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KOSUKE IMAI Princeton University
JAMES LO University of Southern California
JONATHAN OLMSTED The NPD Group

Estimation of ideological positions among voters, legislators, and other actors is central to many
subfields of political science. Recent applications include large data sets of various types including
roll calls, surveys, and textual and social media data. To overcome the resulting computational

challenges, we propose fast estimation methods for ideal points with massive data. We derive the
expectation-maximization (EM) algorithms to estimate the standard ideal point model with binary,
ordinal, and continuous outcome variables. We then extend this methodology to dynamic and hierarchical
ideal point models by developing variational EM algorithms for approximate inference. We demonstrate
the computational efficiency and scalability of our methodology through a variety of real and simulated
data. In cases where a standard Markov chain Monte Carlo algorithm would require several days to
compute ideal points, the proposed algorithm can produce essentially identical estimates within minutes.
Open-source software is available for implementing the proposed methods.

INTRODUCTION

E stimation of ideological positions among vot-
ers, legislators, justices, and other actors is cen-
tral to many subfields of political science. Since

the pioneering work of Poole and Rosenthal (1991,
1997), a number of scholars have used spatial voting
models to estimate ideological preferences from roll-
call votes and other data in the fields of comparative
politics and international relations as well as Ameri-
can politics (e.g., Bailey, Kamoie, and Maltzman 2005;
Bailey, Strezhnev, and Voeten 2015; Bonica 2014; Clin-
ton and Lewis 2008; Hix, Noury, and Roland 2006;
Ho and Quinn 2010; Londregan 2007; McCarty, Poole,
and Rosenthal 2006; Morgenstern 2004; Spirling and
McLean 2007; Voeten 2000). These and other sub-
stantive applications are made possible by numerous
methodological advancements including Bayesian es-
timation (Clinton, Jackman, and Rivers 2004; Jack-
man 2001), optimal classification (Poole 2000), dy-
namic modeling (Martin and Quinn 2002), and models
with agenda setting or strategic voting (Clinton and
Meirowitz 2003; Londregan 1999).

With the increasing availability of data and method-
ological sophistication, researchers have recently
turned their attention to the estimation of ideologi-
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cal preferences that are comparable across time and
institutions. For example, Bailey (2007) measures ideal
points of U.S. presidents, senators, representatives, and
Supreme Court justices on the same scale over time
(see also Bailey 2013; Bailey and Chang 2001). Sim-
ilarly, Shor and McCarty (2011) compute the ideal
points of the state legislators from all U.S. states and
compares them with members of Congress (see also
Battista, Peress, and Richman 2013; Shor, Berry, and
McCarty 2011). Finally, Bafumi and Herron (2010)
estimate the ideological positions of voters and their
members of Congress in order to study representation
while Clinton et al. (2012) compare the ideal points
of agencies with those of presidents and congressional
members.

Furthermore, researchers have begun to analyze
large data sets of various types. For example, Slapin and
Proksch (2008) develop a statistical model that can be
applied to estimate ideological positions from textual
data. Proksch and Slapin (2010) and Lowe et al. (2011)
apply this and other similar models to the speeches
of European Parliament and the manifestos of Euro-
pean parties, respectively (see also Kim, Londregan,
and Ratkovic 2014, who analyze the speeches of legis-
lators in U.S. Congress). Another important new data
source is social media, which often come in massive
size. Bond and Messing (2015) estimate the ideological
preferences of 6.2 million Facebook users while Bar-
berá (2015) analyze more than 40 million Twitter users.
These social media data are analyzed as network data,
and a similar approach is taken to estimate ideal points
from data on citations using court opinions (Clark and
Lauderdale 2010) and campaign contributions from
voters to politicians (Bonica 2014).

These new applications pose a computational chal-
lenge of dealing with data sets that are orders of mag-
nitude larger than the canonical single-chamber roll-
call matrix for a single time period. Indeed, as Table 1
shows, the past decade has witnessed a significant rise
in the use of large and diverse data sets for ideal point
estimation. While most of the aforementioned works
are based on Bayesian models of ideal points, standard
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TABLE 1. Recent Applications of Ideal Point Models to Various Large Data Sets

Number of Number of
Subjects Items Data Types

Parliaments
DW-NOMINATE scores (1789–2012) 37,511 46,379 U.S. Congress
Common Space scores (1789–2012) 11,833 90,609 U.S. Congress
Hix, Noury, and Roland (2006) 2,000 12,000 European Parliament
Shor and McCarty (2011) 6,201 5,747 U.S. state legislatures
Bailey, Strezhnev, and Voeten (2015) 2,187 7,335 United Nations

Courts (and other institutions)
Martin and Quinn scores (1937–2013) 697 5,164 U.S. Supreme Court
Bailey (2007) 27,795 2,750 US. Supreme Court, Congress, Presidents

Voters (and politicians)
Gerber and Lewis (2004) 2.8 million 12 referendum votes
Bafumi and Herron (2010) 8,848 4,391 survey & roll calls
Tausanovitch and Warshaw (2013) 275,000 311 survey
Bonica (2014) 4.2 million 78,363 campaign contributions

Social Media
Bond and Messing (2015) 6.2 million 1,223 Facebook
Barberá (2015) 40.2 million 1,465 Twitter

Texts and Speeches
Clark and Lauderdale (2010) 1,000 1,000 U.S. Supreme Court citations
Proksch and Slapin (2010) 25 8995 German manifestos
Lewandowski et al. (2015) 1,000 250,000 European party manifestos

Notes: The past decade has witnessed a significant rise in the use of large data sets for ideal point estimation. Note that “# of subjects”
should be interpreted as the number of ideal points to be estimated. For example, if a legislator serves for two terms and are allowed
to have different ideal points in those terms, then this legislator is counted as two subjects.

Markov chain Monte Carlo (MCMC) algorithms can
be prohibitively slow when applied to large data sets.
As a result, researchers are often unable to estimate
their models using the entire data and are forced to
adopt various shortcuts and compromises. For exam-
ple, Shor and McCarty (2011) fit their model in multiple
steps using subsets of the data whereas Bailey (2007)
resorts to a simpler parametric dynamic model in order
to reduce computational costs (p. 441) (see also Bailey
2013). Since a massive data set implies a large number
of parameters under these models, the convergence
of MCMC algorithms also becomes difficult to assess.
Bafumi and Herron (2010), for example, express a con-
cern about the convergence of ideal points for voters
(footnote 24).

In addition, estimating ideal points over a long pe-
riod of time often imposes a significant computational
burden. Indeed, the use of computational resources
at supercomputer centers has been critical to the de-
velopment of various NOMINATE scores.1 Similarly,
estimation of the Martin and Quinn (2002) ideal point
estimates for U.S. Supreme Court justices over 47 years
took over five days to estimate. This suggests that while
these ideal point models are attractive, they are often

1 The voteview website notes that the DW-NOMINATE and
Common Space DW-NOMINATE scores are computed using the
Rice terascale cluster. See http://voteview.com/dwnominate.asp and
http://voteview.com/dwnomjoint.asp (accessed on November 10,
2014).

practically unusable for many researchers who wish to
analyze a large-scale data set.

In this article, we propose a fast estimation method
for ideal points with massive data. Specifically, we
develop the Expectation-Maximization (EM) algo-
rithms (Dempster, Laird, and Rubin 1977) that ei-
ther exactly or approximately maximize the posterior
distribution under various ideal point models. The
main advantage of EM algorithms is that they can
dramatically reduce computational time. Through a
number of empirical and simulation examples, we
demonstrate that in cases where a standard MCMC
algorithm would require several days to compute ideal
points, the proposed algorithm can produce essen-
tially identical estimates within minutes. The EM al-
gorithms also scale much better than other existing
ideal point estimation algorithms. They can estimate
an extremely large number of ideal points on a lap-
top within a few hours whereas current methodologies
would require the level of computational resources
only available at a supercomputer center to do the same
computation.

We begin by deriving the EM algorithm for the
standard Bayesian ideal point model of Clinton, Jack-
man, and Rivers (2004). We show that the proposed
algorithm produces ideal point estimates which are
essentially identical to those from other existing meth-
ods. We then extend our approach to other popular
ideal point models that have been developed in the
literature. Specifically, we develop an EM algorithm for
the model with mixed ordinal and continuous outcomes
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(Quinn 2004) by applying a certain transformation to
the original parametrization. We also develop an EM
algorithm for the dynamic model (Martin and Quinn
2002) and the hierarchical model (Bafumi et al. 2005).
Finally, we propose EM algorithms for ideal point mod-
els based on textual and network data.

For dynamic and hierarchical models as well as the
models for textual and network data, an EM algo-
rithm that directly maximizes the posterior distribu-
tion is not available in a closed form. Therefore, we
rely on variational Bayesian inference, which is a pop-
ular machine learning methodology for fast and ap-
proximate Bayesian estimation (see Wainwright and
Jordan (2008) for a review and Grimmer (2011) for
an introductory article in political science). For each
case, we demonstrate the computational efficiency and
scalability of the proposed methodology by applying
it to a wide range of real and simulated data sets.
Our proposed algorithms complement a recent appli-
cation of variational inference to combine ideal point
estimation with topic models (Gerrish and Blei 2012).
We implement the proposed algorithms via an open-
source R package, emIRT (Imai, Lo, and Olmsted
2015), so that others can apply them to their own
research.

