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Estimation of heterogeneous treatment effects is an active area of re-
search. Most of the existing methods, however, focus on estimating the con-
ditional average treatment effects of a single, binary treatment given a set of
pretreatment covariates. In this paper we propose a method to estimate the
heterogeneous causal effects of high-dimensional treatments, which poses
unique challenges in terms of estimation and interpretation. The proposed
approach finds maximally heterogeneous groups and uses a Bayesian mix-
ture of regularized logistic regressions to identify groups of units who exhibit
similar patterns of treatment effects. By directly modeling group member-
ship with covariates, the proposed methodology allows one to explore the
unit characteristics that are associated with different patterns of treatment ef-
fects. Our motivating application is conjoint analysis, which is a popular type
of survey experiment in social science and marketing research and is based
on a high-dimensional factorial design. We apply the proposed methodology
to the conjoint data, where survey respondents are asked to select one of two
immigrant profiles with randomly selected attributes. We find that a group of
respondents with a relatively high degree of prejudice appears to discriminate
against immigrants from non-European countries, like Iraq. An open-source
software package is available for implementing the proposed methodology.

1. Introduction. Over the past decade, a number of researchers have exploited modern
machine learning algorithms and proposed new methods to estimate heterogeneous treatment
effects using experimental data. They include tree-based methods (e.g., Imai and Strauss
(2011), Athey and Imbens (2016), Wager and Athey (2018), Hahn, Murray and Carvalho
(2020)), regularized regressions (e.g., Imai and Ratkovic (2013), Tian et al. (2014), Künzel
et al. (2019)), ensemble methods (e.g., van der Laan and Rose (2011b), Grimmer, Messing
and Westwood (2017)), and frameworks that allow for the use of generic machine learning
methods (e.g., Chernozhukov et al. (2023), Imai and Li (2025)). This methodological de-
velopment, however, has largely been confined to settings with a single, binary treatment
variable; some exceptions include a time-varying treatment (e.g., Almirall et al. (2014)) and
a relatively small number of treatments (e.g., Imai and Ratkovic (2013)).

In this paper we estimate the heterogeneous effects of a high-dimensional treatment by
analyzing the data from conjoint experiments in which the number of possible treatment
combinations exceeds the sample size. While the high dimensionality in treatment effect
heterogeneity problems typically comes from the number of covariates or moderators, con-
joint experiments provide an additional difficulty due to high dimensionality of treatment.
We address the methodological challenge of effectively summarizing the complex patterns
of heterogeneous treatment effects that are induced by the interactions among the treatments
themselves as well as the interactions between the treatments and unit characteristics.

Received June 2024; revised November 2024.
Key words and phrases. Causal inference, factorial design, mixture model, randomized experiment, regular-

ized regression.

866

https://imstat.org/journals-and-publications/annals-of-applied-statistics/
https://doi.org/10.1214/24-AOAS1994
https://www.imstat.org
mailto:mgoplerud@austin.utexas.edu
mailto:imai@harvard.edu
mailto:nicole.pashley@rutgers.edu


HETEROGENEOUS TREATMENT EFFECTS 867

Methodological contributions. We consider a common setting where researchers wish to
use a small number of groups to summarize heterogeneous treatment effects and characterize
these groups using several pretreatment covariates (e.g., Chernozhukov et al. (2023), Imai and
Li (2025)). We show that once researchers select the number of groups to be used for summa-
rizing heterogeneous treatment effects, finding the maximally heterogeneous groups in terms
of potential outcomes is equivalent to maximizing the likelihood function based on the la-
tent group membership. Furthermore, modeling the conditional probability of an individual’s
latent group membership using the moderators of interest yields maximally heterogeneous
groups that are predicted well by these moderators.

A primary methodological challenge with high-dimensional treatments is characterizing
both the interactions among a large number of treatment variables and their relationships
with moderating covariates. Our methodology addresses this by finding maximally hetero-
geneous groups while characterizing the relationship between group membership and unit
characteristics. Thus, it is possible to understand the types of units that are likely to exhibit
similar treatment effect patterns.

Since optimizing over the latent group membership is difficult, we marginalize it out, lead-
ing to a mixture of experts model (e.g., Gormley and Frühwirth-Schnatter (2019), Gupta and
Chintagunta (1994)). We also develop estimation strategies by bringing together two pre-
viously disconnected literatures, one on mixture models and the other on sparsity-inducing
penalties to fuse factor levels.

Empirical application. Conjoint analysis is a popular survey experimental methodology in
social sciences and marketing research (e.g., Hainmueller, Hopkins and Yamamoto (2014),
Rao (2014)). Conjoint analysis is a variant of factorial designs (Dasgupta, Pillai and Rubin
(2015)) with a large number of factorial treatments—so large that typically not all possible
treatments are observed. Under the most commonly used “forced-choice” design, respon-
dents are asked to evaluate a pair of profiles whose attributes are randomly selected based on
factorial variables with several levels.

In the specific experiment we reanalyze, the original authors used a conjoint analysis to
measure immigration preferences by presenting each survey respondent with several pairs
of immigrant profiles with varying attributes including education, country of origin, and job
experience (Hainmueller and Hopkins (2015)). For each pair the respondent was asked to
choose one profile they prefer. The authors then analyzed the resulting response patterns to
understand which immigrant characteristics play a critical role in forming the immigration
preferences of American citizens.

In the methodological literature on factorial designs and conjoint analysis, researchers
have focused on average marginal effects, which represent the average effect of one factor
level relative to another level of the same factor averaging over the randomization distribu-
tion of the remaining factors (Hainmueller, Hopkins and Yamamoto (2014), Dasgupta, Pillai
and Rubin (2015)). Many empirical researchers use subgroup analysis to explore how these
marginal effects depend on a small number of moderating covariates (e.g., Hainmueller and
Hopkins (2015), Newman and Malhotra (2019)).

Unfortunately, such an approach often results in low statistical power and may suffer from
multiple testing problems (Liu and Shiraito (2023)). More fundamentally, by marginalizing
other treatments, researchers may miss important interactions among treatments. Although
some have explored the estimation of interaction effects (e.g., Dasgupta, Pillai and Rubin
(2015), Egami and Imai (2019), De la Cuesta, Egami and Imai (2022)), few have investigated
how to estimate heterogeneous treatment effects of high-dimensional treatments.

Moreover, there is even less prior research that models how the effects of high-dimensional
treatments vary as a function of moderators. One exception is Robinson and Duch (2024),
which uses a BART-based approach for conjoint experiments, but their heterogeneous effects
of interest are different from ours (see Section 5.4 for comparison).
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Related models. To overcome this challenge, we develop a mixture of regularized logis-
tic regression models under our general methodological framework of treatment effect het-
erogeneity with high-dimensional treatments. We combine and extend two distinct strands
of methodological research. First, a growing literature explores regularization with high-
dimensional factors, and their interactions, by fusing or grouping levels of factors together
(e.g., Bondell and Reich (2009), Post and Bondell (2013), Stokell, Shah and Tibshirani
(2021)). This methodology is well suited to factorial experiments because it provides a natu-
ral way of interpreting empirical findings by identifying a set of factor levels that characterize
distinct treatment effects (e.g., Egami and Imai (2019)).

