sponsor Seniority -0.1431 0.0147

Sponsor Ideology 1 0.3879 0.5242

Sponsor Ideology 2 -0.5291 0.3436

Sponsor Party-Republican -1.3865 0.3804

Sponsor Sex-Male -2.6192 0.1364

Second Phase 3.6591 0.6810

Third Phase 1.9508 0.1370

2 Uncontroversial Bills Intercept 5.5493 0.1362

Topic:Legal 1.1332 0.0564

Topic:Social programs Public goods 0.7925 0.0676

Topic:Security 0.0947 0.1242

Topic:Gov operations 0.0754 0.0963

Topic:Other -3.3246 0.0793
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Table S.10: Same-State Full Model Coefficients: Bill Monadic. Coefficient point estimates in linear-

predictor scale, with corresponding approximate standard errors. (continued)

CoefficientFamily Group Coefficient.Name Estimate SE

Sponsor Seniority -0.0827 0.0166

Sponsor Ideology 1 -1.0612 0.5530

Sponsor Ideology 2 0.0791 0.3645

Sponsor Party-Republican 0.2602 0.4025

Sponsor Sex-Male -1.7541 0.1588

Second Phase 1.5149 0.8123

Third Phase -0.0066 0.1424

3 Bipartisan Resolutions Intercept 10.5539 0.1137

Topic:Legal 0.7711 0.0308

Topic:Social programs Public goods 0.7775 0.0556

Topic:Security 1.2102 0.0711

Topic:Gov operations 0.9030 0.0678

Topic:Other -4.9057 0.0979

Sponsor Seniority -0.0878 0.0147

Sponsor Ideology 1 0.5021 0.5239

Sponsor Ideology 2 -0.0069 0.3433

Sponsor Party-Republican -1.6197 0.3802

Sponsor Sex-Male -2.6768 0.1365

Second Phase 3.8117 0.6807

Third Phase 0.9561 0.1368
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Table S.11: Same-State Full Model Coefficients: Blockmodel.

1 Contentious Bills 2 Uncontroversial Bills 3 Bipartisan Resolutions

1 Democrat 0.3652 0.9819 0.5175

2 Junior Power Brokers 0.1399 0.9939 0.2326

3 Republican 0.1088 0.9918 0.1960

Table S.12: Same-State Full Model Coefficients: Dyadic.

Coefficient.Name Estimate SE

Dyadic predictors

No reciprocity history -1.5580 0.0196

Log proportional reciprocity 0.4354 0.0044

Shared committee 0.6560 0.0208

Co-state 1.8788 0.0430
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