In the item response theory literature, the EM al-
gorithm is used to maximize the marginal likelihood
function where ability parameters, i.e., ideal point pa-
rameters in the current context, are integrated out
(Bock and Aitkin 1981). In the ideal point literature,
Bailey (2007) and Bailey and Chang (2001) use variants
of the EM algorithm in their model estimation. The
M steps of these existing algorithms, however, do not
have a closed-form solution. In this article, we derive
closed-form EM algorithms for popular Bayesian ideal
point models. This leads to faster and more reliable
estimation algorithms.

Finally, an important and well-known drawback of
these EM algorithms is that they do not produce uncer-
tainty estimates such as standard errors. In contrast, the
MCMC algorithms are designed to fully characterize
the posterior, enabling the computation of uncertainty
measures for virtually any quantities of interest. More-
over, the standard errors based on variational poste-
rior are often too small, underestimating the degree
of uncertainty. While many applied researchers tend
to ignore estimation uncertainty associated with ideal
points, such a practice can yield misleading inference.
To address this problem, we apply the parametric boot-
strap approach of Lewis and Poole (2004) (see also
Carroll et al. 2009). Although this obviously increases
the computational cost of the proposed approach, the
proposed EM algorithms still scale much better than
the existing alternatives. Furthermore, researchers can
reduce this computational cost by a parallel implemen-
tation of bootstrap on a distributed system. We note
that since our models are Bayesian, it is rather uncon-
ventional to utilize bootstrap, which is a frequentist
procedure. However, one can interpret the resulting
confidence intervals as a measure of uncertainty of our
Bayesian estimates over repeated sampling under the
assumed model.

STANDARD IDEAL POINT MODEL

We begin by deriving the EM algorithm for the stan-
dard ideal point model of Clinton, Jackman, and Rivers
(2004). In this case, the proposed EM algorithm max-
imizes the posterior distribution without approxima-
tion. We illustrate the computational efficiency and
scalability of our proposed algorithm by applying it
to roll-call votes in recent U.S. Congress sessions, as
well as to simulated data.

The Model

Suppose that we have N legislators and J roll calls. Let
yij denote the vote of legislator i on roll call j where
yij = 1 (yij = 0) implies that the vote is in the affir-
mative (negative) with i = 1, . . . , N and j = 1, . . . , J .
Abstentions, if present, are assumed to be ignorable
such that these votes are missing at random and can
be predicted from the model using observed data (see
Rosas and Shomer 2008). Furthermore, let xi represent
the K-dimensional column vector of ideal point for
legislator i. Then, if we use y∗

ij to represent a latent
propensity to cast a “yea” vote where yij = 1{y∗ > 0},
the standard K-dimensional ideal point model is given
by

y∗
ij = αj + x�

i βj + εij , (1)

where βj is the K-dimensional column vector of item
discrimination parameters and αj is the scalar item
difficulty parameter. Finally, εij is an independently,
identically distributed random utility and is assumed
to follow the standard normal distribution.

For notational simplicity, we use β̃
�
j = (αj ,β

�
j ) and

x̃�
i = (1, x�

i ) so that equation (1) can be more com-
pactly written as

y∗
ij = x̃�

i β̃j + εij . (2)

Following the original article, we place indepen-
dent and conjugate prior distributions on xi and β̃j ,
separately. Specifically, we use

p(x1, . . . , xN) =
N∏

i=1

φK (xi; μx,�x) and

p(β̃1, . . . , β̃J ) =
J∏

j =1

φK+1
(
β̃j ; μβ̃,�β̃

)
, (3)

where φk(·; ·) is the density of a k-variate Normal ran-
dom variable, μx and μβ̃ represent the prior mean vec-
tors, and �x and �β̃ are the prior covariance matrices.

Given this model, the joint posterior distribution of
(Y∗, {xi}N

i=1, {β̃j }J
j =1) conditional on the roll-call matrix
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Y is given by

p
(

Y∗, {xi}N
i=1, {β̃j }J

j =1 | Y
)

∝
N∏

i=1

J∏
j =1

(
1{y∗

ij > 0}1{yij = 1}

+ 1{y∗
ij ≤ 0}1{yij = 0}) φ1

(
y∗

ij ; x̃�
i β̃j , 1

)
×

N∏
i=1

φK (xi; μx,�x)
J∏

j =1

φK+1
(
β̃j ; μβ̃,�β̃

)
, (4)

where Y and Y∗ are matrices whose element in the ith
row and j th column is yij and y∗

ij , respectively. Clinton,
Jackman, and Rivers (2004) describe the MCMC algo-
rithm to sample from this joint posterior distribution
and implement it as the ideal() function in the open-
source R package pscl (Jackman 2012).

The Proposed Algorithm

We derive the EM algorithm that maximizes the pos-
terior distribution given in equation (4) without ap-
proximation. The proposed algorithm views {xi}N

i=1 and
{β̃j }J

j =1 as parameters and treats Y∗ as missing data.
Specifically, at the tth iteration, denote the current pa-
rameter values as {x(t−1)

i }N
i=1 and {β̃(t−1)

j }J
j =1. Then, the

E step is given by the following so-called “Q function,”
which represents the expectation of the log joint pos-
terior distribution,

Q({xi}N
i=1, {β̃j }J

j =1)

= E

[
log p(Y∗, {xi}N

i=1, {β̃j }J
j =1 | Y) | Y,

{x(t−1)
i }N

i=1, {β̃(t−1)
j }J

j =1

]

= −1
2

N∑
i=1

J∑
j =1

(
β̃

�
j x̃ix̃�

i β̃j − 2β̃
�
j x̃iy∗

ij
(t)
)

−1
2

N∑
i=1

(
x�

i �−1
x xi − 2x�

i �−1
x μx

)

−1
2

J∑
j =1

(
β̃

�
j �−1

β̃
β̃j − 2β̃

�
j �−1

β̃
μβ̃

)
+ const. (5)

where

y∗
ij

(t) = E

(
y∗

ij | x(t−1)
i , β̃

(t−1)
j , yij

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m(t−1)
ij + φ(m(t−1)

ij )

�(m(t−1)
ij )

if yij = 1

m(t−1)
ij − φ(m(t−1)

ij )

1−�(m(t−1)
ij )

if yij = 0

m(t−1)
ij if yij is missing

(6)

with m(t−1)
ij = (x̃(t−1)

i )�β̃
(t−1)
j .

Straightforward calculation shows that the maxi-
mization of this Q function, i.e., the M step, can be
achieved via the following two conditional maximiza-
tion steps:

x(t)
i =

⎛
⎝�−1

x +
J∑

j =1

β
(t−1)
j β

(t−1)
j

�
⎞
⎠

−1

×
⎛
⎝�−1

x μx +
J∑

j =1

β
(t−1)
j (y∗

ij
(t) − α

(t−1)
j )

⎞
⎠ , (7)

β̃
(t)
j =

(
�−1

β̃
+

N∑
i=1

x̃(t)
i

(
x̃(t)

i

)�
)−1

×
(

�−1
β̃

μβ̃ +
N∑

i=1

x̃(t)
i y∗

ij
(t)

)
. (8)

The algorithm repeats these E and M steps until con-
vergence. Given that the model is identified up to an
affine transformation, we use a correlation-based con-
vergence criteria where the algorithm terminates when
the correlation between the previous and current val-
ues of all parameters reaches a prespecified threshold.2

Finally, to compute uncertainty estimates, we ap-
ply the parametric bootstrap (Lewis and Poole 2004).
Specifically, we first estimate ideal points and bill pa-
rameters via the proposed EM algorithm. Using these
estimates, we calculate the choice probabilities asso-
ciated with each outcome. Then, we randomly gener-
ate roll-call matrices given these estimated outcome
probabilities. Where there are missing votes, we simply
induce the same missingness patterns. This is repeated
a sufficiently large number of times and the resulting
bootstrap replicates for each parameter are used to
characterize estimation uncertainty.

An Empirical Application

To assess its empirical performance, we apply the pro-
posed EM algorithm to roll-call voting data for both
the Senate and the House of Representatives for ses-
sions of Congress 102 through 112. Specifically, we com-
pare the ideal point estimates and their computation
time from the proposed algorithm to those from three
other methods; the MCMC algorithm implemented as
ideal() in the R package pscl (Jackman 2012), the al-
ternating maximum likelihood estimator implemented
as wnominate() in the R package wnominate (Poole

2 Most methods in the literature, including those based on Aitkin’s
acceleration and the gradient function, take this approach. As a
reviewer correctly points out, however, a small difference can imply
a lack of progress rather than convergence. Following the current
literature, we recommend that researchers address this problem par-
tially by employing a strict correlation criteria such as the correlation
less than 1 − 10−6 and by using different starting values in order to
avoid getting stuck in local maxima.
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FIGURE 1. Comparison of Computational Performance across the Methods

Notes: Each point represents the length of time required to compute estimates where the spacing of time on the vertical axis is based
on the log scale. The proposed EM algorithm, indicated by “EM,” “EM (high precision),” “EM (parallel high precision),” and “EM with
Bootstrap” is compared with “W-NOMINATE” (Poole et al. 2011), the MCMC algorithm “IDEAL” (Jackman 2012), and the nonparametric
optimal classification estimator “OC” (Poole et al. 2012). The EM algorithm is faster than the other approaches whether focused on
point estimates or also estimation uncertainty. Algorithms producing uncertainty estimates are labeled in bold, italic type.

et al. 2011), and the nonparametric optimal classifica-
tion estimator implemented as oc() in the R package
oc (Poole et al. 2012). For all roll-call matrices, we re-
strict attention to just those legislators with at least 25
observed votes on nonunanimous bills. In all cases, we
assume a single spatial dimension.