However, since our goal is to identify groups of individuals with heterogeneous effects,
we use a mixture model that finds the maximally heterogeneous groups (see Section 3.2). Al-
though the marketing literature has long applied mixture models to analyzing heterogeneity
in conjoint experiments (e.g., Gupta and Chintagunta (1994), Andrews, Ainslie and Currim
(2002)), they focused on settings with low-dimensional treatments. In the high-dimensional
setting, some combine mixture models with sparsity constraints (e.g., Khalili and Chen
(2007), Städler, Bühlmann and Van De Geer (2010), Khalili (2010)), but these constraints
are not designed to induce the fusion of factor levels that is essential in conjoint analysis.

Our model, therefore, synthesizes both of these approaches by using a finite mixture model
with a prior that encourages fusing levels, while respecting the hierarchical structure—fusing
main effects of factors only if their interactions are also fused (Yan and Bien (2017)). For
efficient computation we develop an expectation–maximization (EM) algorithm (Dempster,
Laird and Rubin (1977)) by exploiting the representation of �1 and �2 penalties as a mixture
of Gaussians (e.g., Figueiredo (2003), Polson and Scott (2011), Ratkovic and Tingley (2017),
Goplerud (2021)). We derive a tractable algorithm that adapts the latent overlapping group
LASSO developed in sparse modeling to fusion required in factorial experiments.

The rest of the paper is organized as follows. In Section 2 we discuss the motivating appli-
cation, which is a conjoint analysis of American citizens’ preferences regarding immigrant
features. We also briefly describe a methodological challenge to be addressed. In Section 3
we present our proposed methodology. In Section 4 we show our method performs well in a
realistic numerical simulation. In Section 5 we apply this methodology and reanalyze the data
from the motivating conjoint analysis. Section 6 concludes with a discussion. The R package
FactorHet (Goplerud, Pashley and Imai (2025)) can be used to implement our method-
ology, and Goplerud, Imai and Pashley (2025a) provide replication code for our application
and simulations.

2. Motivating application: Conjoint analysis of immigration preferences. Our moti-
vating application is a conjoint analysis of American immigration preferences. In this section
we introduce the experimental design and discuss the results of previous analyses that moti-
vate our methodology for estimating heterogeneous treatment effects.

2.1. The experimental design. In an influential study, Hainmueller and Hopkins (2015)
use conjoint analysis to estimate the effect of immigrant attributes on preferences for ad-
mission to the United States (data are available at the AJPS Dataverse https://doi.org/10.
7910/DVN/25505). The authors conduct an online survey experiment using a sample of 1407
American adults. Each survey respondent assessed five pairs of immigrant profiles with ran-
domly selected attributes. For each pair a respondent was asked to choose which of the two
immigrant profiles they preferred to admit to the United States.

The attributes of immigrant profiles used in this factorial experiment, with number of levels
provided in parentheses, are gender (2), education (7), employment plans (4), job experience
(4), profession (11), language skills (4), country of origin (10), reasons for applying (3), and

https://doi.org/10.7910/DVN/25505
https://doi.org/10.7910/DVN/25505
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prior trips to the United States (5). For completeness these factors and their levels are re-
produced as Table A1 of the Supplementary Material (Goplerud, Imai and Pashley (2025b)).
In total, there exist over 1.4 million possible profiles, implying more than 2 × 1012 possible
comparisons of two profiles that are possible in the experiment. It is clear that with 1407 re-
spondents, even though each respondent performs five comparisons, not all possible profiles
can be included. Thus, exploring treatment effect heterogeneity requires a methodological
development that goes beyond the models used previously in the causal inference literature
for binary treatments.

The levels of each factor variable were independently randomized to yield one immigrant
profile. Randomization was subject to some restrictions such that profession and education
factors result in sensible pairings (e.g., ruling out doctors with less than two-years of college
education) and immigrants whose reason for applying is persecution must come from Iraq,
Sudan, Somalia, or China. The ordering of attributes was also randomized for each respon-
dent. The experiment additionally collected data on the respondents, including demographic
information, partisanship, attitudes toward immigration, and ethnocentrism. A rating for each
immigrant profile was also recorded, but that metric is not the focus of our analysis.

2.2. Heterogeneous treatment effects. Hainmueller and Hopkins (2015) conducted their
primary analysis based on a linear regression model where the unit of analysis is an immi-
grant profile (rather than a pair) and the outcome variable is an indicator for whether a given
profile was chosen. The predictors of the model include the indicator variable for each im-
migrant attribute. The model also includes the interactions between education and profession
as well as between country of origin and reasons for applying to account for the restricted
randomization scheme mentioned above. Finally, the standard errors are clustered by respon-
dent.

As formalized in Hainmueller, Hopkins and Yamamoto (2014), the regression coefficient
represents the average marginal component effect (AMCE) of each attribute averaging over
all the other attributes including those of the other profile in a given pair. Figure 1 reproduces
the estimated overall AMCEs of country of origin where the baseline category is Germany.
There is little country effect with the exception of Iraq, which negatively affects the likelihood
of being preferred by a respondent.

Beyond the AMCEs these authors and others, including Newman and Malhotra (2019),
have explored the heterogeneous treatment effects among respondents by conducting many
subgroup analyses based on a number of respondent characteristics including partisanship

FIG. 1. Estimated average marginal component effects of country of origin where the baseline is Germany, with
effect estimates as given in Hainmueller and Hopkins (2015).
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TABLE 1
List of subset analyses performed in Hainmueller and Hopkins (2015), listed by moderator and how it was split

to form subgroups

Moderator Split

Education Any college education or no college education
Ethnocentrism Median ethnocentrism measure
Political party Republican or Democrat
Percent of foreign born workers in
respondent’s industry

High or low

Household income More or less than $50,000
Fiscal exposure to immigration High or low
ZIP code demographics < 5% immigrants, > 5% immigrants (primarily from Latin America), or

> 5% immigrants (primarily not from Latin America)
Race/ethnicity White or non-white
Hispanic ethnicity Hispanic or non-hispanic
Ideology Liberal or conservative
Immigration attitudes Supports or does not support reducing immigration
Gender Male or female
Age Young or old

and level of education. Table 1 shows all of the subgroup analyses performed by Hainmueller
and Hopkins (2015) and how the respondents were broken up into groups. We find that 13
subgroup analyses were performed (excluding those used for robustness checks), with results
from the first three (education, ethnocentrism, and political party) presented in the main paper.
Of those three analyses, the authors find some evidence of heterogeneous effects of country
of origin between subsets that differ on ethnocentrism but little evidence of heterogeneity
beyond this. The other 10 analyses can be found in their appendix, and the authors conclude
that participants responded similarly, in general, across those subgroups.

Our goal is to build a methodology that enables one to more systematically explore hetero-
geneous treatment effects in conjoint experiments. Subgroup analyses, like those conducted
in the original analysis, can be problematic for several reasons. First, the analyst must con-
duct a separate analysis for each moderator of interest, leading to multiple testing problems.
Second, typically the moderators are dichotomized (or broken up into a small number of
groups), requiring the analyst to decide how to split the data. Third, they are not amenable to
exploration of how multiple moderators might work together to change outcomes.

To address these issues, one could include the moderators as covariates within the regres-
sion. However, if the goal is to provide estimated heterogeneous effects with straightforward
interpretations, regressions with possibly complex interactions are not ideal. To estimate het-
erogeneous effects, we need to not only interact a large number of treatments but we will
have to further interact all main and interaction effects of treatments with the moderators. It
is unclear how to best reduce the dimensionality of both the moderator and treatment space in
a classic regression setup. It is also challenging to interpret the interactions from these models
to understand the characteristics of units that lead to different treatment effect patterns.

