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A The Details of the Immigration Conjoint Experiment

Attribute # of Levels Levels
Education 7 No formal education; Equivalent to completing fourth grade in

the U.S.; Equivalent to completing eighth grade in the U.S.;
Equivalent to completing high school in the U.S.; Equivalent
to completing two years at college in the U.S.; Equivalent to
completing a college degree in the U.S.; Equivalent to complet-
ing a graduate degree in the U.S.

Gender 2 Female; Male
Country of origin 10 Germany; France; Mexico; Philippines; Poland; India; China;

Sudan; Somalia; Iraq
Language 4 During admission interview, this applicant spoke fluent En-

glish; During admission interview, this applicant spoke bro-
ken English; During admission interview, this applicant tried
to speak English but was unable; During admission interview,
this applicant spoke through an interpreter

Reason for Application 3 Reunite with family members already in U.S.; Seek better job
in U.S.; Escape political/religious persecution

Profession 11 Gardener; Waiter; Nurse; Teacher; Child care provider; Jani-
tor; Construction worker; Financial analyst; Research scientist;
Doctor; Computer programmer

Job experience 4 No job training or prior experience; One to two years; Three
to five years

Employment Plans 4 Has a contract with a U.S. employer; Does not have a contract
with a U.S. employer, but has done job interviews; Will look
for work after arriving in the U.S.; Has no plans to look for
work at this time

Prior Trips to the U.S. 5 Never been to the U.S.; Entered the U.S. once before on a
tourist visa; Entered the U.S. once before without legal au-
thorization; Has visited the U.S. many times before on tourist
visas; Spent six months with family members in the U.S.

Table A1: Table 1 in Hainmueller and Hopkins (2015). All attributes for immigrants and their levels.

B Additional Results for Comparison with cjbart

We compare the performance of our method with that of Robinson and Duch (2024) whose method
is implemented using an open-source software package, cjbart (Robinson and Duch, 2023). We
use the same set of moderators and factors considered in our earlier analyses. Figure A1 compares
the estimated CAMCEs for country with Germany set as the reference category, calculated across
all individual covariate vectors in the sample. Our method discovers a considerable degree of
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Figure A1: Comparison of discovered heterogeneous effects (the conditional average marginal component effects or
CAMCEs) between the proposed method and the BART-based method cjbart. In both plots the y-axis corresponds
to values estimated, either by our method (right) or by cjbart (Robinson and Duch, 2024) (left). The plots show the
estimated effect of Iraq as compared to the baseline of Germany. In the top figure, the x-axis and color corresponds
to the categories of individuals based on the quartile of their Hispanic prejudice score. In the bottom figure, the
x-axis and color corresponds to party ID.

heterogeneity in the CAMCEs whereas cjbart shows limited treatment effect variation for most
countries. Under our model, the estimated heterogeneous effects are more strongly associated with
predictors than cjbart. For example, our method finds a clear association, on average, between
the estimated CAMCEs and prejudice or party identification, whereas cjbart does not.

Figure A2 shows the distribution of CAMCEs for all countries. To simplify the visualization,
we subset party ID to strong Republicans, strong Democrats, and Independent/other.
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Figure A2: In both plots, the y-axis corresponds to the estimated values, either based on our method (right) or
based on the method of Robinson and Duch (2024) (left), for the effect of a given country relative to the baseline of
Germany. In the top figure, we color code based on quartile for the Hispanic prejudice score. In the bottom figure,
we reduce the sample to those who identify as “Strong Republican”, “Strong Democrat”, or “Independent/Other”
and color code by party ID.
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C Proof of Proposition 1

To prove Proposition 1, we provide a more general result for one-parameter exponential family
distributions, which include the specific Bernoulli result in the main text as a special case. We
consider a random variable Y that is assumed to follow a single-parameter exponential family
distribution with canonical parameter θ and µ = dψ(θ)/dθ = ψ′(θ). Since µ is monotone in θ, we
index the density f using µ:

fµ(y) = c(y) exp (yθ − ψ(θ)) .

The maximum likelihood estimate of the mean µ̂ given N observations {yi}Ni=1 from Y is the sample
average, 1

N

∑N
i=1 yi = µ̂, and the corresponding estimate of the canonical parameter is θ̂.

Proposition C.1 states that maximally heterogeneous groups in terms of Kullback-Leibler (KL)
divergence of potential outcomes is equivalent to maximizing the log-likelihood over groups and
their centroids for any choice of single parameter exponential family f .

Proposition C.1. Assume a partition of N observations, indexed by i ∈ {1, · · · , N}, into K groups
whose memberships Zi ∈ {1, · · · ,K} are denoted by Z. Define the estimated within-group average
outcome under treatment t for group k and the estimated overall average outcome as ζ̂k(t;Z) =∑N

i=1 I{Zi = k,Ti = t}Yi/
∑N

i=1 I{Zi = k,Ti = t} and Ŷ (t) =
∑N

i=1 I{Ti = t}Yi/
∑N

i=1 I{Ti = t},
respectively.

Then, maximally heterogeneous groups in the terms of the Kullback-Leibler (KL) divergence of
potential outcomes can be found by maximizing the log-likelihood function over the group membership
and the centroids of groups, i.e.,

argmax
Z

{
K∑
k=1

N∑
i=1

1{Zi = k}KL
(
ζ̂k(Ti;Z)∥Ŷ (Ti)

)}
= argmax

Z

K∑
k=1

sup
ζk

N∑
i=1

1{Zi = k} log fζk(Yi)

where KL(µ1, µ2) indicates the KL divergence between two single-parameter exponential family dis-
tributions with means µ1 and µ2 is defined as (Hastie, 1987):

KL(µ1, µ2) = Efµ1 (Y ) [log fµ1(Y )− log fµ2(Y )] = (θ1 − θ2)µ1 − [ψ(θ1)− ψ(θ2)] .

To prove this proposition, we use Lemma C.1 which decomposes the total deviance of the
observed data into the between and within components as in k-means (Everitt et al., 2011, ch. 5).
This generalizes the standard Gaussian result (see Chi, Chi and Baraniuk, 2016).

Lemma C.1 (Deviance Decomposition for Exponential Family). Define the deviance for a single
observation y as follows:

D(y, µ) = 2 [log fy(y)− log fµ(y)]

and the total deviance of the observed data when evaluated at the maximum likelihood estimate for

each treatment t—the sample average Ŷ (t) given randomization of Ti—as follows

DTotal =

N∑
i=1

∑
t∈T

D
(
Yi(t), Ŷ (t)

)
1{Ti = t} =

N∑
i=1

D
(
Yi, Ŷ (Ti)

)
,

where Ŷ (t) =
∑N

i=1 1{Ti = t}Yi/
∑N

i=1 1{Ti = t}. Then, for any partition Z of the observations
into K groups, DTotal can be decomposed as follows:

DTotal =
K∑
k=1

N∑
i=1

1{Zi = k} · 2 KL
(
ζ̂k(Ti;Z), Ŷ (Ti)

)
︸ ︷︷ ︸

=DBetween

+
K∑
k=1

N∑
i=1

1{Zi = k}D
(
Yi(Ti), ζ̂k(Ti;Z)

)
︸ ︷︷ ︸

=DWithin
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where ζ̂k(t;Z) =
∑N

i=1 1{Zi = k,Ti = t}Yi/Nk(t;Z) and Nk(t;Z) =
∑N

i=1 1{Zi = k,Ti = t}.

Proof. Define ˆ̄θ(t), θ̂k(t;Z) and θi(t) as the canonical parameters associated with, respectively,

means Ŷ (t), ζ̂k(t;Z), Yi where θi(t) is used to define a saturated model for Yi(t). The result is
proved below by re-arranging DTotal.

DTotal =
N∑
i=1

∑
t∈T

1{Ti = t} · 2
[(
θi(t)− ˆ̄θ(t)

)
Yi(t)−

(
ψ(θi(t))− ψ(ˆ̄θ(t))

)]

=
K∑
k=1

N∑
i=1

∑
t∈T

1{Zi = k,Ti = t} · 2
(
θi(t)− ˆ̄θ(t) + θ̂k(t;Z)− θ̂k(t;Z)

)
Yi(t)

−
K∑
k=1

N∑
i=1

∑
t∈T

1{Zi = k,Ti = t} · 2
(
ψ(θi(t))− ψ(ˆ̄θ(t)) + ψ(θ̂k(t;Z))− ψ(θ̂k(t;Z))

)

=

K∑
k=1

N∑
i=1

∑
t∈T

1{Zi = k,Ti = t} · 2ζ̂k(t;Z)
[(
θ̂k(t;Z)− ˆ̄θ(t)

)
−
(
ψ(θ̂k(t;Z))− ψ(ˆ̄θ(t))

)]

+

K∑
k=1

N∑
i=1

∑
t∈T

1{Zi = k,Ti = t}D
(
Yi(t), ζ̂k(t;Z)

)

=
K∑
k=1

N∑
i=1

1{Zi = k} · 2 KL
(
ζ̂k(Ti;Z), Ŷ (Ti)

)
+

K∑
k=1

N∑
i=1

1{Zi = k}D
(
Yi(Ti), ζ̂k(Ti;Z)

)
where the simplification of DBetween follows from noting that

∑N
i=1 Yi(t)1{Ti = t, Zi = k} =

Nk(t;Z)ζ̂k(t) =
∑N

i=1 1{Ti = t, Zi = k}ζ̂k(t) by definition.

Proof of Proposition C.1. Given Lemma C.1, maximizing DBetween over Z is equivalent to
minimizing DWithin over Z. Then, DBetween can be divided by two to obtain the left-hand side
of the proposition. The right-hand side of the proposition is derived as follows. Minimizing the
deviance is equivalent to maximizing the log-likelihood, i.e.,

argmin
Z

DWithin = argmax
Z

{
K∑
k=1

N∑
i=1

1{Zi = k} log fζ̂k(Ti;Z)(Yi(Ti))

}
.

This can be written as a two-level optimization problem, noting that Yi = Yi(Ti) by the consistency
assumption and that for fixed Z, the maximum likelihood estimate of ζk(t) is ζ̂k(t;Z), i.e., the
within-group observed average.

argmin
Z

DWithin = argmax
Z

{
K∑
k=1

sup
ζk

N∑
i=1

1{Zi = k} log fζk(Ti)(Yi)

}

Finally, Proposition 1 in the main text uses the Bernoulli likelihood for f and is shown below.

argmin
Z

DWithin = argmax
Z

{
K∑
k=1

sup
{ζk}

N∑
i=1

1{Zi = k} [Yi log ζk(Ti) + {1− Yi} log{1− ζk(Ti)}]

}
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D Proof of Proposition 2

As before, we prove a more general result using the one-parameter exponential family distributions.