We caution that the comparison of computational
efficiency presented here is necessarily illustrative. The
performance of any numerical algorithm may depend
on starting values, and no absolute convergence crite-
ria exists for any of the algorithms we examine. For
the MCMC algorithm, we run the chain for 100,000
iterations beyond a burn-in period of 20,000 iterations.
Inference is based on a thinned chain where we keep
every 100 draws. While the length of chain and its
thinning interval are within the recommended range
by Clinton, Jackman, and Rivers (2004), we emphasize
that any convergence criteria used for deciding when
to terminate the MCMC algorithm is somewhat arbi-
trary. The default diffuse priors, specified in ideal()
from the R package pscl, are used and propensities
for missing votes are not imputed during the data-
augmentation step. In particular, we assume a single
dimensional normal prior for all ideal point param-
eters with a mean of 0 and a variance of 1. For the
bill parameters, we assume a two-dimensional normal
prior with a mean vector of 0’s and a covariance matrix
with each variance term equal to 25 and no covari-
ance. The standard normalization of ideal points, i.e.,
a mean of 0 and a standard deviation of 1, is used for

local identification. The MCMC algorithm produces
measures of uncertainty for the parameter estimates
and so we distinguish it from those algorithms which
produce only point estimates by labeling it in Figure 1
with bold, italic typeface.

For the proposed EM algorithm, we use random
starting values for the ideal point and bill parame-
ters. The same prior distributions as the MCMC al-
gorithm are used for all parameters. We terminate the
EM algorithm when each block of parameters has a
correlation with the values from the previous iteration
larger than 1 − p. With one spatial dimension, we have
three parameter blocks: the bill difficulty parameters,
the bill discrimination parameters and the ideal point
parameters. Following Poole and Rosenthal (1997) (see
p. 237), we use p = 10−2. We also consider a far more
stringent criterion where p = 10−6, requiring parame-
ters to correlate greater than 0.999999. In the following
results, we focus on the latter “high precision” variant,
except in the case of computational performance where
results for both criteria are presented (labeled “EM”
and “EM (high precision),” respectively). The results
from the EM algorithm do not include measures of un-
certainty. For this, we include the “EM with Bootstrap”
variant which uses 100 parametric bootstrap replicates.
To distinguish this algorithm from those which produce
just point estimates, it is labeled in Figure 1 with bold,
italic typeface.

Finally, for W-NOMINATE, we do not include
any additional bootstrap trials for characterizing
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uncertainty about the parameters, so the results will
only include point estimates. For optimal classification,
we use the default setting of oc() in the R package
oc. Because the Bayesian MCMC algorithm is stochas-
tic and the EM algorithm has random starting values,
we run each estimator 50 times for any given roll-call
matrix and report the median of each performance
measurement.

We begin by examining the computational perfor-
mance of the EM algorithm.3 Figure 1 shows the time
required for the ideal point estimation for each Con-
gressional session in the House (left panel) and the
Senate (right panel). Note that the vertical axis is on
the log scale. Although the results are only illustrative
for the aforementioned reasons, it is clear that the EM
algorithm is by far the fastest. For example, for the
102nd House of Representatives, the proposed algo-
rithm, denoted by “EM,” takes less than one second to
compute estimates, using the same convergence criteria
as W-NOMINATE. Even with a much more stringent
convergence criteria “EM (high-precision),” the com-
putational time is only six seconds. This contrasts with
the other algorithms, which require much more time
for estimation. Although the direct comparison is diffi-
cult, the MCMC algorithm is by far the slowest, taking
more than 2.5 hours. Because the MCMC algorithm
produces standard errors, we contrast the performance
of “IDEAL” with “EM with Bootstrap” and find that
obtaining 100 bootstrap replicates requires just under
one minute. Even if more iterations are desired, over
10,000 bootstrap iterations could be computed before
approaching the time required by the MCMC algo-
rithm.

The W-NOMINATE and optimal classification esti-
mators are faster than the MCMC algorithm but take
approximately one and 2.5 minutes, respectively. These
methods do not provide measures of uncertainty, and
all of the point-estimate EM variants are over ten times
faster. Last, the EM algorithm is amenable to paral-
lelization within each of the three update steps. The
open-source implementation that we provide supports
this on some platforms (Imai, Lo, and Olmsted 2015).
And, the parallelized implementation performs well.
For any of these roll-call matrices, using eight proces-
sor cores to estimate the parameters instead of just one
core reduces the required timeto completion to about
one-sixth of the single core time.

We next show that the computational gain of the
proposed algorithm is achieved without sacrificing the
quality of estimates. To do so, we directly compare
individual-level ideal point estimates across the meth-
ods. Figure 2 shows, using the 112th Congress, that ex-
cept for a small number of legislators, the estimates
from the proposed EM algorithm are essentially iden-
tical to those from the MCMC algorithm (left column)
and W-NOMINATE (right column). The within-party

3 All computation in this article is completed on a cluster computer
running Red Hat Linux with multiple 2.67-GHz Intel Xeon X5550
processors. Unless otherwise noted, however, the computation is
done utilizing a single processor to emulate the computational per-
formance of our algorithms on a personal computer.

correlation remains high across the plots, indicating
that a strong agreement among these estimates up to
affine transformation.4 The agreement with the results
based on the MCMC algorithm is hardly surprising
given that both algorithms are based on the same poste-
rior distribution. The comparability of estimates across
methods holds for the other sessions of Congress con-
sidered.

For a small number of legislators, the deviation be-
tween results for the proposed EM algorithm and both
the MCMC algorithm and W-NOMINATE is not neg-
ligible. However, this is not a coincidence—it results
from the degree of missing votes associated with each
legislator.5 The individuals for whom the estimates
differ significantly all have no position registered for
more than 40% of the possible votes. Examples in-
clude President Obama, the late Congressman Don-
ald Payne (Democrat, NJ), and Congressman Thomas
Massie (Republican, KY).6 With a small amount of
data, the estimation of these legislators’ ideal points is
sensitive to the differences in statistical methods.

We also compare the standard errors from the pro-
posed EM algorithm using the parametric bootstrap
with those from the MCMC algorithm. Because the
output from the MCMC algorithm is rescaled to have
a mean of zero and standard deviation of 1, we rescale
the EM estimates to have the same sample moments.
This affine transformation is applied to each bootstrap
replicate so that the resulting bootstrap standard errors
are on the same scale as those based on the MCMC
algorithm. Figure 3 does this comparison using the esti-
mates for the 112th House of Representatives. The left
panel shows that the standard errors based on the EM
algorithm with the bootstrap (the vertical axis) are only
slightly smaller than those from the MCMC algorithm
(the horizontal axis) for most legislators. However, for
a few legislators, the standard errors from the EM al-
gorithm are substantially smaller than those from the
MCMC algorithm. The right panel of the figure shows
that these legislators have extreme ideological prefer-
ences.

To further examine the frequentist properties of our
standard errors based on parametric bootstrap, we con-
duct a Monte Carlo simulation where roll-call votes are

4 The same Pearson correlations between the MCMC algorithm and
W-NOMINATE for Republicans and Democrats are, respectively,
0.96 and 0.98 in the House. In the Senate, they are 0.99 and 0.98.
The Spearman correlations within party between the EM algorithm
and the nonparametric optimal classification algorithm are 0.77 and
0.77 in the House. They are 0.93 and 0.87 in the Senate. The same
within-party correlations between OC and the W-NOMINATE and
MCMC algorithms range from 0.80 to 0.93 in the House and 0.85 to
0.98 in the Senate.
5 The discrepancies in these estimates are present even when the
MCMC algorithm is executed by imputing missing votes rather than
simply dropping them.
6 Observations for the president are generated by interpreting state-
ments of support or opposition (including vetoes) as votes. While
these are not uncommon, they are issued far less frequently than
Congress takes roll calls. Congressman Payne, on the other hand,
passed away in the middle of the 112th session of Congress. Finally,
Congressman Massie was sworn into office as the representative for
Kentucky’s 4th congressional district after winning a special election
in November 2012 with just three months left in the 112th session.
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FIGURE 2. Comparison of Estimated Ideal Points across the Methods for the 112th Congress
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Notes: Republicans are shown with crosses while Democrats are indicated by hollow circles. The proposed EM algorithm is compared
with the MCMC algorithm “IDEAL” (left column; Jackman 2012) and “W-NOMINATE” (right column; Poole et al. 2011). For each of these,
the estimates are rescaled to a common scale for easy comparison across methods and chambers. Pearson correlation coefficients
within parties are also reported, but are unaffected by the rescaling. The proposed algorithm yields the estimates that are essentially
identical to those from the other two methods.

simulated consistent with data from the 112th House of
Representatives. That is, we use the estimates obtained
from these data as truths and simulate roll-call data
1,000 times according to the model. When simulating
the data, the same missingness pattern as the observed
data from the 112th Congress is used. For each of the
1,000 simulated roll call data sets, we estimate the ideal
points and compute the standard error based on 100
parametric bootstrap replicates. We then estimate the
bias of the resulting standard error for each legislator as

the average difference between the bootstrap standard
error and the standard deviation of estimated ideal
points across 1,000 simulations.

