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ABSTRACT
Estimating racial disparities without access to individual-level racial information is a common challenge
in economic and policy settings. We develop a statistical method that relaxes the strong independence
assumption of common race imputation approaches like Bayesian-Improved Surname Geocoding (BISG).
Our identification assumption is that surname is conditionally independent of the outcome given (unob-
served) race, residence location, and other observed characteristics. The proposed approach reduces error by
up to 84% relative to BISG when estimating racial differences in political party registration. In our application,
we estimate racial differences in who benefits from the home mortgage interest deduction using individual-
level tax data from the U.S. Internal Revenue Service. Our analysis reveals that many fewer Black and Hispanic
filers claim the HMID than White and Asian filers. We also find that the racial gaps in homeownership rates
alone cannot explain this disparity. Supplementary materials for this article are available online, including a
standardized description of the materials available for reproducing the work.
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1. Introduction

The identification and estimation of racial disparities is of
paramount importance to researchers, policymakers and
organizations in a variety of areas including public health,
employment, voting, criminal justice, economic policy and
taxation, housing, lending, and technology and fairness. In
many cases, however, racial information is not available at
the individual level. The unavailability of individual racial
information makes it impossible for analysts to simply tabulate
variables of interest against race to identify disparities among
different racial groups. In fact, in some areas, the law explicitly
prohibits the collection of racial information even as it demands
fair treatment on the basis of race (see, e.g., the U.S. Equal Credit
Opportunity Act). This creates a dilemma for organizations who
wish to measure possible disparities in order to monitor the
fairness of their decision-making or service provision.

In our empirical application, we analyze large-scale admin-
istrative tax data from the U.S. Internal Revenue Service (IRS),
which does not collect individual taxpayers’ racial information.
As briefly described in Section 2, our goal is to estimate the
distribution by race in who claims the home mortgage interest
deduction (HMID). The HMID is one of the largest tax benefits
for homeowners in the income tax code, and some scholars
have claimed it disproportionately benefits taxpayers in certain
racial groups (Moran and Whitford 1996; Brown 2022). We
investigate this question, whose answer has been largely ham-
pered by a lack of administrative tax data with taxpayers’ racial
information.
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To estimate racial disparities without individual racial data,
some researchers have turned to ecological inference methods
(e.g., Goodman 1953; King 1997; Wakefield 2004; Imai, Lu, and
Strauss 2008). These methods, however, require strong assump-
tions, which are difficult to verify and may provide misleading
results (Cho and Manski 2008). They also rely on accurate
marginal information about race, which may not be available.

Where the analysis of racial disparities involves large-scale
administrative data, many analysts have adopted Bayesian
Improved Surname Geocoding (BISG), which generates indi-
vidual probabilities of belonging to different racial groups
using Bayes’ rule applied to last names and geographic location
(Fiscella and Fremont 2006; Elliott et al. 2008; Imai and Khanna
2016). BISG leverages residential racial segregation and the
association between self-reported race and surname to produce
generally accurate and calibrated predictions of self-reported
individual race (Kenny et al. 2021; DeLuca and Curiel 2022).

Much attention has been given to ways of increasing the
accuracy of BISG and related methods for race prediction (Voicu
2018; Zest AI 2020; Argyle and Barber 2024; Imai, Olivella,
and Rosenman 2022; Decter-Frain 2022; Greengard and Gelman
2023). Unfortunately, accurate BISG racial prediction alone does
not guarantee the unbiased estimation of racial disparities, which
is the ultimate goal of most analysts. To estimate disparities,
BISG probabilities (or any other racial predictions) must be
combined with information on the outcome variable for which
the disparities are of interest. But the most common techniques
are known to be biased when race is correlated with the out-
come even after controlling on name and location (Chen et al.
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2019; Argyle and Barber 2024; Greenwald et al. 2023). These
approaches include weighting the outcome variable by the BISG
probabilities, and thresholding the BISG probabilities to produce
point predictions of individual race.

In fact, these methods often underestimate racial dispari-
ties, which is problematic for policymakers and analysts who
aim to identify these disparities. As discussed in Section 3, the
standard methods of racial disparity estimation based on BISG
predictions implicitly require individuals’ race to be condition-
ally independent of the outcome given their residence location,
surnames, and other observable attributes. This key assumption,
however, is violated if race affects many aspects of society even
after accounting for residence location, surnames, and other
observable attributes. Researchers have noted the implausibility
of this assumption and have advocated for partial identification
strategies (Kallus, Mao, and Zhou 2022; Elzayn et al. 2023).
Another literature considers general problems of mismeasure-
ment and develops methodology for the case where a randomly-
sampled validation set containing true labels is available (Selén
1986; Fong and Tyler 2021; Egami et al. 2024; Angelopoulos,
Duchi, and Zrnic 2024). However, in many settings, such as our
motivating application, ground-truth racial information is not
available for even a subset of the records.

To address this challenge, in Section 4, we propose an
alternative identification strategy. Specifically, we assume that
the outcome is conditionally independent of surname given
(unobserved) individual’s race, residence location, and other
observed attributes. This assumption is a type of exclusion
restriction where surname serves as an instrumental variable
for unobserved race. It implies that for two individuals who live
in the same area, belong to the same racial group, and share
the observable attributes, their surnames have no predictive
power of the outcome. Somewhat counter-intuitively, the high-
dimensionality of surnames aids rather than hinders identifica-
tion because it provides a large number of instruments. We argue
that this new identification assumption is more credible than
the commonly invoked assumption unless surname is directly
used to determine the outcome of interest (i.e., name-based
discrimination).

Leveraging this identification strategy, in Section 4.2 we
introduce a new class of models, Bayesian Instrumental
Regression for Disparity Estimation (BIRDiE), that accurately
estimates racial disparities using BISG probabilities. Beyond
accuracy, BIRDiE improves on standard methodology in several
ways:

• BIRDiE includes built-in flexibility for researchers to make
problem-specific modeling choices (Section 4.2).

• BIRDiE can be fit with an EM algorithm that can scale
to hundreds of thousands or millions of observations
(Appendix B.2).

• BIRDiE produces updated BISG probabilities that incorpo-
rate the outcome variable and are likely to be more accurate
than the BISG probabilities based only on surnames and
geolocation (Section 4.3).

• BIRDiE can condition on additional variables whose dis-
tribution by race is not known a priori (Section 4.4). For
example, party identification can be estimated by race and
turnout.

Finally, in Section 4.5 we address potential violations of the
key identification assumption, such as the one caused by overly
coarse racial categories, by exploiting auxiliary information
about the relations between names and more specific ethnic
groups. All of the proposed methodology is implemented
in a computationally efficient open-source software package,
birdie, which is available on CRAN at https://CRAN.R-
project.org/package=birdie.

In Section 5, we validate the proposed methodology using
the voter file in North Carolina, where self-reported individ-
ual race is used to construct the ground-truth of racial dis-
parities. BIRDiE substantially outperforms existing estimators
across multiple levels of geolocation specificity. For example, the
most popular existing BISG-only disparity estimator pegs the
gap at Democratic party registration between White and Black
voters at 16.8 percentage points (pp), while the actual gap is
54.6pp—more than double. Our preferred BIRDiE model using
the same BISG probabilities yields an estimate of 48.8pp. This
represents about a 85% reduction in bias.