In sum, researchers must parsimoniously characterize how a large number of possible
treatment combinations interact with several key moderators of interest. The goal is to obtain
estimates of heterogeneous effects and understand how the covariate distributions of units
with different treatment effects differ. We now turn to our methodology which is designed to
address these challenges and result in interpretable estimates.

3. Modeling heterogeneous effects of high-dimensional treatments. We now describe
the proposed methodology. To simplify the exposition, we focus on a general factorial design.
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This design corresponds to conjoint analysis with a single task per person, where there is only
one profile assessed rather than a comparison of profiles, and complete randomization of all
combinations of factor levels. Extensions to independent factor randomization and realistic
conjoint analyses are immediate and will be discussed and applied in Section 5.

3.1. Setup. Suppose that we have a simple random sample of N units. Consider a facto-
rial design with J factors where each factor j ∈ {1, . . . , J } has Lj ≥ 2 levels. The treatment
variable for unit i, denoted by T i , is a J -dimensional vector of random variables, each of
which represents the assigned level of the corresponding factor variable. For example, the
j th element of this random vector Tij ∈ {0,1,2, . . . ,Lj − 1} represents the level of factor j

which is assigned to unit i.
Following Dasgupta, Pillai and Rubin (2015), we define the potential outcome for unit i as

Yi(t), where t ∈ T represents the realized treatment with T representing the support of the
randomization distribution for T i . Then the observed outcome is given by Yi = Yi(T i ). The
notation implicitly assumes no interference between units (Rubin (1980)). In this paper, for
the sake of concreteness, we focus on the binary outcome Yi ∈ {0,1}. Extensions to nonbinary
outcomes are straightforward. Lastly, we observe a vector of px pretreatment covariates for
each unit i and denote it by Xi . All together, we observe (Yi,T i ,Xi ) for each unit i.

To illustrate the notation, consider a simplified version of our motivating example where
each respondent i observes a single immigrant profile and must decide whether to support
that immigrant’s admission or not. Then T i is a vector indicating the level respondent i sees
for each of the nine immigrant attributes. The outcome variable Yi is an indicator for whether
respondent i chooses to support admission for the immigrant with whom they are presented.
Lastly, Xi denotes a vector of covariates for respondent i that we hypothesize might moderate
the treatment effect. In our application, Xi included political party, education, demographics
of their ZIP code, ethnicity, and Hispanic prejudice score (see Section 5.1 for details).

The randomness in our data, (Yi,T i ,Xi ) comes from two sources: random sampling of
units into the study and random assignment of units to treatments. For simplicity, we assume
units are sampled via simple random sampling (though our method can incorporate sam-
pling weights). The randomization of treatment assignment implies {Yi(t)}t∈T ⊥⊥T i for each
i where the exact mode of randomization will determine the distribution of T i . In many con-
joint experiments, researchers independently and uniformly randomize each factor. However,
in some cases, including our application, researchers may exclude certain unrealistic com-
binations of factor levels (e.g., doctor without a college degree), leading to the dependence
between factors. In all cases, researchers have complete knowledge of the randomization
distribution of the factorial treatment variables.

Based on random sampling and random treatment assignment alone, we can conduct valid
inference for marginal treatment effects of interest using simple regression or difference-in-
means estimator (see Hainmueller, Hopkins and Yamamoto (2014)). If we wish to explore
treatment effect heterogeneity across treatments and covariates, however, a model-based ap-
proach is useful. We next introduce our model, which will allow us to explore heterogeneous
effects in a principled manner while also handling the high-dimensional nature of the data.

3.2. General framework. The most basic causal quantity of interest is the AMCE, which
is defined for any given factor j as

(3.1) δj

(
l, l′

) = E
[
Yi(Tij = l,T i,−j ) − Yi

(
Tij = l′,T i,−j

)]
,

where l �= l′ ∈ Tj with Tj representing the support of the randomization distribution for Tj .
The expectation in equation (3.1) is taken over the distribution of the other factors T i,−j

as well as the random sampling of units from the population. Thus, the AMCE averages
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over two sources of causal heterogeneity—heterogeneity across treatment combinations and
across units. Different treatment combinations may have distinct impacts on units with vary-
ing characteristics. Our goal is to model these potentially complex heterogeneous treatment
effects using an interpretable model.

We propose to model heterogeneous treatment effects based on K distinct treatment ef-
fect patterns where K ≥ 2 is chosen by a researcher, based on their desired granularity of
heterogeneity. This approach, which is based on a fixed number of subgroups to characterize
treatment effect heterogeneity, is commonly used by empirical researchers. Others have stud-
ied various methodological aspects of this approach albeit in the context of binary treatment
(Chernozhukov et al. (2023), Imai and Li (2025)).

Our goal is to summarize the treatment effect heterogeneity by dividing the population into
K subpopulations and characterizing these groups based on a set of pretreatment covariates,
or “moderators,” denoted by Xi . In particular, we would like to construct K groups such that
across-group treatment effect heterogeneity is maximized while minimizing the within-group
heterogeneity. Since the treatments of interest are high dimensional, we focus on finding
maximally heterogeneous groups in terms of average potential outcomes rather than their
contrasts. We can then estimate any treatment effects of interest within each group.

Let Zi ∈ {1, . . . ,K} denote the latent group membership of unit i and Z = {Zi}ni=1.
We use ζk(t) = E[Yi(t) | Zi = k] to represent the average potential outcome under treat-
ment t for group k. Under the randomization of Ti , define the estimated within-group av-
erage outcome under treatment t for group k and the estimated overall average outcome
as ζ̂k(t;Z) = ∑N

i=1 I {Zi = k,T i = t}Yi/
∑N

i=1 I {Zi = k,T i = t} and Ŷ (t) = ∑N
i=1 I {T i =

t}Yi/
∑N

i=1 I {T i = t}, respectively.
Given the number of groups K selected by researchers, we show how to find maxi-

mally heterogeneous groups in terms of potential outcomes. The following proposition estab-
lishes that maximizing the Kullback–Leibler (KL) divergence of potential outcomes between
groups is equivalent to maximizing the log-likelihood over groups and their centroids. We
emphasize that this equivalence result does not assume the existence of a “correct” number
of groups.

PROPOSITION 1 (Finding maximally heterogeneous groups). Maximally heterogeneous
groups in the terms of the KL divergence of potential outcomes can be found by maximizing
the log-likelihood function over the group membership and the centroids of groups,

(3.2)

argmax
Z

{
K∑

k=1

N∑
i=1

1{Zi = k}KL
(
ζ̂k(T i;Z)‖Ŷ (T i )

)}

= argmax
Z

K∑
k=1

sup
ζk

N∑
i=1

1{Zi = k}[Yi log ζk(T i ) + (1 − Yi) log
{
1 − ζk(T i )

}]
,

where Yi is binary, the KL divergence of two Bernoulli distributions with means μ1 and μ2
is given by KL(μ1‖μ2) = μ1 logμ1/μ2 + (1 − μ1) log(1 − μ1)/(1 − μ2), and {ζ̂k(t;Z)}Kk=1
denotes the maximizers of the right-hand side of equation (3.2) given Z .

Section C of the Supplementary Material provides a proof of a more general result for
the natural exponential family distributions (see Chi, Chi and Baraniuk (2016), for a similar
result in the Gaussian case). The log-likelihood formulation is equivalent to the classification
maximum likelihood approach in mixture modeling (McLachlan (1982)).