Figure 4 shows the estimated biases. The left panel
of the figure shows that the biases of the standard
errors are not systematically related to the extremity
of ideological positions. Thus, the divergence between
the MCMC and parametric bootstrap standard errors
for extreme legislators observed in Figure 3 does not
necessarily suggest that the latter is underestimated.
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FIGURE 3. Comparison of Standard Errors between the Proposed EM Algorithm and the Bayesian
MCMC Algorithm using the 112th House of Representatives
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Notes: The standard errors from the EM algorithm are based on the parametric bootstrap of 1,000 replicates. The left plot shows that
the proposed standard errors (the vertical axis) are similar to those from the MCMC algorithms (the horizontal axis) for most legislators.
For some legislators, the MCMC standard errors are much larger. The right panel shows that these legislators tend to have extreme
ideological preferences: estimates from the Bayesian MCMC algorithm are shown with crosses and those from the proposed EM
algorithm are shown with hollow circles.

FIGURE 4. Bias of Standard Error based on the Parametric Bootstrap

Notes: The results are based on a Monte Carlo simulation where roll-call data are simulated using estimates from the 112th House of
Representatives as truth. When simulating the data, the same missing data pattern as that in the data from the 112th Congress is used.
A total of 1,000 roll call data sets are simulated, and each simulated data set is then bootstrapped 100 times to obtain standard errors.
The estimated bias is computed as the average difference between the bootstrap standard error and the standard deviation of estimated
ideal points across 1,000 simulations. The left panel shows that the estimated biases of the parametric bootstrap standard errors are not
systematically related to ideological extremity. Instead, as the right panel shows, these biases are driven by the prevalence of missing
data for legislators. The standard errors are significantly underestimated for those legislators with a large number of missing data.
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FIGURE 5. Comparison of Changing Performance across the Methods as the Dimensions of
Roll-Call Matrix Increase

Notes: Estimation time is shown on the vertical axis as the number of legislators increases (left panel) and the number of bills increases
(right panel). Values are the median times over 25 replications. “EM (high precision)” is more computationally efficient than W-NOMINATE
(Poole et al. 2011) especially when the roll-call matrix is large.

Instead, as shown in the right panel of Figure 4, the bi-
ases of parametric bootstrap standard errors are driven
by the amount of missing data. The plot shows that
the standard errors are significantly underestimated
for those legislators with a large amount of missing
data.

Simulation Evidence

Next, we use Monte Carlo simulation to assess the com-
putational scalability of the proposed EM algorithm
as the dimensions of the roll-call matrix get larger.
The empirical application in the previous subsection
demonstrated the poor scalability of the MCMC al-
gorithm. Hence, we compare the performance of our
algorithm with W-NOMINATE. Figure 5 shows the
median performance of both the EM algorithm with
high precision and “W-NOMINATE” over 25 Monte
Carlo trials for various numbers of legislators and bills.
In the left panel, the number of bills is fixed at 1,000
and the number of legislators ranges from 50 to 10,000.
In the right panel, the number of legislators is fixed at
500, and the number of bills ranges from 50 to 5,000.
In both cases, the data-generating process follows the
single dimensional ideal point model where ideal points
are generated according to the standard normal distri-
bution and the bill parameters follow from a normal
distribution with mean zero and standard deviation of
10. These parameter values are chosen so that the true
parameter values explain around 85% percent of the
observed votes—a level of classification success com-
parable to the in-sample fit obtained in contemporary
sessions of Congress.

The computational efficiency of the proposed algo-
rithm can be seen immediately. Even with 10,000 leg-
islators and 1,000 bills, convergence at high precision
is achieved in less than 15 minutes. The runtime of our
algorithm increases only linearly as the number of ideal
points increases. This contrasts with W-NOMINATE,
whose required computation time grows exponentially
as the number of legislators increases. For example,
both the EM algorithm and W-NOMINATE require
less than 5 minutes to estimate the parameters associ-
ated with a roll-call matrix with 1,000 legislators and
1,000 bills. However, when the number of legislators
increases to 10,000, W-NOMINATE takes around 2.5
hours while the EM algorithm requires less than 15
minutes. The difference is less stark when the number
of bills increase (right panel). Even here, however, the
EM algorithm is more computationally efficient, espe-
cially when the number of bills is large.

IDEAL POINT MODEL WITH MIXED BINARY,
ORDINAL, AND CONTINUOUS OUTCOMES

We extend the EM algorithm developed above to the
ideal point model with mixed binary, ordinal, and con-
tinuous outcomes. Quinn (2004) develops an MCMC
algorithm for fitting this model and implements it as the
MCMCmixfactanal() function in the open-source R
package MCMCpack (Martin, Quinn, and Park 2013).
The EM algorithm for the ordinal probit model, which
is closely related to this model, poses a special chal-
lenge because its E step is not available in closed form.
Perhaps for this reason, to the best of our knowledge,
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the EM algorithm has not been developed for the or-
dinal probit model in the statistics literature.

In this section, we first show that the E step can be
derived in a closed form so long as the outcome variable
only has three ordinal categories. With a suitable trans-
formation of parameters, we derive an EM algorithm
that is analytically tractable. We then consider the cases
where the number of categories in the outcome vari-
able exceeds three and the outcome variable is a mix
of binary, ordinal, and continuous variables. Finally, we
apply the proposed algorithm to a survey of Japanese
politicians and voters.

The Model with a Three-category Ordinal
Outcome

We consider the same exact setup as the standard
model introduced above, with the exception that the
outcome variable now takes one of the three ordered
values, i.e., yij ∈ {0, 1, 2}. In this model, the probability
of each observed choice is given as follows:

Pr(yij = 0) = �(α1j − x�
i βj ), (9)

Pr(yij = 1) = �(α2j − x�
i βj ) − �(α1j − x�

i βj ), (10)

Pr(yij = 2) = 1 − �(α2j − x�
i βj ), (11)

where α2j > α1j for all j = 1, 2, . . . , J . The model can
be written using the latent propensity to agree y∗

ij for
respondent i as

y∗
ij = x�

i βj + εij , (12)

where εij
i.i.d.∼ N (0, 1) and these latent propensities are

connected to the observed outcomes through the fol-
lowing relationship:

yij =
⎧⎨
⎩

0 if y∗
ij < α1j

1 if α1j ≤ y∗
ij < α2j

2 if α2j ≤ y∗
ij

. (13)

As in the standard ideal point model, we treat absten-
tion as missing at random.

Following the literature, we assume the same nor-
mal independent prior distribution on ({βj }J

j =1, {xi}N
i=1)

as the one used for the standard binary model. For
({α1j , α2j }J

j =1), we assume an improper uniform prior
with the appropriate ordering restriction α1j < α2j .
Then, the joint posterior distribution is given by

p(Y∗, {xi}N
i=1, {α1j , α2j ,βj }J

j =1 | Y)

∝
N∏

i=1

J∏
j =1

[
1{y∗

ij < α1j }1{yij = 0}

+ 1{α1j ≤ y∗
ij < α2j }1{yij = 1}

+ 1{y∗
ij ≥ α2j }1{yij = 2}]φ1(y∗

ij ; x�
i βj , 1)

×
N∏

i=1

φK(xi; μx,�x)
J∏

j =1

φK(βj ; μβ,�β). (14)

The Proposed Algorithm

To develop an EM algorithm that is analytically
tractable, we employ the following one-to-one trans-
formation of parameters:

τj = α2j − α1j > 0, (15)

α∗
j = −α1j

τj
, (16)

β∗
j = βj

τj
, (17)

z∗
ij = y∗

ij − α1j

τj
, (18)

ε∗
ij = εij

τj
. (19)

Then, the simple algebra shows that the model can be
rewritten as

Pr(yij = 0) = �(−τj α
∗
j − τj x�

i β∗
j ), (20)

Pr(yij = 1) = �(−τj α
∗
j + τj − τj x�

i β∗
j )

−�(−τj α
∗
j − τj x�

i β∗
j ), (21)

Pr(yij = 2) = 1 − �(−τj α
∗
j + τj − τj x�

i β∗
j ), (22)

where the latent variable representation is given by

z∗
ij = α∗

j + x�
i β∗

j + ε∗ with ε∗
ij

indep.∼ N (0, τ−2
j ). (23)

Under this parametrization, the relationship between
the observed outcome yij and the latent variable z∗

ij is
given by

yij =
⎧⎨
⎩

0 if z∗
ij < 0

1 if 0 ≤ z∗
ij < 1

2 if 1 ≤ z∗
ij

. (24)

Thus, the consequence of this reparametrization is that
the threshold parameters (α1j , α2j ) are replaced with
the intercept term α∗

j and the heterogeneous variance
parameter τ−2

j .
To maintain conjugacy, we alter the prior distribution

specified in equation (14). In particular, we use the
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following prior distribution:

p
(
{β̃j }J

j =1,
{
τ2

j

}J

j =1
, {xi}N

i=1

)
=

J∏
j =1

φK+1(β̃j ; μβ̃,�β̃)

×G
(
τ2

j ;
ντ

2
,

sτ

2

) N∏
i=1

φK(xi; μx,�x), (25)

where β̃j = (α∗
j ,β

∗
j ) and G(τ2

j ; ντ/2, sτ/2) is the Gamma
distribution with ντ/2 > 0 and sτ/2 > 0 representing
the prior shape and rate parameters, respectively. This
change in prior distribution alters the model but so long
as the prior is diffuse and the size of data is large the
resulting inference should not differ much.

Given this setup, we derive the EM algorithm to
maximize the posterior distribution. We take the ana-
lytical strategy similar to the one used for the standard
ideal point model. The resulting algorithm is described
in the final section.

