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ABSTRACT
As granular data about elections and voters become available, redistricting simulation methods are playing
an increasingly important role when legislatures adopt redistricting plans and courts determine their
legality. These simulation methods are designed to yield a representative sample of all redistricting plans
that satisfy statutory guidelines and requirements such as contiguity, population parity, and compactness.
A proposed redistricting plan can be considered gerrymandered if it constitutes an outlier relative to this
sample according to partisan fairness metrics. Despite their growing use, an insufficient effort has been
made to empirically validate the accuracy of the simulation methods. We apply a recently developed com-
putational method that can efficiently enumerate all possible redistricting plans and yield an independent
sample from this population. We show that this algorithm scales to a state with a couple of hundred
geographical units. Finally, we empirically examine how existing simulation methods perform on realistic
validation datasets.
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1. Introduction

Congressional redistricting, which refers to the practice of
redrawing congressional district lines following the constitu-
tionally mandated decennial census, is of major political conse-
quence in the United States. Redistricting reshapes geographic
boundaries and those changes can have substantial impacts
on representation and governance in the American political
system. As a fundamentally political process, redistricting has
also been manipulated to fulfill partisan ends, and recent debates
have raised possible reforms to lessen the role of politicians and
the influence of political motives in determining the boundaries
of these political communities.

Starting in the 1960s, scholars began proposing simulation-
based approaches to make the redistricting process more trans-
parent, objective, and unbiased (early proposals include Vick-
rey 1961; Weaver and Hess 1963; Hess et al. 1965; Nagel
1965). While this research agenda lay dormant for some time,
recent advances in computing capability and methodologies,
along with the increasing availability of granular data about
voters and elections, has led to a resurgence in proposals,
implementations, and applications of simulation methods to
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applied redistricting problems (e.g., Cirincione, Darling, and
O’Rourke 2000; McCarty, Poole, and Rosenthal 2009; Altman
and McDonald 2011; Chen and Rodden 2013; Fifield et al. 2014;
Fifield, Higgins, et al. 2020; Mattingly and Vaughn 2014; Liu,
Tam Cho, and Wang 2016; Herschlag, Ravier, and Mattingly
2017; Chikina, Frieze, and Pegden 2017; Magleby and Mosesson
2018; Carter et al. 2019; DeFord, Duchin, and Solomon 2019).

Furthermore, simulation methods for redistricting play an
increasingly important role in court cases challenging redis-
tricting plans. In 2019, simulation evidence was introduced and
accepted in redistricting cases in North Carolina, Ohio, and
Michigan.1 In the few years prior, simulation methods were
presented to courts in North Carolina, and Missouri.2 Given
these recent court cases challenging redistricting in state and
federal courts, simulation methods are expected to become an
even more influential source of evidence for legal challenges
to redistricting plans across many states after the upcoming
decennial census in 2020.

These simulation methods are designed to yield a representa-
tive sample of redistricting plans that satisfy statutory guidelines
and requirements such as contiguity, population parity, and
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compactness.3 Then, a proposed redistricting plan can be con-
sidered gerrymandered if it constitutes an outlier relative to this
sample according to a partisan fairness measure (see Katz, King,
and Rosenblatt 2020, for a discussion of various measures). Sim-
ulation methods are particularly useful because enumeration
of all possible redistricting plans in a state is often computa-
tionally infeasible. For example, even partitioning cells of an
8 × 8 checkerboard into two connected components generates
over 1.2×1011 unique partitions (see https://oeis.org/A068416).
Unfortunately, most redistricting problems are of much greater
scale.4 Therefore, to compare an implemented redistricting plan
against a set of other candidate plans, researchers and policy
makers must resort to simulation methods.

Despite the widespread use of redistricting simulation meth-
ods in court cases, insufficient efforts have been made to exam-
ine whether or not they actually yield a representative sample
of all possible redistricting plans in practice.5 Instead, some
assume that the existing simulation methods work as intended.
For example, in his amicus brief to the Supreme Court for Rucho
et al. v. Common Cause, Eric Lander declares,6

With modern computer technology, it is now straightfor-
ward to generate a large collection of redistricting plans that
are representative of all possible plans that meet the State’s
declared goals (e.g., compactness and contiguity).

And yet, if there exists no scientific evidence that these simula-
tion methods can actually yield a representative sample of valid
redistricting plans, we cannot rule out the possibility that the
comparison of a particular plan against sampled plans yields
misleading conclusions about gerrymandering.

We argue that the empirical validation of simulation methods
is essential for the credibility of academic scholarship and expert
testimony in court. We apply the recently developed computa-
tional method of Kawahara et al. (2017), enumpart, that effi-
ciently enumerates all possible redistricting plans and obtains an
independent sample from this population (Section 2). The algo-
rithm uses a compact data structure, called the zero-suppressed
binary decision diagram (ZDD) (Minato 1993). In the afore-
mentioned 8 × 8 checkerboard problem, explicitly storing every
partition would require more than 1 terabyte of storage. In
contrast, the ZDD needs only 1.5 megabytes. Our enumeration
results are available as Fifield, Imai, et al. (2020) so that other
researchers can use them to validate their own simulation meth-
ods. In addition, we will also make the code that implements
the algorithm publicly available and incorporate it as part of an
open-source R software package for redistricting, redist (Fifield,
Tarr, and Imai 2015).

3The outlier detection method proposed by Chikina, Frieze, and Pegden
(2017) is a statistical test and its goal is not uniform sampling. However, the
proposed enumeration method can still be useful for assessing its empirical
performance.

4While statutory guidelines and requirements such as district contiguity,
population parity, and compactness reduce the number of partitions dra-
matically, the resulting problem currently remains out-of-reach of full enu-
meration methods.

5For an exception, see, for example, Carter et al. (2019), Jonathan C. Mat-
tingly. “Rebuttal of Defendant’s Expert Reports for Common Cause v. Lewis.”
Andrew Chin, Gregory Herschlag, and Jonathan C. Mattingly. “The Signa-
ture of Gerrymandering in Rucho v. Common Cause,” pp. 1261–1262.

6Brief for Amicus Curiae Eric S. Lander. In Support of Appellees, p. 4, Rucho et
al. v. Common Cause, No. 18-422. March 7, 2019, p. 4.

We begin by showing that the enumpart algorithm scales
to a state with a couple of hundred geographical units, yielding
realistic validation datasets (Section 3). We then test the empir-
ical performance of existing simulation methods in two ways
(Section 4). First, we randomly sample many submaps of various
sizes from actual state shapefiles so that we average over the
idiosyncratic geographic features and voter distributions of each
map. For each sampled small map, we conduct a statistical test
of the distributional equality between sampled and enumerated
maps under various population parity constraints. If the simula-
tion methods yield a representative sample of valid redistricting
plans, then the distribution of the resulting p-values should be
uniform. Second, we exploit the fact that even for a medium-
sized redistricting problem, theenumpart algorithm can inde-
pendently sample from the population of all valid redistricting
plans. We then compare the resulting representative sample with
the sample obtained using existing simulation methods. This
second approach is applied to the actual redistricting problem
in Iowa with 99 counties and a 250-precinct subset map from
Florida, both of which are too computationally intensive for
enumeration.