Proposition D.1 (Finding maximally heterogeneous groups with moderators). Suppose we extend
the setting of Proposition C.1 and additionally model the conditional probability of each individ-
ual’s group membership given categorical moderators {πk(Xi)}Kk=1. Then, maximally heterogeneous
groups in terms of KL divergence of potential outcomes with the entropy of group membership prob-
abilities as a penalty term can be found by maximizing the log-likelihood function of the extended
model,

argmax
Z

{
K∑
k=1

N∑
i=1

1{Zi = k}KL
(
ζ̂k(Ti;Z)∥Ŷ (Ti)

)
−

N∑
i=1

H({π̂k(Xi;Z)}Kk=1)

}

= argmax
Z

K∑
k=1

sup
ζk,πk

N∑
i=1

1{Zi = k} [log fζk(Yi) + log πk(Xi)]

where H({pk}Kk=1) = −
∑K

k=1 pk log pk (by convention, if pk = 0, then pk log pk = 0) is the entropy,

and π̂k(x;Z) =
∑N

i=1 1{Zi = k,Xi = x}/
∑N

i=1 1{Xi = x} and ζ̂k(t;Z) are the maximizers of the
log-likelihood function of the right hand side of the above equation given Z.

To prove this proposition, we use Lemma D.1.

Lemma D.1 (Entropy of Groups with Respect to Moderators). Define the set of observed categori-
cal moderator values as X with N(x) =

∑N
i=1 1{Xi = x} and Nk(x;Z) =

∑N
i=1 1{Zi = k,Xi = x}.

Given Z, the entropy of group membership probabilities given moderators, weighted by the frequency
of the moderators, is defined as follows:

H(Z) =
∑
x∈X

N(x)H({π̂k(x;Z)}Kk=1).

Then, H(Z) can be expressed in the following two equivalent ways:

H(Z) =
N∑
i=1

H({π̂k(Xi;Z)}Kk=1) = −
N∑
i=1

K∑
k=1

1{Zi = k} log π̂k(Xi;Z).

Proof. The first expression follows by noting that the summation merely counts the number of
times each x appears. The second expression is derived below by re-arranging H(Z),

−H(Z) =
∑
x∈X

K∑
k=1

N(x)π̂k(x;Z) log π̂k(x;Z) =
N∑
i=1

K∑
k=1

1{Zi = k} log π̂k(Xi;Z),

where the last equality follows because N(x)π̂k(x;Z) = Nk(x;Z) and it counts the number of
times each combination of (k,x) appears.

Next, to prove Proposition D.1, we note that for any Z, the KL divergence is equal to the
log-likelihood evaluated at the maximum likelihood estimates plus a constant that does not depend
on Z (see the definition of DTotal):

K∑
k=1

N∑
i=1

1{Zi = k}KL
(
ζ̂k(Ti;Z)∥Ŷ (Ti)

)
=

K∑
k=1

N∑
i=1

1{Zi = k} logζ̂k(Ti;Z)(Yi(Ti)) + const.

6



Adding the negative of group-moderator entropy H(Z) to both sides and taking the maximum
over Z gives the left-hand side of Proposition D.1. The equivalent right-hand side, using Lemma D.1
can be expressed as:

argmax
Z

{
K∑
k=1

N∑
i=1

1{Zi = k}
[
log fζ̂k(Ti;Z)(Yi(Ti)) + log π̂k(Xi;Z)

]}
.

As in the proof of Proposition C.1, observing that Yi = Yi(Ti) by the consistency assumption
and writing the above equation as two-level optimization problem over ζk and πk establishes Propo-
sition D.1. This follows by noting that for a fixed Z, the maximum likelihood estimate of πk(x) is
π̂k(x) and the estimate of ζk(t) as ζ̂k(t) is unchanged as the optimization problem is separable. In
addition, using the Bernoulli likelihood for f gives Proposition 2 in the main text.

E Inclusion of Higher Order Interactions

Here we illustrate how the model and regularization penalties in Section 3.3 can be extended to
include higher order interactions in a straightforward manner. We show below the model including
all higher order interactions, and including only a subset is direct.

Let J = {1, . . . , J} be the set of J factors and let T be the set of all possible assignments on
the J factors. Then our model for ψk(Ti) with all interactions among factors is

ψk(Ti) = µ+
J∑

j=1

Lj−1∑
l=0

1{Tij = l}βjkl +
J−1∑
j=1

∑
j′>j

Lj−1∑
l=0

Lj′−1∑
l′=0

1{Tij = l, Tij′ = l′}βjj
′

kll′

+ · · ·+
∑
t∈T

1{Ti = t}β12···Kkt

= µ+ T̃⊤
i βk.

In the above formulation, β12···Kkt is the K-way interaction coefficient in cluster k for assignment t.
Let T−j be the set of all possible assignments on the J factors except for factor j. With

some slight notation abuse by letting β12···Kklt−j
be the K-way interaction coefficient in cluster k for

assignment l for j and tj for the other J − 1 factors, the ANOVA-type sum-to-zero constraints
extend as follows:

Lj−1∑
l=0

βjkl = 0,

Lj−1∑
l=0

βjj
′

kll′ =

Lj′−1∑
l′=0

βjj
′

kll′ = 0, . . . ,

Lj−1∑
l=0

β12···Kklt−j
= 0 (A1)

for j, j′ = 1, 2, . . . , J with j′ > j and for all t−j ∈ T−j . We write them compactly as,

C⊤βk = 0, (A2)

where each row of C⊤βk corresponds to one of the constraints given in Equation (A1).
For the structured sparsity, we have penalties of the form

J∑
j=1

Lj∑
lj=1

Lj∑
l′j>lj

√√√√√(βjlj − βj
l′j
)2 +

∑
j′ ̸=j

Lj′∑
lj′=1

(βjj
′

lj lj′
− βjj

′

l′j lj′
)2 + · · ·+

∑
t−j∈T−j

(β12···Kljt−j
− β12···K

l′jt−j
)2

7



This will have
∑J

j=1 Lj(Lj − 1)/2 terms, Lj(Lj − 1)/2 terms for the jth factor.
For illustration, consider a simple example with one group and three factors—factor one has

three levels, factor two has two levels, and factor three has two levels. In this case, our penalty
contains 5 terms,

L1∑
l1=1

L1∑
l′1>l1

√√√√(β1l1 − β1
l′1
)2 +

L2∑
l2=1

(β12l1l2 − β12
l′1l2

)2 +

L3∑
l3=1

(β13l1l3 − β13
l′1l3

)2 +

L2∑
l2=1

L3∑
l3=1

(β123l1l2l3
− β123

l′1l2l3
)2

+

L2∑
l2=1

L2∑
l′2>l2

√√√√(β1l2 − β2
l′2
)2 +

L2∑
l2=1

(β12l1l2 − β12
l1l′2

)2 +

L3∑
l3=1

(β23l2l3 − β23
l′2l3

)2 +

L1∑
l1=1

L3∑
l3=1

(β123l1l2l3
− β123

l1l′2l3
)2

+

L3∑
l3=1

L3∑
l′3>l3

√√√√(β1l3 − β3
l′3
)2 +

L2∑
l3=1

(β13l1l3 − β12
l1l′3

)2 +

L3∑
l1=1

(β13l1l3 − β23
l1l′3

)2 +

L1∑
l1=1

L2∑
l2=1

(β123l1l2l3
− β123

l1l2l′3
)2

The first three terms encourages the pairwise fusion of the levels of factor one whereas the
fourth encourages the fusion of the two levels of factor two and the fifth encourages the fusion of
the two levels of factor three.

Using the sum of Euclidean norms of quadratic forms, we can write the penalty as

||β⊤F1β||2 + ||β⊤F2β||2 + ||β⊤F3β||2 + ||β⊤F4β||2 + ||β⊤F5β||2,

where F1,F2,F3 are appropriate positive semi-definite matrices to encourage the fusion of the pairs
of levels in factor one, F4 encourages the fusion of the two levels in factor two, F5 encourages the
fusion of the two levels in factor three, and β = [β10 β

1
1 β

1
2 β

2
0 β

2
1 β

12
00 β

12
10 β

12
20 β

12
01 β

12
11 β

12
21 · · ·β123211 ]

⊤.
More generally, for a fully interacted model we will have

∑J
j=1 Lj(Lj − 1)/2 = G terms,

G∑
g=1

||β⊤Fgβ||2.

F Propriety of the Structured Sparse Prior

The proof of propriety for the structured sparse prior used in our paper is an application of Theo-
rem 1 established in Goplerud (2021) and is reproduced here.

Theorem F.1 (Goplerud (2021)). Consider the following structured sparse prior on β ∈ Rp with
regularization strength λ > 0 penalizes K linear constraints dk and L quadratic constraints Fℓ on
the parameters where Fℓ is symmetric and positive semi-definite. The kernel of the prior is shown
below.

p(β) ∝ exp

(
−λ

[
K∑
k=1

|d⊤
k β|+

L∑
ℓ=1

√
β⊤Fℓβ

])
Further define D⊤ = [d1, · · · , dK ]⊤ and D̄⊤ = [D⊤,F1, · · · ,FL]. Then, for λ > 0, the prior above
is proper if and only if D̄ is full column rank.

8



In our specific case, we note that K = 0, L = G, and λ = λπ̄γk . Prior propriety of p(βk |
{ϕk}Kk=2, λ), therefore, can be determined by empirically investigating whether D̄, i.e. the vertically
stacked Fℓ, is full column rank.

It is also possible to analytically show the propriety of the prior distribution in all cases con-
sidered in this paper. We focus on the case of K = 1 and arbitrary λ > 0 as the result follows
automatically for the case in our paper.

Result F.1. Assume a structured sparse prior for a factorial or conjoint design with J factors each
with Lj levels where all pairwise interactions are included and levels of each factor are encouraged
to be fused together (i.e. the model in the main text). The kernel of the prior is shown below where
Fg are as defined in the main text.

k(β) = exp

−λ
G∑

g=1

√
β⊤Fgβ


Assume that the linear sum-to-zero constraints C⊤β = 0 hold. Then, the structured sparse prior
on the unconstrained β̃ such that β̃ ∈ N (C⊤) is proper. Or, equivalently, the following result holds.∫

β:C⊤β=0
k(β)dβ <∞.

Proof. Let BC⊤ represent a basis for the linear constraintsC⊤. The integral for evaluating propriety
can be written as,

∫
β̃
k̃(β̃)dβ̃ where k̃(β̃) = exp

−λ
G∑

g=1

√
β̃⊤B⊤

C⊤FgBC⊤β̃

 .

Note that Fg can be expressed as a sum of Ng outer products of |β|-length vectors of the form
li ∈ {−1, 0, 1} where −1 and 1 correspond to the two terms that are fused together and all other

elements are 0, i.e., Fg =
∑Ng

g′=1 lg′l
⊤
g′ . Thus, one can define a matrix Q⊤

g =
[
l1, · · · , lNg

]
such that

Q⊤
g Qg = Fg, which allows us to rewrite k̃(β̃) as:

k̃(β̃) = exp

−λ
G∑

g=1

√
β̃⊤ [BC⊤ ]⊤Q⊤

g QgBC⊤β̃

 .