Mixed Binary, Ordinal, and Continuous
Outcomes

Here we consider how to apply, possibly after some
modification, the EM algorithm developed above
to a more generel case with mixed binary, ordi-
nal, and continuous outcomes. If the number of
ordered categories in outcome exceeds 3, we col-
lapse them into three categories for the sake of
analytical tractability and computational efficiency.7
For example, responses to a survey question on
the five-point Likert scale, i.e., strongly dis-
agree, disagree, neither agree nor dis-
agree, agree, strongly agree, may be con-
verted into a three-point scale by combining
strongly disagree and disagree into a single
category and strongly agree and agree into an-
other category. Researchers must carefully judge the
extent of tradeoff between the loss of information and
the computational speed for each application.

Next, suppose that yij is a binary outcome for a par-
ticular observation (i, j ). Then, we consider the fol-
lowing relationship between this observed outcome
and the latent propensity z∗

ij ; zij < 1 ⇐⇒ yij = 0 and
zij ≥ 0 ⇐⇒ yij = 1. Under this assumption, the E step
becomes

z∗
ij

(t) =

⎧⎪⎨
⎪⎩

m(t−1)
ij − 1

τ
(t−1)
j

λ
(
−m(t−1)

ij + 1, τ
(t−1)
j

)
if yij = 0

m(t−1)
ij + 1

τ
(t−1)
j

λ
(

m(t−1)
ij , τ

(t−1)
j

)
if yij = 1

(26)

7 In theory, one could develop a variational EM algorithm to deal
with more than three categories in the ordinal ideal point model.
However, unlike the three category case presented in this article, it
would require another layer of approximation and hence one must
examine the appropriateness of that approximation.

and

(
z∗

ij
2
)(t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
z∗

ij
(t)
)2

+ 1(
τ

(t−1)
j

)2

[
1− 1−m(t−1)

ij

τ
(t−1)
j

λ

×
(

m(t−1)
ij − 1, τ

(t−1)
j

)
−
{
λ
(

m(t−1)
ij − 1, τ

(t−1)
j

)}2
]

if yij = 0(
z∗

ij
(t)
)2

+ 1(
τ

(t−1)
j

)2

[
1 − λ

(
−m(t−1)

ij , τ
(t−1)
j

)
×
{
λ
(
−m(t−1)

ij , τ
(t−1)
j

)
+ m(t−1)

ij τ
(t−1)
j

}]
if yij = 1

,

(27)

where if yij is missing, we set z∗
ij

(t) = m(t−1)
ij and (z∗

ij
2)(t) =

(z∗
ij

(t))2 + (τ(t−1)
j )−2. Other than these modifications, the

rest of the EM algorithm stays identical.
Finally, it is straightforward to extend this model

to also include a continuous outcome as done by
Quinn (2004). In that case, set the first and second
moments of the latent propensity as z∗

ij
(t) = yij and

(z∗
ij

2)(t) = y2
ij + (τ(t−1)

j )−2 for this observation. The rest
of the EM algorithm remains unchanged.

An Empirical Application

We apply the ordinal ideal point model to the survey
data of the candidates and voters of Japanese Upper
and Lower House elections. This Asahi-Todai Elite
survey was conducted by the University of Tokyo in
collaboration with a major national newspaper, the
Asahi Shimbun, covering all candidates (both incum-
bents and challengers) for the eight elections that oc-
curred between 2003 and 2013. In six out of eight
waves, the survey was also administered to a nation-
ally representative sample of voters with the sample
size ranging from approximately 1,100 to about 2,000.
The novel feature of the data is that there are a set of
common policy questions, which can be used to scale
both politicians and voters over time on the same di-
mension. Another important advantage of the data is a
high response rate among politicians, which exceeded
85%. Such a high response rate is obtained in large part
because the survey results are published in the Asahi
Shimbun whose circulation is approximately eight mil-
lion (see Hirano et al. 2011, for more details).

All together, the data set we analyze contains a total
of N = 19,443 respondents, including 7,734 politicians
and 11,709 voters. Here, we count multiple appear-
ances of the same politician separately because an ideal
point will be estimated separately for each wave. There
are J = 98 unique questions in the survey, most of
which consisted of questions asking for responses on a
five-point Likert scale. We apply the proposed EM
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FIGURE 6. Comparison of Ideal Point Estimates from the EM and Markov Chain Monte Carlo
(MCMC) Algorithms for Japanese Politicians Using the Asahi-Todai Elite Survey

Notes: The figures compare the EM estimates (horizontal axis) against MCMC estimates (vertical axis). The EM estimates use a
coarsened three category response, which is compared against the MCMC estimates based on the same three category response
(left panel) and the original five category response (right panel). Overall correlation between the EM and MCMC estimates are high,
exceeding 0.95 in both cases.

algorithm after coarsening each response into three
categories (disagree, neutral, and agree). For the pur-
pose of comparison, we developed and used a cus-
tomized C language implementation of the MCMC
algorithm. The data set in this application was too
large for MCMCmixfactanal() from the R package
MCMCpack to handle. One model uses the full range
of categories found in the data without coarsening, and
the other model uses the same coarsened responses as
done for our algorithm. Obtaining 10,000 draws from
the posterior distribution using the MCMC algorithm
takes 4 hours and 24 minutes (5 category) or 3 hours
and 54 minutes (3 category). In contrast, estimation
using our proposed EM algorithm takes 164 iterations
and only 68 seconds to complete where the algorithm
is iterated until the correlation of parameter values
between two consecutive iterations reaches 1 − 10−6.

Figure 6 compares the estimated ideal points of
politicians based on our EM algorithm (vertical axis)
against those obtained from the standard MCMC algo-
rithm (horizontal axis). As explained earlier, the EM
estimates are based on the coarsened three category
response, while we present the MCMC estimates us-
ing the original five category response (right panel) as
well as the same coarsened three category response
(left panel). The plots show that these two algorithms
produce essentially identical estimates, achieving a cor-
relation greater than 0.95. In addition, for this data set,
coarsening the original five category response into a
three category response does not appear to have a sig-
nificant impact on the degree of correlation between
the two sets of ideal point estimates of Japanese politi-
cians.

Figure 7 compares the estimated ideal points of vot-
ers for each wave of survey, obtained from our EM
algorithm (white box plots) and the standard MCMC
algorithm (light and dark grey box plots for the coars-
ened three category and original five category re-
sponses, respectively). Across all six waves of the sur-
vey, the three algorithms give similar distributions of
estimated ideal points. The differences across the algo-
rithms lie mostly in their estimated ideal points for a
small subset of voters who answer too few questions.
For example, the 2003 survey included only two policy
questions, and 306 respondents from this survey gave
the same two responses. For these respondents, our EM
algorithm produces an identical ideal point estimate of
−0.89 whereas the MCMC algorithm gives a set of
ideal points ranging from about −3 to 0, mainly due to
the imprecise nature of posterior mean point estimates
when votes are not informative. Overall, the results
suggest that our EM algorithm recovers virtually iden-
tical estimates to those derived via the standard MCMC
algorithm but with substantial savings in time.

DYNAMIC IDEAL POINT MODEL

We next consider the dynamic ideal point model of
Martin and Quinn (2002), who characterized how
the ideal points of supreme court justices change
over time. The authors develop an MCMC algorithm
for fitting this model and make it available as the
MCMCdynamicIRT1d() function in the open-source
R package MCMCpack (Martin, Quinn, and Park
2013). This methodology is based on the dynamic linear
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FIGURE 7. Comparing the Distributions of
Estimated Ideal Points between the EM and
Markov Chain Monte Carlo (MCMC)
Algorithms for Japanese Voters across Six
Waves of the Asahi-Todai Elite Survey

Notes: White box plots describe the distribution of the EM es-
timates whereas light and dark grey box plots represent the
MCMC estimates for the coarsened three category and original
five category responses, respectively. Across all waves, these
three algorithms produce similar estimates of ideal points.

modeling approach and is more flexible than polyno-
mial time trend models considered by other scholars
(see, e.g., DW-NOMINATE, Bailey 2007).

Nevertheless, this flexibility comes at a significant
computational cost. In particular, Martin and Quinn
(2002) report that using a dedicated workstation it took
over 6 days to estimate ideal points for U.S. Supreme
Court justices over 47 years (footnote 12). Because of
this computational burden, Bailey (2007) resorts to a
simpler parametric dynamic model (p. 441). In addi-
tion, unlike the two models we considered above, no
closed-form EM algorithm is available for maximizing
the posterior in this case. Therefore, we propose use
of variational inference that approximates posterior
inference by deriving a variational EM algorithm. We
show that the proposed algorithm is orders of magni-
tude faster than the standard MCMC algorithm and
scales to a large data set while yielding the estimates
that are similar to those obtained from the standard
MCMC algorithm.