In Section 6, we apply BIRDiE to large-scale administrative
tax data from the U.S. Internal Revenue Service, which does not
collect individual taxpayers’ racial information. We produce
novel estimates of the distribution by race in who claims
the home mortgage interest deduction—a question that has
largely been hampered by a lack of administrative tax data
with taxpayers’ racial information. Our analysis reveals a
substantial degree of racial disparity with many fewer Black
and Hispanic filers claiming the HMID than White and Asian
filers. We find that the racial gaps in homeownership rates
alone cannot explain this disparity. Section 7 gives concluding
remarks.

2. Racial Disparity in Home Mortgage Interest
Deduction

In this section, we briefly describe our empirical application—
estimation of racial disparity in HMID. The HMID is designed
to incentivize home ownership; homeowners with a mortgage
qualify for an itemized deduction based on the amount of mort-
gage interest they pay during the year. The deduction is only
available for taxpayers who itemize their deductions. Following
increases to the standard deduction and other tax code changes
as part of the “Tax Cuts and Jobs Act” of 2017 (P.L. 115-97),
roughly 90% of taxpayers take the standard deduction and do
not itemize. These taxpayers are unable to take advantage of the
HMID.

The Treasury Department estimates the HMID costs the
government about $25 billion in foregone revenue in 2019. By
budgetary cost, the deduction is the largest in the income tax
code (Congressional Research Service 2017). Because it is only
available to homeowners, the HMID may disproportionately
benefit taxpayers of racial groups that have a high homeown-
ership rate. Prominent legal scholars have criticized the possible
disproportionate benefits, with Brown (2022, p. 94) referring to
the subsidy from the HMID as “little more than the twenty-
first-century version of redlining” and concluding it “must be
repealed.” On the other hand, it is also possible that if Black
homeowners faced higher mortgage rates, they could in princi-
ple benefit more than would be expected based on homeowner-
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ship rates alone. Lack of administrative data on HMID claims by
race made it difficult to quantify racial disparities that potentially
exist.

The Treasury’s internal Office of Tax Analysis has recently
used an extension of the standard BISG model to estimate
the usage of the HMID and other deductions by race from
individual-level data (Cronin, DeFilippes, and Fisher 2023).
External researchers have also studied HMID usage by analyzing
survey data or data on proxies like home ownership (Sullivan
et al. 2017). Both types of analyses have found that White
taxpayers benefit disproportionately from the HMID, though
the magnitude of the disparity is unclear, especially given the
methodological challenges identified in this article.

In Section 6, we apply BIRDiE to more precisely answer the
question of which groups are using the HMID and how much
they benefit from it. We analyze individual-level tax data from
the IRS, which includes the universe of income tax returns
filed by U.S. taxpayers. The IRS does not collect information
on taxpayer race or ethnicity. While, unlike in many settings, it
may theoretically be possible to link tax data to census data that
contain race, such linkages are often prohibited by law, such as
Titles 13 and 26 of the U.S. Code. Researchers are not currently
permitted to link these specific Treasury data to Census Bureau
data with individual racial identifiers.

3. Bias of the Standard Methodology

In this section, we review the assumptions of the standard BISG-
based methodology for estimating racial disparities when indi-
vidual race is not observed. We show that these racial disparity
estimates are biased unless the outcome variable is independent
of race given surname, residence location, and other observed
covariates. We argue that this assumption is likely to be violated
given the significant role race plays in our society.

3.1. Setup and BISG Procedure

Suppose that we have an iid sample of N individuals from a
super population. For each individual i = 1, . . . , N, we define
a tuple (Yi, Ri, Gi, Xi, Si), where Yi ∈ Y is the outcome, Ri ∈
R is the (unobserved) race of the individual, Gi ∈ G is the
(geo)location of the individual’s residence, Xi ∈ X are other
observed characteristics, and Si ∈ S is the individual’s surname.
When we are not referring to a particular individual, we will
drop the subscripts for simplicity. Note that individual race is
unobservable but all other variables are assumed to be observed.
The availability of particular (or any) X is not required for either
the standard or proposed methodology.

We assume throughout that these variables are discrete, tak-
ing a finite set of values, that is, |Y|, |R|, |G|, |X |, and |S| are
constants. Note that typically S is high-dimensional as there exist
a large number of unique surnames. In practice, residence loca-
tion G is also discrete, since joint information about location,
race, and other variables is generally only available down to the
Census block level. For simplicity, we assume that the outcome
variable Y is also discrete, though it is possible to extend the
standard and proposed methodologies to continuous outcome
variables.

Typically, BISG relies on data from the decennial Census
or the American Community Survey (ACS), which provide
information on the joint distribution of R and G (and any
other covariates X, such as gender or age). It then combines
this information with data from the Census Bureau’s surname
tables (U.S. Census Bureau 2014), which provide information
on the joint distribution of R and S. We summarize this set of
information from the Census by two conditional probabilities,
qGX|R and qS|R, and one marginal probability, qR.

The BISG estimator of the probability that individual i
belongs to race r ∈ R can then be written as (Fiscella and
Fremont 2006; Elliott et al. 2008)

P̂ir := qGiXi|r qSi|r qr∑
r′∈R qGiXi|r′ qSi|r′ qr′

, (1)

where, for example, qGiXi|r indicates the estimated conditional
probability of residence location Gi and covariates Xi given race
r, taken from the Census table qGX|R.

The BISG estimator relies on two key assumptions. The first
is that the Census tables reflect the true population distributions
of R, S, G, and X.

Assumption ACC (Data accuracy). For all i, we have:

P(Ri = r) = qr ,
P(Si = s | Ri = r) = qs|r ,

P(Gi = g, Xi = x | Ri = r) = qgx|r .

Despite the best efforts of the Census Bureau, Assump-
tion ACC may never hold exactly in practice. The decennial
census has intrinsic error, including undercounting minority
groups (U.S. Census Bureau 2022; Anderson and Fienberg 1999;
Strmic-Pawl, Jackson, and Garner 2018) and error introduced
by privacy-preserving mechanisms (Kenny et al. 2024). And
because of births, deaths, and moves, census data are often out-
of-date from the moment of publication. These errors have
led further extensions of the BISG estimator to account for
measurement error (Imai, Olivella, and Rosenman 2022).

The plausibility of Assumption ACC is stretched further
when the study population is a subset of the whole U.S. popula-
tion, and so is not covered by national census data. In these cases,
analysts should set qR to the known or estimated marginal racial
distribution in the study population, rather than the national
racial distribution. It may be more plausible then to assume that
the conditional distributions P(S | R) and P(G, X | R) match
the census distributions, even if P(R) does not (Rosenman,
Olivella, and Imai 2023). Greengard and Gelman (2023) take
this approach a step further by raking BISG probabilities to all
known margins, further improving calibration.

The second assumption required by BISG is the following
conditional independence relation between an individual’s sur-
name and residence location (as well as other characteristics)
given their unobserved race.