By applying Theorem F.1 and noting that the null spaces of ATA and A are identical, the
integral of k̃(β̃) is finite if and only if QBC⊤ is full column rank, where Q⊤ = [Q⊤

1 , · · · ,Q⊤
G]. We

demonstrate this fact in two steps. First, there exists a permutation matrix PQ such that PQQ
has a block diagonal structure with J + 1 diagonal blocks. The first J blocks corresponding to
the main terms for each factor j and the last block corresponds to all interaction terms. The null
space of each block is spanned by the vector 1 as the corresponding block of PQQ is a (transposed)
orientated incidence matrix of a fully connected graph. Thus, the null space of PQQ, and hence
Q, is spanned by the J + 1 columns of a block diagonal matrix with 1 on each block. Second,
consider the linear constraints C⊤β = 0. The only vector to satisfy this constraint and lie in the
null space of Q must be 0 as, for each block, the only vector proportional to 1 and satisfying the
corresponding sum-to-zero constraints must be 0. Thus, QBC⊤ is full column rank and the prior
is proper.
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G Derivations for the Basic Model

This section derives a number of results for the basic model. It first restates the main results
concerning the elimination of the linear constraints C⊤βk = 0. Then, it derives the Expectation
Maximization algorithm, our measure of degrees of freedom, and some additional computational
improvements used to accelerate estimation. In the following, we use T̃i to denote the corresponding
vector of indicators for whether certain treatments or interactions are present (i.e. stacking all
1{Tij = l}, etc. from Equation A17). In addition, we use ψik to indicate the linear predictor for
observation i and group k.

G.1 Removing the Linear Constraints

The inference problem in the main text is presented as an optimization problem subject to lin-
ear constraints on the coefficients βk. Inference is noticeably easier if these are eliminated via
a transformation of the problem to a lower-dimensional one by noting that βk must lie in the
null space of the constraint matrix C⊤ (see, e.g., Lawson and Hanson 1974, ch. 20). Define

β̃k =
(
B⊤
C⊤BC⊤

)−1 B⊤
C⊤βk where BC⊤ is a basis for the null space of C⊤. The problem can thus

be solved in terms of the unconstrained β̃k ∈ Rp−rank(C⊤) given appropriate adjustment of the

treatment design vectors, ˜̃Ti = BC⊤T̃i, penalty matrices, F̃g = B⊤
C⊤FgBC⊤ , and linear predic-

tor, ψi,k =
[
˜̃Ti

]⊤
β̃Zi + µ. Once the algorithm convergences, the constrained parameters can be

recovered by noting βk = BC⊤β̃k.
Given the similarity of the unconstrained and constrained problems and for notational simplicity,

we present all results herein dropping the second “tilde” notation on T̃i and the “tilde” on βk and
note that, once estimated, β̃k is projected back into the original space for the reported coefficients,
average marginal component effects, etc. The results of Appendix J on approximating β̃k as
multivariate Gaussian imply that βk will have a (singular) multivariate Gaussian distribution.

G.2 Expectation Maximization Algorithm

This section considers inference after removing the linear constraints as discussed in the prior
subsection. Algorithm A1 summarizes our approach to maximizing Equation (9). Each iteration
of our AECM algorithm involves two cycles where the data augmentation scheme enables iterative
updating of the treatment effect parameters β and moderators ϕ. θ collects both sets of parameters.

G.2.1 Updating Treatment Effect Parameters

We begin with the cycle of the AECM algorithm for updating {βk}Kk=1 and µ given {ϕK
k=2}. To

update β, µ, our data augmentation strategy requires three types of missing data. First, we use the
standard group memberships of each unit i for inference in finite mixtures, i.e., Zi ∈ {1, · · · ,K}.
We also include two other types of data augmentation that result in a closed-form update. We use
Polya-Gamma augmentation (ωi; Polson, Scott and Windle 2013) for the logistic likelihood and
data augmentation on the sparsity-inducing penalty (τ2gk; see, e.g., Figueiredo 2003; Polson and
Scott 2011; Ratkovic and Tingley 2017; Goplerud 2021) yielding
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Algorithm A1 AECM Algorithm for Estimating θ

Set Hyper-Parameters: K (groups), λ, σ2ϕ, γ (prior strength), ϵ1, ϵ2 (convergence criteria), T

(number of iterations)

Initialize Parameters: θ(0), i.e. β(0) and ϕ(0); Appendix G.5 provides details.

For iteration t ∈ {0, · · · , T − 1}
Cycle 1: Update β

1a. E-Step: Find the conditional distributions of {Zi, ωi}Ni=1 and {{τ2gk}Gg=1}Kk=1 given

{Yi,Xi,Ti} and θ(t) (Eq. (A3)). Derive Qβ(β,θ
(t)) (Eq. (A4)).

1b. M -Step: Set β(t+1) such that Qβ(β
(t+1),θ(t)) ≥ Qβ(β

(t),θ(t))

Cycle 2: Update ϕ

2a. E-Step: Find p(Zi = k | Yi,Xi,Ti,β
(t+1),ϕ(t)). Derive Qϕ(ϕ, {β(t+1),ϕ(t)}) (Eq. (A7)).

2b. M -Step: Set ϕ(t+1) such that

Qϕ(ϕ
(t+1), {β(t+1),ϕ(t)}) ≥ Qϕ(ϕ

(t), {β(t+1),ϕ(t)})
Check Convergence

3. Stop if log p
(
θ(t+1)|{Yi,Xi,Ti}Ni=1

)
− log p

(
θ(t)|{Yi,Xi,Ti}Ni=1

)
< ϵ1 (Eq. (9)) or

||θ(t+1) − θ(t)||∞ < ϵ2.

p(Yi, ωi | Zi,Xi,Ti) ∝ 1

2
exp

{(
Yi −

1

2

)
ψZi(Ti)−

ωi

2
[ψZi(Ti)]

2

}
fPG(ωi | 1, 0), (A3a)

p(βk, {τ2gk}Gg=1 | λ, {ϕk}) ∝ exp

−1

2
β⊤
k

 G∑
g=1

Fg

τ2gk

βk


G∏

g=1

τ−1
gk exp

{
−(λπ̄k)

2

2
· τ2gk

}
, (A3b)

where fPG(· | b, c) represents the Polya-Gamma distribution with parameters (b, c) and Zi ∼
Multinomial (1,πi) with the kth element of π equal to πk(Xi). Note that β only enters Equa-
tion (A3) via a quadratic form. The first cycle of the AECM algorithm involves, therefore, maxi-
mizing the following function with respect to β given θ(t).

Qβ

(
β,θ(t)

)
=

N∑
i=1

K∑
k=1

E[1{Zi = k}]

{(
Yi −

1

2

)
ψk(Ti)− E[ωi | Zi = k]

[ψk(Ti)]
2

2

}

+

K∑
k=1

−1

2
β⊤
k

 K∑
g=1

Fg · E[1/τ2gk]

βk + const. (A4)

where all expectations are taken over the conditional distribution of the missing data given the
current parameter estimates. We note that the E-Step involves computing p({ωi, Zi}, {1/τ2gk} |
{Yi,Xi,Ti},θ(t)) which factorizes into, respectively, a collection of Polya-Gamma (PG), categorical,
and Inverse-Gaussian random variables. Their conditional distributions are shown below,

11



p(τ−2
gk | θ) ∼ InverseGaussian

 λ√
β⊤
k Fgβk

, λ2

 , (A5a)

p(Zi = k | Yi,Xi,Ti,θ) ∝ pYi
ik (1− pik)

1−Yiπik; pik =
exp(ψik)

1 + exp(ψik)
, (A5b)

p(ωi | Zi = k,Xi,Ti,θ) ∼ PG(1, ψik) , (A5c)

as well as the relevant expectations needed in Qβ(β,θ),

E
[
τ−2
gk

]
=

λ√
β⊤
k Fgβk

, (A6a)

E[zik] = E [1{Zi = k}] =
pYi
ik (1− pik)

1−Yiπik∑K
ℓ=1 p

Yi
iℓ (1− piℓ)1−Yiπiℓ

, (A6b)

E[ωi | Zi = k] =
1

2ψik
tanh

(
ψik

2

)
. (A6c)

Note that as β⊤
k Fgβk approaches zero, E[τ−2

gk ] approaches infinity. To prevent numerical insta-
bility, we rely on the strategy in Goplerud (2021) (inspired by Polson and Scott 2011) where once
it is sufficiently small, e.g. below 10−4, and thus the restriction is almost binding, we ensure that
restriction holds in all future iterations. We do so by adding a quadratic constraint β⊤

k Fgβk = 0.
This implies that βk lies in the null space of Fg and thus with an additional transformation, it can
be removed and the problem be solved in an unconstrained space with a modified design.

To compute the update for β, define β̌⊤ = [µ,β1, · · · ,βK ]⊤. We can create a corresponding
design matrix Ť = [1N , IK ⊗ T ] where T̃⊤ = [T̃1, · · · , T̃N ] and diagonal weight matrix Ω̌ =
diag

(
{{E[zik]E[ωi | Zi = k]}Ni=1}Kk=1

)
. Further, we can create the combined ridge penalty R =

blockdiag
(
{0, {Rk}Kk=1}

)
where Rk =

∑
g FgE[τ−2

gk ] and augmented outcome Y̌ = {{E[zik](Yi −
1/2)}Ni=1}Kk=1. The Qβ function is thus proportional to the following ridge regression problem and
yields the update for the M -Step,

Qβ

(
β;θ(t)

)
= Y̌ ⊤ (Ť β̌

)
− 1

2
β̌⊤Ť⊤Ω̌Ť β̌ − 1

2
β̌⊤Rβ̌ + const.,

β̌(t+1) =
(
Ť⊤Ω̌Ť +R

)−1
Ť⊤Y̌ .

One could reply on a generalized EM algorithm where Qβ is improved versus maximized for
computational reasons, e.g. by using a conjugate gradient solver initialized at β̌(t).

G.2.2 Updating Moderator Parameters

To update the moderator parameters ϕ, we use the second cycle of the AECM algorithm where
only the Zi are treated as missing data. The E-step involves recomputing the group membership
probabilities, i.e., p(Zi | Yi,Xi,Ti,β

(t+1),ϕ(t)), given the updates in the first cycle. The implied
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Q-function is shown below,

Qϕ(ϕ, {β(t+1),ϕ(t)}) =

K∑
k=1

[
N∑
i=1

E[1{Zi = k}] log πk(Xi)

]

+

K∑
k=1

mγ log π̄k − λπ̄γk

G∑
g=1

√
β⊤
k Fgβk

+ log p({ϕk}Kk=2), (A7)

where πk(Xi) and π̄k =
∑N

i=1 πk(Xi)/N are functions of ϕk. Note that if γ = 0, this simplifies to
a multinomial logistic regression with {E[1{Zi = k}]}Kk=1 as the outcome. We perform the M -Step
using a standard optimizer (e.g., L-BFGS) to optimize Qϕ and thus obtain ϕ(t+1).

G.3 Classification Maximum Likelihood

If classification maximum likelihood approach is desired, despite statistical concerns about this
procedure’s asymptotic bias (e.g., Bryant and Williamson 1978), it can be easily implemented by
adapting the preceeding EM algorithm. Celeux and Govaert (1992) propose the “classification EM”
algorithm in the spirit of how k-means classification is commonly implemented.

The adjustment proceeds as follows (Celeux and Govaert, 1992, p. 319): after conducting an
E-step and obtaining π̃k(Xi, Yi,Ti;θ) = π̃ik = p(Zi = k | Yi,Xi,Ti,θ) for use in evaluating Qβ and
Qϕ, perform a classification or “hard assignment”. That is, find k∗i = argmaxk π̃ik, i.e., the most
probable cluster for observation i given its observed data and θ. In the subsequent M -step, use a
modified weight cik = 1 if k = k∗i and otherwise cik = 0 in lieu of π̃ik.