We now extend the above equivalence result to the settings in which we further model the
group membership Zi using a set of moderators Xi , that is, πk(x) = Pr(Zi = k | Xi = x)
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for k = 1,2, . . . ,K . Such a model helps characterize and understand the types of units that
comprise each group. The next proposition shows that maximizing the log-likelihood function
of this extended model is equivalent to finding K maximally heterogeneous groups such that
the group memberships are predicted well by the moderators.

PROPOSITION 2 (Finding maximally heterogeneous groups with moderators). Suppose
that we extend the setting of Proposition 1 and additionally model the conditional probability
of each individual’s group membership, given categorical moderators {πk(Xi )}Kk=1. Then
maximally heterogeneous groups in terms of the KL divergence of potential outcomes with
the entropy of group membership probabilities as a penalty term can be found by maximizing
the log-likelihood function of the extended model,

(3.3)

argmax
Z

{
K∑

k=1

N∑
i=1

1{Zi = k}KL
(
ζ̂k(T i;Z)‖Ŷ (T i )

) −
N∑

i=1

H
({

π̂k(Xi;Z)
}K
k=1

)}

= argmax
Z

K∑
k=1

sup
ζk,πk

N∑
i=1

1{Zi = k}[Yi log ζk(T i ) + (1 − Yi) log
{
1 − ζk(T i )

}
+ logπk(Xi )

]
,

where H({pk}Kk=1) = −∑K
k=1 pk logpk (by convention, if pk = 0, then pk logpk = 0) is the

entropy, and π̂k(x;Z) = ∑N
i=1 1{Zi = k,Xi = x}/∑N

i=1 1{Xi = x} and ζ̂k(t;Z) are the
maximizers of the log-likelihood function of the right-hand side of equation (3.3), given Z .

Proof is given in Section D of the Supplementary Material. Since the entropy H({π̂k(x;
Z)}Kk=1) is maximized when π̂k(x) = 1/K , Proposition 2 shows that adding a group mem-
bership model based on moderators encourages finding groups whose memberships are well
predicted by the moderators.

Direct optimization of equations (3.2) and (3.3) over Z has been studied under the name of
“classification maximum likelihood” in the literature on mixture models (McLachlan (1982)).
For completeness Section G.3 of the Supplementary Material provides an estimation algo-
rithm for this approach, which modifies the proposed algorithm described in Section 3.5.
Unfortunately, the classification maximum likelihood approach suffers from the incidental
parameter problem because the cardinality of Z increases with the sample size N , leading to
an asymptotic bias and inconsistency (Bryant and Williamson (1978)).

To address this problem, a dominant approach in the literature is Bayesian, treating the
right-hand side of equation (3.3) as a log-posterior that consists of a log-likelihood and a
log-prior over Z , that is, Pr(Zi = k | Xi ) = πk(Xi ). By marginalizing out Z , we avoid the
incidental parameter problem, yielding the objective function known as a mixture maximum
likelihood (McLachlan (1982)).

The model is called “mixture-of-experts” when πk depends on Xi (Gormley and
Frühwirth-Schnatter (2019)) with the following objective function:

(3.4) {ζ̂k, π̂k}Kk=1 = argmax
{ζk,πk}Kk=1

N∑
i=1

log

[
K∑

k=1

πk(Xi )ζk(T i )
Yi

{
1 − ζk(T i )

}1−Yi

]
.

While this setup no longer appears to provide a direct characterization of the optimal groups,
Proposition 3 shows that a mixture-of-experts model finds maximally heterogeneous groups
as in Proposition 2 but with an additional penalty that encourages less extreme posterior
probabilities of group memberships.
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PROPOSITION 3 (Finding maximally heterogeneous groups with a mixture of experts).
Maximizing the likelihood function under a mixture-of-experts model is equivalent to finding
maximally heterogeneous groups, as in Proposition 2, with an additional penalty. That is, the
following equality holds for any Z :

argmax
ζ,π

N∑
i=1

log

[
K∑

k=1

πk(Xi )ζk(T i )
Yi

{
1 − ζk(T i )

}1−Yi

]

= argmax
ζ,π

N∑
i=1

K∑
k=1

1{Zi = k}[Yi log ζk(T i ) + (1 − Yi) log
{
1 − ζk(T i )

}
+ logπk(Xi ) − log π̃k

(
Xi , Yi,T i; {ζk′, πk′ }Kk′=1

)]
,

where

π̃k

(
Xi , Yi,T i; {ζk′, πk′ }Kk′=1

) = Pr
(
Zi = k | Yi,T i ,Xi , {ζk′, πk′ }Kk′=1

)
= πk(Xi )ζk(T i )

Yi {1 − ζk}1−Yi∑K
k′=1 πk′(Xi )ζk′(T i )Yi {1 − ζk′ }1−Yi

is the posterior membership probability for group k.

Proof of the proposition directly follows from a well-known identity (e.g., Celeux,
Frühwirth-Schnatter and Robert (2019)) and hence is omitted. The equality in Proposition 3
holds for any group membership Z , including its maximum-a-posteriori (MAP) estimate,
that is, Ẑi = argmaxk π̃k(Xi , Yi,T i; {ζ̂k′, π̂k′ }Kk′=1). Thus, our proposed model can be seen as
finding maximally heterogeneous groups while imposing a penalty that encourages finding
groups that are well predicted by the moderators Xi but with less extreme group membership
probabilities based on the data.

All together, our results provide a justification for using a mixture-of-experts model for
heterogeneous effect estimation under the settings with high-dimensional treatments. We em-
phasize that a primary motivation for the use of Bayesian approach is to resolve the incidental
parameter problem with classification maximum likelihood. Importantly, the results above do
not assume a specific data generating process. Instead, we have shown that, given the number
of groups and appropriate prior distributions, researchers can find maximally heterogeneous
groups by fitting a mixture-of-experts model.

3.3. Model specification. Since T is high dimensional, many treatment combinations are
unobserved with a typical sample size. Thus, nonparametric estimation is not applicable. We,
therefore, model ζk(t) using a regularized logistic regression where an ANOVA-style sum-to-
zero constraint is imposed separately for each factor to facilitate merging of different levels
within each factor. This modeling strategy identifies a relatively small number of treatment
combinations while avoiding the specification of a baseline level for each factor (Egami and
Imai (2019)). The interpretation of ζk(t) under this model is still the average of potential
outcome under treatment t in group k. Note that we do not assume homogeneity of outcomes
or effects within each group.

We use a multinomial logistic regression for πk(x),

(3.5) ζk(T i ) = exp(ψk(T i ))

1 + exp(ψk(T i ))
, and πk(Xi ) = exp(X�

i φk)∑K
k′=1 exp(X�

i φk′)
,

where φ1 = 0 for identification. For ψk(T i ), we assume an additive model and include both
main effects and two-way interaction effects with a common intercept μ shared across all



HETEROGENEOUS TREATMENT EFFECTS 875

groups,

ψk(T i ) = μ +
J∑

j=1

Lj−1∑
l=0

1{Tij = l}βj
kl +

J−1∑
j=1

∑
j ′>j

Lj−1∑
l=0

Lj ′−1∑
l′=0

1
{
Tij = l, Tij ′ = l′

}
β

jj ′
kll′

= μ + T̃
�
i βk,

for each k = 1,2, . . . ,K where T̃ i is the vector of indicators, 1{Tij = l} and 1{Tij = l, Tij ′ =
l′}, and βk is a stacked column vector containing all coefficients for group k. Inclusion of
higher-order interactions is straightforward (see Section E of the Supplementary Material)
and hence is omitted in the main paper for notational simplicity.

