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Abstract

Many networks in political and social research are bipartite, connecting two distinct node types. A common
example is cosponsorship networks, where legislators are linked through the bills they support. However,
most bipartite network analyses in political science rely on statistical models fitted to a “projected”
unipartite network. This approach can lead to aggregation bias and an artificially high degree of clustering,
invalidating the study of group roles in network formation. To address these issues, we develop a statistical
model of bipartite networks theorized to arise from group interactions, extending the mixed-membership
stochastic blockmodel. Our model identifies groups within each node type that exhibit common edge
formation patterns and incorporates node and dyad-level covariates as predictors of group membership
and observed dyadic relations. We derive an efficient computational algorithm to fit the model and apply it
to cosponsorship data from the United States Senate. We show that senators who were perfectly split along
party lines remained productive and pass major legislation by forming non-partisan, power-brokering
coalitions that found common ground through low-stakes bills. We also find evidence of reciprocity
norms and policy expertise impacting cosponsorships. An open-source software package is available for
researchers to replicate these insights.
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1. Introduction

Bipartite networks, where ties connect two distinct actor types without intra-type connections, are
common in political and social research. Examples include ethnic group memberships (Larson 2017),
U.S. state policy adoptions (Desmarais, Harden, and Boehmke 2015), and product-level trade (Kim,
Liao, and Imai 2020). These affiliation networks also appear in many other domains, including
customer—product relationships (Huang, Li, and Chen 2005), actor-movie ties (Peixoto 2014), and even
document-word occurrences of the kind typically used in text-as-data analyses (e.g., Lancichinetti et al.
2015).

The ubiquity of bipartite structures explains the wide variety of probabilistic models explicitly
constructed to handle these types of networks. Examples include approaches designed to identify a given
bipartite network’s “backbone;” or core sub-graphs (e.g., Neal 2014); models to study the influence of
nodes over others (e.g., Campbell et al. 2019); exponential random graph models that accommodate
bipartite sufficient statistics in a regression context (e.g., Agneessens, Roose, and Waege 2004; Wang

© The Author(s), 2025. Published by Cambridge University Press on behalf of The Society for Political Methodology.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial licence (https://
creativecommons.org/licenses/by-nc/4.0), which permits non-commercial re-use, distribution, and reproduction in any medium, provided
the original article is properly cited. The written permission of Cambridge University Press must be obtained prior to any commercial use.


www.doi.org/10.1017/pan.2025.10021
https://orcid.org/0000-0001-5791-5541
https://orcid.org/0000-0002-2748-1022
mailto:aylo@wisc.edu
https://creativecommons.org/licenses/by-nc/4.0
https://doi.org/10.1017/pan.2025.10021

https://doi.org/10.1017/pan.2025.10021 Published online by Cambridge University Press

2 Adeline Lo et al.

Legislators
Senators
(a) Unipartite network ©)
Bills
A
(b) Bipartite network (c) Bipartite network

Figure 1. Example networks for bill cosponsorship in bipartite and unipartite forms.

Note: Panels (b) and (c) show different bipartite networks that project to the same unipartite network in panel (a). This projection
loses information about bill types (triangle colors) and cosponsorship details (e.g., number of cosponsors and number of bills). For
instance, in (b), senators cosponsor many bills in total, with a set of (gray) 9 bills that each draw some bipartisan support, such that
the proportion of bipartisan supported bills compared to single-party bills is 3:4, whereas in (c), the senate is much less productive
and has a single (gray) bill that draws all senators in support, with a lower bipartisan proportion of cosponsorship of 1:2.

et al. 2009; Wang, Pattison, and Robins 2013); and community detection models that can uncover latent
groups from observed bipartite relationships (e.g., Kim and Kunisky 2021; Zhou and Amini 2019).

Despite the availability of modeling strategies that can accommodate them, bipartite networks are
often analyzed by first aggregating them into a unipartite network, focusing on relationships among only
one node type. To understand this process better, consider the stylized example of a bipartite network
depicted in panel (b) of Figure 1, in which legislators (circles) and bills (triangles) represent two separate
types of nodes, and with cosponsorship ties occurring only between the two types rather than within
each type. Researchers commonly “project” this onto a unipartite network of legislators, aggregating
edges over one type of nodes (bills) and forming a new network among nodes of the other (senators). For
instance, Panel (a) of Figure 1 shows a projected unipartite network in which weighted edges between
legislators indicate the number of cosponsored bills they share. Projections of this and similar kinds
are common among applied researchers, ranging from examples in policy collaborations (Fischer and
Sciarini 2016) to police community connections (Haim, Nanes, and Davidson 2021). As shown in Table
A1, all but one of the 26 recently published articles in major political science journals that study bipartite
networks project the relational data onto a unipartite graph.

Unfortunately, such projections are known to induce substantial loss of information (e.g., Campbell
et al. 2019), possibly resulting in misleading estimates of network tie determinants. For example, panels
(b) and (c) in Figure 1 depict entirely different bipartite graphs that nevertheless yield an identical
unipartite network (depicted in panel (a)) when aggregated by summing all shared edges between
legislators. In the bipartite network (b), there are many bills, and each is cosponsored by only two
senators. In contrast, the bipartite network (c) has far fewer bills, but each bill is sponsored by many
senators. Information about these differences is completely lost as a result of these two networks
generating the same unipartite projection, leading in potentially incorrect conclusions.

This poses a unique challenge for researchers interested in understanding the role that groups play in
the formation of ties in a network: when projecting, the heterogeneity in the number of connections of
the nodes being aggregated over is lost, which often results in inflated clustering coefficients driven by
the presence of nodes of unusually high-degree (e.g., highly popular bills) (e.g., Guillaume and Latapy
2004; Newman, Strogatz, and Watts 2001). These artificially large clustering coeflicients in turn trans-
late into incorrect estimates of relevant group-related features—including the network’s community
structure, levels of polarization across groups behind tie formation, and coalitional behaviors among
actors (e.g., Gonzalez-Bailéon and Wang 2016; Larson et al. 2019; Sunstein 2009; Sunstein 2018). If
researchers are uninterested in understanding such group-related characteristics of the network, the
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loss of information induced by common projection strategies may be less problematic. But if the goal
is to explore and understand how groups affect the formation of bipartite networks, researchers should
pay careful attention to these and related issues.