G.4 Degrees of Freedom

Our procedure for estimating β̌(t) appears similar to the results in Oelker and Tutz (2017) where
complex regularization and non-linear models can be recast as a (weighted) ridge regression. Using
that logic, we take the trace of the “hat matrix” implied by our algorithm at stationarity to estimate
our degrees of freedom. We also adjust upwards the degrees of freedom by the number of moderator
coefficients (e.g., Khalili 2010; Chamroukhi and Huynh 2019).

Equation (A8) shows our procedure where R and Ω̌ contain expectations calculated at con-
vergence. px denotes the number of moderators, i.e. the dimensionality of ϕk. Before evaluating

Equation (A8), for any two factor levels that are sufficiently close (e.g.,
√

β⊤
k Fgβk < 10−4), we

assume they are fused together and consider it as an additional linear constraint on the parameter
vector βk.

df = tr

[(
Ť⊤Ω̌Ť +R

)−1
Ť⊤Ω̌Ť

]
+ px (K − 1) (A8)

From this, we can calculate a BIC criterion. We seek to find the regularization parameter λ that
minimizes this criterion. To avoid the problems of a naive grid-search, we use Bayesian model-based
optimization that attempts to minimize the number of function evaluations while searching for the
value of λ that minimizes the BIC (mlrMBO; Bischl et al. 2018). We find that with around fifteen
model evaluations, the optimizer can usually find a near optimal value of λ.

13



G.5 Computational Improvements

While the algorithm above provides a valid way to locate a posterior mode, our estimation problem
is complex and high-dimensional. Furthermore, given the complex posterior implied by mixture of
experts models, we derived a number of computational strategies to improve convergence. We use
the SQUAREM algorithm (Varadhan and Roland 2008). Our software provides the option to use
a generalized EM algorithm to update β using a conjugate gradient approach and ϕ using a few
steps of L-BFGS.

We also outline a way to deterministically initialize the model to provide stability and, again,
speed up estimation on large problems. To do this, we adapt the procedure from Murphy and
Murphy (2020) for initializing mixture of experts: (i) initialize the groups using some (deterministic)
procedure (e.g. spectral clustering on the moderators); (ii) using only the main effects, estimate an
EM algorithm—possibly with hard assignment at the E-Step (CEM; Celeux and Govaert 1992);
(iii) iterate until the memberships have stabilized. Use those memberships to initialize the model.
This has the benefit of having a deterministic initialization procedure where the group membership
is based on the moderators but guided by which grouping seem to have sensible treatment effects,
at least for the main effects. Given the memberships, update β using a ridge regression and ϕ
using a ridge regression and take those values as β(0) and ϕ(0).

H Extensions to the Basic Model

As noted in the main text, there are five major extensions to the basic model that applied users
might wish to include:

1. Repeated tasks (observations) for a single individual

2. A forced-choice conjoint experiment

3. Survey to weight the sample estimate to the broader population

4. Adaptive weights for each penalty

5. Latent overlapping groups

All can be easily incorporated into the proposed framework above. This section outlines the
changes to the underlying model.

H.1 Repeated Observations

This modification notes that in factorial and conjoint experiments it is common for individuals to
perform multiple tasks. Typically, the number of tasksNi is similar across individuals. The updated
likelihood for a single observation i is shown below; we show both the observed and complete case.
yim represents the choice of person i on task m ∈ {1, · · · , Ni}; pimk is the probability of Yim = 1 if
person i was in group k, and T̃im is the vector of treatment indicators for person i on task m.

L
(
{Yim}Ni

m=1

)
=

K∑
k=1

πik

[
Ni∏

m=1

pYim
imk(1− pimk)

1−Yim

]
; pimk =

exp(ψimk)

1 + exp(ψimk)
; ψimk = T̃⊤

imβk + µ

(A9)

Lc({yim, ωim} | Zi) =

Ni∏
t=1

[
1

2
exp

{(
Yim − 1

2

)
ψi,Zi − ωim

ψ2
im,Zi

2

}
fPG(ωim | 1, 0)

]
(A10)
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Note that because of the conditional independence of (yit, ωit) given Zi and the parameters, the
major modifications to the EM algorithm is that the E-Step must account for all t observations,
i.e. the terms summed in Equation (A9). Some additional book-keeping is required in the code as
the design of the treatments has

∑N
i=1Ni rows whereas the design of the moderators has N rows.

Repeated observations can be easily integrated into the uncertainty estimation procedure outlined
below.

H.2 Forced Choice Conjoint Design

A popular design of a conjoint experiment is the forced choice design where the respondents are
required to choose between two profiles. Therefore, the researcher does not observe an outcome for
each profile separately, but rather a single outcome is observed for each pair indicating which is
preferred. Egami and Imai (2019) show that this can be easily fit into the above framework with
some adjustment. Specifically, the model is modified to difference the indicators of the treatment
levels for the pair of profiles (subtracting, e.g., the levels of the profile presented on the left from
those of the profile presented on the right). The intercept for this model can be interpreted as a
preference for picking a profile presented in a particular location. With this modification, estimation
proceeds as before.

H.3 Standardization Weights

An additional modification to the problem is to weight the penalty. This could be done for two
reasons. First, there is an issue of the columns having different variances/Euclidean norms because
of the different number of factor levels Lj . Second, it is popular to weight the penalty based on
some consistent estimator (e.g. ridge regression) to improve performance and, in simpler models,
can be shown to imply various oracle properties (e.g. Zou 2006). We leave the latter to future
exploration.

Define ξgk as a positive weight for the g-th penalty and the k-th group. The kernel of the
penalty is modified to include them.

log p(βk | λ, γ, {ϕk}) ∝ −λπ̄γk
G∑

g=1

ξgk

√
β⊤
k Fgβk (A11)

This has no implication on the rank of the stacked Fg (and thus the results in Appendix F) as they
are all positive and thus only slightly modify the E-Step.

We employ weights in all of our analyses to account for the fact that different factors j may
have different number of levels Lj . We use a generalization of the weights in Bondell and Reich
(2009) to the case of penalized differences. Specifically, consider the over-parameterized model in
Appendix H.4 where the penalty can be written entirely on the differences δMain, δInt, δMain−Copy.
Note that each of those penalties has a simple (group) LASSO form and thus we adopt the approach
in Lim and Hastie (2015) of weighting by the Frobenius norm of the associated columns in TLOG, i.e.
the over-parameterized design matrix. At slight abuse of notation, define [TLOG]g as the columns of
TLOG corresponding to the differences penalized in the (group) lasso g, the weight can be expressed
as follows:

ξgk =
1√
N

|| [TLOG]g ||F

Ignoring the factor of
√
N , this exactly recovers the weight proposed in Bondell and Reich (2009)

in the non-latent-overlapping non-interactive model of (Lj +1)−1
√
N j

l +N j
l′ where N

j
l , N

j
l′ are the
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number of observations for factor j in level l and level l′ that are being encouraged to fuse together
by the penalty in group g.

H.4 Latent Overlapping Groups

One feature of the above approach is that our groups are highly overlapping. Yan and Bien
(2017) suggest that, in this setting, a different formulation of the problem may result in superior
performance (see also Lim and Hastie 2015). Existing work on the topic has focused on group
LASSO penalties (e.g. Fg = I) and thus some modifications are needed for our purposes. To
address this, we note that we can again recast our model in an equivalent fashion. Instead of

penalizing
√
β⊤
k Fgβk, we can penalize the vector of differences between levels as long as we also

impose linear constraints to ensure that the original model is maintained.
Consider a simple example with two factors each with two levels {1, 2} and {A,B}. The relevant

differences are defined such that δj1−2 = βj1 − βj2 and δjj
′

(lm)−(l′m′) = βjl,m − βj
′

l′,m′ . The equivalent
penalty can be imposed as follows:

√(
δj1−2

)2
+
(
δjj

′

(1A)−(2A)

)2
+
(
δjj

′

(1B)−(2B)

)2
=

√
δ⊤δ; δ =

 δj1−2

δjj
′

(1A)−(2A)

δjj
′

(1B)−(2B)



such that

 δj1−2

δjj
′

(1A)−(2A)

δjj
′

(1B)−(2B)

 =

 βj1 − βj2
βjj

′

1A − βjj
′

2A

βjj
′

1B − βjj
′

2B


(A12)

The latent overlapping group suggests a slight modification. In addition to the above penalization
of the ℓ2 norm of the main and interactive differences,1 it duplicates the main effect and penalizes
it separately while ensuring that all effects maintain the accounting identities between the “latent”
groups and the overall effect. Specifically, it modifies the above penalty to duplicate the column
corresponding to δj1−2 and adds a new parameter δj(1−2)−Copy.

√
δ⊤δ + |δj(1−2)−Copy| such that

 δj1−2

δjj
′

(1A)−(2A)

δjj
′

(1B)−(2B)

+

 δj(1−2)−Copy

0
0

 =

 βj1 − βj2
βjj

′

1A − βjj
′

2A

βjj
′

1B − βjj
′

2B

 (A13)

Scoping out to the full problem, define δMain as the main effect differences, e.g. δj1−2, and δInt
as the interaction differences and DMain as the matrix such that DMainβ = δMain, and DInt as
the corresponding matrix to create the vector of interactions. Define δMain−g as the sub-vector of
δMain−g that corresponds to the (main) effect differences between levels l and l′ of factor j penalized
by Fg in the original notation. Similarly define δInt−g and δMain−Copy−g.

1Note the related “hierarchical group LASSO” would add separate individual penalties for each of the interactions.
It is easy to include that in our approach.
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p(β, δMain, δInt, δMain−Copy) =

G∑
g=1

√
δTMain−gδMain−g + δTInt−gδInt−g +

G∑
g′=1

√
[δMain−Copy−g]

2

s.t.

 C⊤ 0 0 0
DMain −I 0 −I
DInt 0 −I 0




β
δMain

δInt
δMain−Copy

 = 0

(A14)

This also requires a modification of the design matrix T̃ to ensure that (i) its dimensionality
conforms with the expanded parameter vector and (ii) that for any choice of the expanded parameter
that satisfies the constraints, the linear predictor for all observation (and thus the likelihood) is
unchanged. Consider first the simple case without latent-overlapping groups. In this case, following
Bondell and Reich (2009), note that the expanded design can be expressed as T̃ † = TM̃ † where
M̃⊤ = [I,D⊤

Main,D
⊤
Int] and M̃ † is a left-inverse of M̃ . The latent-overlapping group formulation

is a simple extension; we copy the columns of T̃ † that correspond to δMain and append them to get
TLOG.

With this new design and parameterization in hand, we can again use the above results on
projecting out the linear constraints to turn the problem into inference on an unconstrained vector
βk with a set of positive semi-definite constraints {Fg}2Gg=1 and inference proceeds identically to
before.

I Estimators

Here we provide further details on the estimators. In particular, we discuss estimation of Average
Marginal Component Effects (AMCEs) and Average Marginal Interaction Effects (AMIEs) based
on our model. We consider a traditional factorial design, where each unit receives one treatment
(profile), and a conjoint design in which each unit compares two treatments (profiles). We also
discuss the impact of randomization restrictions on estimators and implied changes in interpretation
of estimands.