Assumption CI-SG (Conditional independence of name and other
proxy variables). For all i,

Si ⊥⊥ {Gi, Xi} | Ri.
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Assumption CI-SG implies, for example, that once we know
an individual is White, knowing their surname is Smith tells
us nothing about their residence location and other observed
characteristics. Although this assumption appears to be reason-
able, the lack of granularity in the coding of race may lead to
its violation. For example, people with Chinese, Indian, Filipino,
Vietnamese, Korean, or Japanese are all coded as one racial
group “Asian” in the census. These groups, however, have various
surnames and have different demographic and geographic dis-
tributions. For instance, unlike the Smith example, knowing that
an Asian individual’s surname is Gupta makes it more likely that
they have a higher income and live in the Eastern U.S (Budiman,
Cilluffo, and Ruiz 2019).

Even though Assumptions CI-SG and ACC may not hold
exactly, researchers find that BISG produces accurate and gener-
ally well-calibrated estimates in practice (Imai and Khanna 2016;
Zhang 2018; Kenny et al. 2021; DeLuca and Curiel 2022). We
observe this pattern as well in the validation study in Section 5.
Under Assumption CI-SG, by Bayes’ Rule,

P(Ri = r | Gi, Xi, Si)

∝ P(Gi, Xi | Ri = r)P(Si | Ri = r)P(Ri = r).

This justifies the estimator given in (1), yielding the following
immediate result.

Proposition 3.1 (Accuracy of BISG). Under Assumptions CI-SG
and ACC, the BISG estimator produces correct probabilities.
That is, we have P̂ir = P(Ri = r | Gi, Xi, Si).

New methods are developed to improve the calibration of
BISG probabilities, including some machine learning methods
based on labeled data (Zest AI 2020; Imai, Olivella, and Rosen-
man 2022; Argyle and Barber 2024; Decter-Frain 2022; Green-
gard and Gelman 2023; Cheng et al. 2023). Fundamentally, these
approaches all focus on building a more accurate model for
R | G, X, S at the individual level.

3.2. Bias of BISG-based Racial Disparity Estimates

To estimate racial disparities, BISG probabilities (or other racial
predictions) must be combined with the outcome variable.
There are several common ways researchers do this. The
most frequent is the thresholding or classification estimator,
which deterministically assigns individuals to a predicted racial
category based on the BISG estimates P̂i (either the largest P̂ir
or the one which exceeds a predetermined threshold). Estimates
of P(Y = y | R = r) are then obtained by tabulating the data
by these assigned categories. Another common approach, which
attempts to capture the uncertainty inherent in race prediction,
is the following weighting estimator:

μ̂
(wtd)
Y|R (y | r) =

∑N
i=1 1{Yi = y}̂Pir∑N

i=1 P̂ir
.

Unfortunately, accurate and calibrated predictions of indi-
vidual race alone are not sufficient for unbiased estimation
of racial disparities using these standard methodologies. This
should come as no surprise for the thresholding estimator, since
it does not take into account prediction uncertainty in the BISG

probabilities. This is akin to ignoring measurement errors in
the covariates of a regression, something which has long been
known to lead to biased coefficient estimates. Unlike the classical
errors-in-variables setting, however, the bias of the thresholding
estimator is not consistently in the same direction, making it
hard to reason about (Chen et al. 2019).

But, the weighting estimator is also biased because the pre-
diction error of race probabilities may be correlated with the
outcome variable of interest. Fortunately, unlike the threshold
estimator, it is easier to understand the nature of this bias. Chen
et al. (2019) show that the asymptotic bias of the weighting
estimator is controlled by the residual correlation of Y and R
after adjusting for G, X, and S. We reproduce this result here.

Theorem 3.2 (Theorem 3.1 of Chen et al. 2019). If race is binary
(R = {0, 1}), then as N → ∞,

μ̂
(wtd)
Y|R (y | r) − P(Y = y | R = r)

a.s.−−→ −E[Cov(1{Y = y}, 1{R = r} | G, X, S)]
P(R = r)

.

This result implies that when the BISG residuals 1{R =
r} − P(R = r | G, X, S) are correlated with the outcome, esti-
mates will be biased. In fact, the weighting estimator will often
underestimate the magnitude of a disparity, as the following
corollary shows. For instance, in measuring disparities in loan
approval, if Black applicants are less likely to be approved for
loans across all locations and surnames than White applicants,
then the weighting estimator would understate the resulting
overall White-Black disparity in loan approval rates.

Corollary 3.2.1 (Underestimation of racial disparity). Let y ∈ Y .
If race is binary (R = {0, 1}), and P(Y = y | R = 1, G = g, X =
x, S = s) > P(Y = y | R = 0, G = g, X = x, S = s) for all
g ∈ G, x ∈ X , and s ∈ S , then

μ̂
(wtd)
Y|R (y | 1) − μ̂

(wtd)
Y|R (y | 0)

< P(Y = y | R = 1) − P(Y = y | R = 0).

Conversely, as formally stated below, Theorem 3.2 implies
that conditional independence between an individual’s race and
outcome given their surname, residence location, and other
characteristics is sufficient to eliminate the asymptotic bias of the
weighting estimator.

Assumption CI-YR (Conditional independence of outcome and
race). For all i,

Yi ⊥⊥ Ri | Gi, Xi, Si.

Corollary 3.2.2 (Consistency of weighting under Assumption
CI-YR). Let y ∈ Y . If race is binary (so R = {0, 1}),
and Assumption CI-YR holds, then as N → ∞, μ̂

(wtd)
Y|R (y |

r) − P(Y = y | R = r) a.s.−−→ 0.

Figure 1(a) shows a causal directed acyclic graph (DAG) that
satisfies Assumptions CI-YR and CI-SG. The dashed node bor-
der for R represents the fact that race is unobserved. The causal
structure in Figure 1(a) implies the conditional independence
relation Y ⊥⊥ R | G, X, S, because all paths from R to Y are
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Figure 1. Possible causal structures for which each of the labeled assumptions is satisfied, represented as a directed acyclic graph (DAG) where G is residence location,
R is race, S is surname, X is observed covariates, and Y is the outcome. Race R is unobserved, which is signified by a dashed node boundary. Both DAGs also satisfy
Assumption CI-SG: Conditional independence of S and (G, X) given R.

blocked by G, X, or S. Thus, this DAG assumes that the effect
of race R on the outcome Y must be entirely mediated by sur-
name S, residence location G, and other observed characteristics
X. We note that causal structures other than Figure 1(a) may
likewise imply Assumption CI-YR. Assumption CI-YR is not
credible in many real-world settings because race can affect
the outcome through so many factors, biasing the weighting
estimator.

In other settings, Assumption CI-YR may be plausible. For
example, a manager who reviews job applications without
individual-race information may be influenced by racial or
gender cues in an applicant’s name or address (Park et al.
2009; Åslund and Skans 2012). So long as we observe all
information used by the manager and incorporate it in the BISG
estimation, the weighting estimator would be asymptotically
unbiased. Similarly, in evaluating the fairness of algorithmic
decision-making, as long as all the information used by the
algorithm is incorporated into BISG, Assumption CI-YR would
be appropriate. Outside of these cases, however, the weighting
estimator is likely to be biased.