To enable the evaluation of theories of group-driven edge formation in bipartite networks and avoid
the need for projections altogether, we extend the mixed membership stochastic blockmodel (Airoldi
et al. 2008; Olivella, Pratt, and Imai 2022) to bipartite networks in which groups are theorized to
play an influential role. The proposed model, which we call bipartite Mixed membership Stochastic
Blockmodel (biMMSBM), allows researchers to discover the groups of nodes, within each node type,
that share common probabilistic patterns of edge formation (so-called stochastic equivalence classes). In
the example of cosponsorship, biMMSBM categorizes legislators and bills into meaningful groups based
on cosponsorship patterns, avoiding the possibility of discovering artificial hyper-partisanship in the
U.S. Congress.

The biMMSBM is based on a mixed-membership (or admixture) structure, allowing nodes of one type
to belong to multiple unobserved groups depending on interactions with nodes of the other type. This
flexibility allows us to capture nuanced social interactions whereby actors adopt different roles when
interacting with others. It also sets our model apart from most of the existing bipartite community
detection models, which typically assume every node (or every edge) belongs to a single group (e.g.,
Kim and Kunisky 2021; Zhou and Amini 2019).!

Our model also supports the use of covariates to explain the edge formation between nodes of
different types (Razaee, Amini, and Li 2019; White and Murphy 2016) in two ways: (1) node-level
covariates describe learned group memberships, like legislators’ ideology and partisanship, and bills’
policy content or author characteristics in the cosponsorship example and (2) dyadic covariates predict
edge formation directly, relaxing the reliance on latent group structures alone in network generation.
This accommodates theoretically relevant variables defined for pairs of nodes of different types—
like whether a legislator belongs to committee(s) a bill was referred to. In contrast, many existing
modeling approaches force researchers to adopt a two-step analytic strategy, conducting standard
regression analyses of network model outputs (e.g., Battaglini, Sciabolazza, and Patacchini 2020; Cao
2009; Handcock, Raftery, and Tantrum 2007; Maoz et al. 2006; Tam Cho and Fowler 2010; Zhang et al.
2008). In sum, our model offers a single-step, comprehensive approach to network analysis with well-
behaved posterior distributions, facilitating research into how group memberships can predict network
formation.

One disadvantage of MMSBM-type network models is that a fully Bayesian inference strategy relying
on Markov chain Monte Carlo simulation is computationally prohibitive for networks of medium or
large size. To overcome this, we develop a computationally efficient variational Bayes approximation to
our model’s collapsed posterior that relies on stochastic optimization (Airoldi ef al. 2008; Gopalan and
Blei 2013; Hoffman et al. 2013; Olivella et al. 2022; Teh, Newman, and Welling 2007). We implement
our algorithm in the open-source software package NetMix (Olivella et al. 2021). To demonstrate
biMMSBM’s applicability, we fit the model to a network of cosponsorship decisions in the U.S. Congress.
As coalitions are at the heart of legislative politics (Riker 1962), a model adept at identifying and
explaining latent group memberships is ideal for understanding the politics of cosponsorship decisions.
We study the patterns of cosponsorship during the penultimate instance of a perfectly split Senate in
U.S. history—the 107th Congress. We model the bipartite network connecting Senators to legislation
(or “bills”) through the discovery of latent groups, while examining the roles of Senator and bill
characteristics, as well as Senator-bill dyadic features.

! Allowing for mixed-memberships not only allows researchers to directly explore and evaluate theories about the role of
unobserved groups in network formation, but does so while sidestepping the serious estimation issues common in ERGM-style
modeling approaches (Chatterjee and Diaconis 2013; Schweinberger 2011). Issues like inferential degeneracy and ill-behaved
likelihood surfaces, which plague unipartite ERGMs, are also present in their bipartite extensions—even after resorting to
common regularization strategies such as geometric weighting (see Skvoretz and Faust 1999; Stivala, Wang, and Lomi 2025;
Wang et al. 2009).
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Contrary to the results of a unipartite network analysis and an analysis with existing cross-sectional
bipartite models, our proposed strategy uncovers cross-party collaboration among senators occurring
through low-stakes legislation, which later facilitates consideration of more contentious bills. Junior
senators from both parties are notably predictive of this cooperation. Additionally, the model uncovers
the role of shared committee memberships and of bill-specific reciprocity norms, which are often missed
by analyses of the projected network.

We now discuss this motivating application—the politics of cosponsorship in the US—and explain
the risk of misunderstanding the role played by groups in edge formation when projecting bipartite
networks to unipartite ones (Section 2). We then detail our modeling approach in Section 3, and present
empirical findings from the 107th Congress cosponsorship network in Section 4. Finally, in Section 5,
we conclude with implications for other domains and future research.

2. The Cosponsorship Network Among Senators

Senator cosponsorship reveals legislative interests and goals, as it signifies public endorsement of specific
legislation (see, e.g., Arnold, Deen, and Patterson 2000; Kirkland 2011; Koger 2003; Tam Cho and
Fowler 2010). In the Senate, sponsorship constraints make cosponsorship crucial for indicating broader
support, increasing media attention, and serving as a credible commitment device (Bernhard and Sulkin
2013; Krutz 2005). The 60-vote filibuster threshold further elevates the importance of cosponsorship,
especially bipartisan support (Rippere 2016).

Collaboration among senators is crucial for legislative productivity and influence, with costs associ-
ated with reneging on cosponsorships (Bernhard and Sulkin 2013; Fowler 2006; Holman, Mahoney, and
Hurler 2022). Although cosponsorship is not predictive of bill passage Anderson, Box-Steffensmeier,
and Sinclair-Chapman (2003) and Wilson and Young (1997), it significantly impacts legislator effec-
tiveness (e.g., Harbridge-Yong, Volden, and Wiseman 2023) and signals issue positions (Desposato,
Kearney, and Crisp 2011; Lawless, Theriault, and Guthrie 2018).

Scholars have examined many factors influencing cosponsorship (see, e.g., Campbell 1982; Fong
2020; Grossmann and Pyle 2013; Krutz 2005). Building on these, our study seeks to understand
bipartisan cooperation in the face of partisan gridlock using observed cosponsorship patterns as our
outcome of interest, examining how groups of legislators interact with legislation of different types to
increase the Senate’s ability to overcome hyper-partisanship.