The Model

Let yij t be an indicator variable representing the ob-
served vote of legislator i on roll call j at time t where
yij t = 1 (yij t = 0) represents “yea” (“nay”). There are
a total of N unique legislators, i.e., i = 1, . . . , N, and
for any given time period t, there are Jt roll calls, i.e.,
j = 1, . . . , Jt. Finally, the number of time periods is
T, i.e., t = 1, . . . , T. Then, the single-dimensional ideal

point model is given by

Pr(yij t = 1) = �(αj t + βj txit) = �(x̃�
it β̃j t), (28)

where xit is justice i’s ideal point at time t, and αj t and
βj t represent the item difficulty and item discrimination
parameters for roll call j in time t, respectively. Note
that as before we use a vector notation x̃it = (1, xit) and
β̃j t = (αj t, βj t). As before, the model can be rewritten
with the latent propensity y∗

ij t,

y∗
ij t = x̃�

it β̃j t + εij t, (29)

where εij t
i.i.d.∼ N (0, 1) and yij t = 1 (yij t = 0) if y∗

ij t > 0
(y∗

ij t ≤ 0).
As done in the standard dynamic linear modeling

framework, the dynamic aspect of the ideal point esti-
mation is specified through the following random walk
prior for each legislator i:

xit | xi,t−1
indep.∼ N (xi,t−1, ω2

x) (30)

for t = Ti, Ti + 1, . . . , Ti − 1, Ti where Ti is the first
time period legislator i enters the data and Ti is the
last time period the legislator appears in the data,

i.e., 1 ≤ Ti ≤ Ti ≤ T. In addition, we assume xi,Ti−1
i.i.d.∼

N (μx, �x) for each legislator i.
Finally, given this setup, with the independent conju-

gate prior on β̃j t, we have the following joint posterior
distribution:

p(Y∗, {xi}N
i=1, {β̃j }T

t=1 | Y)

∝
N∏

i=1

Ti∏
t=Ti

Jt∏
j =1

(
1{y∗

ij t > 0}1{yij t = 1}

+ 1{y∗
ij t ≤ 0}1{yij t = 0}) φ1

(
y∗

ij t; x̃�
it β̃j t, 1

)

×
N∏

i=1

⎧⎨
⎩φ1(xi,Ti−1; μx, �x)

Ti∏
t=Ti

φ1(xit; xi,t−1, ω
2
x)

⎫⎬
⎭

×
T∏

t=1

Jt∏
j =1

φ2(β̃j t; μβ̃,�β̃), (31)

where xi = (xiTi
, . . . , xiTi

) for i = 1, . . . , N.
We propose a variational EM algorithm for the dy-

namic ideal point model summarized above. The vari-
ational inference makes factorization assumptions and
approximates the posterior inference by minimizing
the Kullback-Leibler divergence between the true pos-
terior distribution and the factorized distribution (see
Wainwright and Jordan (2008) for a review and Grim-
mer (2011) for an introductory article in political sci-
ence). In the current context, we assume the following
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factorization assumption:

q(Y∗, {xi}N
i=1, {β̃j }T

t=1)

=
N∏

i=1

Ti∏
t=Ti

q(y∗
it)

N∏
i=1

q(xi)
T∏

t=1

Jt∏
j =1

q(β̃j t) (32)

which basically assumes the independence across pa-
rameters. Importantly, we do not assume the indepen-
dence between xit and xit′ so that we do not sacrifice
our ability to model dynamics of ideal points. We also
do not assume a family of approximating distributions.
Rather, our results show that the optimal variational
distribution belongs to a certain parametric family. The
proposed variational EM algorithm is described in the
final section while the detailed derivation is given in
Appendix C.8

An Empirical Application

We apply the proposed variational EM algorithm for
estimating the dynamic ideal point to the voting data
from the U.S. Supreme court (from October 1937 to
October 2013). The data set includes 5,164 votes on
court cases by 45 distinct justices over 77 terms, result-
ing in the estimation of 697 unique ideal points for all
justice-term combinations. The same data set was used
to compute the ideal point estimates published as the
well-known Martin-Quinn scores at http://mqscores.
berkeley.edu/ (July 23, 2014 Release version).

We set the prior parameters using the replication
code, which was directly obtained from the authors. In
particular, the key random-walk prior variance param-
eter ω2

x is set to be equal to 0.1 for all justices. Note that
this choice differs from the specification in Martin and
Quinn (2002) where Douglas’ prior variance parameter
was set as ω2

x = 0.001 because of his ideological extrem-
ity and the small number of cases he heard towards the
end of his career. This means that Douglas’s ideal point
estimate is fixed at his prior mean of −3.0, but in the
results we report below this constraint is not imposed.

We use the same prior specification and apply the
proposed variational EM algorithm as well as the stan-
dard MCMC algorithm implemented via the MCMCdy-
namicIRT1d() function from MCMCpack. For the
MCMC algorithm, using the replication code, 1.2 mil-
lion iterations took just over 5 days of computing time.
In contrast, our variational EM algorithm took only
four seconds. To obtain a measure of estimation un-
certainty, we use the parametric bootstrap approach of
Lewis and Poole (2004) to create 100 replicates and
construct bias-corrected 95% bootstrap confidence in-
tervals. Note that even with this bootstrap procedure,
the computation is done within several minutes.

We begin by examining, for each term, the corre-
lation of the resulting estimated ideal points for nine

8 For completeness, we also derive the variational EM algorithms
for the standard ideal point model (Appendix A) and the ideal point
model with an ordinal outcome (Appendix B).

FIGURE 8. Correlation of the Estimated Ideal
Points for each Term between the Variational
EM and Markov Chain Monte Carlo (MCMC)
Algorithms

Notes: Open circles indicate Pearson correlations, while grey
triangles represent Spearman’s rank-order correlations. Over-
all, the correlations are high, exceeding 95% in most cases. The
poorer Pearson correlations around 1969 are driven largely by
Douglas’ ideological extremity (see Figure 9).

justices between the proposed variational inference al-
gorithm and MCMC algorithm. Figure 8 presents both
Pearson’s correlations and Spearman’s rank-order cor-
relations. Overall, the correlations are high, exceeding
95% in most cases. In particular, for many terms, rank-
order correlations are equal to unity, indicating that
the two algorithms produce justices’ estimated ideal
points whose rank order is identical. We note that a sig-
nificant drop in Pearson correlation between 1960 and
1975 is driven almost entirely by the extreme MCMC
estimates of Douglas’ position in these years, which
correspond to the final years of his tenure. And yet,
even in these years, the rank-order correlations remain
high.

Figures 9 present time series plots of the estimated
ideal points for the 16 justices who served the longest
periods of time in our study. Solid lines indicate the
variational estimates, while the dashed lines indicate
their 95% confidence intervals based on the parametric
bootstrap. The grey polygons represent the 95% credi-
ble intervals obtained from the MCMC algorithm. For
almost all justices, the movement of estimated ideal
points over time is similar between the two algorithms.
Indeed, for most justices, the correlation between the
two sets of estimates is high, often exceeding .95. A
notable exception to this is Douglas, where we see his
ideal point estimates based on the MCMC algorithm
becomes more extreme as time passes. The behavior
observed here is consistent with earlier warnings about
Douglas’ ideological extremity and the fact that he
cast only a small number of votes in the final years
of his career (Martin and Quinn 2002). The correlation
across all ideal points between the two sets of estimates
increases from 0.93 to 0.96, once we exclude Douglas.
Overall, our proposed variational inference algorithm
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FIGURE 9. Ideal Point Estimates for 16 Longest-serving Justices based on the Variational
Inference (VI) and Markov Chain Monte Carlo (MCMC) Algorithm

Notes: The VI point estimates are indicated by solid lines while the dashed lines indicate its 95% confidence intervals based on the
parametric bootstrap. We also present the 95% Bayesian confidence intervals as grey polygons. The horizontal axis indicates year and
the vertical axis indicates estimated ideal points. For each justice, we also compute the Pearson’s correlation between the two sets of
the estimates. Overall, the correlations between the two sets of estimates are high except Douglas who is ideologically extreme and
has only a small number of votes in the final years of his career.

produces the estimates of ideal points that are close
to the Martin-Quinn score but with significantly less
computing time.

Simulation Evidence

We further demonstrate the computational scalability
of the proposed variational EM algorithm through a

series of simulations. We generate a number of roll
call matrices that vary in size. These include roll call
matrices that have N = 10 legislators and J = 100 roll
calls per session (roughly corresponding to the size of
the U.S. Supreme Court), roll-call matrices with N =
100 and J = 500 (roughly corresponding to the size of
the U.S. Senate), and roll-call matrices with N = 500
and J = 1,000 (roughly corresponding in size to the
U.S. House). We also vary the total number of sessions,
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FIGURE 10. Scalability and Accuracy of the Proposed Variational Inference for the Dynamic Ideal
Point Model

Notes: The left panel presents run times of the proposed variational EM algorithm for fitting the dynamic ideal point model. We consider
three different simulation scenarios where the number of legislators N varies from 10 to 500 and the number of roll calls per session
J ranges from 100 to 1,000. The number of sessions T is shown on the horizontal axis, with all N legislators assumed to vote on all J
bills in every session. The vertical axis indicates the time necessary to fit the dynamic ideal point model for each data set through the
proposed algorithm. Even with the largest data set we consider (N = 500, J = 1,000, and T = 100), the algorithm can estimate a half
million ideal points in about two hours. The right panel shows the (Pearson) correlation between the estimated ideal points and their
true values. In almost all cases, the correlation exceeds 0.95.

ranging from T = 10 to T = 100. Thus, the largest roll-
call matrix represents a scenario that all members of
the U.S. House vote on 1,000 bills during each of 100
consecutive sessions! As we show next, even in this
extreme case, our algorithm runs in about 25 minutes,
yielding the estimated ideal points that are close to the
true values.