I.1 Factorial designs

I.1.1 Without restrictions on randomization

For a unit in group k we have
Pr(Yi = 1 | Ti,Xi) = ζk(Ti) (A15)

where i = 1, 2, . . . , N and for k = 1, 2, . . . ,K,

ζk(Ti) =
exp(ψk(Ti))

1 + exp(ψk(Ti))
. (A16)

We model ψk(Ti) as

ψk(Ti) = µ+
J∑

j=1

Lj−1∑
l=0

1{Tij = l}βjkl +
J−1∑
j=1

∑
j′>j

Lj−1∑
l=0

Lj′−1∑
l′=0

1{Tij = l, Tij′ = l′}βjj
′

kll′ , (A17)
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for each k = 1, 2, . . . ,K, with constraints

C⊤βk = 0 (A18)

where βk is a stacked column vector containing all coefficients for group k.
We can rewrite this to aid in the interpretation of βk as follows:

logit(ζk(Ti)) = µ+

J∑
j=1

Lj−1∑
l=0

1{Tij = l}βjkl +
J−1∑
j=1

∑
j′>j

Lj−1∑
l=0

Lj′−1∑
l′=0

1{Tij = l, Tij′ = l′}βjj
′

kll′ .

Thus, βjkl − βjkf is the AMCE going from level f to level l of factor j on the logit probability of
Yi = 1 scale.

Let t be some combination of the J factors, where tj is the jth factor’s level and t−j is the
levels for all factors except j. This allows us to easily write, taking expectation over units in group
k,

E (Yi | Zi = k, Tij = l,Ti,−j = t−j) = Pr (Yi = 1|Zi = k,Ti,j = l,Ti,−j = t−j)

=
exp(ζk(Tij = l,Ti,−j = t−j))

1 + exp(ζk(Tij = l,Ti,−j = t−j))
,

where Tij = l indicates for unit i forcing factor j to be assigned level l and Ti,−j = t−j indicates
forcing the assignment on all factors except for j to be assigned levels as in t−j .

The causal effects of interest (on the original Y scale) are defined as contrasts of these expec-
tations. Without additional weighting (i.e., using traditional uniform weights for marginalization),
the AMCE for level l vs f of factor j in group k is,

δ∗jk(l, f) =
1

M

∑
t−j

E (Yi | Zi = k, Tij = l,Ti,−j = t−j)− E (Yi | Zi = k, Tij = f,Ti,−j = t−j)

=
1

M

∑
t−j

exp(ζk(Tij = l,Ti,−j = t−j))

1 + exp(ζk(Tij = l,Ti,−j = t−j))
− exp(ζk(Tij = f,Ti,−j = t−j))

1 + exp(ζk(Tij = f,Ti,−j = t−j))
,

where M is the number of possible combinations of the other J − 1 factors (e.g., if we had J
2-level factors, M = 2J−1). We can estimate this by plugging in the coefficients directly. Note
that, because of the nonlinear nature of the estimator, this approach is consistent (under model
assumptions) but not unbiased.

Alternatively, instead of summing over all possible t−j , we can use the empirical distribution of
t−j in the sample. This potentially changes the estimand. Define estimators

ψ̂k(t) = µ+
J∑

j=1

Lj−1∑
l=0

1{tj = l}β̂jkl +
J−1∑
j=1

∑
j′>j

Lj−1∑
l=0

Lj′−1∑
l′=0

1{tj = l, tj′ = l′}β̂jj
′

kll′

and

ŷk(t) =
exp(ψ̂k(t))

1 + exp(ψ̂k(t))

Then we can use the following overall estimator for the AMCE:

1

N

N∑
b=1

(
Ŷk(Tbj = l,Tb,−j)− Ŷk(Tbj = f,Tb,−j)

)
.
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This is a consistent estimator (under model assumptions) of

1

N

N∑
b=1

E (Yi | Zi = k,Tij = l,Ti,−j = Tb,−j)− E (Yi | Zi = k,Tij = f,Ti,−j = Tb,−j)

=
1

N

N∑
b=1

exp(ψk(Tbj = l,Tb,−j))

1 + exp(ψk(Tbj = l,Tb,−j))
−

exp(ψk(Tbj = f,Tb,−j))

1 + exp(ψk(Tbj = f,Tb,−j))
,

conditioning on the treatments we actually observed.
Now, we turn to examination of the AMIEs. Without additional weighting (i.e., using traditional

uniform weights for marginalization), the AMIE for level l of factor j and level q of factor s vs f
of factor j and level r of factor s in group k is

AMIE∗
jsk(l, f, q, r) = ACE∗(l, f, q, r)− δ∗jk(l, f)− δ∗sk(q, r)

where

ACE∗(l, f, q, r)

=
1

M∗

∑
t−(j,s)

E
(
Yi | Zi = k, Tij = l, Tis = q,Ti,−(j,s) = t−(j,s)

)
− E

(
Yi | Zi = k, Tij = f, Tis = r,Ti,−(j,s) = t−(j,s)

)
=

1

M∗

∑
t−(j,s)

exp(ψk(Tij = l, Tis = q,Ti,−(j,s) = t−(j,s)))

1 + exp(ψk(Tij = l, Tis = q,Ti,−(j,s) = t−(j,s)))
−

exp(ψk(Tij = f, Tis = r,Ti,−(j,s) = t−(j,s)))

1 + exp(ψk(Tij = f, Tis = r,Ti,−(j,s) = t−(j,s)))
,

where M∗ is the number of possible combinations of the other J − 2 factors (e.g., if we had J
two-level factors, M∗ = 2J−2).

We can use the following overall estimator for the ACE:

ÂCE
∗
(l, f, q, r) =

1

N

N∑
b=1

Ŷk(Tbj = l, Tbs = q,Tb,−(j,s))− Ŷk(Tbj = f, Tbs = r,Tb,−(j,s)).

This is then combined with the estimators for the AMCEs to get

ÂMIE
∗
jsk(l, f, q, r) = ÂCE

∗
(l, f, q, r)− δ̂∗jk(l, f)− δ̂∗sk(q, r).

I.1.2 With restrictions on randomization

In this section we consider restricted randomization conditions. Let us assume that factor j and
factor h are such that some levels of j are not well defined and hence excluded in combination with
some levels of factor h under the randomization set up. Let S(j, h) ⊂ {1, . . . , Lj} be the set of
levels of factor j that are not defined for some levels of factor h. Similarly, let S(h, j) ⊂ {1, . . . , Lh}
be the set of levels of factor h that are not defined for some levels of factor j. In our example, if j
is education and h is profession, we have S(j, h) = {No formal, 4th grade, 8th grade, High school}
and S(h, j) = {Financial analyst, Research scientist, Doctor, Computer programmer}.

When estimating the AMCE for level l vs f of factor J − 1 in group k, using the model rather
than the empirical distribution, we consider,

1

Mdef(j,h)

∑
t−j :th /∈S(h,j)

E (Yi | Zi = k, Tij = l,Ti,−j = t−j)− E (Yi | Zi = k, Tij = f,Ti,−j = t−j)

=
1

Mdef(j,h)

∑
t−j :th /∈S(h,j)

exp(ψk(Tij = l,Ti,−j = t−j))

1 + exp(ψk(Tij = l,Ti,−j = t−j))
− exp(ψk(Tij = f,Ti,−j = t−j))

1 + exp(ψk(Tij = f,Ti,−j = t−j))
,
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where Mdef(j,h) is the number of possible combinations of the other factors, restricted such that
th /∈ S(h, j) (e.g., if we had J 3-level factors, and some of the levels of factor j were not defined for
one level of factor h, this would be 2× 3J−2).

To use empirical distribution, we need a way to deal with profiles that are not well defined. We
can accomplish this by only aggregating over those profiles that are sensible for all levels of factor
j. That is, we use the following estimator,

1∑N
i=1 I{Tih /∈ S(h, j)}

N∑
b=1

I{Tbh /∈ S(h, j)}
(
Ŷk(Tbj = l,Tb,−j)− Ŷk(Tbj = f,Tb,−j)

)
.

Consider the case where we are estimating the AMCE for “doctor” vs “gardener” for profession.
Because of the randomization restriction between certain professions and level of education, we will
remove any profiles that have “4th grade” as level of education. Although “gardener” with “4th
grade” education is allowable under the randomization, we must remove such profiles to have an
“apples-to-apples” comparison with profession of doctor, which is not allowed to have “4th grade”
education. Note that we do this dropping of profiles even if we are comparing “waiter” vs “gardener”
for profession, which are both allowed to have “4th grade” as level of education, to ensure that all
AMCEs for profession comparable.

Similarly for the AMIEs, we restrict the profiles we marginalize over to be only those that are
defined for both factors in the interactions. Let factor j be restricted by some other factor h and
let factor s be restricted by some other factor w. Then we have the following estimator,

ÂCE
∗
(l, f, q, r)

=
N∑
b=1

I{Tbh /∈ S(h, j), Tbw /∈ S(w, s)}∑N
i=1 I{Tih /∈ S(h, j), Tiw /∈ S(w, s)}

(
Ŷk(Tbj = l, Tbs = q,Tb,−(j,s))− Ŷk(Tbj = f, Tbs = r,Tb,−(j,s))

)
.

The relevant AMCEs should be similarly restricted within the AMIE estimator, with restrictions
applied based on the restrictions for all levels both factors in the interaction.

I.2 Conjoint designs

I.2.1 Without restrictions on randomization

Consider a conjoint experiment in which each unit i only compares two profiles. The response Yi
indicates a choice between two profiles. Let T L

i be the levels for the left profile and TR
i be the

levels for the right profile that unit i sees. Here, we modify how we model ψk to

ψk(T
L
i ,T

R
i ) = µ+

J∑
j=1

∑
l∈Lj

βjkl
(
1
{
TL
ij = l

}
− 1

{
TR
ij = l

})
+

J−1∑
j=1

∑
j′>j

∑
l∈Lj

∑
l′∈Lj′

βjj
′

kll′
(
1
{
TL
ij = l, TL

ij′ = l′
}
− 1

{
TR
ij = l, TR

ij′ = l′
})
.

If we use Yi = 1 to indicate that unit i picks the left profile, then we have,

E
(
Yi | Zi = k,T L

i = tL,TR
i = tR

)
= Pr

(
Yi = 1 | Zi = k,T L

i = tL,TR
i = tR

)
=

exp(ψk(T
L
i = tL,TR

i = tR))

1 + exp(ψk(T
L
i = tL,TR

i = tR))
.
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We can use the symmetry assumption that choice order does not affect the appeal of individual
attributes. That is, there may be some overall preference for left or right accounted for by µ, but
this preference is not affected by profile attributes. Then, we can define our effects, on the original
Y scale, as contrasts of these expectations. Without additional weighting, the AMCE for level l vs
l′ of factor j in group k is,

δjk(l, l
′) =

1

2
E
[{
Pr
(
Yi = 1 | Zi = k, TL

ij = l,T L
i,−j ,T

R
i

)
− Pr

(
Yi = 1 | Zi = k, TL

ij = l′,T L
i,−j ,T

R
i

)}
+
{
Pr
(
Yi = 0 | Zi = k, TR

ij = l,TR
i,−j ,T

L
i

)
− Pr

(
Yi = 0 | Zi = k, TR

ij = l′,TR
i,−j ,T

L
i

)}]
.