Considering both different types of legislators and of legislation is important, since both can result
in very different patterns of collaboration. Consider the two sample bipartite networks in Figure 2,
drawn from the full network of consponsorships during the 107th Congress (2001-2003). The networks
in both panels contain 100 senators (left-side nodes) and two samples of bills (right-side nodes).
The left panel depicts highly partisan bills; the right, highly bipartisan bills. We observe substantial
heterogeneity in cosponsorship behaviors, even within the same session of Congress: while a few bills
attract many cosponsors (multiple drawn edges to the bill), many more have relatively few.” If the
partisan composition of cosponsorships is systematically associated with whatever brings about this
heterogeneity, we risk painting an incorrect picture of how partisanship predicts collaboration among
legislators when aggregating over it and omitting crucial bill-specific and senator-specific information
(e.g., policy content, timing, and collaboration extent via popular legislation; see Kirkland and Gross
2014; Neal 2014, 2020).

2.1. Projection onto a Unipartite Network Can Be Misleading

Aggregating over heterogeneity in bill- and senator-bill level data can lead to incorrect substantive
takeaways. To see how this may be the case, revisit the stylized scenario presented in Figure 1. In it,

“More formally, bill cosponsorship displays a power-law degree distribution: many bills with few cosponsors, few with many.
In contrast, senator degree distribution is far less heavy tailed, suggesting less heterogeneity in behavior. See Section S.3.1 of
the Supplementary Material for details.
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Figure 2. Cosponsorship networks among senators in the 107th Congress.
Note: The figure shows two bipartite networks sampled from the 107th Congress, with 100 senators sorted by ideology (most
conservative senators at top) and a sample of bills sorted by node degree. The left panel network shows bills with predominantly
partisan cosponsorship; the right panel shows highly bipartisan bills, highlighting significant heterogeneity in bill cosponsorship

composition and degree.

two distinct bipartite networks (b and c) represent different collaborative environments—one with
high productivity and cross-party collaboration, and the other with low productivity and limited cross-
party work. Despite these differences, they both result in the same unipartite projection (a). In (b),
the bipartisan-to-within-party cosponsorship ratio is 3:4, with a 0.43 probability of randomly selecting
same-party cosponsors; in (c), this ratio is 1:2, and the probability is 0.84. These crucial differences,
which speak to the degree of polarization in the underlying network, are obscured in the unipartite
projection (a), which shows strong within-party ties regardless of the underlying bipartite structure.
Such distortions are palpable when considering the 107th Senate. Figure 3 shows the distribution of
probabilities that a randomly selected pair of cosponsors belong to the same party, computed for each
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Figure 3. Probability of copartisan cosponsors during the 107th Senate.

Note: The left panel shows the probabilities that any two distinct cosponsors of a bill are from the same party, and the right panel
shows the probabilities that a senator’s randomly chosen pair of cosponsors are copartisans. The bipartite network reveals substantial
bipartisan cosponsorship, while the weighted unipartite network among senators indicates less cooperation.

bill in the original bipartite cosponsorship network (left panel) and for each senator in the unipartite
weighted projection of the same. While the strongly bimodal distribution associated with the bipartite
network (Figure 3, left panel) suggests we are roughly as likely to find perfectly bipartisan bills as
we are to find perfectly partisan ones, the distribution associated with the projected unipartite network
(Figure 3, right panel) paints a completely different picture. With an average same-party cosponsorship
probability of 0.75 and a left-skewed distribution, the projection suggests the majority of senators
collaborate with copartisans only.

Unfortunately, this kind of strong, artificial clustering present in both the real projected network of
the 107th Senate and the simple example in Figure 1(a) is a common phenomenon (Latapy, Magnien,
and Del Vecchio 2008; Newman et al. 2001; Tam Cho and Fowler 2010), and can lead to incorrect
conclusions about the extent and nature of polarization in Congress, as we show in Section 4 below.
In general, only in the rare cases when degree and group composition are independent among nodes in
the family being aggregated over can we expect the projection to have no effect on the conclusions that
can be drawn from the projected network. To address these concerns, we introduce a new modeling
strategy next.

3. The Proposed Methodology

This section describes the core intuition behind our model, which we refer to as biMMSBM. It presents
the full modeling approach and discusses estimation strategies that enable the analysis of large networks.

3.1. Modeling Strategy

We represent an observed network as a bipartite graph, with two disjoint node sets (e.g., senators and
bills) linked only by edges representing cosponsorships (no edges among legislators or bills).

The biMMSBM allows nodes to belong to one of several latent groups when interacting with each node
of the other family. For any dyadic relationship between two nodes of different families, the latent group
memberships of the nodes determine the likelihood of forming an edge. Thus, a senator may belong to
different latent communities when deciding whether to co-sponsor different legislation. Similarly, bills
can be sorted into separate latent groups across senator-bill dyads. For instance, John McCain (R-AZ)
might have behaved similarly to other Republicans when deciding whether to cosponsor bills related to
national security, but might have acted differently when considering bills related to campaign finance
reform—a pattern that could help us understand his reputation as a party maverick.
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Figure 4. Mixed-membership stochastic blockmodel for bipartite networks.

Note: The schematic depicts a 2x3 latent community model, where senators exhibit mixed memberships across two communities
(blue and orange) represented as pie charts to indicate probabilities in each community summing up to 1, and bills exhibit mixed
memberships across three communities (yellow, red, and green). Community affinities are encoded in the block model matrix (right),
illustrated by edge thickness (left).

To capture this, we define a probabilistic model to account for diverse latent community member-
ships. Figure 4 schematically depicts our model’s mixed membership structure. Pie charts show the
probability of four senators belonging to two communities (blue and orange) and five bills belonging to
three (red, green, and yellow). Node-level covariates (e.g., senator ideology and bill policy area) explain
these mixed memberships.

The 2 x 3 matrix on the right of Figure 4 shows the blockmodel, indicating probabilities of cospon-
sorship between senator and bill communities. Certain community pairs (e.g., orange senators and red
bills) show higher cosponsorship probabilities than others (e.g., blue senators and green bills), reflecting
diverse coalitional strategies among senators toward legislation.