For identification, we use the following ANOVA-type sum-to-zero constraints:

(3.6)
Lj−1∑
l=0

β
j
kl = 0, and

Lj−1∑
l=0

β
jj ′
kll′ =

Lj ′−1∑
l′=0

β
jj ′
kll′ = 0,

for j, j ′ = 1,2, . . . , J with j ′ > j . We write them compactly as

(3.7) C�βk = 0,

where each row of C�βk corresponds to one of the constraints given in equation (3.6).

3.4. Sparsity-inducing prior. Given the high dimensionality of this model, we use a
sparsity-inducing prior. In our application we have a total of 315 β coefficients for each
group. In factorial experiments it is desirable to regularize the model such that certain levels
of each factor are fused together when their main effects and all interactions are similar (Post
and Bondell (2013), Egami and Imai (2019)). For example, we would like to fuse levels l1

and l2 of factor j if β
j
l1

≈ β
j
l2

and β
jj ′
l1l

′ ≈ β
jj ′
l2l

′ for all other factors j ′ and all of its levels l′.
We encourage such fusion by applying a structured sparsity approach of Goplerud (2021)

that generalizes the group and overlapping group LASSO (e.g., Yuan and Lin (2006), Yan
and Bien (2017)) while allowing positive semidefinite penalty matrices. For computational
tractability we use �2 norm instead of the �∞ norm, which is used in GASH-ANOVA (Post
and Bondell (2013)). An additional benefit of the use of regularization is that it gives us some
protection against finding spurious relations (see Gelman, Hill and Yajima (2012)).

For illustration, consider a simple example with one group and two factors—factor one
has three levels, and factor two has two levels. In this case, our penalty contains four terms,√(

β1
0 − β1

1
)2 + (

β12
00 − β12

10
)2 + (

β12
01 − β12

11
)2

+
√(

β1
0 − β1

2
)2 + (

β12
00 − β12

20
)2 + (

β12
01 − β12

21
)2

+
√(

β1
1 − β1

2
)2 + (

β12
10 − β12

20
)2 + (

β12
11 − β12

21
)2

+
√(

β2
0 − β2

1
)2 + (

β12
00 − β12

01
)2 + (

β12
10 − β12

11
)2 + (

β12
20 − β12

21
)2

.

The first three terms encourage the pairwise fusion of the levels of factor one whereas the
fourth encourages the fusion of the two levels of factor two. For compact notation the penalty
can also be written using the sum of Euclidean norms of quadratic forms,∥∥β�F 1β

∥∥
2 + ∥∥β�F 2β

∥∥
2 + ∥∥β�F 3β

∥∥
2 + ∥∥β�F 4β

∥∥
2,

where F 1, F 2, F 3 are appropriate positive semidefinite matrices to encourage the fusion of
the pairs of levels in factor one and F 4 encourages the fusion of the two levels in factor two,
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and β = [β1
0 β1

1 β1
2 β2

0 β2
1 β12

00 β12
10 β12

20 β12
01 β12

11 β12
21 ]�. Note that the sum-to-zero constraints

make this type of fusion of factors together sensible for sparsity.
We generalize this formulation to an arbitrary number of factors and factor levels. For each

factor that contains Lj levels, we have
(Lj

2

)
penalty matrices to encourage pairwise fusion.

Imposing additional constraints is a simple extension; for example, for ordered factors, one
might use penalties that penalize the differences between adjacent levels (e.g. l and l +1). Let
G = ∑J

j=1
(Lj

2

)
represent the total number of penalty matrices. For g = 1,2, . . . ,G, we use

F g to denote a penalty matrix such that
√

β�F gβ is equivalent to the �2 norm on the vector
of differences between all main effects and interactions containing a main effect. We note
that {F g}Gg=1 is not directly chosen but rather are determined by factors in the experiment (J ,
Lj , whether j is ordered or unordered) and the included interactions (as well as the use of
“latent overlapping groups”); see Section H.4 of the Supplementary Material.

We interpret this penalty as a prior under our Bayesian framework described in Section 3.2,

(3.8) p
(
βk | {φk}Kk=2

) ∝ (
λπ̄

γ
k

)m exp

(
−λπ̄

γ
k

G∑
g=1

√
β�

k F gβk

)
,

where π̄k = ∑N
i=1 πk(Xi )/N and m = rank([F 1, . . . ,FG]). We follow existing work in al-

lowing the penalty on the treatment effects βk to be scaled by the group-membership size
π̄k when γ = 1 (Khalili and Chen (2007), Städler, Bühlmann and Van De Geer (2010)). On
the other hand, when γ = 0, the π̄k disappears, implying no use of the Xi in the prior. We
note that the prior on p(β | {φk}Kk=2) is guaranteed to be proper when all pairwise fusions
are encouraged by {F g}Gg=1, although in other circumstances it may be improper (Goplerud
(2021)). Section F of the Supplementary Material provides additional details. Following Za-
hid and Tutz (2013), we use a normal prior distribution for the coefficients for the moderators.

The resulting regularization is invariant to the choice of baseline group φ1 = 0, which is
the first row of the K × px coefficient matrix φ. The prior distribution is given by

(3.9) p
({φk}Kk=2

) ∝ exp

(
−σ 2

φ

2

px∑
l=1

[φ2l , . . . ,φKl]�𝚺φ[φ2l , . . . ,φKl]
)
,

where 𝚺φ is a (K − 1) × (K − 1) matrix with [𝚺φ]kk′ = (K − 1)/K if k = k′ and [𝚺φ]kk′ =
−1/K otherwise. We set σ 2

φ to 1/4 for a relatively diffuse prior.
As noted in a recent survey, “ensuring generic identifiability for general [mixture of expert]

models remains a challenging issue” (Gormley and Frühwirth-Schnatter ((2019), p. 294)). Al-
though mixtures with a Bernoulli outcome variable are generally unidentifiable, several as-
pects of our methodology are expected to alleviate the identifiability problem. First, a typical
conjoint analysis has repeated observations per unit i (Grün and Leisch (2008)). Second, our
model is a mixture of experts rather than a mixture model (Jiang and Tanner (1999)). Third,
our treatment variables, which act as covariates in a mixture ofF experts, are randomized and
hence uncorrelated with one another. Lastly, our model regularizes the coefficients through
an informative prior. While a formal identifiability analysis of our model is beyond the scope
of this paper, the simulation analysis (Section 4) shows that our model can accurately recover
the coefficients in a realistic setting. It is also possible to use a bootstrap-based procedure to
examine the identifiability issue in a specific setting (Grün and Leisch (2008)).

3.5. Estimation and inference. We fit our model by finding a maximum of the log-
posterior using an extension of the expectation–maximization (EM; Dempster, Laird and
Rubin (1977)) algorithm known as the Alternating Expectation–Conditional Maximization
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(AECM; Meng and van Dyk (1997)) algorithm. Equation (3.10) defines our (observed) log-
posterior using the terms defined in equations (3.3), (3.8), and (3.9), where we collect all
model parameters as θ ,

logp
(
θ | {Yi,Xi ,T i}Ni=1

) =
N∑

i=1

log

[
K∑

k=1

πk(Xi )ζk(T i )
Yi

{
1 − ζk(T i )

}1−Yi

]

+
K∑

k=1

logp
(
βk | {φ}Kk=2

) + logp
({φk}Kk=2

) + const.