Finally, while our discussion has been focused on the BISG
methodology, the results and necessary assumptions carry over
to other approaches which produce probabilistic predictions of
individual race (Zest AI 2020; Argyle and Barber 2024; Imai,
Olivella, and Rosenman 2022; Decter-Frain 2022; Greengard
and Gelman 2023). Just like standard BISG, all of these methods
are based on individual names, geographic location (and
sometimes other geographic attributes), and possibly additional
individual covariates. Thus, well-calibrated probabilities are
not generally sufficient to produce unbiased estimates of
racial disparities using the standard weighting or thresholding
estimators.

4. The Proposed Methodology

In this section, we propose an alternative identification strategy
that allows race to directly affect the outcome of interest. We
show that racial disparity is identifiable if surname is condition-
ally independent of the outcome given race, residence geoloca-
tion, and other observed information, and the aforementioned
assumptions required by BISG hold.

We develop a class of statistical models, called Bayesian
Instrumental Regression for Disparity Estimation (BIRDiE),
that estimate racial disparity under this identification condition
by using surnames as an instrumental variable for race. BIRDiE
models take as inputs the BISG probabilities, and so can be easily
applied on top of existing analysis pipelines, including those
with alternative probabilistic race prediction methodologies. We
also discuss computational strategies to handle large datasets,
and an extension of the methodology to include an additional
explanatory variable that was not used at the BISG stage.
Finally, we show how to address potential violations of the key
identification assumptions, such as those caused by name-based
discrimination.

4.1. New Identification Strategy

To reduce the potential bias of the weighting estimator, we
propose an alternative identification assumption that may be
applicable when Assumption CI-YR is not credible. Specifically,
we assume that surname, rather than race, satisfies the exclusion
restriction conditional on (unobserved) race, residence location,
and other observed characteristics.

Assumption CI-YS (Conditional independence of outcome and
name). For all i,

Yi ⊥⊥ Si | Ri, Gi, Xi.

Figure 1(b) shows one possible causal DAG that meets this
assumption as well as Assumption CI-SG. In this DAG, race can
have a direct effect on the outcome Y as well as on residence
location G and other observed characteristics X, while all paths
from S to Y are blocked by G, X, or R.

This causal structure is often more plausible than Assump-
tion CI-YR because Assumption CI-YS allows race to directly
affect the outcome. For party registration, Assumption CI-YS
implies that among White voters in a particular geographic
region, voters named Smith would a priori no more or less
likely to identify with one party than voters named Thomas.
In contrast, Assumption CI-YR would mean that among voters
named Smith in a particular geographic region, White voters
would be a priori be no more or less likely to identify with
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one party than Black voters. In this case, Assumption CI-YR is
likely to be violated, while Assumption CI-YS is plausible. We
emphasize a key trade-off between the two assumptions. While
Assumption CI-YS rules out the possibility that surname directly
affects the outcome (e.g., name-based discrimination), such a
direct effect is allowed under Assumption CI-YR. Section 4.5
revisits this important issue.

The validity of each assumption depends on a specific appli-
cation. In the above hiring example, if the manager reviews
applicants anonymously, there will be no name-based discrimi-
nation and the assumption is likely to be satisfied. The assump-
tion may be violated in other contexts, however. For example,
in studying turnout, if campaigns use the surnames of voters
to decide whether to mobilize them, Assumption CI-YS will be
violated.

Another possible violation of the assumption is the existence
of an unobserved confounder that affects both outcome and
surname. The country of origin for an immigrant may represent
such a confounder. Since surnames are informative of country of
origin, even within racial groups (as is often the case for Asian
individuals), variations in outcomes by country of origin will
likely violate Assumption CI-YS. This reflects the limitations
of the relatively coarse racial classifications used in BISG, as
discussed above. Even in these cases, however, conditioning on
(unobserved) race is likely to substantially reduce the magnitude
of association between outcome and surnames. In Section 4.5,
we show how to address this potential violation of Assump-
tion CI-YS.

The following theorem formally shows that it is possible to
point-identify racial disparities under Assumption CI-YS. All
proofs appear in the appendix.

Theorem 4.1 (Identification). For any given g ∈ G, x ∈ X ,
and y ∈ Y , define a matrix P ∈ R

|S|×|R| with entries psr =
P(R = r | G = g, X = x, S = s) and a vector b ∈ R

|S|
with entries bs = P(Y = y | G = g, X = x, S = s).
Then, under Assumption CI-YS, and assuming knowledge of
the joint distribution P(R, G, X, S), the conditional probabilities
P(Y = y | R, G = g, X = x) are identified if and only if both P
and the augmented matrix (P b) have rank |R|.

The essence of this identification result is the following simple
observation. Under Assumption CI-YS, we have, for all y ∈ Y ,
g ∈ G, x ∈ X , and s ∈ S ,

P(Y = y | G = g, X = x, S = s)

=
∑
r∈R

P(Y = y | R = r, G = g, X = x)

× P(R = r | G = g, X = x, S = s). (2)

The leftmost term is estimable from the data and corresponds
to the vector b in Theorem 4.1, while the rightmost term is
the BISG estimand and corresponds to the matrix P. Lastly, the
remaining term in the middle can be solved for, since (2) holds
across all combinations of Y , G, X, and S, leading to a large
system of linear equations with (|Y| − 1) × |G| × |X | × |S|
equations and (|Y| − 1) × |G| × |X | × |R| unknowns. Since
|R| � |S|, we can identify these unknowns as long as the
linear system has sufficient rank. If surnames are only weakly

predictive of race for some groups, then this rank condition
may be threatened, or finite-sample variance may be inflated. We
discuss a metric for identifying this case in Appendix C.4.2. Our
result is related to causal effect identification based on the use of
proxy variables for unmeasured confounding variables (Kuroki
and Pearl 2014; Miao, Geng, and Tchetgen Tchetgen 2018; Knox,
Lucas, and Cho 2022). This literature uses a similar identification
strategy based on linear systems. Here, we use surname as a
proxy variable for (unobserved) race, which is analogous to the
unmeasured treatment variable in causal inference.

Together with Proposition 3.1, Theorem 4.1 implies that
racial disparities can be identified under Assumptions CI-SG,
ACC, and CI-YS . The identifying equation (2) shows that
P(Y = y | G = g, X = x, S = s) is linear in the BISG
estimands P(R = r | G = g, X = x, S = s). Thus, it
is natural to consider the following least-squares estimator of
P(Y = y | R, G = g, X = x) under this alternative identification
strategy,

μ̂
(ols)
Y|RGX(y | ·, g, x) = (̂P	

I(xg)P̂I(xg))
−1P̂I(xg) 1{YI(xg) = y},

where as above P̂ is the matrix of BISG probabilities, and I(xg)

is the set of individuals i with Xi = x and Gi = g. Here and
throughout the article, a dot will indicate a vector constructed
over that index, so μ̂

(ols)
Y|RGX(y | ·, g, x) is a vector of conditional

probabilities for a particular outcome level y across all racial
groups in R. This estimator is closely related to the two-sample
instrumental variables approach of Angrist and Krueger (1992),
though the required assumptions are slightly different (see also
Crossley, Levell, and Poupakis (2022)).

Post-stratifying this estimator across the (G, X) cells yields an
estimator of P(Y = y | R),

μ̂
(p-ols)
Y|R (y | r)

=
∑

x∈X ,g∈G
(̂P	

I(xg)P̂I(xg))
−1P̂I(xg) 1{YI(xg) = y})rqgx|r ,

since qgx|r = P(G = g, X = x | R = r) under Assumption ACC.
This estimator is unbiased, as the following theorem shows.