Cosponsorship networks often exhibit this stochastic equivalence, where coalitions of senators
support similar legislative classes (e.g., Bratton and Rouse 2011). Similar group-based dynamics are
found in other networks, like economic trade between countries and co-occurrence of words in
documents. We now proceed with a formal presentation of our full model.

3.2. The Bipartite Mixed-Membership Stochastic Blockmodel

Formally, let G(V1,V>,E) represent a bipartite graph, where (V1, V) denote the two disjoint families
of nodes (V1 NV, = &), and E represents the undirected edge set, or node pairs of different families.
Suppose that family 1 has Ny = |V1] total nodes, and that family 2 has N, = |V,|. For each dyad, let
Zpg € {1,...,K1} denote the latent group, to which node p € V; of family 1 belongs when interacting
with node g € V; of family 2, whose latent group membership is denoted by uy4 € {1,...,Kz }. Generally,
we allow K # K;. Further, we use y,4 = 1 to denote the existence of an edge between node pair {p,q} € E
while y,4 = 0 indicates its absence.

We assume edge formation probability is a function of dyadic predictors dpq and a blockmodel B,
which is a K; x K, matrix representing the log odds of edge formation between members of any two
latent groups (Figure 4),

Ypq | Zpgs Upg: ByY &P Bernoulli (logit_1 (Bzpyupy + d;qy)) , (1)

where y is a dyad-level regression coefficient vector. Our dyadic predictors allow for varying edge
formation probabilities even within the same latent group pairs, relaxing the stochastic equivalence
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assumption standard to stochastic blockmodels (SBMs). Substantively, this allows for scenarios where
senator-bill dyads whose respective nodes sort into the same pairs of latent communities to be further
differentiated by characteristics pertinent to their particular dyad (e.g., a senator’s history with a bill’s
author).

As is common in mixed-membership SBMs, we define a categorical sampling model for the dyad-
specific group memberships, zyq and u,,, so that

Zpq | Ty ~ Categorical(7y),  tpq |, ~ Categorical (), (2)

where the probability that family 1 node p (family 2 node g) belongs to a latent group on any possible
interaction is given by 71, (\p,)—a Ki-dimensional (K;-dimensional) probability vector usually known
as the mixed-membership vector (represented as pie charts in Figure 4).

Critically, our model incorporates node-level information (e.g., senator and bill level predictors)
into the definition of the mixed-membership probabilities of latent groups. These covariates themselves
predict the likelihood of an edge (e.g., cosponsorship) through the resulting instantiated element of the
blockmodel. Specifically, we assume that the mixed-membership probability vectors are generated by a
Dirichlet distribution with concentration parameters that are a function of node covariates,”’

| By ~ Dirichlet({exp(xgﬁlg)}il), P, By~ Dirichlet({exp(w; Bzh)}f;), (3)

where hyper-parameter vectors B,, and 3, contain regression coefficients associated with the gth and
hth groups of vertex families 1 and 2, respectively.
Putting it all together, the full joint distribution of data and latent variables is given by,

f(YaZa U,I'I,‘i’, |B7[37Y) = I_I f(ypq ‘ ZPQ’“QI”B?‘Y)f(ZPq | nP)f(”Pq |1pq)

p,qeVixV,
< [Tf(m [ By) Hf(‘bq|ﬁz)~ (4)
peVi g€V

This specification allows us to more formally describe the potential issues raised by aggregation
illustrated informally in Section 2.1. A common strategy simply sums the number of connections to a
member of family V; shared by two members of family Vi, forming an aggregated sociomatrix Y = YY .
Under this strategy, and in the absence of dyadic covariates, the model in Equation (4) implies

E[Y]=E[YY']>TI[BY"WB'|IT", (5)

where TT is an Nj x K; matrix that stacks mixed memberships 7, for all p € Vi, and similarly
for W. The issue arises because the bracketed terms in Equation (5) (i.e., blockmodel and Family V,
mixed-memberships) cannot be separately identified from the aggregated sociomatrix Y, leading to
observational equivalence like the one illustrated in Figure 1. This can lead to misconstrued relationships
among members of Family 1 when relying on aggregated data. Our model avoids this by directly
modeling the bipartite network without the need to aggregate.

3.3. Estimation

With the thousands of vertices and millions of potential edges involved in an application such as bill
cosponsorships, sampling directly from the posterior distribution given in Equation (4) is computation-
ally prohibitive. To obtain estimates of quantities of interest in a reasonable amount of time, we follow the
computational strategy of Olivella et al. (2022) by first marginalizing latent variables and then defining
a stochastic variational approximation to the full posterior. We briefly summarize these computational
strategies here.

*Refer to Section S.1 of the Supplementary Material for a plate diagram illustrating the full model.
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3.3.1. Marginalization
To reduce complexity, we collapse the full posterior over the mixed-membership vectors (i.e., ITand ¥):

f(Y,Z,U,|B,B,Y)
- [ [rorzuny |bp.y) anay

_ Jrq _ 1=ypq
- H epq,zpq,upq ( 1 qu;qu, Upq )
P,qeVixV;y

x re) & r(“pg+cpg)( ré) & r(“qh+cqh))
F(&+N2) g T(otg) F(&+N) o Togn)

(6)

where I'(+) is the Gamma function; &y = exp(xgﬁlg), & = 25:11 tpg (and similarly for oz, and &p);
Cpg = X gev, 1(2pq = g) is a count representing the number of times node p instantiates group g across
its interactions with nodes in family 2 (and similarly for Cyy); and €pg.z,,.u,, = logit ™" (Bz,,.u, + dpY) is
the probability of a tie between the vertices in dyad p,q.

3.3.2. Stochastic Variational Inference

Then, to enhance scalability, we employ two strategies. First, we rely on a mean-field variational
approximation to the collapsed posterior in Equation (6) (Blei, Kucukelbir, and McAuliffe 2017),
which first defines a lower bound £(®) for this target, and then tightens the bound by updating
the parameters @ of the approximating distributions by following a strategy similar to that of the
EM algorithm. Previous studies indicate that marginalization approaches like the one described above
enhance variational approximation quality (Teh et al. 2007).