To save space, the outer expectation is over the random assignment, which corresponds to the
expectation over the M̃ possible combinations of the two profiles on the other J − 1 factors (e.g.,
if we had J two-level factors, this would be 4J−1). We can again estimate this by plugging in our
coefficient estimates directly.

Alternatively, instead of summing over all possible tL−j and tR−j , we can use the empirical dis-

tribution of tL−j and tR−j in the sample. Define

Ŷk(t
L, tR) =

exp(ψ̂(tL, tR))

1 + exp(ψ̂(tL, tR))
.

Then we can use the estimator

δ̂jk(l, l
′) =

1

2N

N∑
i=1

[{
Ŷk(T

L
ij = l,T L

i,−j ,T
R
i )− Ŷk(T

L
ij = l′,T L

i,−j ,T
R
i )
}

−
{
Ŷk(T

R
ij = l,TR

i,−j ,T
L
i )− Ŷk(T

R
ij = l′,TR

i,−j ,T
L
i )
}]

.

Now we turn to examination of the AMIEs. Without additional weighting (i.e., using traditional
uniform weights for marginalization), the AMIE for level l of factor j and level q of factor s vs m
of factor j and level r of factor s in group k is

AMIEjsk(l, f, q, r) = ACE(l, f, q, r)− δjk(l, f)− δsk(q, r)

Here we can use the estimator

ÂCE(l, f, q, r) =
1

2N

N∑
i=1

[
(Ŷk(T

L
ij = l, TL

is = q,T L
i,−(j,s),T

R
i )− Ŷk(T

L
ij = f, TL

is = r,T L
i,−(j,s),T

R
i )
)

− 1

2N

N∑
i=1

(
Ŷk(T

R
ij = l, TR

is = q,TR
i,−(j,s),T

L
i )− Ŷk(T

R
ij = f, TR

is = r,TR
i,−(j,s),T

L
i )
)
.

This gives us

ÂMIEjsk(l, f, q, r) = ÂCE(l, f, q, r)− δ̂jk(l, f)− δ̂sk(q, r).

I.2.2 With restrictions on randomization

Similar to Appendix I.1.2, adjustments to estimation need to be made when we have restricted
randomizations. We again will do this by dropping profiles that have levels of factors not allowable
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for all levels of the factor(s) whose effects we are estimating (e.g., profiles with “4th grade” for
education when estimating an effect for profession). However, now we estimate the effect for the
right profile and the effect for the left profile, and then average the two (they should be equal under
symmetry). When estimating the effect for the right profile, therefore, we will only drop pairings if
the right profile has a level that is not allowed for some level of the factor we are estimating an effect
of. For example, dropping pairings where the right profile has “4th grade” as level of education
when estimating main effects of profession because “doctor” cannot have level “4th grade.” Again,
this will drop more profiles than those that are not allowed under randomization to ensure an
“apples-to-apples” comparison across levels of profession.

In this calculation, we use the empirical distribution for the levels of the left profile (which
represents the “opponent”). Thus, the distribution of other factors for the profile we are calculating
the effect of may differ than that distribution for its opponents. Similarly, when estimating the
effect for the left profile, we only drop pairings in which the left profile has a restricted level for
some level of the factor of interest. Estimation for the AMIE under randomization restrictions
follows similarly.

J Quantification of Uncertainty

We quantify uncertainty in our parameter estimates by inverting the negative Hessian of the log-
posterior at the estimates θ̂, i.e.

[
− ∂

∂θθT log p(θ|Yi)
]
θ=θ̂

or I(θ̂). This can be stably and easily
computed using terms from the AECM algorithm following Louis (1982)’s method. Specifically,
consider the model from the main text augmented with Zi, i.e. the group memberships. Recall
that zik = 1{Zi = k} for notational simplicity.

Lc(θ) =
N∑
i=1

[
K∑
k=1

zik log(πik) + zik logL(Yi | βk)

]
+

K∑
k=1

m log(λ) +mγ log(π̄k)− λπ̄γk

 G∑
g=1

ξgk

√
β⊤
k Fgβk

+ log p({ϕk}).

(A19)

Louis (1982) notes that equation can be used to compute IL(θ̂), where the subscript L denotes
its computation via this method.

IL(θ̂) = Ep({Zi}Ni=1|{Yi,Xi,Ti}Ni=1,θ̂)

[
−∂L

c(θ)

∂θθ⊤

]
−Varp({Zi}Ni=1|{Yi,Xi,Ti}Ni=1,θ̂)

[
∂Lc(θ)

∂θ

]
(A20)

To address the issue with the non-differentiability of the penalty on β (and thus Lc(θ)), we
follow the existing research in two ways. First, for restrictions that are sufficiently close to binding,
we assume them to bind and estimate the uncertainty given those restrictions. That is, we identify

the binding restrictions such that
√
β⊤
k Fgβk is sufficiently small (say 10−4) and note that if these

are binding, we can use the null space projection technique to transform βk such that it lies in an
unconstrained space.

To further ensure stability, we modify the penalty with a small positive constant ϵ ≈ 10−4 to
ensure that the entire objective is (twice) differentiable. For notational simplicity, we derive the
results below assuming βk represent the parameter vector after projecting into a space with no
linear constraints. The approximated log-posterior is shown below and denoted with a tilde. We
thus evaluate IL(θ̂) using L̃c in place of Lc.
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L̃c(θ) =

N∑
i=1

[
K∑
k=1

zik log(πik) + zik logL(yi|βk)

]
+

K∑
k=1

m log(λ) +mγ log(π̄k)− λπ̄γk

 G∑
g=1

ξgk

√
β⊤
k Fgβk + ϵ

+ log p({ϕk})

(A21)

This procedure has some pleasing properties that mirror existing results on approximate stan-
dard errors after sparse estimation; consider a simple three-level case: βj1, β

j
2, β

j
3. If βj1 and βj2 are

fused, then their approximate point estimates and standard errors will be identical but crucially
not zero. This is because while their difference is zero and assumed to bind with no uncertainty,
this does not imply that the effects, themselves, have no uncertainty: βj1 − βj2 will have a standard
error of zero in our method. This thus mirrors the results from Fan and Li (2001) where effects
that are shrunken to zero by the LASSO are not estimated with any uncertainty. One might relax
this with fully Bayesian approaches in future research.

Second, note that if all levels are fused together, i.e. βj1 = βj2 = βj3, then all point estimates
must be zero by the ANOVA sum-to-zero constraint and all will have an uncertainty of zero. Thus,
when an entire factor is removed from the model, the approximate standard errors return a result
consist with existing research.

J.1 Derivation of Hessian

To calculate the above terms, the score and gradient of L̃c are required. They are reported below:

S̃c(µ) =
N∑
i=1

[
K∑
k=1

zik(Yi − pik)

]

S̃c(βk) =

N∑
i=1

zik · (Yi − pik)T̃i − λπ̄γk

G∑
g=1

ξgk(β
⊤
k Fgβk)

−1/2 · Fgβk

S̃c(ϕk) =

N∑
i=1

[zik − πik]Xi +
∂ log p({ϕk})

∂ϕk
+

K∑
k′=1

mγ
∂ log(π̄k′)

∂ϕk
− λγπ̄γ−1

k′ · ∂π̄k
′

∂ϕk
·

 G∑
g=1

ξg,k′
√

β⊤
k′Fg,k′βk′


Hc(µ, µ) =

N∑
i=1

[
−

K∑
k=1

zikpik(1− pik)

]

Hc(µ,βk) = −

[
N∑
i=1

zikpik(1− pik)T̃i

]

Hc(βk,βk) = −

[
N∑
i=1

zik · pik(1− pik)T̃iT̃
⊤
i

]
− λπ̄γk

G∑
g=1

ξgkDgk

where [Dgk]a,b = −
(
β⊤
k Fgβk

)−3/2
β⊤
k [Fg]a β

⊤
k [Fg]b +

(
β⊤
k Fgβk

)−1/2
[Fg]a,b.

Hc([βk]i ,ϕℓ) = −λγπ̄γ−1
k

 G∑
g=1

ξgk(β
⊤
k Fgβk)

−1/2 · β⊤
k [Fg]i

 ∂π̄k
∂ϕℓ
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Hc(ϕk,ϕℓ) =

N∑
i=1

− [(I[k = ℓ]− πik)πiℓ]XiX
⊤
i +

∂2 log p({ϕk})
∂ϕkϕ

⊤
ℓ

+

K∑
k′=1

mγ
∂ log(π̄k′)

∂ϕkϕ
⊤
ℓ

+

+

K∑
k′=1

−λγ

 G∑
g=1

ξg,k′
√
β⊤
k′Fg,k′βk′

[I(γ /∈ {0, 1}) · (γ − 1)π̄γ−2
k′ ·

[
∂π̄k′

∂ϕk

] [
∂π̄k′

∂ϕℓ

]⊤
+ π̄γ−1

k′
∂π̄k′

∂ϕkϕ
⊤
ℓ

]

The above results use the following intermediate derivations:

∂π̄k′

∂ϕk
=

1

N

N∑
i=1

πi,k′
[
I(k = k′)− πik

]
Xi

∂π̄k′

∂ϕkϕ
⊤
ℓ

=
1

N

N∑
i=1

[
πi,k′

(
I(k′ = ℓ)− πiℓ

) (
I(k = k′)− πik

)
− πi,k′πik (I(k = ℓ)− πiℓ)

]
XiX

⊤
i

∂ log(π̄k′)

∂ϕk
=

1

π̄k′
· ∂π̄k

′

∂ϕk

∂ log(π̄k′)

∂ϕkϕ
⊤
ℓ

= − 1

π̄2k′

[
∂π̄k′

∂ϕk

] [
∂π̄k′

∂ϕℓ

]⊤
+

1

π̄k′
· ∂π̄k′

∂ϕkϕ
⊤
ℓ

Second, the variance of S̃c(θ) over p({zik} | θ). This is derived blockwise below.

Cov
[
S̃c(βk), S̃

c(βℓ)
]
=

N∑
i=1

(Yi − pik) · (Yi − piℓ) · E(zik) (I(k = ℓ)− E(ziℓ)) T̃iT̃
⊤
i

Cov
[
S̃c(βk), S̃

c(ϕℓ)
]
=

N∑
i=1

(Yi − pik) · E(zik) (I(k = ℓ)− E(ziℓ)) T̃iX
⊤
i

Cov
[
S̃c(ϕk), S̃

c(ϕℓ)
]
=

N∑
i=1

E(zik) (I(k = ℓ)− E(ziℓ))XiX
⊤
i

Cov
[
S̃c(µ), S̃c(µ)

]
=

N∑
i=1

[
K∑
k=1

K∑
k′=1

E(zik)
(
I(k = k′)− E(zik′)

)
(Yi − pik)(Yi − pik′)

]

Cov
[
S̃c(ϕk), S̃

c(µ)
]
=

N∑
i=1

[
K∑

k′=1

E(zik)
(
I(k = k′)− E(zik′)

)
(Yi − pik′)Xi

]

Cov
[
S̃c(βk), S̃

c(µ)
]
=

N∑
i=1

[
K∑

k′=1

E(zik)
(
I(k = k′)− E(zik′)

)
(Yi − pik)(Yi − pik′)T̃i

]

This provides all terms needed to compute IL(θ̂).