Theorem 4.2 (Unbiasedness of OLS Estimator). If Assump-
tions CI-SG, ACC, and CI-YS hold, and the identification
conditions in Theorem 4.1 are satisfied, then for all y ∈ Y and
r ∈ R,

E[μ̂(p-ols)
Y|R (y | r)] = P(Y = y | R = r).

Comparing this OLS estimator with the weighting estima-
tor μ̂

(wtd)
y|r demonstrates the relationship between Assump-

tions CI-YR and CI-YS. The next theorem shows that within
the (G, X) cells these two estimators are guaranteed to disagree,
unless either the BISG probabilities perfectly discriminate or
the weighting estimator is constant across races. These two
conditions are almost never met in practice. This underscores
the importance of selecting the appropriate assumption (CI-YR
or CI-YS) for a particular analysis, since they yield different
results.

Theorem 4.3 (Necessary and Sufficient Condition for Equality of
the Weighting and OLS Estimators). For any y ∈ Y , g ∈ G and
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x ∈ X , within the set of individuals with Gi = g and Xi = x,
we have that μ̂

(wtd)
Y|R (y | ·) = μ̂

(ols)
Y|R (y | ·) if and only if for every

pair j, k ∈ R, either the BISG probabilities perfectly discriminate
(i.e., P(Ri = j | Gi, Xi, Si) > 0 implies P(Ri = k | Gi, Xi, Si) = 0
and vice versa) or μ̂

(wtd)
Y|R (y | j) = μ̂

(wtd)
Y|R (y | k).

Despite potential advantages over the weighting estimator,
the OLS estimator ignores the fact that the unknown parameters
are probabilities and thus constrained to be nonnegative and
sum to 1. As a result, in any particular sample, the estimator can
produce impossible or contradictory estimates. This problem is
exacerbated by the high variance that occurs when G and X par-
tition the sample into many small cells (e.g., G represents Census
tracts). Our proposed methodology in the next section incor-
porates this constraint and performs shrinkage across (G, X)

cells, and thus outperforms the OLS estimator (see Section 5).
Nevertheless, the OLS estimator is simple to implement and
can perform well when each (G, X) cell has plenty of data. It
also allows for the use of a variance inflation metric, which can
flag cases when surnames are particularly uninformative, and
thus μ̂

(p-ols)
Y|R will have high variance. The use of this metric is

illustrated in Appendix C.4.2. alongside a study of the finite-
sample behavior of the OLS estimator.

4.2. Bayesian Instrumental Regression for Disparity
Estimation

BIRDiE combines a user-specified complete-data outcome
model π(Y | R, G, X, �), parameterized by �, with the BISG
model in order to estimate the distribution Y | R that is of
interest. In this regard, it mirrors the two-stage instrumental
variables (IV) regression: a first stage (BISG) that estimates
the relationship between instrument (surname) and variable
of interest (race), and a second stage (BIRDiE) that uses the
first-stage estimates to produce valid estimates of the quantity of
interest. Unlike two-stage IV, however, the BIRDiE approach
is based on a coherent joint distribution of data, unknown
parameters, and race. We exploit this fact and develop the
general BIRDiE modeling approach below.

Specifically, the BIRDiE posterior is obtained by applying
Assumptions CI-SG, ACC, and CI-YS to the joint distribution
π(Y , R, G, X, S, �):

π(�, R | Y, G, X, S) ∝ π(�)

N∏
i=1

π(Yi | Ri, Gi, Xi, �)

× π(Ri | Gi, Xi, Si)

= π(�)

N∏
i=1

π(Yi | Ri, Gi, Xi, �)P̂iRi . (3)

As above, P̂i are the BISG probability estimates for individual
i that depend on Census data (qGX|R, qS|R, qR), but not on
the outcome-model parameters �. Because these “first-stage”
BISG estimates are exact probabilities, by Proposition 3.1, they
can be plugged into the BIRDiE posterior computation without
losing Bayesian coherency. In practice, this procedure remains
approximately valid even if a more complex model is used in
place of the BISG probabilities (e.g., Zest AI 2020; Imai, Olivella,

and Rosenman 2022; Argyle and Barber 2024; Decter-Frain
2022).1

Application of this general BIRDiE approach requires choos-
ing a complete-data outcome model, given by the likelihood
π(Yi | Ri, Gi, Xi, �) and prior π(�). Since Y is discrete, a cate-
gorical regression model is appropriate for π(Yi | Ri, Gi, Xi, �).
The exact model specification will depend on the analyst’s goals,
computational resources, and prior beliefs about the structure
of the problem. Appendix B.1 presents several reasonable alter-
natives that trade off modeling flexibility and computational
efficiency.

There is also a computational challenge in applying BIRDiE,
because the posterior in (3) contains the high-dimensional dis-
crete nuisance parameter R. This challenge is compounded for
larger sample sizes. Our primary recommendation is an EM
algorithm for fitting the model, which we derive and explain
in Appendix B.2. Other computational approaches discussed in
the appendix include marginalizing out R and using a Gibbs
sampler, which is closely related to the EM algorithm. A critical
advantage of the proposed EM scheme over working with the
marginal likelihood or directly with the full posterior is that the
maximization in the M-step can be performed using sufficient
statistics calculated as part of the E-step, rather than on all of
the individual entries in the data. Since the M-step is usually the
bottleneck in the computation, this is enormously helpful—the
problem size scales with |Y|×|X |×|G| rather than with N. The
computation is particularly efficient when the full-data model is
conjugate.

4.3. Updated Individual Race Probabilities

The EM algorithm produces as a byproduct the updated indi-
vidual race probabilities P(R | G, X, Y) that condition on Y ,
unlike the input probabilities P(R | G, X) which do not. Because
these updated probabilities condition on Y , the asymptotic bias
term in Theorem 3.2 becomes zero, and so it is appropriate to
apply the weighting estimator to them to estimate disparities.
In fact, the weighting estimate from the updated probabilities
is numerically identical to the BIRDiE estimate. While more
study is required, for downstream settings where weights are
needed, generating these weights with BISG followed by BIRDiE
will likely produce more accurate results than simply using BISG
weights alone.

4.4. Additional Explanatory Variables

Often, researchers are interested in not just P(Y | R) but also
P(Y | W, R), for some variable W ∈ W which is not part of the
BISG predictors (X, G). For example, a bank auditing potential
racial disparities in lending decisions may be interested both
in how the rate of loan approval (Y) varies by race, but also

1When parameters are estimated as part of the race imputation model, the
estimation uncertainty creates dependence in P̂i between observations,
which is not accounted for in the BIRDiE posterior. This dependence remains
even if, as is standard, the first-stage model parameters and the BIRDiE
model parameters are assumed to be a priori independent. In practice,
this dependence is minimal compared to the underlying uncertainty in
Ri , especially with large datasets where global parameters are estimated
precisely, and the effect on downstream analyses is small.
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in how loan approval varies by race conditional on a measure
of creditworthiness (W). The unconditional disparities reflect
factors that may include the realities of systemic racism and
inequality, while the conditional disparities measure the fairness
of the firm’s lending decisions after controlling for these factors.
Such estimates could be used to compute various measures
of algorithmic fairness. Another scenario is policy evaluation,
where researchers are interested in how the impact of policy
varies across racial groups. Such an analysis requires incorpo-
rating an interaction between race and the treatment variable.