Second, we rely on stochastic optimization to find the maximum of the lower bound (Dulac, Gaussier,
and Largeron 2020; Foulds et al. 2013; Hoffman et al. 2013). To do so, our algorithm follows, with
decreasing step sizes, a noisy estimate of the gradient of £(®) formed by subsampling dyads in the
original network." Provided the schedule of step sizes satisfies the Robbins—-Monro conditions, and the
gradient estimate is unbiased, the procedure is guaranteed to find a local optimum of the variational
target (Hoffman et al. 2013). Importantly, it does so while using a fraction of the available data at each
iteration, thus dramatically improving estimation time. Details of our exact estimation procedures—
including a description of how we compute measures of uncertainty, initialize all relevant parameters
and latent variables, and sample dyads to form the sub-network on which gradient estimates are based—
are available in Section S.1 of the Supplementary Material.’

3.4. Methodological Contributions

While the biMMSBM model is an extension of the unipartite MMSBM (Airoldi et al. 2008) and its
structural variant (Olivella et al. 2022), we believe it makes three methodological contributions. First,
while the MMSBM is a popular modeling framework for network data across disciplines, there is no
version of it that can be applied to bipartite network data, which are common in political science.
The model we propose can take full advantage of information about both kinds of vertices involved in
bipartite networks, without the need to aggregate and ignore either. Second, by avoiding projections that

“The subset of dyads is obtained by first sampling a subset of nodes of each family, and then extracting all edges involving
these nodes—regardless of whether nodes they connect to are part of this sample.

>To support claims about the ability of our model to recover meaningful quantities of interest, Section S.2 of the
Supplementary Material also contains results from extensive simulations. These assess our estimation’s accuracy in determining
mixed-membership, its ability to capture network structure, the properties of our uncertainty approximation, and scalability
across sample sizes.
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are common in practice, our model allows researchers to avoid biased results (such as artificially higher
clustering) related to either of the types of vertices under study. Finally, and particularly by incorporating
node-level predictors, our model allows researchers to make predictions about specific pairs of actors
(e.g., which senators will support which specific bills). Such granular predictions are not possible when
working with the projected network, which most prior models forced researchers to do.’

4. Empirical Analysis of the 107th U.S. Senate

Before 2021, the Senate had only been perfectly split three other times—with the first months of the
107th session being the most recent instance of this rare event in the Senate’s history. Despite this,
the 107th Senate was not unusual in terms of its productivity, passing about 17% of the 3,242 pieces
of legislation introduced between 2000 and 2002—close to the average 22% passage rate during the
modern Senate—and adopting major legislation, including the Patriot Act and the so-called No Child
Left Behind bill.

Such sustained productivity during times of narrow or non-existent partisan majorities is not
uncommon, with many major bipartisan pieces of legislation in U.S. history passing under similar
circumstances—including the legislation that made the interstate highway system possible, the National
Housing Act of 1954, and the Civil Rights Act of 1957. In the 107th Senate, over 20,660 bills had
cosponsors, with roughly half showing bipartisan support.

To explore the drivers of collaboration in cosponsorship, we use the proposed biMMSBM model to
better understand why this session of the Senate remained legislatively active, avoiding the gridlock
that many associate with partisan divisions. The model highlights junior, bipartisan senators as key col-
laborators, building consensus through low-stakes resolutions and popular programs. It also confirms
the influence of quid pro quo behavior and committee experience on cosponsorship, supporting prior
research.

We further show in the Supplementary Material that fitting a unipartite version of our model would
make it impossible to identify these pathways to collaboration (see Section S.3.6 of the Supplementary
Material). As we would expect, given the descriptive analysis in Section 2.1, the unipartite network
model reveals little other than partisanship as the main driver of coalitional politics, making it hard to
understand how a perfectly divided legislature was able to remain productive.”

4.1. Model Specification and Fit

Our goal, then, is to understand the structural and contextual features that made collaboration possible
during the 107th Senate. A rich literature on collaboration in Congress suggests that legislators make
cosponsorship decisions based on partisanship, seniority, gender, and personal political history (Bratton
and Rouse 2011; Holman and Mahoney 2018; Rippere 2016). Therefore, our model includes each
senator’s party, ideology, seniority, and gender as predictors of community membership.

Harward and Moffett (2010) articulate that senators are more likely to cosponsor bills when they
share closer preferences with the sponsor of the bill, and when they are more connected to their
colleagues. To capture this, we model legislation groups as a function of their corresponding sponsors’
party, ideology, seniority, and gender (self-sponsorship dyads are excluded).

Lastly, senators tend to cosponsor bills within specific policy domains (Harward and Moftett 2010)
and may opt into bipartisan cosponsorships based on legislative bill topics (Harbridge 2015). This
inclination cannot be modeled in a senator-only unipartite network, but can be directly accounted

®We also compare the fit of biMMSBM to that of a bipartite ERGM on the subset of our data the latter model is able to
handle (see Section S.3.2 of the Supplementary Material), and find that our approach outperforms in classification accuracy
and calibration of predicted probabilities.

"Data are drawn from (ProPublica 2020) and (Fowler 2007).
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for when modeling the bipartite structure. We address this by including the substantive topic as a bill
covariate.”

To capture the described shifts in the temporal context in which bills are introduced, we also include
a bill-level covariate indicating whether a bill was presented in the first phase of the Congress (lasting
only several months prior to Vermont Senator Jeffords leaving the Republican party in May 2001), in the
second phase (post Jeffords leaving and prior to 9/11) or in the third phase (after 9/11). This temporal
context would be lost in a unipartite network analysis (Kirkland and Gross 2014).

As we indicated earlier, we also pay close attention to two additional forces that can be expected to
affect the likelihood of cosponsorship. First, we aim to capture reciprocity behaviors, or favor-trading
on the Senate floor (Brandenberger 2018; Harbridge-Yong et al. 2023). The model includes a dyadic
predictor: the log-transformed proportion of times a bill’s sponsor reciprocated cosponsorship in the
previous Congress. As this proportion of reciprocity is heavily skewed and contains many zeros, we use
the log transformation of non-zero values and an indicator variable for the cases of zeros.