The overall conclusion of our empirical validation studies
is that Markov chain Monte Carlo (MCMC) methods (e.g.,
Fifield et al. 2014; Fifield, Higgins, et al. 2020; Mattingly and
Vaughn 2014; Carter et al. 2019) substantially outperform so-
called random-seed-and-grow (RSG) algorithms (e.g., Cirin-
cione, Darling, and O’Rourke 2000; Chen and Rodden 2013).
These are two types of simulation methods that are most widely
used in practice. Although the currently available MCMC meth-
ods are far from perfect and have much room for improvement,
it is clear that the RSG algorithms are unreliable. Of course,
showing that MCMC methods work reasonably well on these
particular validation datasets does not necessarily imply that
they will also perform well on other datasets especially larger
scale redistricting problems. Rather, failing these validation tests
on small and medium-scale redistricting problems provides
evidence that RSG methods are most likely to perform poorly
when applied to other larger states.

To the best of our knowledge, the only publicly available val-
idation dataset for redistricting is the 25-precinct map obtained
from Florida, for which Fifield et al. (2014) and Fifield, Hig-
gins, et al. (2020) enumerated all possible redistricting maps
for two or three contiguous districts. Other researchers have
used this validation data or enumeration method to evaluate
their own algorithms (e.g., Magleby and Mosesson 2018; Carter
et al. 2019). However, this dataset is small and represents only
a particular set of precincts representing a specific political
geography, and may not be representative of other redistricting
problems. For example, as noted by Magleby and Mosesson
(2018), this dataset is not particularly balanced—only eight par-
titions fall within standard levels of population parity (±1.5%),
and most fall above 10%. Our new validation datasets are much
larger and hence provide unique opportunities to conduct a
more realistic empirical evaluation of simulation methods.

2. The Methodology

In this section, we describe the enumeration and sampling
methods used in our empirical validation studies. Our methods

https://oeis.org/A068416
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Figure 1. A running redistricting example. We consider dividing a state with six geographical units into two districts. The original map is shown in the left panel where the
shaded area is uninhabited. The middle panel shows its graph representation, whereas the right panel shows an example of redistricting map represented by an induced
subgraph, which consists of a subset of edges.

are based on the enumpart algorithm originally developed
by Kawahara et al. (2017) who showed how to enumerate all
possible redistricting plans and store them using a compact data
structure, called a ZDD (Minato 1993). We also show how the
enumpart algorithm can be used to independently sample
from the population of contiguous redistricting plans.

2.1. The Setup

Following the literature (see, e.g., Altman 1997; Mehrotra, John-
son, and Nemhauser 1998; Fifield et al. 2014), we formulate
redistricting as a graph-partitioning problem. Given a map of
a state, each precinct (or any other geographical units used for
redistricting) is represented by a vertex, whereas the existence
of an edge between two vertices implies that they are geograph-
ically contiguous to one another. Formally, let G = (V , E)

represent a graph with the vertex set V = {v1, . . . , vn} and
the edge set E = {e1, . . . , em}. We consider redistricting of
a state into a total of p districts where all precincts of each
district are connected. This is equivalent to partitioning a graph
G into p connected components {V1, V2, . . . , Vp} such that every
vertex in V belongs to exactly one connected component, that
is, V1 ∪ · · · ∪ Vp = V , Vk ∩ Vk′ = ∅ for any k �= k′ and all the
vertices in Vk are connected.

We use the fact that a p-graph partition can alternatively
be represented as an edge set S. That is, by removing certain
edges from E, we can partition G into p connected compo-
nents. Formally, for each connected component Vk, we define
an induced subgraph (Vk, S(Vk)) as a graph whose edge set
consists of all edges whose two endpoints (i.e., the two vertices
directly connected by the edge) belong to Vk. Then, the p-
graph partition can be defined as the union of these induced
subgraphs, that is, P = ⋃p

k=1 S(Vk) where S(Vk) ∩ S(Vk′) = ∅
for any k �= k′. Our initial task is to enumerate all possible p-
graph partitions of G.

Figure 1(a) presents the running example used throughout
this section to illustrate our methodology. In this hypothetical
state, we have a total of six precincts, represented as vertices
{v1, v2, . . . , v6}, which we hope to divide into two districts,
{V1, V2}. A gray area is uninhabited (e.g., lake). This map can
be represented as a graph of Figure 1(b) where two contiguous
vertices share an edge. Consider a redistricting map with V1 =
{v1, v3} and V2 = {v2, v4, v5, v6}. As shown in Figure 1(c), this
redistricting map can be represented by an induced subgraph

after removing three edges, that is, {e1, e3, e5}. Thus, we can
represent each district as an induced subgraph, which is a set
of edges, that is, S(V1) = {e2} or S(V2) = {e4, e6, e7}.

2.2. Graph Partitions and Zero-Suppressed Binary
Decision Diagram (ZDD)

A major challenge for enumerating redistricting maps is mem-
ory management because the total number of possible maps
increases exponentially. We use the ZDD, which uses a compact
data structure to efficiently represent a family of sets (Minato
1993). We first discuss how the ZDD can represent a family of
graph partitions before explaining how we construct the ZDD
from a given graph.

The ZDD that corresponds to the running example of
Figure 1 is given in Figure 2. A ZDD is a directed acyclic graph.
As is clear from the figure, each edge of the original graph
corresponds to possibly multiple nodes of a ZDD. To avoid
confusing terminology, we use a “node” rather than a “vertex”
to refer to a unit of ZDD, which represents an edge of the
original graph. Similarly, we call an edge of the ZDD an “arc”
to distinguish it from an edge of the original graph. There are
three special nodes in a ZDD. The root node, labeled as e1 in our
example, has no incoming arc but, like other nodes, represents
one of the edges in the original graph. We will discuss later
how we label nodes. ZDD also has two types of terminal nodes
without an outgoing arc, called 0-terminal and 1-terminal nodes
and represented by 0 and 1 , respectively. Unlike other nodes,
these terminal nodes do not correspond to any edge in the
original graph. Finally, each nonterminal node, including the
root node, has exactly two outgoing arcs, 0-arc (dashed arrow)
and 1-arc (solid arrow).

Given a ZDD, we can represent a graph partition as the set
of edges that belong to a directed path from the root node to
1-terminal node and have an outgoing 1-arc. For example, the
path highlighted by blue, e1 ��� e2 −→ e3 ��� e4 −→ e5 ���
e6 −→ e7 −→ 1 , represents the edge set {e2, e4, e6, e7}, which
corresponds to the 2-graph partition shown in Figure 1(c).
Indeed, there is a one-to-one correspondence between a graph
partition and a path of a ZDD.

2.3. Construction of the ZDD

How should we construct a ZDD for a p-graph partition from
a given graph? We use the frontier-based search algorithm
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Figure 2. Zero-suppressed binary decision diagram (ZDD) for the running example of Figure 1(b). The blue path corresponds to the redistricting map represented by the
induced subgraph in Figure 1(c).

proposed by Kawahara et al. (2017). The algorithm grows a tree
starting with the root node in a specific manner. We first discuss
how to construct a ZDD given m labeled edges, {e1, . . . , em},
where e1 represents the root node. We then explain how we
merge nodes to reduce the size of the resulting ZDD and how
we label edges given a graph to be partitioned so that the
computation is efficient.