J.2 Repeated Observations

Now consider the case of repeated observations per individual i. In this scenario, each individual
i performs Ni tasks. Note, after augmentation, the score has exactly the same form and thus the
complete Score S̃c and Hessian H̃c are identical where the sum merely now runs over

∑N
i=1

∑Ni
m=1.

The average for π̄k is similarly a weighted average by Ni, although note that often each respondent
answers an identical number of tasks so it is, effectively, the same as before. The covariance of S̃c

is adjusted as shown below.
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Cov
[
S̃c(βk), S̃

c(βℓ)
]
=

N∑
i=1

E(zik) (I[k = ℓ]− E(ziℓ))

[
Ni∑

m=1

(Yim − pimk)T̃im

][
Ni∑

m′=1

(Yim − pimℓ)T̃
⊤
im′

]

Cov
[
S̃c(βk), S̃

c(ϕℓ)
]
=

N∑
i=1

E(zik) (I[k = ℓ]− E(ziℓ))

[
Ni∑

m=1

(Yim − pimk)T̃im

]
X⊤

i

Cov
[
S̃c(µ), S̃c(µ)

]
=

N∑
i=1

[
K∑
k=1

K∑
k′=1

E(zik)
(
I[k = k′]− E(zik′)

) [ Ni∑
m=1

(Yim − pimk)T̃im

][
Ni∑

m=1

(Yim − pimk)T̃
⊤
im

]]

Cov
[
S̃c(βk), S̃

c(µ)
]
=

N∑
i=1

[
K∑

k′=1

E(zik)
(
I[k = k′]− E(zik′)

) [ Ni∑
m=1

(Yim − pimk)T̃im

][
Ni∑

m=1

(Yim − pimk′)

]]

J.3 Standard Errors on Other Quantities of Interest

Given the above results, we derive an approximate covariance matrix on θ̂. We calculate uncertainty
on other quantities of interest, e.g. AMCE and marginal effects, using the multivariate delta
method. As almost all of our quantities of interest can be expressed as (weighted) sums or averages
over individuals i ∈ {1, · · · , N}, calculating the requisite gradient for the multivariate delta method
simply requires calculating the relevant derivative for each observation. For example, all derivatives
needed in the AMCE are of the following form; see Appendix I for more details.

∂

∂θ

[
exp(ψik)

1 + exp(ψik)

]

K Simulations

We detail our simulations and provide additional results in this section.

K.1 Setup

We generate the βk used in our simulations following Equation 4 and calibrating their implied
AMCEs to be roughly comparable to the magnitude found in our empirical example, i.e. ranging
between around −0.30 and 0.30. The βk and {ϕk}3k=2 used in all simulations are determined using
one draw from the following procedure:

Simulating βk:

1. For each factor j and group k, draw the number of unique levels u with equal
probability from {1, 2, 3}.

2. Draw u normal random variables independently from N(0, 1/3); call these bjku.

3. For u = 1, set βjkl = 0

4. For u = 3, de-mean {bjku}
3
u=1 drawn in (2) and set all βjkl equal to the corresponding

value.

5. For u = 2, assign bjk3 equal to one of the two bjku with equal probability. De-mean

the {bjku}
3
u=1 and set βjkl equal to the corresponding values.

Simulating ϕk: {ϕk}Kk=1 ∼ N(0, 2 · I)
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To evaluate our method, we calculate the AMCEs in each group simulations using Monte
Carlo simulation where we sample 1,000,000 pairs of treatment profiles for the other attributes to
marginalize over the other factors. The distribution of the βk and average marginal component
effects (with a baseline level of ‘1’) used in the simulations are shown below:
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Figure A3: The distribution of parameters and AMCEs used in the simulation.

For each simulation, we drawN individuals who rate T profiles where (N,T ) ∈ {(1000, 5), (2000, 10)}.
For each individual i, we draw its moderators xi from a correlated multivariate normal where
xi ∼ N(05,Σ) with Σij = 0.25|i−j| for i, j ∈ {1, · · · , 5}. The distribution of group assignment
probabilities πik is shown below from one million Monte Carlo simulation draws of [1,x⊤

i ].
We see that the members are well-separated; the groups are somewhat unbalanced, i.e. π̄ =

[0.217, 0.261, 0.522]. If we consider the maximum probability for each person i, i.e. π∗i = maxk∈{1,2,3} πik,
this distribution has a median of 0.93, a 25th percentile of 0.75 and a 75th percentile of 0.99.

In terms of simulating the treatment profiles and outcome, for each individual i, we draw a
group membership Zi using πi generating using Xi, ϕ and Equation 4. For each task t, we then
randomly draw a pair of treatments and then, given Zi, draw the outcome Yi given their observed
treatments using the model in the main text.

After estimating our model with K = 3, we resolve the problem of label switching by per-
muting our estimate group labels to minimize the absolute error between the estimated posterior
membership probabilities {E[zik|θ]}Kk=1 and zi (the one-hot assignment of group membership).

K.2 Additional Results

We provide additional simulation results to complement those presented in the main text. Figure A5
presents the results for the simulations in the main text when considering the βk (instead of the
AMCE). It shows a similar pattern of some bias even at the larger sample size.

To address this issue, we consider an alternative procedure based on sample splitting. We fit
the model using half of the data (selected at random) and then refit the model. To refit the model,
we hold fixed the sparsity pattern estimated in the original estimation hold (i.e., which levels are

26



Figure A4: Group Membership Probabilities
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Figure A5: The empirical performance of the proposed estimator on simulated data. The black squares indicate
the effects estimated in each group with the smaller sample size (1,000 people completing 5 tasks); the red crosses
indicate effects estimated with the larger sample size (2,000 people completing 10 tasks).

fused together) using a tolerance of 10−3. We also fix the estimated moderator relationship, i.e.
πk(Xi), and only estimate the treatment effect coefficients after fusion. Algorithm A2 states the
procedure. To calculate the average marginal effects, as noted in Appendix I, we use the empirical
distribution of treatments to marginalize over other factors. In this split version, we also use the
distribution from the full dataset.

Figure A6 compares the estimators from the split sample and full data (“Full Sample”, i.e. the
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Algorithm A2 Refitting Procedure

1. Randomly split the observations i ∈ {1, · · · , N} into two groups indexed by I1 and I2
2. Using the data i ∈ I1, estimate the parameters of the model using Algorithm A1 in the main

text. Define the resulting parameters from this as θ̃: {β̃k}Kk=1, {ϕ̃k}Kk=2, µ̃

3. Fuse levels l and l′ of factor j for group k where the following condition holds for tolerance ϵ

max
{∣∣∣β̃jkl − β̃jkl′

∣∣∣}⋃
⋃

j′ ̸=j

Lj′−1⋃
m=0

∣∣∣β̃jj′klm − β̃jj
′

kl′m

∣∣∣
 ≤ ϵ

For each combination where this is satisfied, construct matrices Rk that contain the required

equality constraints, i.e. where RT
k β̃k ensures that β̃jkl = β̃jkl′ = 0 and/or β̃jj

′

klm − β̃jj
′

kl′m = 0.

Define π̃k(Xi) as follows:

π̃k(Xi) =
exp(X⊤

i ϕ̃k)∑K
k′=1 exp(X

⊤
i ϕ̃k′)

4. Using the other half of the data i ∈ I2, estimate the refit parameters for the treatment effects,

where C contains the original sum-to-zero constraints discussed in the main text.

{β̂refit
k }Kk=1, µ̂

refit = argmax
{βk}Kk=1, µ

∑
i∈I2

log

(
K∑
k=1

π̃k(Xi)ζk(Ti)
Yi{1− ζk(Ti)}1−Yi

)
s.t. CTβk = 0, RT

k βk = 0

methods shown in the main text) approaches. It shows the distribution of the root mean-squared
error (RMSE), bias, and coverage across the estimated AMCE and coefficients. We split the results
by whether the true underlying effect is zero to compare differences across those cases. We also
consider one even larger sample size (4,000 respondents with 10 tasks) to examine a scenario where
the split sample method has the same amount of data as the full sample method for the second
step in the estimation process.

The figure corroborates the initial results. Specifically, the full data method has non-trivial bias
that decreases slowly even at the largest sample sizes. By contrast, the bias is small in the split
sample method. As the panel on coverage shows, this results in considerably better coverage—
especially for quantities with a non-zero true effect. At the two larger sample sizes, the median
frequentist coverage of the split sample method is close to the nominal 95%, with a few outliers
that have low coverage. In terms of RMSE, the methods perform similarly.

K.3 Robustness to Misspecification

As noted in the main text, our methodology is not predicated on the assumption that the true
data generating process is a mixture model. Rather, fitting a mixture model or a mixture of
experts model is equivalent to finding maximally heterogeneous groups. Nevertheless, we consider
a simulation setting in which the true data generating process is a mixture model. Under this
assumption, we explore how the specification of different parts of the model (e.g., K and the
choice of moderators) affects performance. Specifically, we explore different choices of K and
misspecification of the moderator model πk(Xi) from the ones used to generate the data.
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Figure A6: The distribution of performance for each estimator across sample sizes. The top figure shows results for
the AMCE; the lower figure shows results for the coefficients βk. Inside each figure, results are split by whether the
true effect is zero (“Zero True Effect”) or not (“Non-Zero True Effect”). The boxplot shows the distribution across
all effects for each group. For the plots on RMSE and bias, the solid vertical line indicates zero. For coverage, the
solid line indicates 95% coverage and the dashed line indicates 90%.
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K.3.1 Data-Driven Choice of K

First, as noted in the main text, a common approach to choosing K can be information criterion.
We use the BIC to calibrate our choice of λ, i.e. pick the λ that minimizes the BIC. In our
simulations, we compare the BIC across K ∈ {1, 2, 3, 4} to see which it would suggest choosing.
Table A2 reports the probability of each K being chosen across 1,000 simulations. It shows that,
even for the smallest data size, the BIC correctly identifies K = 3. The probability of correct
selection rises as the sample size grows. However, as we note in the main text, this simulation
example has relatively well separated clusters, and correctly specified likelihoods, and thus the
information criterion approach is expected to perform well.

Sample Size K = 1 K = 2 K = 3 K = 4

1,000 People (5 Tasks) 0 0.01 0.941 0.049
2,000 People (10 Tasks) 0 0.00 0.999 0.001
4,000 People (10 Tasks) 0 0.00 0.994 0.006

Table A2: Probability of K being chosen using smallest BIC

Other criterion based on cross-validation—e.g., splitting the sample and taking the model with
the highest out-of-sample predictive likelihood or lowest RMSE—also show a high probability of
choosing K = 3 (84% for the smallest sample size and 97-98% for the larger sample sizes).

K.3.2 Effect of Choice of K on Estimates

We first consider how different choices of K impact our results in the simulation study. To do this,
we focus on the CAMCE discussed in the main text (Section 5.3) as this quantity is comparable
across models with different K. For each individual i, we calculate our estimate of CAMCE using
their moderators Xi and compare this against the true value, which can be calculated by plugging
in the true values of πk(Xi) and δjk(l, l

′) into Equation (11). We run models with K ∈ {2, 3, 4}
with both split-sample and full data methods discussed above.