We then apply our variational EM algorithm and
record the amount of time needed to estimate the
model, as well as correlation between the true and
recovered ideal points. In the simulation, all legislators
serve throughout all periods, whose ideal points in the
first period follow the standard normal distribution. In-
dependence across legislators is assumed as done in the
model, and their subsequent ideal points are generated
as a random walk with ω2

x = 0.1 for all legislators. Item
difficulty and discrimination parameters in all sessions
were drawn from uniform (−1.5, 1.5) and (−5.5, 5.5)
distributions respectively. While parallelization of the
algorithm is trivial and would further reduce run times,
we do not implement it for this calculation. As before,
convergence is assumed to be achieved when correla-
tion across all parameters across consecutive iterations
is greater than 1 − 10−6.9

The left panel of Figure 10 displays the amount of
time needed for each simulation, with the total number

9 To reduce Monte Carlo error, estimates for cases where N = 10 are
repeated 25 times, with median run times and correlations reported
in the figure.

of sessions T given on the horizontal axis. As a bench-
mark comparison, MCMC replication code provided
by Martin and Quinn (2002) took over five days to
estimate ideal points for U.S. Supreme Court justices
over 77 years (N = 45, T = 77, and J = 5,164). For the
scenario with N = 10 legislators and J = 100 roll calls
per session, estimation is completed under a minute
regardless of the number of sessions. Similarly, for the
scenarios with 100 legislators and 500 roll calls per ses-
sion, computation is completed in a matter of minutes
regardless of the number of sessions. Computation only
begins to significantly increase with our largest scenario
of 500 legislators and 1,000 roll calls per session. But
even here, for 100 sessions, the variational EM algo-
rithm converges in under 25 minutes.

The right panel of the figure presents, for each simu-
lation scenario, the correlation between the variational
estimates of ideal points and their true values across all
legislators and sessions. The plot demonstrates that the
correlation exceeds .95 throughout all the simulations
except the case where the size of roll call matrix is
small. Even in this case, the correlation is about .90,
which suggests the reasonable accuracy of the varia-
tional estimates under the dynamic ideal point model.

HIERARCHICAL IDEAL POINT MODEL

Finally, we consider the hierarchical ideal point model
where the ideal points are modeled as a linear func-
tion of covariates (Bafumi et al. 2005). Like the
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dynamic ideal point model, there is no closed-form EM
algorithm that directly maximizes the posterior distri-
bution. Therefore, we apply variational inference to
approximate the posterior distribution. We derive the
variational EM algorithm and demonstrate its compu-
tational efficiency and the accuracy of approximation
through empirical and simulation studies.

The Model

Let each distinct vote be denoted by the binary ran-
dom variable yl where there exist a total of L such
votes, i.e., � ∈ {1, . . . , L}. Each vote y� represents a vote
cast by legislator i[�] on bill j [�] (y� = 1 and y� = 0
representing “yea” and “nay,” respectively) where
i[�] ∈ {1, . . . , N} and j [�] ∈ {1, . . . , J }. Thus, there are a
total of N legislators and J bills. Finally, let g[i[�]] rep-
resent the group membership of legislator i[�] where
g[i[�]] ∈ {1, . . . , G} and G indicates the total number
of groups.

The hierarchical model we consider has the following
latent variable structure with the observed vote written
as y� = 1{y∗

� > 0} as before:

y∗
� = αj [�] + βj [�]xi[�] + ε� where ε�

i.i.d.∼ N (0, 1),

(33)

xi[�] = γ�
g[i[�]]zi[�] + ηi[�] where ηi[�]

indep.∼ N
(

0, σ2
g[i[�]]

)
,

(34)

where γg[i[�]] is an M-dimensional vector of group-
specific coefficients, zi[�] is an M-dimensional vector of
legislator-specific covariates, which typically includes
one for an intercept, and σ2

g[i[�]] is the group-specific
variance.

One important special case of this model is a dynamic
ideal point model with a parametric time trend, an
approach used to compute DW-NOMINATE scores
(Poole and Rosenthal 1997) and adopted by some
scholars (e.g., Bailey 2007). In this case, the i[�] repre-
sents a legislator session, e.g., John Kerry in 2014, and
g[i[�]] indicates the legislator, John Kerry, whereas zi[�]
may include the number of sessions since the legislator
took office as well as a constant for the intercept term.
Then, the ideal points are modeled with a linear time
trend. In addition, including the square term will allow
one to model ideal points using a quadratic time trend.
Note that in this setting the time trend is estimated
separately for each legislator.

The model is completed with the following conjugate
prior distribution:

β̃j [�]
i.i.d.∼ N (μβ̃, �β̃), (35)

γg[i[�]]
i.i.d.∼ N (μγ, �γ), (36)

σ2
g[i[�]]

i.i.d.∼ IG
(

νσ

2
,

s2
σ

2

)
, (37)

where β̃j [�] = (αj [�],βj [�]) and IG(ν, s2) represents the
inverse-gamma distribution with scale and shape pa-
rameters equal to ν and s2, respectively.

It is convenient to rewrite the model in the following
reduced form:

y∗
� = αj [�] + βj [�]γ

�
g[i[�]]zi[�] + βj [�]ηi[�] + ε� (38)

Then, the joint posterior distribution is given by

p(Y∗, {β̃k}J
k=1, {γm}G

m=1, {ηn}N
n=1 | Y)

∝
L∏

�=1

J∏
k=1

N∏
n=1

G∏
m=1

(
1{y∗

ij ≥ 0, yij = 1}

+ 1{y∗
ij < 0, yij = 0})

×φ1(y∗
� ; αk + βkγ

�
mzn + βkηn, 1)1{j [�]=k,i[�]=n,g[i[�]]=m}

×
J∏

k=1

φ2(β̃k; μβ̃,�β̃)
N∏

n=1

G∏
m=1

φ1(ηn; 0, σ2
m)1{g[n]=m}

×
G∏

m=1

IG
(

σ2
m;

νσ

2
,

s2
σ

2

)
. (39)

For this hierarchical model, there is no closed-form
EM algorithm that can directly maximize the posterior
distribution given in equation (39). Therefore, as done
in the case of the dynamic model, we seek the varia-
tional approximation. The factorization assumption we
invoke is given by the following:

q
(
Y∗, {β̃k}J

k=1, {γm, σ2
m}G

m=1, {ηn}N
n=1

)
=

L∏
�=1

q(y∗
�)

J∏
k=1

q(β̃k)
G∏

m=1

q(γm)q(σ2
m)

N∏
n=1

q(ηn). (40)

Under this factorization assumption, we can derive
the variational EM algorithm that approximates the
joint posterior distribution by maximizing the lower
bound. Note that aside from the factorization assump-
tion no additional assumption is made to derive the
proposed algorithm. The proposed algorithm is de-
scribed in the final section while the derivation is given
in Appendix D.

Simulation Evidence

We conduct a simulation study to demonstrate the
computational scalability and accuracy of the proposed
variational EM algorithm. To do this, we generate roll-
call matrices that vary in size following the simulation
study for dynamic models where the number of leg-
islators is now replaced by the number of groups G
instead. Each group has N different ideal points to be
estimated, and three covariates zi[�] are observed for
each ideal point, i.e., M = 3. Finally, we construct the
simulation such that each group votes on the same set
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FIGURE 11. Scalability and Accuracy of the Proposed Variational Inference for the Hierarchical
Ideal Point Model

Notes: The left panel presents run times of the proposed variational EM algorithm for fitting the hierarchical ideal point model. We
consider three different simulation scenarios where the number of groups G varies from 10 to 500 and the number of bills (per group) J
ranges from 100 to 1,000. The number of ideal points to be estimated (per group) N is shown on the horizontal axis, with all G groups
assumed to vote on all J bills but within each group different legislators vote on different subsets of the bills. In the largest data set we
consider (N = 100, J = 1,000, and G = 500), our algorithm can estimate a hundred thousand ideal points in about 14 hours. The right
panel shows the (Pearson) correlation between the estimated ideal points and their true values.

of J bills but within each group different members vote
on different subsets of the bills.

The intercepts for ideal points follow another uni-
form distribution with (−1, 1), while item discrimi-
nation parameters were both drawn uniformly from
(−0.2, 0.2). The group-level variance parameters σ2

g[i[�]]
were set to 0.01 for all groups. We use diffuse priors for
item difficulty and discrimination parameters as well
as for group-level coefficients. Specifically, the prior
distribution for these parameters is the independent
normal distribution with a mean of zero and a stan-
dard deviation of five. For group-level variance param-
eters, we use a semi-informative prior such that they
follow the inverse-gamma distribution with ν0 = 2 and
s2 = 0.02.

When compared to the other models considered in
this article, we find the hierarchical model to be com-
putationally more demanding. To partially address this
issue, we parallelize the algorithm wherever possible
and implement this parallelized code using eight cores
through OpenMP in this simulation study. We also use
a slightly less stringent convergence criteria than in the
other cases where we check whether the correlations
for bill parameters and group-level coefficients across
their consecutive iterations is greater than 1 − 10−3. We
find that applying a stricter convergence criteria does
not significantly improve the quality of the resulting
estimates.

We consider three different sets of simulation scenar-
ios where the number of groups G varies from 10 to 500
and the number of bills (per group) J ranges from 100

to 1,000. Figure 11 shows the results. In the left plot, the
vertical axis represents the runtime of our algorithm in
hours, while the horizontal axis shows the size of each
group N, i.e., the number of ideal points to be estimated
per group. Our variational EM algorithm scales well to
a large data set. In the largest data set we consider
(N = 100, J = 1,000, and G = 500), for example, the
proposed algorithm can estimate a hundred thousand
ideal points in only about 14 hours.

In the right plot of Figure 11, we plot the correla-
tion between the estimated ideal points and their true
values for each simulation scenario.10 The quality of
estimates appear to depend on the number of groups
with the simulations with a larger number of groups
yielding almost perfect correlation. When the number
of groups is small, however, we find that the correla-
tions are weaker and the results are highly dependent
on prior specification. This is a well-known feature of
Bayesian hierarchical models (Gelman 2006) and the
ideal point models appear to be no exception in this
regard.