There are two main ways to perform such an analysis with
our proposed methodology. The first, and perhaps simplest, is
to apply the methodology to the combined variable YW ∈ Y ×
W . This will produce estimates of P(Y , W | R), from which
P(Y | W, R) can be straightforwardly calculated by appropriate
normalization. This approach will work well if |Y| and |W| are
both small, so that |Y × W| is of manageable size. If one of
these variables has many levels, however, directly estimating the
distribution of Y , W | R could be less efficient, as it does not
account for any structure in the joint (Y , W) distribution.

An alternative approach is to first apply the proposed
methodology to estimate P(W | R). This allows for calcu-
lation of model-updated BISG probabilities P̃|W = π(R |
�̂, W, G, X, S), which are also computed as a byproduct of the
EM algorithm described above. Then, the methodology can be
applied again, using P̃|W as the input probabilities rather than
the original BISG probabilities, to estimate P(Y | W, R). This
approach will likely perform better when W consists of multiple
predictors and it may be helpful to shrink P(Y | W, R) towards
P(Y | R).

Both approaches require the following assumption, which
generalizes Assumption CI-YS.

Assumption CI-YWS (Conditional independence of outcome, pre-
dictor and name). For all i, (Yi, Wi) ⊥⊥ Si | Ri, Gi, Xi, or,
equivalently, Wi ⊥⊥ Si | Ri, Gi, Xi and Yi ⊥⊥ Si | Wi, Ri, Gi, Xi.

In the lending example, the assumption implies that a mea-
sure of creditworthiness is independent of last name after con-
trolling for race, location, and covariates, and that lending deci-
sions are independent of last names after controlling for credit-
worthiness, race, location, and covariates.

4.5. Addressing Potential Violations of the Assumptions

BIRDiE relies on Assumption CI-YS for identification. In addi-
tion, like the weighting and thresholding estimators, it requires
Assumptions CI-SG and ACC, which guarantee the accuracy of
BISG race probabilities. Unfortunately, these assumptions may
not exactly hold in practice, and are also not testable in observed
data. In this section and Appendix D, we develop sensitivity
analyses that assess how violations of these assumptions affect
the estimates of racial disparities.

First, BIRDiE assumes that conditional on unobserved race
and observed covariates, outcomes and surnames are indepen-
dent. As discussed in Section 4.1, however, association between
the outcome and country of origin or racial subgroups may
lead to correlation between surnames and outcome even after
controlling for race and geography. To address this, suppose that

a low-dimensional summary statistic of surname, f : S → R
d,

d � |S|, is available, where f maps each surname to a finer
ethnic group within each racial category. For example, Imai is
a Japanese name whereas McCartan is a name of Irish origin.
If f classifies surnames into finer racial subgroups or countries
of origin—even approximately—then it can be used to control
for this channel of possible violations of Assumption CI-YS.
Formally, we relax Assumption CI-YS as follows.

Assumption CI-YSF (Partial conditional independence of outcome
and name). For all i,

Yi ⊥⊥ Si | f (Si), Ri, Gi, Xi.

The next theorem shows that it is still possible to identify
racial disparities under Assumption CI-YSF under the iden-
tification condition, which is only slightly stronger than for
Theorem 4.1.

Theorem 4.4 (Nonparametric Identification Under Assump-
tion CI-YSF). Let f : S → R

d, d < |S|, with range f (S). For
any given g ∈ G, x ∈ X , z ∈ f (S), and y ∈ Y , define a matrix
P ∈ R

|S|×|R| with entries psr = P(R = r | G = g, X = x, S = s)
and a vector b ∈ R

|S| with entries bs = P(Y = y | G = g, X =
x, S = s). Then under Assumption CI-YSF, and assuming
knowledge of the joint distributionP(R, G, X, S), the conditional
probabilities P(Y = y | R, f (S) = z, G = g, X = x) are
identified if and only if both P and the augmented matrix (P b)

have rank |R|.
As long as the dimension d of the surname summary statistic

f (S) is much smaller than the (usually large) number of sur-
names |S|, racial disparities are likely to be identified under
Theorem 4.4. Thus, Assumption CI-YSF and Theorem 4.4 can
be used in conjunction with carefully chosen f in order to probe
likely failure modes of the more restrictive Assumption CI-YS.
If estimates do not change by a substantively large amount
when f (S) is included, then researchers can be more confident
in the plausibility of Assumption CI-YS. We demonstrate this
approach in Section 5.4.

Second, bias can also arise from violations of the assumptions
underlying the BISG methodology (Assumptions CI-SG and
ACC). Of course, this is not unique to the proposed methodol-
ogy: violations of these assumptions will also affect the validity
of other disparity estimators such as weighting or thresholding.
However, since as discussed above the BISG assumptions may
rarely hold exactly in practice, we provide in Appendix D several
results characterizing how the model’s estimates are affected by
bias in the BISG probabilities.

5. Empirical Validation with the Voter File

To better understand how BIRDiE performs in real-world con-
texts, we apply it to North Carolina voter registration data. Since
this data contains individual-level self-reported race for almost
all voters, the “ground truth” relationship between outcome and
race is known for this subset. We compare the performance
of BIRDiE models and the OLS estimator against those of the
weighting and thresholding estimators. We also evaluate how
the estimation error depends on the geographic level used in
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the BISG probabilities. Finally, we demonstrate a diagnostic for
potential violations of the identifying assumption (Section 4.5).
Appendix C contains further discussion of data and models,
along with additional study of the OLS estimator and exten-
sions of the BIRDiE methodology to small-area estimates (Sec-
tion 4.2), improved individual race predictions (Section 4.3),
and estimation conditional on an additional explanatory vari-
able (Section 4.4).

5.1. North Carolina Voter File

Like most other Southern states, which have a history of disen-
franchising minority voters, the state of North Carolina (NC)
asks (and previously required) every voter to self-report their
race upon registration. This data, along with voters’ names,
addresses, gender, party registration (if any), and voting history,
is part of the voter file that the secretary of state makes publicly
available. This feature makes the voter file an ideal validation
setting. The outcome we examine here, party registration, is
the product of many unobservable factors, and is known to
differ across racial groups. Since self-reported race is available,
inferences about these racial disparities using the estimators
discussed here can be compared to the corresponding ground
truth.

Estimation of party registration by race is of substantive
interest as well, especially in the context of the Voting Rights
Act of 1965 (VRA). The relationship between these variables is
critical for understanding the impact of policy changes such as
redistricting or election rules on compliance with the VRA, and
for establishing legal standing to challenge these policies under
the VRA. As many states do not ask for self-reported race during
voter registration, methods like BIRDiE are important tools for
evaluating VRA compliance.