Figure A7 shows a binned scatterplot of the true CAMCEs against the estimated CAMCEs for
each individual i, i.e., for all true CAMCE in a bin, what is the average estimated CAMCE? As
above, it shows that for the correct choice ofK = 3, the estimates track the truth well. Interestingly,
K = 4 also shows good performance but K = 2 shows some weaker performance, especially for
certain ranges of the true CAMCE.

We also compute the marginalized error (i.e., the error in the estimated CAMCE vs the true
CAMCE, averaged across all people and CAMCEs estimated in a simulation) and RMSE of the
estimated CAMCEs. Figure A8 plots the distribution of RMSE and marginalized error across
the 1000 simulations. Consistent with our earlier results, the figure shows that the full sample
method for all choice of K has some non-vanishing bias while the split-sample method exhibits a
considerably smaller error. Further, while the estimated error looks similar for K ∈ {2, 3, 4}, the
correct choice (K = 3) has lower RMSE than either K = 2 or K = 4. The results for K = 4 are
comparable to those for K = 3, but the case of K = 2 sees a considerably worse performance.

Next, we consider how different choices of K affect the ability to recover the average marginal
effect. To do this, we average the CAMCE across all individuals used to fit the model and compare
that AMCE in the population. Figure A9 plots the bias of the estimated AMCE by aggregating
the individual-level effects; it is largely unaffected by the choice of K, corroborating Figure A8. As
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Figure A7: The binned scatterplot of the true CAMCEs versus the estimated CAMCEs. Results are shown for
different sample sizes and estimation method (e.g., full data versus split sample). The color of the dot indicates the
number of groups K.
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Figure A8: The distribution of performance across simulations. The top panel shows the performance in terms
of RMSE and marginalized error, across all individuals and CAMCEs, for the model fit on the entire dataset. The
bottom panel shows the results for a method estimated using the split sample method. The color of the boxplot
indicates the number of groups K.

expected, there is regularization bias for the full data method that using the split sample approach
eliminates.

As a final illustration on the choice of K, we also examine how much variability in the true
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Figure A9: The distribution of bias in AMCEs by averaging CAMCEs by different K

CAMCE is explained by the estimated groups, inspired by how one might assess the quality
of clustering in k-means. We compute this as follows: For each observation i, obtain its esti-
mated group membership probabilities π̂k(Xi) for k ∈ {1, · · · ,K}. Using its true CAMCE, i.e.
CAMCE∗

j (l, l
′;Xi), compute the total variability in CAMCE across the N units and the between-

group variability using π̂k as group weights. Formally, we compute BK and the total variability
T .

BK =
K∑
k=1

J∑
j=1

Lj−1∑
l′j=1

Nk

[
CAMCE

∗
k,j(lj , l

′
j)− CAMCE

∗
j (lj , l

′
j)
]2

; Nk =
N∑
i=1

π̂k(Xi);

T =

J∑
j=1

Lj−1∑
l′j=1

N∑
i=1

[
CAMCE∗

j (lj , l
′
j ;Xi)− CAMCE

∗
j (lj , l

′
j)
]2

CAMCE
∗
k,j =

1

Nk

N∑
i=1

π̂k(Xi) · CAMCE∗
j (lj , l

′
j ;Xi); CAMCE

∗
j =

1

N

N∑
i=1

CAMCE∗
j (lj , l

′
j ;Xi)

Figure A10 reports the ratio of the between-group variability over the total variability across
the 1,000 simulations for K ∈ {2, 3, 4}. With K = 2, we already able to explain around 50%
of the variability in the data. As expected, K = 2 shows considerably lower BK/T than higher
K’s, suggesting its groups are less distinct—or, equivalently, more internally heterogeneous—than
K ∈ {3, 4}. There is limited improvement in quality with K = 4, which is consistent with the
earlier results that the correct choice (K = 3) adequately summarizes the variability in the data.

K.3.3 Misspecified Moderators

We next consider how misspecifying the model for the moderators πk(Xi) affects our simulated
results. We show this in two ways; first, we fit a model with no moderators, that is, Xi = 1. While
this model has a number of limitations—e.g., for classifying and predicting heterogeneous effects
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Figure A10: The distribution of BK/T across simulations. The top panel shows results for the model fit on the
entire dataset. The bottom panel shows the results for a method estimated using the split sample method.

for new individuals, it is a useful benchmark. Second, instead of using the true moderators (e.g.,
Xi), we assume the researcher only has available the following non-linear transformations of the
moderators (following Kang and Schafer 2007) and uses those instead:

Ai,1 =
√
3 exp(Xi,1/2)− 2

Ai,2 =
√
3Xi,2/ [1 + exp(Xi,1)]

Ai,3 = 1/19 [Xi,1 +Xi,3 + 0.6]3

Ai,4 = 1/3 [Xi,2 +Xi,4]
2 − 1

Ai,5 = 2.5
√
|Xi,5 +Xi,1| − 2.5.

We rescale the moderators {Ai}Ni=1 to have zero mean and unit variance in each simulated
dataset.

Figure A11 replicates Figure A6 on the performance on estimating the AMCE where we show
results with all moderators (i.e., in Figure A6) and with both types of mis-specification (“No
Moderators” and “Non-Linear Transf.” when Ai are used).

It shows that, for the smallest sample size, the no-moderator model incurs a penalty in terms
of the RMSE of the estimated AMCEs, although it does not have considerably larger bias. At
larger sample sizes, the difference between the moderator and no-moderator models decreases.
With moderators that are included but mis-specified using some non-linear transformation, the
performance is rather close to the one that uses the correct moderators.

To further illustrate the impact of excluding moderators, Figure A12 plots the estimated average
posterior and posterior predictive probability (i.e., π̂k(Xi)) in the group corresponding to the
individual’s sampled Zi for all observations in the estimation data. It shows, as expected, that using
the correctly specified moderators results in a considerably higher probability of each individual
being assigned to group that corresponds to their sampled Zi. The model with included but mis-
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Figure A11: The distribution of performance for each estimator across sample sizes, with and without moderators.
Inside each figure, results are split by whether the true effect is zero (“Zero True Effect”) or not (“Non-Zero True
Effect”). The boxplot shows the distribution across all effects for each group. For the plots on RMSE and bias, the
solid vertical line indicates zero. For coverage, the solid line indicates 95% coverage and the dashed line indicates
90%.

specified moderators (“Non-Linear Transf.”) is somewhere between the model without moderators
and the correctly specified one.
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Figure A12: The average probability that is assigned to the group corresponding to an individual’s sampled Zi,
showing the distributions across simulations.
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Figure A13: Estimated average marginal means using a three-group (right) analysis. The point estimates and 95%
Bayesian credible intervals are shown.

L Additional Results for Immigration Conjoint Experiment

We provide some additional results for our main empirical analysis. First, focusing on the three-
group model, we report a different quantity of interest. We use an analogue to the “marginal
means” estimator in Leeper, Hobolt and Tilley (2020). We compute the probability of a profile
being chosen without specifying a baseline category. The equation is shown below for the forced
choice case; note it consists of two of the terms used for the AMCE.

MMjk(l) =
1

2
E
[{
Pr
(
Yi = 1 | Zi = k, TL

ij = l,T L
i,−j ,T

R
i

)
+ Pr

(
Yi = 0 | Zi = k, TR

ij = l,TR
i,−j ,T

L
i

)}]
.

(A22)

The below plot ignores randomization restrictions when estimating this quantity to center the
estimate around 0.50 as in Leeper, Hobolt and Tilley (2020). The results are substantively similar
to the analysis in shown in the main paper using AMCEs.

Second, as noted in the main text, we found that sample splitting and refitting the model (see
Appendix K.2) was somewhat unstable given different splits of the data. To illustrate this point,
Figure A14 shows the 25th-75th percentile (and median) of the AMCEs estimated across twenty
repetitions of splitting the data into halves and then using the refitting procedure described above.
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We address the problem of label switching using a permutation of labels that minimizes the average
mean absolute error between all pairs of estimates; we find a permutation by randomly permuting
the labels for a randomly chosen set of estimates and repeat this repeatedly until the average mean
absolute error stabilizes.

While Figure A14 shows instability in some of the estimated AMCE, it broadly shows a similar
result to that in the main text. For example, one group (Group 2 when K = 2; Group 3 when
K = 3) shows a clear effect of country across most splits whereas one group (Group 1 when K = 2
and Groups 1 and 2 when K = 2) generally shows a large penalty for immigrants who entered
without legal authorization.
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Figure A14: The distribution of AMCE from a two-group and three- model with twenty random splits of the data.
The interquartile range and median are shown.

Third, Figure 5 in the main text reports the average effect of changing some moderator from
x0 to x1 on πk, i.e.,

E [πk(Xij = x1,Xi,−j)− πk(Xij = x0,Xi,−j)] . (A23)

Figure A15 considers the impact on the average absolute distance, i.e.

E [|πk(Xij = x1,Xi,−j)− πk(Xij = x0,Xi,−j)|] , (A24)

to prevent positive and negative changes from canceling each other out. To interpret this quantity,
Figure A15 also the absolute value of the difference reported in the main text, i.e., the absolute
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value of Equation A23 in a red ∗. Uncertainty is computed by drawing samples from the estimated
asymptotic distribution of ϕ̂, evaluating Equation A24 over those samples, and reporting the mean
and [0.025, 0.975] percentile interval. Figure A15 shows that, for certain groups, some covariates
show a small average effect but a larger average of absolute effects (e.g., with K = 3, Group 2 and
“Not Strong Republican” versus the baseline of “Strong Republican”) .
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Figure A15: The average absolute effect of changing a moderator. The 2.5% to 97.5% percentile interval is shown.

Next, we discuss the two-factor interactions. The largest average marginal interaction effect
(AMIE) was found between education and job in the three group analysis. This is visualized in
Figure A16. The largest AMIE occurs between the levels of Teacher and High School and has
magnitude of 0.0021.

Compared in magnitude to the AME, which for education was on average 0.111 and for job was
on average 0.0237, this is clearly negligible. Given this, we have little hope of finding substantial
higher-order interactions in this example.

If higher-order interactions were of interest, a pre-processing step to do some basic screening
(see, e.g., Shi, Wang and Ding, 2023) might be implemented on the full dataset to a priori reduce
the number of interactions considered. The sparsity inducing penalties of our method would then
impose additional regularization.

Finally, we briefly remark upon choosing K using an information criterion. While this works
well in the simulated example (see Appendix K.3.1), we find less clear results on the full data.
Table A3 the results of optimizing the BIC over λ for K ∈ {1, 2, 3, 4} as well as optimizing the AIC
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Figure A16: The average marginal interaction effect between education and job.
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over λ. It shows that, if one uses the BIC, this suggests K = 1. However, if one uses the AIC, this
suggests K = 4.

Optimizing BIC over λ
K = 1 K = 2 K = 3 K = 4
6125 6270 6391 6529

Optimizing AIC over λ
K = 1 K = 2 K = 3 K = 4
5968 5902 5871 5833

Table A3: Information criterion for different K
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