Second, our dyadic model includes the number of committees shared by a senator and a piece
of legislation. A greater number of shared committees indicates a higher chance that the senator
has overseen the development of a bill and holds relevant substantive expertise. While the roles of
committees have been studied previously (Cirone and Van Coppenolle 2018; Porter et al. 2005), our
analysis directly examines how overlap in committees between legislator and legislation relates to
cosponsorship. Relatedly, Gross and Kirkland (2019) find evidence of strong predictive power of shared
committee leadership among the subset of ranking legislators when exploring cosponsorship decisions.

With predictors at the monadic and dyadic levels in place, we determine the number of latent groups
for senators and bills; we first randomly select 25% of data as a test set, and compare models with a range
of possible latent group-size pairings through the area under the ROC curve (AUROC) values for the
out-of-sample edges. We select group sizes offering the best fit according to this criterion, resulting in
three groups each for legislators and bills, i.e., Ki = K, = 3.

In Section S.3.3 of the Supplementary Material, we establish that the model generally fits the data
well even out of sample (on posterior predictive goodness-of-fit checks and comparisons of network-
level statistics); we obtain the estimates of all parameters and hyper-parameters in Equation (4) for this
K1 = K; = 3 model fitted to the entire bipartite cosponsorship network. More specifically, we compute
various quantities of interest in the form of predicted probabilities of block interactions and block
memberships. As our discussion hinges on these derived quantities, we present all estimated values
in Tables S.4 and S.5 in the Supplementary Material.

4.2. Pathways to Legislative Collaboration

What kinds of coalitions are at play when it comes to making cosponsorship decisions, and how do these
coalitions interact when considering different types of legislation? Figure 5 presents the 107th Senate
estimated blockmodel, showing cosponsorship probabilities between senator and bill groups. Node size
reflects group frequency; edge shading, cosponsorship likelihood. Ideological distributions of senator
and bill groups are also presented. The density for each senator group represents the distribution of ideal
points of its members, while the density for a bill group is that of its members’ sponsors.

As expected, Figure 5 shows senator groups aligning with party lines, including seasoned Republi-
cans (e.g., Strom Thurmond [R-SC] and Jesse Helms [R-NC]) and Democrats (like Robert Byrd [D-WV]
and Edward Kennedy [D-MA]). In addition, however, our model identifies a distinct senator group
(depicted in purple) who stand out as having different cosponsorship patterns than their more partisan
counterparts. Exemplars of this group, whom we call the junior power brokers, include Jon Corzine
(D-NJ), Tom Carper (D-DE), Susan Collins (R-ME), Bill Frist (R-TN), Zell Miller (D-GA), and Hillary

8 Alternative model specifications are detailed in Section S.3.7 of the Supplementary Material.
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Figure 5. Blockmodel of senator and legislation latent group connection probabilities.

Note: Block size is proportional to the number of nodes expected to instantiate the corresponding latent group, and connections
between them are shaded denoting cosponsorship probabilities between group members (darker shades indicate higher connection
likelihoods). Senator groups tend to engage more with an “Uncontroversial” legislation group but less with a larger “Contentious”
one. Next to each block, we also present the density of ideological positions of member senators (top row) and bill sponsors (bottom
row), revealing that while ideology can help distinguish across types of senator coalitions, it cannot discriminate across relevant types
of legislation.

Clinton (D-NY)—all junior Senators at the time. Figure 6 presents the estimated mixed memberships of
all Senators (i.e., their probability of acting as part of any of the discovered latent groups), highlighting
a few of the most notable legislators of the session. Table S.2 in the Supplementary Material presents the
top 10 members of each senator latent group by mixed membership probability.

This third bipartisan group is likely to be formed by senators who have little experience in the Senate
coming from all over the ideological spectrum, as evidenced by the distribution of ideological positions
depicted over the corresponding group in Figure 5.” We explore this in the left-most panel of Figure 7,
depicting how the probability of group membership changes as a function of ideology. While junior
power brokers (depicted in purple) is primarily predicted to be composed of left-leaners, positions along
the second ideological dimension (seen in the central panel of Figure 7)—often interpreted as capturing
cross-cutting salient issues of the day (Poole and Rosenthal 2017)—distinguish this group of senators
from their staunch Democratic counterparts.

Many of these junior power brokers would become leaders within their parties. For instance, during
the latter part of the 107th Congress, Republican Conference leader Trent Lott resigned and was swiftly
replaced by Bill Frist (R-TN)—a top member of the junior power brokers identified by our model.

Similarly, many of them were pivotal “last” votes in large contentious bills that required just an extra
nudge for passage. For example, consider the Farm Bill, designed to repeal the Freedom to Farm Act of
1996. While politics over agriculture had historically been regional rather than ideological, the Freedom
to Farm Act was a significant deviation from that norm. Veteran senators Tom Daschle (D-SD) and

°Plotted quantities are obtained by computing E[SoftMax(x; [glg)], where the expectation is taken over the observed values

of all but a focal variable (e.g., ideology), and the [31 ¢ are estimated monadic coefficients. Full table of estimates of monadic
coefficients is in Table S.5 in the Supplementary Material.
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Figure 6. Ternary plot of senator latent group membership probabilities.

Note: For clarity of presentation, example senators are colored by party. Senators in group 1 (top corner) are more likely to be
Democrats, while senators in group 2 (right corner) are more likely to be Republicans; Group 3 (left corner) senators hail from both
sides of the aisle and are likely to be junior and involved in cross-partisan bill sharing.
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Figure 7. Predicted mixed memberships of senator predictors.

Note: The y-axes plot average predicted mixed memberships across the three possible senator latent groups, given each shift in the
value of a senator predictor in the x-axes; for instance at low values of Ideology (dimension) 1, the average predicted memberships
for being in group 1 (Seasoned Democrats) and group 3 (power-brokers) are highest; as Ideology 1 values increase (corresponding
to increase in the conservative direction), average predicted group 2 membership (Seasoned Republicans) increases and supplants
group 1 entirely.
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Agriculture Committee Chairman Tom Harkin (D-IA) collaborated to bring the Farm Bill together,
and negotiations began to generate the necessary support—including that of small dairy farmers affected
by the bill. In the end, the largely Democratic set of supporters was complemented by key support
from Republicans Susan Collins (R-ME) and Jeff Sessions (R-AL)—again identified by our model as
likely members of the power brokers group. This role as brokers is further supported by analyses of the
betweenness centrality of Senators who are likely to instantiate this group, which tends to be higher than
that of Senators likely to instantiate other groups (see Table S.6 in the Supplementary Material).