(3.10)

For now, we assume the value of regularization parameter λ is fixed, although we discuss
this issue in Section 3.6. The linear constraints on βk given in equation (3.7) still hold but are
suppressed for notational simplicity.

Section G of the Supplementary Material provides a full derivation of our AECM algo-
rithm; each iteration involves two cycles where the data augmentation scheme enables itera-
tive updating of the treatment effect parameters β and moderators φ. After augmenting with
missing data, the update for β can be done using ridge regression; Section G.1 addresses
the linear constraints imposed by CT βk = 0. The update for φ can be performed using a
modified version of a multinomial logistic regression based on a standard optimizer (e.g.,
L-BFGS) (see Section G.2).

3.6. Additional considerations. Since fitting the proposed model is computationally ex-
pensive, we use the Bayesian Information Criteria (BIC), rather than cross-validation, to se-
lect the value of the regularization parameter λ (Khalili and Chen (2007), Khalili (2010),
Chamroukhi and Huynh (2019)). Section G.4 of the Supplementary Material presents our
degrees-of-freedom estimator and explains how we tune λ using Bayesian model-based op-
timization. Section G.5 discusses additional details of our EM algorithm including initializa-
tion and techniques to accelerate convergence.

We extend the above model and estimation algorithm to accommodate common features
of conjoint analysis: (1) repeated observations for each individual respondent (Section H.1
of the Supplementary Material), (2) a forced choice conjoint design (Section H.2), and (3)
standardization weights for factors with different numbers of levels Lj (Section H.3). Lastly,
our experience suggests that the proposed penalty function, which consists of overlapping
groups, often finds highly sparse solutions. Section H.4 details the integration of the latent
overlapping group formulation of Yan and Bien (2017) into our framework to address this
issue.

Once the model parameters are estimated, we can compute quantities of interest, such
as the AMCEs, defined in equation (3.1). We do this separately for each group such that
δjk(l, l

′) is the AMCE for factor j , changing from level l′ to l in group k. Our estimator is the
average of the estimated difference in predicted responses when changing from level l′ to l of
factor j , where the average is taken over the empirical distribution of the assignment on the
other factors. This estimation is described in more detail in Section I of the Supplementary
Material under various settings. We can use the empirical distribution here because treatment
is randomly assigned.

To quantify the uncertainty of the parameter estimates, we rely on a quadratic approxi-
mation to the log-posterior distribution. To ensure its differentiability, we follow a standard
approach in the regularized regression literature (e.g., Fan and Li (2001)) and fuse pairwise
factor levels that are sufficiently close together. Section J of the Supplementary Material de-
scribes this process, deriving the Hessian of the log-posterior using Louis (1982)’s method
and then using the delta method for inference on other of quantities of interest, for example,
the AMCE.
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Finally, in principle, our framework does not assume a “correct” data generating process.
The choice of number of groups K should depend on the desired granularity of discovered
heterogeneity, with more groups leading to finer levels of heterogeneity. Similarly, the choice
of moderators should reflect the researcher’s substantive interests. Section K.3 of the Supple-
mentary Material shows performance of our method across different values of K and different
specifications of the moderators when the true data generating process is a mixture model.
As expected, the bias of AMCE is not affected by changing the specification of these param-
eters. However, there are some impacts on the estimation of conditional effects in terms of
precision.

Common data-driven approaches for choosing K include use of an information criterion
such as the BIC; however, while we find that these approaches work well under simulation
settings (see Section K.3.1 for demonstration), they can perform poorly in practice (see Sec-
tion L), especially when the component densities are misspecified or not especially well sep-
arated (Celeux, Frühwirth-Schnatter and Robert (2019)). Thus, even if a data-driven heuristic
is used as a guide for choosing K , we suggest comparing different K as illustrated in Sec-
tion 5.

4. Simulations. We explore the performance of our method using a simple but realistic
simulation study. Specifically, we consider the case of a conjoint experiment with 10 fac-
tors (J = 10), each with three levels (Lj = 3). To evaluate the performance of the proposed
method, we consider two different settings; in the first, we assume there are 1000 respondents
who each perform five comparison tasks. In the second, we assume a larger experiment with
2,000 respondents who each perform ten tasks.

In all cases we assume that the data generating process follows a mixture of experts’ mod-
els with three groups (K = 3). We calibrate the true βk such that the implied average marginal
component effects (AMCE) are comparable in magnitude to the empirical effects presented
in Section 5. We use a set of five correlated continuous moderators and an intercept to again
mimic a realistic empirical setting and choose {φk}3

k=2 to relatively clearly separate respon-
dents into different groups. Section K of the Supplementary Material presents complete de-
scription of the simulation settings and the true parameter values used for the βk and marginal
effects.

For each sample size, we independently generate 1000 simulated data sets by drawing
N observations of moderators, randomly assigning a group membership to each observation
based on the implied probabilities, given their moderators, and generating the observed treat-
ment profiles completely at random. We fit our model to the data with K = 3 and examine
the average marginal component effects in each group with respect to the first baseline level.

Figure 2 summarizes our results (see Section K.2 for the results regarding the estimated
coefficients βk). The left panel illustrates a high correlation between the estimated effects
and their true values (ρ = 0.995 for smaller sample size; ρ = 0.999 for larger sample size).
While the performance overall is reasonably strong, we see that, even when the dataset is
large, there is some degree of attenuation bias due to shrinkage.

The right panel shows the frequentist evaluation of our Bayesian posterior standard devia-
tions. We compare the average posterior standard deviation against the standard deviation of
the estimated effects across the 1000 Monte Carlo simulations. The average posterior stan-
dard deviations are noticeably smaller than the standard deviation of the estimates when the
sample size is small. For the large sample size, however, our approximate Bayesian posterior
standard deviations in this simulated example are roughly the same magnitude of the standard
deviation of the sampling distribution of the estimator.

Even though our method’s frequentist coverage is somewhat below the nominal level in
small samples, this undercoverage appears to be primarily attributable to the shrinkage bias
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FIG. 2. The empirical performance of the proposed estimator on simulated data. The black squares indicate the
effects estimated for each group with the smaller sample size (1000 people completing five tasks); the red crosses
indicate effects estimated with the larger sample size (2000 people completing 10 tasks).

in our regularized estimation rather than the large sample discrepancy between our posterior
standard deviations and the corresponding standard deviation of sampling distribution.

Section K.2 explores one way to address the limitations of the default estimator by explor-
ing sample splitting and refitting the model, given the estimated sparsity pattern (i.e., which
levels are fused together) and moderator effects ({φk}Kk=2) on half of the data. This results in
smaller bias and improved coverage at both sample sizes.

Section K.3 explores how, when the true data generating process is a mixture model, the
“wrong” choice of K , for example, K ∈ {1,2,4} as well as not using moderators (i.e., Xi =
1) or using moderators in a different specification than the true model impacts our results.
In both settings there is limited impact in terms of bias in terms of estimating the AMCE,
although both types of misspecification incur a penalty in terms of root mean-squared error.