2.3.1. The Preliminaries
Starting with the root node i = 1, we first create one out-
going 0-arc and one outgoing 1-arc from the corresponding
node ei to the next node ei+1. To ensure that each enumerated
partitioning has exactly p connected components, we store the
number of determined connected components as thedcc variable
for each ZDD node. Consider a directed path e1 −→ e2 ���
e3 ��� e4 ��� e5. In this example, e1 is retained whereas

edges {e2, e3, e4} are not. We know that the two vertices, {v1, v2},
together form one district, regardless of whether or not e5 is
retained. Then, we say that a connected component is deter-
mined and set dcc to 1 for e5. If dcc exceeds p, then we create
an arc into the 0-terminal node rather than create an arc into the
next node since there is no longer a prospect of constructing a
valid partition. Similarly, when creating an arc out of the final
node, em, we point the arc into the 0-terminal node if dcc is
less than p, which represents the total number of partitions.
Finally, if the number of remaining edges exceeds p − dcc,
we stop growing the path by creating an outgoing arc into the
0-terminal node.

How do we find out when another connected component is
determined so that dcc needs to be increased? To do this, we
need two new variables. First, for each vertex vi, we store the
connected component number, denoted by comp[vi], indicating
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Figure 3. Calculation of the frontier, the connected component number, and the determined connected components. This illustrative example is based on the redistricting
problem shown in Figure 1. A positive integer placed next to each vertex represents the connected component number, whereas the vertices grouped by the solid blue
line represent a frontier. A connected component is determined when processing edge e5.

the connected component to which vi belongs. Thus, two ver-
tices, vi and vi′ , share an identical connected component number
if and only if they belong to the same connected component, that
is, comp[vi] = comp[vi′ ].

We initialize the connected component number as
comp[vi] ← i for i = 1, 2, . . . , n where n is the number
of vertices in the original graph. Suppose that we process
and retain an edge incident to two vertices vi and vi′
for i �= i′ by creating an outgoing 1-arc. Then, we set
comp[vj] ← max{comp[vi],comp[vi′ ]} for any vertex vj
whose current connected component number is given by
comp[vj] = min{comp[vi],comp[vi′ ]}. This operation ensures
that all vertices that are connected to vi or vi′ have the same
connected component number (larger of the two original
numbers).

2.3.2. The Frontier-Based Search
Next, we define the frontier of a graph, which changes as we
process each edge and grow a tree. Suppose that we have created
a directed path by processing the nodes from e1 up to e� where
� = 2, 3, . . . , m − 1. For each � = 1, 2, . . . , m − 1, the �th
frontier F� represents the set of vertices of the original graph
that are incident to both a processed edge (i.e., at least one
of e1, e2, . . . , e�) and an unprocessed edge (i.e., at least one of
e�+1, e�+2, . . . , em). Note that we define F0 = Fm = ∅ and
that the set of processed edges includes the one currently being
processed. Thus, for a given graph, the frontier only depends on
which edge is being processed but does not hinge on how edges
have been or will be processed. That is, the same frontier results
for each node regardless of paths.

The frontier can be used to check whether a connected
component is determined. Specifically, suppose there exists a
vertex v that belongs to the previous frontier but is not part
of the current one, that is, v ∈ F�−1 and v �∈ F�. Then,
if there is no other vertex in F� that has the same connected
component number as v (i.e., no vertex in F� is connected to
v), there will not be another vertex in subsequent frontiers,
that is, F�+1, . . . , Fm, that are connected to v. Thus, under this
condition, the connected component comp[v] is determined,
and we increment dcc by one.

Figure 3 gives an example of computing the connected com-
ponent number, constructing the frontier, and updating the
determined connected components, based on the redistricting
problem shown in Figure 1. In each graph, a positive integer
placed next to a vertex represents its connected component
number, whereas the vertices grouped by the solid line rep-
resent a frontier. For example, when processing edge e5 (see
Figure 3(e)), we have F4 = {v3, v4} and F5 = {v4, v5}. Since there
is no vertex in F5 that shares the same connected component
number as v3 (which is 1), we can determine the first connected
component and increment dcc by one.

Finally, when processing the last edge em represented by
node n∗, if two vertices incident to the edge belong to the same
connected component number, then the 0-arc from node n∗
points to the 0-terminal node whereas the destination of the
1-arc is the 1-terminal node unless dcc �= p. If they have
different connected component numbers, the 0-arc of node n∗
goes to the 1-terminal node whereas the destination of its 1-
arc is the 1-terminal node so long as dcc = p and the induced
subgraph condition described in the next paragraph is satisfied
(otherwise, it is the 0-terminal node).
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Figure 4. An example of node merging. as shown in Figure 2, these two paths merge at e3 because the connected component numbers in F2 are identical and the number
of determined connected components is zero.

Throughout the process of building a ZDD, we must make
sure that every path actually corresponds to an induced sub-
graph, which is defined as a subset of nodes and all arcs con-
necting pairs of such nodes. We call this the induced subgraph
condition. Consider a path, e1 −→ e2 −→ e3. Since three ver-
tices, {v1, v2, v3}, are connected, we must retain edge e3 because
its two incident vertices, v2 and v3, are connected. Thus, we have
e1 −→ e2 −→ e3 ��� 0 . Similarly, consider a path, e1 −→
e2 ��� e3. We cannot retain e3 because e2, which is incident to
v1 and v3, is not retained. This yields e1 −→ e2 ��� e3 −→ 0 .

To impose the induced subgraph condition, we introduce
the forbidden pair set for each node. Once we decide not to
use an edge that connects two distinct components, the two
components must not be connected any more. Otherwise, the
new component generated by connecting the two components
has an unused edge, violating the induced subgraph condition.
Therefore, if we determine that an edge {v, v′} is not used,
the addition of {comp[v],comp[v′]} to the forbidden pair set
reminds us that the components comp[v] and comp[v′] must
not be connected. That is, if we use an edge {u, u′} and the
forbidden pair set contains {comp[u],comp[u′]}, the path will
be sent to the 0-terminal. In the above example, if we pass
through e1 −→ e2 ��� e3, {2, 3} is added to the forbidden pair
set, where 2 is the component number of {v1, v2} and 3 is that
of {v3}. Then, since retaining e3 violates the induced subgraph
condition, we have e1 −→ e2 ��� e3 −→ 0 .

2.3.3. Node Merge
The above operation implies that when processing e�, the only
required information is the connectivity of vertices in F�−1. We
can reduce the size of the ZDD by exploiting this fact. First, we
can avoid repeating the same computation by merging multiple
nodes if the connected component numbers of all vertices in
F�−1 and the number of determined connected components
dcc are identical. This is a key property of the ZDD, which
allows us to efficiently enumerate all possible redistricting plans
by merging many different paths. Second, we only need to
examine the connectivity of vertices within a frontier to decide
whether or not any connected component is determined. Thus,
we adjust the connected component number so that it equals
the maximum vertex number in the frontier. That is, if some
vertices in the frontier share the same connected component

number, we change it to the maximum vertex index among those
vertices. For example, in Figure 3(b), we set comp[v2] = 2 and
comp[v3] = 3. We need not worry about how the renumbering
of comp[v3] affects the value of comp[v1] because v1 /∈ F2. This
operation results in merging of additional nodes, reducing the
overall size of the ZDD.