We use a subset of the October 2022 voter file which could be
linked to a proprietary voter file provided by L2, Inc., a leading
national non-Partisan firm and the oldest organization in the
United States that supplies voter data and related technology to
candidates, political parties, pollsters, and consultants for use in
campaigns. The L2 file geocoded each address to a Census block,
which allows for the finest block-level BISG predictions. We
also removed any records without individual race information,
since our goal is validation compared to some ground truth,
rather than inference about the entire population of registered
NC voters. Altogether, 22.1% of records either had missing race
information or could not be linked to the L2 file.

5.2. The Model Setup

We first calculate BISG probabilities using 2010 Census data
at the census block, tract, ZIP code tabulation area (ZCTA),
and county level. Every record in the voter file contains county
information, while roughly 13% of records are missing ZIP
codes and 27% of records are missing blocks/tracts; when these
finer geographic identifiers were missing, we used county-level
Census tables in the BISG calculations.

The BISG probabilities are broadly accurate. Using the max-
imum a posteriori racial category as a prediction, we obtain
accuracy of 76.2% for the county probabilities, 78.4% for the ZIP

code probabilities, 78.5% for the tract probabilities, and 79.6%
for the block probabilities.2

Since the goal of our validation study is to compare BIRDiE
estimates with weighting and thresholding estimates, we do not
make additional comparisons between BISG probabilities and
those generated with alternative racial prediction methods. To
the extent competing racial prediction methods improve pre-
diction accuracy, we expect the gap between different disparity
estimation methods (weighting, thresholding, BIRDiE) to nar-
row, consistent with Theorems 3.2 and 4.3. As we have discussed,
however, high accuracy of racial prediction alone is neither nec-
essary nor sufficient for accurate estimation of racial disparities.
If other racial prediction methods produce increased accuracy
at the cost of worsened calibration, accuracy in estimating racial
disparities may be poor whether using weighting, thresholding,
or BIRDiE estimates.

In our validation, for a given set of BISG probabilities, we esti-
mate the conditional distribution of each outcome variable given
race using BIRDiE with both saturated pooling and multino-
mial mixed-effects models described in Appendix B.1. We then
compare the resulting estimates based on these BIRDiE models
against those of the two existing estimators—the weighting esti-
mator as well as a thresholding estimator that deterministically
assigns each individual the maximum a posteriori racial cate-
gory. We also compare the results to those obtained by the OLS
estimator described in Section 4.1. To give an idea of sampling
variability, we fit the saturated BIRDiE model using the Gibbs
sampler described above, run for 500 post-warmup iterations.
We also bootstrap the estimates for the weighting and threshold
estimators, and aggregate the OLS standard errors through the
poststratification process. It was not computationally feasible to
bootstrap the mixed-effect model nor perform full MCMC to
obtain posterior samples.

5.3. Estimates of Racial Disparity in Party Registration

We first examine the relative accuracy of the proposed methods
in estimating the disparity between White and Black, and White
and Hispanic voters, in party registration. For example, the true
difference in Democratic registration between Black and White
voters in the sample is 54.6 percentage points (pp), meaning
Black voters register Democratic at a much higher rate. However,
the standard weighting approach produces an estimate of only
16.8 pp for this disparity—less than half the true value. This is
consistent with Corollary 3.2.1, which states that the weighting
estimator tends to underestimate the magnitude of racial dispar-
ity. The thresholding estimator, while slightly better, also misses
the mark, with an estimate of 26.5 pp. In contrast, the saturated
BIRDiE model produces an estimate of 48.9 pp, and the mixed
BIRDiE model also estimates 48.8 pp. These estimates are only
slightly lower than the ground truth.

Figure 2 compares the empirical performance of the BIRDiE
models against that of the weighting and thresholding estimators
across all of these possible disparity measurements, using the
county-level BISG predictions. For White–Black (left plot) and
White-Hispanic (right plot) disparities in party registration, the
BIRDiE models (solid circles and squares) and the OLS esti-

2That is, we measure the fraction of the time the most-likely racial category
agrees with the true racial category.
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Figure 2. Error in the White-Black and White-Hispanic disparity estimates for party registration, by estimation method. The true disparities are indicated by the dotted lines.
All methods used county-level data for this figure; the results for other levels of geographic detail are generally similar, except for the OLS estimator. Estimation uncertainty
is shown as a 95% confidence interval for all methods other than the mixed model, but is generally too small to be seen.

mator substantially outperform the two commonly used esti-
mators (open circles and crosses). For two major parties, both
the weighting and thresholding estimators exhibit a substantial
amount of estimation error, for example, exceeding 20 pp for
the White-Black disparity for the Democratic party. In contrast,
the two BIRDiE models yield a much smaller estimation error
that ranges within several percentage points for all racial dispar-
ity estimates. The saturated and mixed-effects BIRDiE models
perform similarly with no discernible difference, while the OLS
estimator is more variable and performs very slightly worse for
the White–Black disparity estimates.

Section C contains additional validation that compares the
total variation distance between the estimated joint distribution
of party and race and the actual joint distribution.

5.4. Conditional Independence Diagnostic

Though the results above show that BIRDiE improves consid-
erably on existing estimation approaches, the agreement with
the ground truth is not perfect. Consequently, we examine the
sensitivity of our party registration estimates to potential vio-
lations of Assumption CI-YS, following the method outlined in
Section 4.5 that is based on a low-dimensional summary statistic
of surnames. Our statistic is based on a publicly available sample
of 5% of the individual records for the 1930 Census (Ruggles
et al. 2021), which contains individual names, individual and
parental birthplace, and detailed race, ethnicity, and tribal codes.
Since many regions of Asia, particularly Vietnam, experienced
little emigration to the United States before 1930, we further sup-
plement this data with around 3000 Asian surnames classified
into six regional subgroups: Chinese, Filipino, Indian, Japanese,
Korean, Vietnamese, NHPI, and Other (Lin et al. 2025).

Using these subgroups and the 1930 birthplace and racial
data, we can classify most surnames in the voter file into nine
groups (see Appendix E for a brief description of the groupings
and the most common 50 surnames for each group). While
somewhat arbitrary, these groups are chosen to combine coun-
tries of origin which had significant immigration to the U.S.
during similar periods.

We first evaluate the plausibility of Assumption CI-YS by
examining the correlation between the residuals of the BIRDiE
model fit and indicator variables for each of the nine surname
groups. Under Assumption CI-YS, this residual correlation
should be zero everywhere. As Figure 3 shows, however, for
many groups and party labels, the correlation is small but
deviates from zero more than would be expected given only
sampling variation. Here, we use the residuals from the county-
level saturated model specification, but the results are not
sensitive to this choice.

Notably, voters with names in the Anglosphere and Black
surname group, which includes surnames that are relatively
more common among many-generation residents of the U.S.,
such as Smith, Williams, and Brown, are significantly less likely
to register as Democrats and independents, and more likely to
identify as Republicans, even after controlling for race and geog-
raphy. Meanwhile, voters with names in the First and Second
wave European immigration surname groups, which include
surnames more common among 19th and 20th century immi-
grants from Europe, display the opposite pattern. Differences
among surname groups designed to correlate with member-
ship in various Asian subgroups are also visible. As might be
expected, the relatively many significant correlations are indica-
tive more of the large number of observations in the data, rather
than large residual correlations themselves—all of the correla-
tions are quite small in magnitude, with most on the order of
0.01 or so. Thus, we might expect our party-by-race estimates
to be little affected by the inclusion of the surname group indi-
cators. In other words, the violations of Assumption CI-YS are
statistically significant, but may not be substantively so.