The model is also able to identify the types of legislation which these groups of senators are likely
to cosponsor. Specifically, the model uncovers three broad classes of bills and resolutions (depicted in
the bottom row of circles in Figure 5), and the corresponding probabilities that members of any of the
three senator groups will cosponsor them. While ideology plays an important role in defining the latent
senator groups that structure cosponsorship (with right-skewed, left-skewed, and bimodal distributions
characterizing membership into the three groups at the top of Figure 5), no such differences in the
ideology of sponsors can help distinguish across the groups of legislation uncovered by our model
(as indicated by the similarly bimodal densities of sponsor ideology across all three groups in the bottom
of Figure 5).

We next show that investigating this nuance in bill composition can help us understand how
collaborations took place during this nominally partisan Congress.

4.3. Legislation Types That Facilitate Cosponsorship

The largest type of legislation uncovered by our model is also the least likely to be supported by members
of any senator group, suggesting that the bulk of legislation introduced in the Senate received little
support from Senators other than the original sponsor. This latent class of bills, which we labeled
“Contentious Bills” in Figure 5, consists of high-stakes bills on controversial economic issues and social
programs, including those that handle the allocation of public funds for such programs. For example, the
Senior Self-Sufficiency Act (SN 107 2842), Bioterrorism Awareness Act (SN 107 1548), and the Nationwide
Health Tracking Act of 2002 (SN 107 2054) belong to this group. Table S.3 in the Supplementary Material
presents details of legislation with the top ten mixed membership probabilities in each of the three latent
groups.

The size of the “Contentious Bills” group grew during the last phase of the 107th Senate, after the 9/11
attacks. This is easily seen in Figure 8, which presents radar plots of predicted legislation memberships
by phase of the Congress (panels from left to right present bills from the pre-Jeffords™ split phase,
post-Jeffords’ split second phase, and post 9/11 phase). Each radar graph positions the six observed
substantive topics along spokes of a wheel, and plots the predicted number of bills on that topic as a
point along the corresponding spoke: the farther away from the wheel center, the more bills are predicted
to be on that topic. Doing this for each of the three latent groups results in the three shaded polygons
presented in each panel of the figure.'” The dominance of bills in the “Contentious Bills” group in the
third phase, depicted in orange, is readily apparent.

The composition of the other two latent bill groups uncovered by our model—the groups we have
labeled “Bipartisan Resolutions” and “Uncontroversial Bills” in both Figures 5 and 8—provides valuable
clues for understanding how cross-party collaboration took place. Specifically, the topical composition
of the “Bipartisan Resolutions” almost mirrors that of the “Contentious Bills” (i.e., it is composed
of pieces of legislation that deal with controversial public social programs and economic issues, as
indicated by the similarly-proportioned shapes of green and orange polygons in Figure 8), but it is
mainly composed of concurrent and simple resolutions, rather than bills. As they do not result in codified
law (unlike continuing resolutions), such resolution offer low-staked opportunities to build bridges

0The vertices of each polygon are obtained by summing each latent group’s estimated mixed membership proportions for
a given topic in a single phase—a way to think of bills in each group allocated toward each topic—and plotting these against
each topic pole’s total number of bills.
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Figure 8. Radar graphs of predicted legislation by topic within each phase of Congress, by bill latent group.

Note: Panels are phases 1 (pre-Jeffords split), 2 (post-Jeffords split), and 3 (post 9/11) in the Congress, from left to right. Each radar plot
includes bill topics as poles, with the estimated number of bills in the topic plotted against each pole, by latent group. Phase 2 produces
the fewest pieces of legislation, while Phase 3 produces the most. Over time, the predicted number of bills in the “Contentious Bills”
group (orange polygon) increases, especially in domains related to social public programs and the economy. The number of bills in the
“Bipartisan Resolutions” group grew more slowly than that in the “Contentious Bills” block (green polygon), but has similarly favored
social/public programs and the economy. Finally, the number of bills in the “Popular & Uncontroversial” (yellow polygon) changed
the least throughout the session.

across partisan divides. Table S.3 in the Supplementary Material contains the top pieces of legislation in
the group.

In turn, legislation in the comparatively smaller “Uncontroversial” group (shown in yellow in
Figures 5 and 8) also draws consistent cosponsorship support from all senator groups and across the
aisle, as pieces in it tend to be either uncontroversial resolutions or bills on popular social programs. For
instance, the Senate joint resolution over the September 11 attacks (SJ 107 22) has the second-highest
mixed membership probability in this group, followed closely by bills, such as the Railroad Retirement
and Survivors” Improvement Act of 2001 (SN 107 697). Such legislation forms a small but steady core
that supplements low-stakes efforts (such as those in the “Bipartisan Resolutions” block), and that can
nevertheless result in substantial legislation, such as the Family Opportunity Act of 2002 (SN 107 321).

The importance of this meaningful cooperation mechanism revealed by the blockmodel is particu-
larly notable, as the model was able to identify it net of two important drivers of cosponsorship: quid
pro quo behaviors, measured as the coefficient on the (log) proportion of “reciprocity” (Log Reciprocity),
and the shared committee experience of a given senator-bill dyad (Shared Committee). For the former,
our model suggests that a 1% increase in the reciprocity (i.e., the proportion of times the sponsor of a
piece of legislation acted as a cosponsor for a given senator’s bill in the previous Congress) is associated
with a roughly 2% increase in the odds of cosponsorship. In the case of the latter, we find that sharing
a committee is significantly and positively associated with collaboration, making cosponsorship about
3.7 times more likely. These results, which are fully explored in Table S.4 in the Supplementary Material,
are consistent with previous research on the determinants of legislative collaboration.

In sum, Senators appear to have leveraged a mix of low-stakes resolutions over potentially con-
tentious issues and a small but important set of bills for which there was bipartisan support. This enabled
them to build cross-partisan bridges and keep the 107th term from devolving into stalemate. Our
model identified these novel patterns of cooperation after accounting for other, more traditional forces
predictive of collaboration and cosponsorship. Our application offers clues on which kinds of legislators
likely to collaborate, but also about which kinds of legislation make such collaborations possible. These
insights would be lost when analyzing data aggregated over bills and their characteristics."'