Figure 4 gives an example of such a merge. Figure 4(a) corre-
sponds to the path, e1 −→ e2 ��� e3 whereas Figure 4(b) rep-
resents the path, e1 ��� e2 −→ e3. As shown in Figure 2, these
two paths are merged at e3 because the connected component
numbers in their frontier F2 are identical and both have the same
number of determined connected component, that is, dcc =
0. Note that in Figure 4(b) the connected component number
is normalized within the frontier F2 such that the connected
component number of v2 is the maximum vertex index, that is,
2, and that of v3 is 3.

Node merging plays a key role in scaling up the enumeration
algorithm. Although we can construct the ZDD that only enu-
merates graph partitions by storing the sum of population values
into each node (see Kawahara et al. 2017, sec. 4), this prevents
nodes from being merged, dramatically reducing the scalability
of the enumeration algorithm. Therefore, we do not take this
approach here.

2.3.4. Edge Ordering
How should we label the edges of the original graph? The
amount of computation depends on the number of nodes in
the ZDD. Recall that two nodes are merged if the stored values
such as comp and dcc are identical. Since a ZDD node stores
the comp value for each vertex in the frontier, the number of
unique stored values grows exponentially as the frontier size
increases (see Section 3.1 in Kawahara et al. (2017) for the
detailed analysis). Therefore, we wish to label the edges of a
graph such that the maximum size of the frontier is minimized.
We take a heuristic approach here. Specifically, we first choose
two vertices s, t such that the shortest distance between s and
t is as large as possible across all vertex pairs. We use the
Floyd–Warshall algorithm, which can find the shortest paths
between all vertex pairs in O(|V|3) where |V| is the number
of vertices of a graph. Next, we compute the minimum s–t
vertex graph cut, which is the minimum set of vertices whose
removal generates two or more connected components. To do
this, we use a max-flow based algorithm, and arbitrarily order
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Figure 5. An example of edge ordering by vertex cuts. To order edges, we choose two vertices with the maximum shortest distance and call them s and t. We then use
the minimum vertex cut, indicated by the dashed oval, to create two or more connected components, which are arbitrarily ordered. The same procedure is then applied to
each connected component until the resulting connected components are sufficiently small.

the resulting connected components. Finally, we recursively
apply this procedure to each connected component until the
resulting connected components are sufficiently small (e.g., 5
edges), at which point they are ordered in an arbitrary fashion.

Figure 5 illustrates this process. In this example, a pair, s = v1
and t = v6, gives the maximum shortest distance. Given this
choice, there are four minimum s–t graph cuts whose size is
2, that is, {v2, v3}, {v2, v5}, {v3, v4}, {v4, v5}. We arbitrarily select
one of them and call it S. Suppose we set S = {v4, v5}. Then, this
yields two connected components, that is, C1 = {v1, v2, v3} and
C2 = {v6}. For each connected component Ci, let Ei represent
the set of edges in Ci and between Ci and S. In the current
example, E1 = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v5}} and
E2 = {{v4, v6}, {v5, v7}}. We order these edge sets so that all
the edges E1 will be placed before those of E2. To continue this
process recursively, we combine all the vertices in S into a single
vertex and let this new vertex be t in E1 and s in E2. Now, we can
apply the same procedure separately to E1 and E2: computing
the minimum s–t vertex cut and splitting the graph into two (or
more) components.

The reason why we expect the above edge ordering procedure
to produce a small frontier is that each vertex cut in the process
equals one of the frontiers of the corresponding ZDD. In our
example, the first vertex cut S is equal to F5 = {v4, v5}. Since we
choose minimum vertex cuts in each step, we expect the input
graph with the edge order obtained through this procedure to
have small frontiers.

2.4. Enumeration and Independent Sampling

It can be shown that every path from the root node to the 1-
terminal node in the resulting ZDD has a one-to-one corre-
spondence to a p-graph partition. This is because each p-graph
partition can be uniquely represented by the union of induced
subgraphs, which in turn corresponds to a unique path from
the root node to the 1-terminal node. The complexity of the
enumpart algorithm is generally difficult to characterize, but

Kawahara et al. (2017) analyzed it in the case of planar graphs.
Thus, once we obtain the ZDD as described above, we can
quickly enumerate all the paths from the root node to the 1-
terminal node. Specifically, we start with the 1-terminal node
and then proceed upward to the root node, yielding a unique
graph partition.

In addition to enumeration, we can also independently sam-
ple p-graph partitions (Knuth 2011). First, for each node ν of
the ZDD, we compute the number of paths to the 1-terminal
node. Let c(ν) be the number of such paths, and ν0 and ν1
be the nodes pointed by the 0-arc and 1-arc of ν, respectively.
Clearly, we have c(ν) = c(ν0) + c(ν1). The values of c for the
0-terminal and 1-terminal nodes are 0 and 1, respectively. As
done for enumeration, we compute and store the value of c for
each node by moving upward from the terminal node to the
root node. Finally, we conduct random sampling by starting
with the root node and choosing node ν1 with probability
c(ν1)/{c(ν0) + c(ν1)} until we reach the 1-terminal node. Since
the probability of reaching the 0-terminal node is zero, we will
always arrive at the 1-terminal node, implying that we obtain
a path corresponding to a p-graph partition. Repeating this
procedure will yield the desired number of independently and
uniformly sampled p-graph partitions.

The reason why this procedure samples redistricting maps
uniformly is that a path from the root node to the 1-terminal
node corresponds to a unique p-graph partition. Since each
node ν stores the number of paths from the node to the 1-
terminal node as c(ν), the sampling procedure uniformly and
randomly selects one path among c(v1) paths where v1 is the
root node. If nonuniform sampling is desired, one could apply
the sampling-importance resampling algorithm to obtain a rep-
resentative sample from a target distribution (Rubin 1987).

3. Empirical Scalability Analysis

This section analyzes the scalability of the enumpart algo-
rithm described above, and shows that the algorithm scales to
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Figure 6. The scalability of the enumpart algorithm on subsets of the New Hampshire precinct map. This figure shows the runtime scalability of the enumpart
algorithm for building the ZDD on random contiguous subsets of the New Hampshire precinct map. Crosses indicate maps where the ZDD was successfully built within the
RAM limit of 180GB. In contrast, open circles represent maps where the algorithm ran out of memory. For the left and middle columns, the results are jittered horizontally
with a width of 20 for the clarity of presentation. (The actual evaluation points on the horizontal axis are 40, 80, 120, 160, and 200.) The left column shows how total runtime
increases with the number of units in the underlying map, while the center column shows how the total RAM usage increases with the number of units in the underlying
map. Lastly, the right-hand column shows that memory usage is primarily a function of the maximum frontier size of the ZDD. We show results for 2-district partitions (top
row), five-district partitions (middle row), and 10-district partitions (bottom row).

enumerate partitions of maps many times larger than existing
enumeration procedures. We analyze the algorithm’s scalability
in terms of runtime and memory usage, and show how the
memory usage of enumpart is closely tied to the frontier of
the corresponding ZDD as explained in the previous section.