Indeed, re-fitting the county-level saturated model with an
additional surname group covariate produces nearly identical
results, albeit at a moderately higher computational cost given
the increased number of (G, X, f (S)) cells. This re-fitting
requires Assumption CI-YSF, which relaxes Assumption CI-YS.
We find that the average party registration rate estimate changes
only by 1.0 pp, with the largest change being 3.6 pp, for the
rate of Republican registration among Other voters. These
changes are small compared to the underlying disparities,
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Figure 3. Residual correlation between party registration and nine surname groups, after controlling for race and location. Correlations whose 90% Wishart confidence
intervals exclude zero are marked with an asterisk. These confidence intervals do not account for the dependence in the residuals due to the model fitting, and thus are
likely anti-conservative. See Appendix E for details on the surname groups.

which are on the order of 10–40 pp. The accuracy of the
updated BISG probabilities is likewise virtually unchanged.
All in all, this analysis provides confidence that violations of
Assumption CI-YS for the NC voter file are likely minor and
would have minimal effects on our findings. Of course, if more
precise estimates of party registration were required, then the
changes might be considered sufficiently large to warrant more
careful consideration of possible f (S) that could remedy the
violation.

6. Analysis of Tax Data

6.1. Estimation Procedure

We use a random 10% sample of individual tax returns (Form
1040s) filed with the IRS for tax year 2019, a total of 17,145,898
observations. To calculate individual race probabilities for every
observation, we use the ZIP code tabulation area (ZCTA) corre-
sponding to the geocoded address listed on the return, plus the
last name of the primary filer using a standard BISG model. This
means that conclusions about racial groups here refer to the race
of the primary filer, and not the race of other household mem-
bers. For the roughly 3.4 million records for which geocoding
was not successful, only last names were used.

The outcome variable is the amount of the HMID claimed
by the filer, discretized into 11 levels: one for a deduction of
$0, capturing roughly 90% of the sample, and ten levels corre-
sponding to the deciles of the HMID among those taking the
deduction. Given the size of the data, our outcome model is
the no-pooling model for HMID level by geography and racial
group. We coarsen the geography variable used for modeling to
the Public Use Microdata Area (PUMA) level.

Further modeling and estimation details may be found in
Appendix F.

6.2. Findings

Figure 4 shows the estimated proportion of filers in each racial
group which take the HMID at all, and the distribution of the

HMID claim amount among those who do. Racial disparities
are immediately apparent: while 10.6% of White filers take the
HMID, just 6.5% of Black filers and 4.6% of Hispanic filers do.
In contrast, roughly 12% of Asian filers take the deduction.

How much of this disparity is explained by differences in
home ownership rates across racial groups? We develop esti-
mates of the fraction of each racial group that has a mort-
gage for their home based on the 2010 decennial census (see
Appendix F.2 for details). We then plot as dashed lines in Fig-
ure 4(a) the estimated fraction of each racial group that would
claim the HMID if every filer with a mortgage claimed the
deduction at the same rate as White filers do. The figure shows
that the lower share of Black taxpayers claiming the HMID
can be explained by the lower home ownership rate among
that group. However, for other groups, disparities remain after
controlling for having a mortgage. In particular, Hispanic filers
claim the HMID at a 2.5 percentage point lower rate than would
be expected based on mortgage rates alone. Asian filers claim
the HMID at a higher rate than their share of the population
with mortgages would imply. These results suggest that closing
disparities in home ownership may not be sufficient to eliminate
disparities in who benefits from the HMID, as evidently other
aspects of filers’ situations beyond home ownership, such as
eligibility for other itemized deductions, are affecting whether
their HMID benefits.

Beyond disparities in the rate that taxpayers claim any HMID,
there are also racial differences in the amount of the HMID
among claimants. This is apparent in both the distribution across
HMID deciles in Figure 4(a) as well as in Figure 4(b), which
displays estimates of the mean HMID amount among filers
who claim the deduction. These estimates were produced by
weighting the observed HMID amounts according to BIRDiE-
updated race probabilities, as described in Section 4.3. Com-
pared to White claimants, whose average deduction is $13,500,
HMID amounts for Black claimants are skewed toward the lower
deciles, translating to a $2100 to $3800 lower average HMID
amount for these groups. In contrast, Hispanic claimants deduct
just $500 less than White claimants, and Asian claimants deduct
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Figure 4. Estimates of usage of the home mortgage interest deduction by race. Panel (a) shows estimates of the proportion of filers who took the deduction, further broken
into deciles by deduction amount. Panel (b) shows estimates of the average size of the deduction among filers who took the deduction at all. The dotted lines mark the
expected height of each bar if the only disparities were those in mortgage rates between racial groups.

Table 1. Estimates of HMID claim rate and average deduction by racial group.

Average claim White Black Hispanic Asian

Rate 10.6% 6.5% 4.6% 12%
Among claimants $13,500 $9,700 $13,000 $17,300
Unconditionally $1,400 $600 $600 $2,100

$3800 more, on average. Asian filers’ deductions fall into the
highest deciles at more than double the rate of any other group.
In fact, a higher fraction of Asian filers take at least a $17,000
deduction than the fraction of Hispanic filers who take any
deduction at all. Table 1 compares these estimates for claimants
to the unconditional averages of the HMID benefit amount
across racial groups.

Overall, our findings support the claims of researchers such
as Moran and Whitford (1996) and Brown (2022) that the HMID
is disproportionately unavailable to Black and Hispanic taxpay-
ers. Our estimates show that the picture is complicated further
by differences between racial groups even accounting for the
prevalence of mortgages. In addition, the pattern of disparities
in overall HMID claims looks different from the disparities in
the amount of the HMID among claimants.

7. Discussion

We have introduced a new identifying assumption and accom-
panying model, BIRDiE, and clarified other assumptions
implicit in approaches to disparity estimation when individual
race is not observed. In many real-world applications, we
believe that the new model and identification condition are
appropriate and will produce significantly improved estimates.
However, there is no one-size-fits-all approach for the estimation
of racial disparities. For example, the existence of name-

based discrimination may violate our identification assumption
especially when racial categories, for which data are available, are
coarse. Although we provide a diagnostic that partially addresses
this concern for a likely violation pathway, careful consideration
of the underlying causal and information structure is required
to avoid making the incorrect conclusions.

As our empirical studies show, in realistic settings BIRDiE
can substantially outperform existing estimators of racial dis-
parities, both in aggregate and for small areas. Albright and
Gamboa-Arbelaez (2024) also conducts an empirical validation
of various race imputation methods, finding that BIRDiE per-
forms better than other methods. The BIRDiE methodology also
produces improved BISG probabilities, and can be used to esti-
mate disparities conditional on other variables. These additional
features should prove helpful in practical settings. Appendix G
contains additional discussion of these points, including practi-
cal recommendations for users of BIRDiE and ethical consider-
ations when applying methods like BISG and BIRDiE.

Supplementary Materials

Supplementary material contains proofs of all propositions, details on
BIRDiE models and computation, additional discussion and results for the
validation analysis, proposed sensitivity analyses, further details on the tax
study, and additional discussions and recommendations for practitioners.
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