5. Empirical analysis. In this section we apply our methodology to the immigration
conjoint data introduced in Section 2. We find evidence of effect heterogeneity for immigrant
choice based on respondent characteristics. In particular, the immigrant’s country of origin
plays a greater role in forming the immigration preference of respondents with increased
prejudice, as measured by a Hispanic prejudice score. Outside of this group, which accounts
for about one third of the respondents, the country of origin factor plays a much smaller role.

5.1. Data and model. Following the original analysis, our model includes indicator vari-
ables for each factor and interactions between country and reason of application factors as
well as those between education and job factors in order to account for the restricted ran-
domization. We additionally include interactions between country and job as well as those
between country and education, in accordance with the skill premium theory of Newman and
Malhotra (2019). This theory hypothesizes that prejudiced individuals prefer highly skilled
immigrants only for certain immigrant countries. This results in a total of 41 AMCEs and
222 average marginal interaction effects (AMIEs) for each group.

For modeling group membership, we include the respondents’ political party, education,
demographics of their ZIP code (we follow the original analysis and include the variables
indicating whether respondents’ ZIP codes had few immigrants, meaning < 5%, and for
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those from ZIPs with more than 5% foreign born, whether the majority were from Latin
America), ethnicity, and Hispanic prejudice score. The Hispanic prejudice score was used
by Newman and Malhotra (2019), though we negate it to make lower values correspond to
lower prejudice for easier interpretation. The score is based on a standardized (and negated)
feeling thermometer for Hispanics. The score ranges from −1.61 to 2.11 for our sample,
where higher scores indicate higher levels of prejudice.

We remove respondents who are themselves Hispanic since the Hispanic prejudice score
was not measured for these respondents. After removing entries with missing data, we have
a sample of 1069 respondents. Most respondents evaluated five pairs of profiles, though five
respondents have fewer responses in the data set used. The total number of observations is
5337 pairs of profiles. We do not incorporate the survey weights into our analysis to better
demonstrate our methods, though it is possible to include them.

The original experiment was conducted using the forced choice design in which a respon-
dent chooses one profile out of a pair of immigrant profiles. We follow Egami and Imai (2019)
and model the choice as a function of differences in treatments as follows:

ψk

(
T L

i ,T R
i

)
= μ +

J∑
j=1

∑
l∈Lj

β
j
kl

(
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+
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} − 1
{
T R

ij = l, T R
ij ′ = l′

})
,

where T L
i and T R

i represent the factors for the left and right profiles and I(j, j ′) = 1 if an
interaction between j and j ′ is include in the model. The outcome variable Yi is equal to 1 if
the left profile is selected and is equal to 0 if the right profile is chosen.

To account for randomization restrictions, we include interactions between country of ori-
gin and reason for applying as well as between job and education. To test relevant theories, we
include additional interactions between country of origin and job as well as country of origin
and education. These interaction effects proved to be very small in magnitude (see Section L
of the Supplementary Material). Thus, we do not explore higher order interactions, given the
commonly adopted principles of hierarchy and sparsity (Wu and Hamada (2021)), which im-
plies that lower-order effects are expected to be more significant than higher-order effects and
we should expect an even smaller number of nonzero higher-order effects. With this linear
predictor formulation, the estimation and inference proceed as explained in Section 3.

We conduct two analyses, one with two groups and the other with three groups. These two
models perform equally well in terms of out-of-sample classification, a data-driven measure
that can be used to choose the number of groups. Using more than three groups does not give
improved substantive insights and provides little improvement in model performance. As
noted previously, each analysis optimizes the BIC to calibrate the amount of regularization
and employs standardization weights to account for factors with different number of levels
(see Sections G.4 and H.3 of the Supplementary Material, respectively, for details). We treat
education and job experience as ordered factors and only penalize the differences between
adjacent levels.

We report our findings using only the full data estimates, that is, without the sample split-
ting explored in Section K.2. Initial experiments found that the results were somewhat sen-
sitive to specific folds chosen, and thus we report only the full data results in the main text.
Section L illustrates the distribution of estimates across 20 different sample splits.
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FIG. 3. Estimated average marginal component effects using a two-group (left) and three-group (right) analysis.
The point estimates and 95% Bayesian credible intervals are shown. A solid circle represents the baseline level of
each factor. Numbers after colons give average posterior predictive probabilities for each group.

5.2. Estimated heterogeneity. We focus on the AMCE for each factor as the quantity of
interest and separately estimate it for each group. Under our model for the forced choice
design, the AMCE of level l vs. level l′ of factor j within group k can be written as

δjk

(
l, l′

) = 1

2
E
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L
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)}]
.

The expectation is over the population of respondents and the distribution of the factors not
involved in this AMCE. That is, we compute the AMCE separately for the left and right
profiles and then average them to obtain the overall AMCE. We estimate this quantity using
the fitted model and averaging over the empirical distribution of the factorial treatments.

Figure 3 presents the estimated AMCEs and their 95% Bayesian credible intervals for
the two-group and three-group analyses in the left and right panels, respectively. Group 2
in the two-group analysis and Group 3 in the three-group analysis display stronger impacts
of country of origin than the other groups. The respondents in these groups give the most
preference to immigrants from Germany and the least preference to immigrants from Iraq
(followed by Sudan). The significant negative effects of Iraq in Group 2 of the two-group
analysis and Group 3 of the three-group analysis are consistent with the significant negative
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FIG. 4. Ternary plot of the joint posterior predictive probability of belonging to each group in the three-group
analysis (three axes) where the color of each dot represents the posterior predictive probability of belonging to
Group 1 under the two-group analysis.

effect for Iraq found by Hainmueller and Hopkins (2015). The patterns we observe for the
other factors are also similar for these two groups in the two analyses.

Across all groups, respondents prefer educated and experienced immigrants who already
have contracts (over those who have no contracts or plans). Respondents also prefer immi-
grants who have better language skills, although this feature matters less for respondents in
Group 1 of the three group analyses.

For both analyses, the respondents in Group 1 do not care much about immigrant’s coun-
try of origin. Instead, they place a greater emphasis on education and reason for immigration
when compared to those in the other groups. While the differences between Groups 1 and 2
in the three-group analysis are generally substantively small, those in Group 2 appear to place
more emphasis on education and prior entry without legal authorization. Those in Group 1,
on the other hand, give a slight benefit to immigrants whose reason for immigration is perse-
cution.

Indeed, for the three-group analysis, Groups 1 and 2 together correspond roughly to
Group 1 of the two-group analysis. In fact, about 81% of the respondents who belong to
Group 1 of the two-group analysis are the members of either Group 1 or 2 in the three-group
analysis, using a weighted average of their estimated group membership posterior predictive
probabilities.

Figure 4 visualizes these posterior predictive probabilities of group membership under the
three-group analysis with each dot colored by the posterior predictive probability of belong-
ing to Group 1 under the two-group analysis. According to this ternary plot, those observa-
tions that are likely to be part of Group 1 under the two-group analysis (i.e., red dots) are
likely to be split between Groups 1 and 2 under the three group analysis. In contrast, those
who have a high probability of belonging to Group 2 under the two-group analysis (i.e., blue
dots) tend to be part of Group 3.