To make this empirical analysis realistic, we use inde-
pendently constructed and contiguous subsets of the 2008
New Hampshire precinct map for maps ranging between
40 precincts and 200 precincts, increasing by 40, that is,
{40, 80, 120, 160, 200}. The original New Hampshire map con-
sists of 327 precincts, which are divided into two congressional
districts. To generate an independent contiguous subset of the
map, we first randomly sample a precinct, and add its adjacent
precincts to a queue. We then repeatedly sample additional
precincts from the queue to be added to the subset map, and
add the neighbors of the sampled precincts to the queue, until
the map reaches the specified size. We repeat this process until
the subsetted map reaches a prespecified size.

We consider partitioning each of these maps into two, five,
or ten districts and apply enumpart to each case. We then
compute the time and memory usage of generating a ZDD for
each application. For each precinct size and number of districts,
we repeat the above sampling procedure 25 times, producing
25 independent and contiguous subsets of the New Hampshire
map. All trials were run on a Linux computing cluster with 530
nodes and 48 Intel Cascade Lake cores per node, where each
node has 180GB of RAM. Note that we do not save the results
of enumeration to disk as doing so for every trial is computa-
tionally too expensive. This means that we cannot conduct an
in-depth analysis of the characteristics of all enumerated maps.

Figure 6 shows the results of our scalability analysis. The top
row shows scalability results for generating a ZDD for partitions
of the map into two districts, while the middle row shows the
results with five districts and the bottom row shows results
with ten districts. Each dot represents a run of the enumpart
algorithm on a subset of the New Hampshire map. Crosses
represent trials where the ZDD successfully built using under
the 180GB RAM limit. In contrast, open circles show trials that
were unable to build the ZDD with the same RAM limit. Note
that for the left and middle columns, the results are jittered
horizontally with a width of 20 for the clarity of presentation.

The left-hand and center columns show how the enumpart
algorithm scales in terms of runtime and memory usage,
respectively, as the number of precincts in the underlying map
increases. For small maps ranging from 25 precincts to 80
precincts, runtime and memory usage are for the most part
negligible. The ZDD for two-district, five-district, and ten-
district partitions for these small maps can be constructed in
nearly all cases in under two minutes, and using less than one
gigabyte of RAM. As the number of precincts in the map starts
to increase, so do the runtime and memory usage requirements.
For maps of 200 precincts, over 90% of the tested maps hit
the 180GB memory limit before building the complete ZDD.
For all map sizes, we also note that the runtime and memory
usage requirements for building the ZDD do not appear to
depend much on the number of districts that the map is being
partitioned into.

What drives these patterns in scalability? While the num-
ber of units in the underlying map predicts both runtime and
memory usage, there is still a great deal of variability even
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conditional on the number of precincts in the map. In the right-
hand column, we show that the memory usage requirements for
building the ZDD are closely tied to the maximum frontier size
of the underlying map, as defined in Section 2.3.2. While the
memory usage is minimal so long as the maximum frontier size
of the graph is under 11, memory usage increases quickly once
the maximum frontier size grows beyond that. This suggests that
improved routines for reducing the size of a map’s frontier can
allow for the enumeration of increasingly large maps.

4. Empirical Validation Studies

In this section, we introduce a set of new validation tests and
datasets that can be used to evaluate the performance of redis-
tricting simulation methods. We focus on the two most popular
types of simulation methods that are implemented as part of
the open-source software package redist (Fifield, Tarr, and Imai
2015): one based on the MCMC algorithm (Fifield et al. 2014;
Fifield, Higgins, et al. 2020; Mattingly and Vaughn 2014) and
the other based on the RSG algorithm (Cirincione, Darling, and
O’Rourke 2000; Chen and Rodden 2013). Below, we conduct
empirical validation studies both through full enumeration and
independent sampling. For the sake of simplicity, we use the
uniform distribution over all valid redistricting maps under
various constraints. However, one could also use a nonuniform
target distribution by appropriately weighting each map.

4.1. Validation Through Enumeration

We conduct two types of validation tests using enumeration.
We first use the enumpart algorithm to enumerate all possible
redistricting plans using a map with 70 precincts, which is
much larger than the existing validation map with 25 precincts
analyzed in Fifield et al. (2014) and Fifield, Higgins, et al. (2020).
We then compare the sampled redistricting plans obtained from
simulation methods against the ground truth based on the enu-
merated plans. The second approach is based on many smaller
maps with 25 precincts. We then assess the overall performance
of simulation methods across these many maps rather than
focusing on a specific map.

4.1.1. A New 70-Precinct Validation Map
The top left plot of Figure 7 introduces a new validation map
with 70 precincts and their population, which is a subset of the
2008 Florida precinct map consisting of 6,688 precincts with 25
districts. We use the enumpart algorithm to enumerate every
partition of this map into two districts, which took approxi-
mately 8 hr on a MacBook Pro laptop with 16GB RAM and
2.8 GHz Intel i7 processors. Nearly all of this time was spent
writing the partitions to disk—building the ZDD for this map
took under half a second.

The histograms of the figure shows the number of redistrict-
ing plans that satisfy the deviation from population parity up
to 20 percentage points (by one percentage point increments,
i.e., [0, 0.01), [0.01, 0.02), . . . , [0.19, 0.2)). The deviation from
population parity is defined as,

max
1≤k≤p

|Pk − P|
P

, (1)

where Pk represents the population of the kth district, P =∑p
k=1 Pk/p, and p is the total number of districts. When par-

titioning this map into two districts, there exist a total of
44,082,156 possible redistricting plans if we only impose the
contiguity requirement.

As shown in the upper right plot, out of these, over 700,000
plans are within a 1% population parity constraint. As we relax
the population parity constraint, the cumulative number of valid
redistricting plans gradually increases, reaching over 3 and 7
million plans for the 5% and 10% population parity constraints,
respectively. Thus, this validation map represents a more real-
istic redistricting problem than the validation map analyzed
in Fifield et al. (2014) and Fifield, Higgins, et al. (2020). That
dataset, which enumerates all 117,688 partitions of a 25-precinct
subset of the Florida map into three districts, includes only 8
plans within 1% of population parity, and 927 plans within 10%
of population parity.

In addition to the population parity, we also consider com-
pactness constraints. Although there exist a large number of
different compactness measures, for the sake of illustration, we
use the relative proximity index (RPI) proposed by Fryer and
Holden (2011). The RPI for a given plan πs in the valid set of
redistricting plans π is defined as,

RPI(πs) =
∑p

k=1
∑

i∈Vk

∑
j∈Vk

PiPjD2
ij

arg minπs∈π

∑p
k=1

∑
i∈Vk

∑
j∈Vk

PiPjD2
ij

, (2)

where Pi corresponds to the population for precinct i assigned to
district k, and Dij corresponds to the distance between precincts
i and j assigned to district k. Thus, a plan with a lower RPI is
more compact.