"'In Section S.3.6 of the Supplementary Material, we compare our results with a unipartite model fit on the same data,
and find that doing so results in an artificially inflated sense hyper-partisanship—a risk that becomes even studying political
polarization.
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5. Conclusion

While bipartite networks are common in the social sciences, researchers often choose to project such
data onto unipartite networks for analysis. As shown in this article, however, this projection results in
loss of valuable information, and can lead to misleading conclusions about the community structure that
drives tie formation in these types of networks except in the rarest of cases. Moreover, as the information
that is lost through standard modes of aggregation cannot be recovered from projected data, this implies
that bipartite networks should generally not be analyzed in their projected, unipartite form when the
goal is to understand the role communities and groups play in network formation.

To address this problem, we have developed a new approach to modeling bipartite networks that
allows researchers to directly study the role played by groups of nodes. As bipartite networks are quite
common in the social sciences, we see natural applications in a number of different domains. For
example, our model could be used to examine questions relating to country-trade product networks,
state memberships in organizations, posts on social media platforms and hashtags, or product recom-
mendation systems—all of which are theorized to be affected by groups (or segments) or actors. Readers
interested in using our proposed approach in their own work can do so easily by installing the open-
source software NetMix, available at (https://CRAN.R-project.org/package=NetMix). Our replication
materials offer a good template for how to estimate the model and generate useful tables and figures for
interpretation purposes.

While we believe that the proposed model is widely applicable, one drawback is its computational
intensity. In particular, fitting the proposed model to a larger network data set may take considerable
computational resources.'” This makes it difficult for researchers to try different model specifications
in a relatively short amount of time."> For example, one may prefer to conduct an exploratory analysis
based on commonly used descriptive network statistics, which can be computed quickly, even on the
original bipartite structure. At the very least, and if the size of the network necessitates projection, careful
use of weights that maintain some of the heterogeneity that is typically lost through aggregation should
be the norm (e.g., Newman 2001).

In the future, given the prevalence of bipartite networks observed over time (e.g., Marrs et al. 2020),
fruitful extensions of our proposed approach would allow researchers to incorporate dynamics into
the generative model of bipartite network formation (for an extension incorporating dynamics in the
unipartite case, see Olivella et al. 2022). In addition, we could explore larger multi-mode networks,
integrating entities like lobbying firms into cosponsorship networks or examining relationships among
NGOs, IGOs, and groups of countries internationally. These networks allow for co-clustering of diverse
actors sharing indirect connections, necessitating improved tools for studying relational data beyond
traditional single-mode representations and avoiding aggregation bias.

12 Although the results presented here were obtained using a modern ARM-based Apple desktop computer with 64Gb of
RAM in about 2 hours, larger applications (i.e., with more than a couple of thousands of nodes in each family) would benefit
from high-performance computing environments with a large amount of random-access memory.

BIn these and other simulation-intensive applications, we have found that parallel computing infrastructures (including
computing on GPUs) work best.
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Appendix 1. Projecting Bipartite Networks onto Unipartite Networks Is a Common Practice

Table Al. Applications with naturally bipartite applications in top field journals in 2000s.

Author Journal Network; Nodes Projected
Alliances

Franzese et al. (2012) PA Country alliances: countries < alliance treaties Yes

Kinne & Bunte (2018) BJPS Defense cooperation agreements (DCA) network; Yes

countries <> DCAs

Communication

Aarge & Peterson (2018) BJPS Media flows; individuals <> stories Yes
Boucher & Thies (2019) JOP Twitter; Twitter users <> tweets Yes
Siegel & Badaan (2020) APSR Twitter; Twitter users <> tweets Yes
Conflict

Rozenas et al. (2019) PA Conflict & treaty network; actors < treaties Yes
Nieman et al. (2021) JOP Troop placements; major <> minor powers Yes

Congress & Parliament

Cho & Fowler (2010) JOP Legislative cosponsorship; legislators < bills Yes

Cranmer & Desmarais (2011) PA Legislative cosponsorship; legislators < bills Yes

Box-Steffensmeier et al. (2018) AJPS Dear Colleague letters; legislators <> interest groups Yes

Zelizer (2019) APSR Cue taking network; legislators < bills Yes

Battaglini et al. (2020) AJPS Legislative cosponsorship; legislators < bills Yes

Kim & Kunisky (2021) PA Congressional lobbying; special interest groups < No
politicians

International organizations

Martinsen et al. (2020) BJPS Welfare governance network; bureaucrats < states Yes

International political economy

Bodea & Hicks (2015) JOP Central bank independence for countries/firms; countries Yes
<> investors

Kim et al. (2019) AJPS Trade network; countries < products Yes

Policies

Fischer & Sciarini (2016) JOP State policy collaboration; political actors <> policies Yes

Gilardi et al. (2020) AJPS Policy adoption/issue definition; states <> policies Yes

Political elites

Nyhan & Montgomery (2015) AJPS Campaign consultants; consultants <> candidates Yes
Pietryka & Debats (2017) APSR Voters-elite network; voters < elites Yes
Weschle (2017) BJPS Party-societal group network; parties <> societal groups Yes
Weschle (2018) APSR Political and social actors; political <> social actors Yes
Jiang & Zeng (2019) JOP Elite network; elite (lower) < elite (upper) politicians Yes
Box-Steffensmeier et al. (2020) AJPS Campaign donor list sharing; legislators < lists Yes

Village networks

Larson (2017) JOP Ethnic cooperation; individuals < ethnic groups Yes

Haim, Nanes & Davidson (2021) JOP Police community connections; police < citizens Yes

Note: “Projected” indicates unipartite network considered for empirical application.
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Data Availability Statement. Replication code for this article has been published in Code Ocean, a computational repro-
ducibility platform that enables users to run the code, and can be viewed interactively at https://doi.org/10.24433/C0.3081370.v1
(Loetal. 2025). The methods described in this article can be NetMix, available at https://CRAN.R-project.org/package=NetMix.

Ethical Standards. All analyses use publicly available, de-identified data.

Supplementary Material. The supplementary material for this article can be found at https://doi.org/10.1017/pan.2025.10021.
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