Figure 3 shows fusion of various factor levels due to regularization. The levels being fused
appear sensible. For example, “doctor” and “research scientist,” both occupations requiring
high levels of education, are consistently fused together. For education, use of the ordinal
structure ensures only adjacent levels can be fused. We see sensible cut points for fusion; in
the two group analysis, Group 1 differentiates individuals who have at least a college degree,
and Group 2 differentiates individuals who have at least a high school degree.
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FIG. 5. Distribution of respondent characteristics for each group. Left set of plots shows weighted box plots of
the Hispanic prejudice moderator within each group over the posterior predictive distribution using a two-group
(left) and three-group (right) analysis. Right set of plots shows the distribution of categorical moderators within
each group over the posterior predictive distribution using a two-group (left) and three-group (right) analysis.

The comparison of AMCEs across subgroups can be misleading, as they depend on the
choice of baseline category (Leeper, Hobolt and Tilley (2020)). Section L of the Supple-
mentary Material presents an alternative quantity that avoids issues of baseline dependency
(marginal means; Leeper, Hobolt and Tilley (2020)). The results are generally similar to AM-
CEs shown above.

5.3. Group membership. Who belongs to each group? The left panel of Figure 5 shows
the distribution of Hispanic prejudice score for each group weighted by the corresponding
posterior predictive group membership probability for each individual respondent. The plot
shows that for the two-group analysis, those with high prejudice score are more likely to be
part of Group 2. For the three-group analyses, those with high prejudice are more likely to be
in Group 3. This is consistent with the finding above that the respondents in those groups put
more emphasis on immigrant’s country of origin.

The right panel of the figure shows the distribution of other respondent characteristics. In
general, Group 2 in the two-group analysis and Group 3 in the three-group analysis consist of
those who live in ZIP codes with few immigrants and have lower educational achievements.
For the three-group analysis, those in Group 2 tend to be Republicans, whereas those in
Group 1 are more likely to be Democrats. This is consistent with the finding of a larger
penalty for entry without legal authorization in Group 2. Group 3 contains a mix of political
ideologies, though it has more respondents who identify as Undecided/Independent/Other or
not strong Republican than the other two groups.

Which respondent characteristics are predictive of the group membership? In addition to
the covariate distribution for each group shown in Figure 5, we can also find how important
each moderator is in predicting group membership, conditional on all other moderators. We
examine how the predicted probabilities of group memberships change across respondents
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FIG. 6. The impact of moderator values on likelihood of being assigned to groups, for two-group (left two plots)
and three-group (right three plots) analysis. Dark arrows indicate that there is a significant effect of the moderator
on group membership, that is, that the corresponding quantity defined in equation (5.1) is statistically significant.

with different characteristics. Specifically, we estimate

(5.1) E
[
πk(Xij = x1,Xi,−j ) − πk(Xij = x0,Xi,−j )

]
,

where x0 and x1 are different values of covariate of interest Xij . If Xij is a categorical vari-
able, we set x0 to the baseline level and x1 to the level indicated on the vertical axis. If Xij is
a continuous variable, as in the case of the Hispanic prejudice score, then x0 and x1 represent
the 25th and 75th percentile values. The solid arrows represent whether the corresponding
95% Bayesian credible interval covers zero or not. Section L of the Supplementary Material
shows the effect of changing a moderator on the absolute value of the changes in predicted
probabilities of group membership. In some cases, changing a moderator shows a small av-
erage change but a larger average of absolute changes.

Consistent with the earlier findings, Figure 6 shows that those with high Hispanic prejudice
scores tend to be part of Group 2 in the two-group analysis and Group 3 in the three-group
analysis, even after controlling for other moderators. These respondents are also less likely
to be members of Group 1 in both analyses. Party ID also plays a statistically significant role
(indicated by dark arrow). Controlling for other factors, in the three-group analysis, not strong
Republicans tend to be part of Group 3 and more strong Democrats belonging to Group 1.
On average, respondents in Group 1 have higher education in both analyses.

Finally, we estimate the average marginal interaction effects (AMIEs) between two factors
(Egami and Imai (2019)), which can be computed by subtracting the two AMCEs from the
average effect of changing the two factors of interest at the same time. Thus, the AMIE
represents the additional effect of changing the two factors beyond the sum of the average
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effects of changing one of the factors alone. Formally, we can define the AMIE of changing
factors j and j ′ from levels lj and lj ′ to levels l′j and l′j ′ , respectively, as follows:

E
[
Yi(Tij = lj , Tij ′ = lj ′,T i,−j,−j ′) − Yi

(
Tij = l′j , Tij ′ = l′j ′,T i,−j,−j ′

)]
− δj

(
lj , l

′
j

) − δj ′
(
lj ′, l′j ′

)
.

All of the AMIE effects found are quite small, so we do not present those results here.
According to the skill-premium theory of Newman and Malhotra (2019), we expect to find
an interaction between job and country or education and country, in at least some groups.
Unfortunately, our analysis does not find support for this hypothesis.

5.4. Comparison to an alternative method. While there exist few methods to estimate
heterogeneous effects of high-dimensional treatments, an exception is Robinson and Duch
(2024), who develop a BART-based method for analyzing heterogeneity in conjoint experi-
ments. The primary goal of their method is the estimation of the conditional average marginal
effects (CAMCE) for each individual given their covariate values.

While our method is motivated by a different goal—finding an interpretable set of groups
with distinctive treatment effects—our method can also produce estimates of the CAMCE for
any set of covariates. The two methods can be compared in this task by examining CAMCE.
Formally, under our model the CAMCE for factor j , comparing levels l and l′ for covariates
Xi , is a weighted average of the group-specific AMCEs, denoted by δjk(l, l

′),

(5.2) CAMCEj

(
l, l′;Xi

) =
K∑

k=1

δjk

(
l, l′

)
πk(Xi).

By plugging in our estimates π̂k(Xi ) and δ̂jk(l, l
′), we can estimate the CAMCE.

Section B of the Supplementary Material compares the estimated CAMCE obtained from
our method and Robinson and Duch’s (2024) (cjbart) using the same moderators and
treatments. Our method discovers a considerable degree of heterogeneity in the CAMCEs,
whereas cjbart shows limited treatment effect variation for most countries. Under our
model the estimated heterogeneous effects are more strongly associated with predictors than
cjbart; for example, our method finds a clear association, on average, between the esti-
mated CAMCE and prejudice or party identification whereas cjbart does not.

6. Concluding remarks. We have shown that a Bayesian mixture of regularized logis-
tic regressions can be effectively used to estimate heterogeneous treatment effects of high-
dimensional treatments. The proposed approach finds maximally heterogeneous groups and
yields interpretable results, illuminating how different sets of treatments have heterogeneous
impacts on distinct groups of units. We apply our methodology to conjoint analysis, which is
a popular survey experiment. Our analysis shows that individuals with high prejudice score
tend to discriminate against immigrants from certain non-European countries. These individ-
uals tend to be less educated and live in areas with few immigrants. Future research should
consider the derivation of optimal treatment rules in this setting as well as the empirical eval-
uation of such rules. Another important research agenda is the estimation of heterogeneous
effects of high-dimensional treatments in observational studies.
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Supplementary material for “Estimating heterogeneous causal effects of high-
dimensional treatments: Application to conjoint analysis” (DOI: 10.1214/24-AOAS1994
SUPPA; .pdf). It contains mathematical proofs, additional simulation and empirical analyses,
and relevant discussions (Goplerud, Imai and Pashley (2025b)).

Replication data for: Estimating heterogeneous causal effects of high-dimensional
treatments: Application to conjoint analysis (DOI: 10.1214/24-AOAS1994SUPPB; .zip).
It contains the replication code and data (Goplerud, Imai and Pashley (2025a)).
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