We consider two compactness thresholds based on the RPI
values: 25th and 75th percentiles, which equal 1.76 and 1.44,
respectively. As shown in the bottom left histogram of Figure 7,
the 25th percentile constraint does little beyond the population
constraint. The number of valid plans that satisfy a 5% popula-
tion parity threshold remains identical even after imposing this
compactness constraint. However, the 75th percentile compact-
ness constraint dramatically reduces the number of valid plans
as seen in the bottom right histogram. For example, it reduces
the total number of plans that meet the 1% population parity
threshold by more than 70%.

Figure 8 shows the performance of the MCMC and RSG sim-
ulation methods using the new 70-precinct validation map (see
Algorithms 1 and 3 of Fifield et al. (2014) and Fifield, Higgins,
et al. (2020), respectively, for the details of implementation). The
solid gray density shows the true distribution of the Republican
dissimilarity index (Massey and Denton 1988) on the validation
map, which is defined as

D = 1
2

p∑
k=1

Pk
P

· |Rk − R|
R(1 − R)

, (3)

where k indexes districts in a state, Pk is the population of district
k, Rk is the share of district k that voted for the Republican
presidential candidate in 2008, P is the total population in the
state, and R is the voteshare for the Republican presidential
candidate across all districts.
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Figure 7. A new 70-precinct validation map and the histogram of redistricting plans under various population parity and compactness constraints. The underlying
data is a 70-precinct contiguous subset of the Florida precinct map, for which the enumpart algorithm enumerated every 44,082,156 partitions of the map into two
contiguous districts. In the histograms, each bar represents the number of redistricting plans that fall within a 1 percentage point range of a certain population parity,
that is, [0, 0.01), [0.01, 0.02), . . . , [0.19, 0.20). The 25th (75th) percentile compactness constraint is defined as the set of plans that are more compact than the 25th (75th)
percentile of maps within the full enumeration of all plans for the 70-precinct map, using the Relative Proximity Index to measure compactness. The annotations reflect the
exact number of plans which meet the constraints. For example, when no compactness constraint is applied, there are 3,678,453 valid plans when applying a 5% population
parity constraint, and 717,060 valid plans when applying a 1% population parity constraint. Under the strictest constraints, the 1% population parity constraint and 75th
percentile compactness constraint, there are 271,240 valid plans.

The red dashed lines show the distribution of the Republican
dissimilarity index of the RSG algorithm. Solid black lines show
the distribution of the Republican dissimilarity index on plans
drawn by the MCMC algorithm. In cases where we impose a
population parity target, we specify a target distribution of plans
using the Gibbs distribution where plans closer to population
parity are more likely to be sampled by the algorithm (see Fifield
et al. 2014; Fifield, Higgins, et al. 2020, for details).

Similarly, when a compactness constraint is imposed, we
specify a target Gibbs distribution such that more compact plans
are sampled. Note that in typical redistricting applications, we
would not know the denominator of Equation (2). Fryer and
Holden (2011) derived a power-diagram approach to finding
a plan that approximately minimizes the denominator. Since
we have enumerated all possible plans in the current setting,
we simply use the true minimum value. However, this has no
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Figure 8. A validation study enumerating all partitions of a 70-precinct map into two districts. The underlying data are the 70-precinct contiguous subset introduced in
the left plot of Figure 7. Unlike the random-seed-and-grow (RSG) method (red dashed lines), the Markov chain Monte Carlo (MCMC) method (solid black line) is able to
approximate the target distribution. The 25th percentile (75th percentile) compactness constraint is defined as the set of plans that are more compact than the 25th (75th)
percentile of maps within the full enumeration of all plans for the 70-precinct map, using the Relative Proximity Index to measure compactness.

impact on the performance of the algorithm, since it is absorbed
into the normalizing constant of the target distribution.

Specifically, we use the following target Gibbs distribution,

fβ(πs) = 1
z(β)

exp

{
−

p∑
k=1

(βpψ
p
k + βcψ

c
k)

}
, (4)

where

ψ
p
k = |Pk − P|

P
and

ψ c
k =

∑
i∈Vk

∑
j∈Vk

PiPjD2
ij

arg minπs∈π

∑p
k=1

∑
i∈Vk

∑
j∈Vk

PiPjD2
ij

.

In this formulation, the strength of each constraint is governed
by separate temperature parameters βp (for population parity)
and βc (for compactness), where higher temperatures increase
the likelihood that plans closer to the population parity or
compactness target will be sampled. Once the algorithm is run,
we discard sampled plans that fail to meet the target population
and compactness constraints, and then reweight and resample
the remaining plans so that they approximate a uniform sample
from the population of all plans satisfying the constraints. After
some initial tuning, we selected βp = 10 for the 5% equal
population constraint, and βp = 50 for the 1% equal population
constraint. We selected βc = 0.001 for the 25th percentile



STATISTICS AND PUBLIC POLICY 63

Figure 9. Quantile-quantile plot of p-values based on the Kolmogorov–Smirnov (KS) tests of distributional equality between the enumerated and simulated plans across
200 validation maps and under different population parity constraints. Each dot represents the p-value from a KS test comparing the empirical distribution of the Republican
dissimilarity index from the simulated and enumerated redistricting plans. Under independent and uniform sampling, we expect the dots to fall on the 45 degree line. The
MCMC algorithm (black dots), although imperfect, significantly outperforms the RSG algorithm (red crosses). See Figure A.1 in the appendix for discussion of thinning
values.

compactness constraint and βc = 0.01 for the 75th percentile
compactness constraint. When the population or compactness
constraints are not applied, we set their corresponding temper-
ature parameter to 0.

The RSG algorithm was run for 1,000,000 independent draws
for each population constraint, while the MCMC algorithms
were run for 250,000 iterations using 8 chains for each pair of
constraints. Starting plans for each MCMC chain were indepen-
dently selected using the RSG algorithm. The Gelman–Rubin
diagnostic (Gelman and Rubin 1992), a standard diagnostic tool
for MCMC methods based on multiple chains, suggests that all
MCMC chains had converged after at most 30,000 iterations.
Unfortunately, the RSG algorithm does not come with such a
diagnostic and hence we simply run it until it yields the same
number of draws as the MCMC algorithms for the sake of
comparison.

It is clear that on this test map, the RSG algorithm is unable to
obtain a representative sample of the target distribution, at any
level of population parity or compactness. This finding is consis-
tent with the fact that the RSG algorithm is a heuristic algorithm
with no theoretical guarantees and no specified target distribu-
tion. In contrast, the MCMC algorithm is able to approximate
the target distribution, across all levels of population parity and
compactness tested.

4.1.2. Many Small Validation Maps
A potential criticism of the previous validation study is that it
is based on a single map. This means that even though it is of
much larger size than the previously available validation map,
the results may depend on the idiosyncratic geographical and
other features of this particular validation map. To address this,
we conduct another study based on many small validation maps.
Specifically, we use our algorithm to enumerate all possible
redistricting plans for each of 200 independent 25-precinct sub-
sets of the 2008 Florida map. We then evaluate the performance
of simulation methods for each validation map. Since we do not
tune the temperature parameter of the MCMC algorithm for

each simulated map unlike what one would do in practice, this
yields a simulation setting that poses a significant challenge for
the MCMC algorithm.

To assess the overall performance across these validation
maps, we use the Kolmogorov–Smirnov (KS) statistic to test
the distributional equality of the Republican dissimilarity index
between the enumerated plans and the simulated plans. To
increase the independence across simulated plans, we run the
MCMC and RSG algorithms for 5 million iterations each on
every map and then thinning by 500 (i.e., taking every 500th
posterior draw). Without thinning, there is a significant amount
of autocorrelation across draws, with the autocorrelation typi-
cally ranging between 0.75 and 0.85 between adjacent draws and
between 0.30 and 0.60 for draws separated by 5 iterations. In
contrast, when thinning the Markov chain by 500, the autocor-
relation between adjacent draws falls to under 0.05. When thin-
ning the Markov chain by 1000, the results are approximately
the same, as seen in Figure A.1.

Although this does not make simulated draws completely
independent of one another, we compute the p-value under the
assumption of two independently and identically distributed
samples. If the simulation methods are successful and the inde-
pendence assumption holds, then we should find that the dis-
tribution of p-values across 200 small validation maps should
be approximately uniform. After some initial tuning, we set
the temperature parameter of the MCMC algorithm such that
βp = 1 for the 20% equal population constraint, and βp =
5 for the 10% equal population constraint. These values are
used throughout the simulations. After running the simulations,
we again discard plans falling outside of the specified parity
threshold and then reweight and resample the remaining plans
to approximate a uniform draw from the target distribution of
plans satisfying the specified parity constraint. We then calculate
the KS test p-value by comparing the reweighted and resampled
set of plans against the true distribution.

Figure 9 shows the results of this validation study. The left
plot shows how the MCMC (black dots) and RSG (red crosses)
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Figure 10. Iowa’s 2016 congressional districts and the histogram of a random sample of redistricting plans under various population parity constraints. The underlying
data is the Iowa county map, for which the enumpart algorithm generated an independent and uniform random sample of 500 million partitions of the map into four
contiguous districts. In the histogram, each bar represents the number of redistricting plans that fall within the 1 percentage point range of a certain population parity,
that is, [0, 0.01), [0.01, 0.02), . . . , [0.19, 0.20). There are 36,131 valid plans when applying a 5% population parity constraint, and only 300 valid plans when applying a 1%
population parity constraint.

algorithms perform when not applying any population parity
constraint. Each dot corresponds to the p-value of the KS test
for a separate 25-precinct map. Under the assumption of inde-
pendent sampled plans, if a simulation algorithm is successfully
approximating the target distribution, these dots should fall
roughly on the 45 degree line.

It is clear from this validation test that the RSG algorithm
consistently fails to obtain a representative sample of the target
distribution. That the red dots are concentrated near the bottom
of the graph indicates that the KS p-value for the RSG algorithm
is near zero for nearly every map tested. When population parity
constraints of 20% and 10% are applied, the RSG algorithm con-
tinues to perform poorly compared to the MCMC algorithm. By
using a soft constraint based on the Gibbs distribution, we allow
the Markov chain to traverse from one valid plan to another
through intermediate plans that may not satisfy the desired
parity constraint. We find that although imperfect, the MCMC
algorithm works much better than RSG algorithm.

4.2. Validation Through Independent Sampling

Next, we conduct larger-scale validation studies by leveraging
the fact that the enumpart algorithm can independently sam-
ple from the population of all possible redistricting plans. This
feature allows us to scale up our validation studies further by
avoiding for larger maps the computationally intensive task of
writing to the hard disk all possible redistricting plans, which
exponentially increases as the map size gets larger or as we
try to partition a map into more districts. We independently
sample a large number of redistricting plans and compare them
against the samples obtained from simulation methods. Below,

we present two validation studies. The first study uses the
actual Congressional district maps from Iowa, where by law
redistricting is done using 99 counties. The second study is
based on a new 250-precinct validation map obtained from the
Florida map.

4.2.1. The Iowa Congressional District Map
We first analyze a new validation dataset constructed on the
redistricting map from the state of Iowa. In Iowa, redistricting is
conducted using a total of 99 counties instead of census blocks
to piece together districts, to avoid splitting county boundaries
in line with the Iowa State Constitution.7 As a result, the Iowa
redistricting problem is more manageable than other states.

The left plot of Figure 10 shows the Iowa map, where
the shading indicates the population of each county. In 2016,
Republicans won three districts while Democrats won one dis-
trict, while in 2018, Democrats won three districts and the
Republicans held only one. We use the enumpart algorithm
to independently and uniformly sample 500 million contiguous
partitions of this map into four districts. This number is minus-
cule relative to the total number of valid partitions of the map
into four districts, of which there are approximately 1024, but
still is more than enough to use it as the target distribution. We
note that while it took around 36 hr to sample 500 million parti-
tions on the aforementioned computer cluster using significant
parallelization, building the ZDD for this map took less than

7Article 3, Section 37 of the Iowa State Constitution states “When a congres-
sional, senatorial or representative district shall be composed of two or
more counties, it shall not be entirely separated by any county belonging to
another district; and no county shall be divided in forming a congressional,
senatorial, or representative district.”
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Figure 11. A validation study, uniformly sampling from the population of all partitions of the Iowa map into four districts. The underlying data are Iowa’s county map
in the left plot of Figure 10, which is partitioned into four congressional districts. As in the previous validation exercises, the Markov chain Monte Carlo (MCMC) method
(solid black line) is able to approximate the independently and uniformly sampled target distribution, while the random-seed-and-grow (RSG) method (red dashed line)
performs poorly.

half a second on our MacBook Pro laptop mentioned earlier.
Nearly all of the runtime of the enumeration was spent writing
the solutions to harddisk.

The histogram in Figure 10 shows the share of the sampled
redistricting plans that satisfy the deviation from population
parity up to 20 percentage points. Of the 500 million plans
we have randomly sampled, only 300, or less than 0.00006%,
satisfy a 1% population parity constraint, illustrating the sheer
scale of the redistricting problem and how much the population
equality constraint alone shrinks the total solution space of
valid redistricting plans. There are 36,131 plans, or less than
0.001%, satisfying a 5% population parity constraint, which is
still a minuscule share compared to the total number of enu-
merated plans.

Figure 11 shows the performance of the MCMC and RSG
simulation methods on the state-sized redistricting problem
for Iowa. The solid gray density shows the distribution of the
Republican dissimilarity index based on the independently and
uniformly sampled set of 500 million redistricting plans. The
red dashed lines show the distribution of the Republican dissim-
ilarity index on plans sampled by the RSG algorithm, while the
solid black lines shows the distribution for plans sampled by the
MCMC algorithm. As in the previous validation exercise, where
we impose 5% and 1% population parity constraints, we spec-
ify a target distribution of plans using the Gibbs distribution.
Here, we set the temperature parameter βp = 25 for the 5%
parity constraint, and βp = 50 for the 1% parity constraint,
which we selected after initial tuning. After discarding plans
not satisfying the constraint and then reweighting, we ended
up with 629,729 plans for the 5% parity constraint, and 93,046
plans for the 1% parity constraint. The RSG algorithm was run
for 2 million independent draws, while the MCMC algorithms
were run for 250,000 iterations and initializing 8 chains for each
algorithm. The chains were run without a burn-in period, and
the Gelman–Rubin diagnostic suggested that the Markov chains
had converged after at most 30,000 iterations.

As with the previous validation test, the MCMC algo-
rithm outperforms the RSG algorithm across all levels of
the population parity constraint. When no equal population

constraint is applied or a 5% population parity constraint is
applied, the MCMC algorithm samples from the target distribu-
tion nearly perfectly. Even with the 1% parity map, where there
are only 300 valid plans in the target distribution, the MCMC
algorithm approximates the target distribution reasonably well,
missing by only slightly in portions of the distribution. In con-
trast, at all levels of population parity, the RSG algorithm is
unable to draw a representative sample of plans from the target
distribution.

4.2.2. A New 250-Precinct Validation Map
Next, we present the results of validation tests that use a new,
250-precinct validation map, which is constructed from a con-
tiguous subset of the 2008 Florida precinct map. As with the
previous validation exercise, we use the enumpart algorithm
to independently sample 100 million partitions of this map into
two districts. This is still a minuscule number of plans relative
to about 5 × 1039 possible partitions of this map into two
districts. However, given the ability of theenumpart algorithm
to independently sample plans using the ZDD, we are able to
approximate an accurate target distribution arbitrarily well.

The left plot of Figure 12 shows the validation map, where
the shading indicates the population of each of the precincts.
Unlike the Iowa map, this map has geographical units of various
sizes. This validation map also has a slightly larger frontier size
(maximum frontier of 14) than that of the Iowa map (maximum
frontier of 11), making it more likely to run out of memory
due to the size of ZDD and thereby also increasing computa-
tional time. The histogram on the right gives the distribution of
population parity distance among the sampled plans, through
20% parity. Of the sampled plans, 1.95% (1.95 million plans)
satisfy the 1% population parity constraint, while 21.8% of the
sampled plans (21.8 million plans) satisfy the 10% population
parity constraint.

We sample 4 million plans for each population parity level
using the MCMC and RSG algorithms. For the MCMC algo-
rithm, we initialized 8 chains running for 500,000 iterations
each, and where a population parity constraint is imposed,
we specify the target distribution of plans using the Gibbs
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Figure 12. A new 250-precinct validation map and the histogram of redistricting plans under various population parity constraints. The underlying data are a 250-precinct
contiguous subset of the Florida precinct map, for which the enumpart algorithm generated an independent and uniform random sample of 100 million partitions of
the map into two contiguous districts. In the histogram, each bar represents the number of redistricting plans that fall within the 1 percentage point range of a certain
population parity, that is, [0, 0.01), [0.01, 0.02), . . . , [0.19, 0.20). There are 10,082,542 valid plans when applying a 5% population parity constraint, and 1,953,736 valid
plans when applying a 1% population parity constraint.

Figure 13. A validation study enumerating all partitions of a 250-precinct map into two districts. The underlying data are the 250-precinct contiguous subset introduced
in the left plot of Figure 12. As in the previous validation exercises, the Markov chain Monte Carlo (MCMC) method (solid black line) is able to approximate the target
distribution based on the independent and uniform sampling, while the random-seed-and-grow (RSG) method (red dashed line) performs poorly.

distribution. We set the temperature parameter βp = 25 for
sampling plans within 5% of parity, and βp = 50 when sampling
plans within 1% of parity. After discarding invalid plans and
reweighting, these parameter settings yielded 3,088,086 plans
satisfying the 5% parity constraint, and 1,881,043 plans satisfy-
ing the 1% parity constraint. All 8 chains were run without burn-
in, and the Gelman–Rubin convergence diagnostic suggested
the chains had converged after approximately 75,000 iterations.

Results for the validation test using the 250-precinct valida-
tion map are shown in Figure 13. As with the previous validation
exercise, the solid gray density shows the target distribution
of the Republican dissimilarity index on the 100 million plans

sampled by the enumpart algorithm, while the red dashed
lines show the distribution of the Republican dissimilarity index
for the RSG algorithm. Finally, the solid black lines show the dis-
tribution of the Republican dissimilarity index for the MCMC
algorithm. Across all levels of population parity, including the
1% constraint, the MCMC algorithm is able to successfully
sample from the target distribution and return a representative
sample of redistricting plans. In contrast, where no population
parity constraint is applied or where a 5% parity constraint is
applied, the RSG algorithm is not able to sample from the target
distribution with any accuracy. While it performs somewhat
better on the 1% constraint, it is still biased toward plans with
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Figure A.1. Quantile-quantile plot of p-values based on the Kolmogorov–Smirnov (KS) tests of distributional equality between the enumerated and simulated plans across
200 validation maps and under different population parity constraints. Each dot represents the p-value from a KS test comparing the empirical distribution of the Republican
dissimilarity index from the simulated and enumerated redistricting plans. Under independent and uniform sampling, we expect the dots to fall on the 45 degree line. The
MCMC algorithm (black dots), although imperfect, significantly outperforms the RSG algorithm (red crosses).

higher values on the dissimilarity index, and fails to capture the
bimodality of the target distribution.

5. Concluding Remarks

More than a half century after scholars began to consider
automated redistricting, legislatures and courts are increasingly
relying on computational methods to generate redistricting
plans and determine their legality. Unfortunately, despite
the growing popularity of simulation methods in the recent
redistricting cases, there exists little empirical evidence that
these methods can in practice generate a representative sample
of all possible redistricting maps under the statutory guidelines
and requirements.

We believe that the scientific community has an obligation
to empirically validate the accuracy of these methods. In this
article, we show how to conduct empirical validation studies
by utilizing a recently developed computational method that
enables the enumeration and independent sampling of all pos-
sible redistricting plans for maps with a couple of hundred
geographical units. We make these validation maps publicly
available, and implement our methodology as part of an open
source software package, redist. These resources should facili-
tate researchers’ efforts to evaluate the performance of existing
and new methods in realistic settings.

Indeed, much work remains to be done to understand
the conditions under which a specific simulation method do
and does not perform well. A real-world redistricting process
is complex. Distinct geographical features and diverse legal
requirements play important roles in each state. It is far from
clear how these factors interact with different simulation meth-
ods. Future work should address these issues using the data from
various states.

It is also important to further improve the capabilities of the
enumpart algorithm and of the MCMC algorithm. The maxi-
mum frontier size of our largest validation maps, which predicts
the computational difficulty for the enumpart algorithm, is
14, which is far less than that of other states. For example, the
maximum frontier size for New Hampshire (2 districts, 327

precincts) and Wisconsin (8 districts, 6895 precincts) are 21 and
84, respectively. These are much more challenging redistricting
problems than the validation studies presented in this article.

As the 2020 census passes, lawsuits challenging proposed
redistricting plans will inevitably be brought to court, and sim-
ulation evidence will be used to challenge and defend those
plans. Thus, it is necessary that the empirical performance of
these methods be rigorously evaluated. This article introduces
what we hope will be the first of many future complementary
validation tests used to ensure that this evidence is of the highest
possible quality according to scientific standards.

Appendix

Figure A.1 provides comparison to Figure 9. In Figure 9, thinning for
the MCMC runs was set to 500. For this run, thinning for the MCMC
runs was set to 1000. We find no significant difference between the two
values. Thinning at 500 should then be sufficient and more efficient for
this case.
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