An Empirical Illustration

As noted earlier, DW-NOMINATE scores adopt a
linear time trend model for legislators. A model

10 To account for Monte Carlo error, the simulations for cases where
N = 10 are repeated 25 times, with median run times and correlations
reported in the figure. The standard error of this correlation ranges
from 0.08 to 0.11.
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FIGURE 12. Correlation between
DW-NOMINATE Estimates and the Proposed
Hierarchical Ideal Point Estimates for the
1st–110th Congress

Note: These ideal point estimates are quite similar with a cor-
relation of 0.97.

essentially equivalent to this model can be estimated
as a special case of our general hierarchical model, in
which the covariate zi[l] is the term served by a par-
ticular legislator and the ideal point noise parameter
ηi[l] is fixed at 0.11 We analyze the roll-call data from
the 1st–100th U.S. House and show empirically that
the proposed variational EM algorithm for this model
produces the ideal point estimates essentially similar
to DW-NOMINATE scores. We specify the prior pa-
rameters as νσ = 108 and s2

σ = 10−8, which effectively
fix the noise parameter as desired, and use the same
starting values as those used in DW-NOMINATE. An
additional constraint we impose that is consistent with
DW-NOMINATE is that legislators who serve less than
four terms do not shift ideal points over time.

Our model includes G = 10,474 groups (i.e., legisla-
tors) with I = 36,177 different ideal points, estimated
using J = 48,381 bills. Estimation of the model using
eight threads required just under 5 hours of computing
time. This run time could be considerably reduced, for
example, by not updating ηi[�] and σ−2

m , which are fixed
at zero. Figure 12 shows the estimated ideal points from
the hierarchical model, plotted against the correspond-
ing DW-NOMINATE estimates. The two sets of ideal
points correlate at 0.97, thus validating the ability of the
hierarchical model to reproduce DW-NOMINATE’s
linear time trend ideal point model.

11 There are other minor differences relating to different utility func-
tions (Carroll et al. 2009; 2013).

IDEAL POINT MODELS FOR TEXTUAL AND
NETWORK DATA

In recent years, political scientists began to develop
and apply ideal point models to new types of data,
going beyond roll call votes and survey data. They in-
clude text data (e.g., Kim, Londregan, and Ratkovic
2014; Lauderdale and Herzog 2014; Lowe et al. 2011;
Slapin and Proksch 2008) and network data such as
campaign contributions(Bonica 2013; 2014), court ci-
tations (Clark and Lauderdale 2010), and social me-
dia data (Barberá 2015; Bond and Messing 2015). We
expect that the applications of ideal point models to
these new types of “big data” will continue to increase
over the next few years. In this section, we demonstrate
that our approach can be extended to these models. In
particular, we consider the popular “Wordfish” model
of Slapin and Proksch (2008) for text analysis and an
ideal point model commonly used for network data
analysis.

Fast Estimation of an Ideal Point Model for
Textual Data

Suppose that we have a corpus of K documents, each of
which is associated with one of N actors, and there are J
unique words possibly after pre-processing the corpus
(e.g., stemming). Slapin and Proksch (2008) propose to
analyze the (J × K) term-document matrix Y using a
variant of ideal point model called the Wordfish model
(see also Lowe et al. 2011, for a related model). Their
substantive application is the analysis of manifestos to
estimate ideological positions of political parties.

The Generalized Wordfish Model. The original
Wordfish model only allows one document per actor.
Here, we generalize this model by enabling multiple
documents per actor. Let yj k denote the (j , k) element
of the term-document matrix Y, representing the fre-
quency of term j in document k. Then, our generalized
Wordfish model is defined as

p(yj k | αj , βj , ψk, xi) = Poisson(λj k), (41)

λj k = exp(ψk + αj + βj xi[k]), (42)

where ψk represents the degree of verboseness of doc-
ument k, αj is the overall frequency of term j across all
documents, βj is the discrimination parameter for term
k, and finally xi[k] represents the ideological position of
the actor to whom document k belongs.

Although the original model is developed under the
frequentist framework, we consider the Bayesian for-
mulation by specifying a set of independent prior dis-
tributions:

p(β̃j )
i.i.d.∼ N (μβ̃,�β̃), (43)

p(ψk)
i.i.d.∼ N (μψ, σ

2
ψ), (44)

649
http://dx.doi.org/10.1017/S000305541600037X
Downloaded from http:/www.cambridge.org/core. Princeton Univ, on 04 Jan 2017 at 07:29:30, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S000305541600037X
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


Fast Estimation of Ideal Points with Massive Data November 2016

p(xi)
i.i.d.∼ N (μx, σ

2
x), (45)

where β̃j = (αj , βj ) is a vector of term parameters. The
joint posterior distribution is therefore given by

p
(
{ψj }K

k=1, {β̃j }J
j =1, {xN

i=1} | Y
)

∝
⎡
⎣ J∏

j =1

{
K∏

k=1

p(yj k | ψk, β̃j , xi[k])p(ψk)

}
p(β̃j )

⎤
⎦

×
N∏

i=1

p(xi). (46)

In Appendix E, we derive the EM algorithm for the
local variational inference under the following factor-
ization assumption:

q
(
{ψk}K

k=1, {β̃j }J
j =1, {xN

i=1}
)

=
J∏

j =1

q(β̃j )
K∏

k=1

q(ψk)
N∏

i=1

q(xi). (47)

A Simulation Study. We conduct a simulation study
to demonstrate the computational scalability and accu-
racy of the proposed variational EM algorithm. Here,
we generate text-document matrices that vary in size.
We consider three different sets of simulation scenarios
where the number of actors N varies from 100 to 1,000,
while the number of words are fixed at J = 5,000. We
also vary the number of documents linked to each legis-
lator, K/N, from 10 to 100. Therefore, in this simulation
study, the total number of documents, K, ranges from
1,000 to 100,000. Note that the number of parameters
to be estimated in this simulation (K + 2J + N) varies
from 11,100 to 111,000. Results are shown in Figure 13,
with run times on the vertical axis in minutes. In the
largest data set we consider (N = 1,000, J = 5,000,
K/N = 100), the proposed algorithm completes esti-
mation in under 2.5 hours. For all simulations above,
the correlation between the estimated ideal points and
their true values exceeds 0.99.

Fast Estimation of an Ideal Point Model for
Network Data

We next consider the estimation of ideal points from
the network data including citation, social media, and
campaign contribution data. These data provide the in-
formation about a set of nodes and edges. For example,
in the court citation data (Clark and Lauderdale 2010),
a node represents a court opinion and the existence of
a directed edge from one opinion to another implies
a citation. Similarly, in social media data analyzed by
Barberá (2015) and Bond and Messing (2015), nodes
are Twitter and Facebook users and edges indicate
whether they follow each other. For campaign contri-

FIGURE 13. Scalability of the Proposed
Variational Inference for the Generalized
Wordfish Model

Notes: The left panel presents run times of the proposed vari-
ational EM algorithm for fitting the generalized Wordfish model.
We consider three different simulation scenarios where the
number of actors N varies from 100 to 1,000, while the number
of words J is fixed to 5,000. The number of documents per actor
K/N is shown on the horizontal axis. The vertical axis indicates
the time necessary to fit the generalized Wordfish model for
each data set through the proposed algorithm. For all cases
above, the correlation exceeds 0.99.

bution data (Bonica 2014), nodes are candidates and
voters and edges represent the donations from voters
to politicians.

The Network Ideal Point Model. Here, we consider
the model developed by Barberá (2015) to analyze
more than four million Twitter users. Let yij = 1{y∗

ij >

0} represent whether Twitter user i follows politician j
where y∗

ij is the latent propensity where i = 1, 2, . . . , N
and j = 1, 2, . . . , J . The network ideal point model is
given by

y∗
ij = αj + βi − ‖xi − zj ‖2 + εij , (48)

where ‖ · ‖ represents the Euclidian norm, and εij is the
error term.12 We assume that εij follows the standard
normal distribution. The ideal points of Twitter user i
and politician j are denoted by xi and zj , respectively.
The model assumes that twitter user i are more likely to
follow politician j if their ideal points are similar. The
model parameters, αj and βi, represents the overall
degree to which politician j is followed and Twitter
user i follows politicians, respectively.

12 The original model of Barberá (2015) includes a normalizing con-
stant γ and is given by y∗

ij = αj + βi − γ‖xi − zj ‖2 + εij . However,
it is clear that γ is not identifiable. Hence, we do not consider this
parameter.
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The model is completed by the following specifica-
tion of prior distributions:

p({αj }J
j =1) =

J∏
j =1

N
(
μα, σ

2
α

)
, (49)

p({βi}N
i=1) =

N∏
i=1

N
(
μβ, σ

2
β

)
, (50)

p({xi}N
i=1) =

N∏
i=1

N
(
μx, σ

2
x

)
, (51)

p({zj }J
j =1) =

J∏
j =1

N
(
μz, σ

2
z

)
. (52)

Together, the joint posterior distribution conditional
on the observed (N × J ) matrix Y is given by

p(Y∗, {αj }J
j =1, {βi}N

i=1, {xi}N
i=1, {zj }J

j =1 | Y)

∝
N∏

i=1

J∏
j =1

(
1{y∗

ij > 0}1{yij = 1}

+ 1{y∗
ij ≤ 0}1{yij = 0})

×φ1
(
y∗

ij ; αj + βi − ‖xi − zi‖2)
×

N∏
i=1

{
φ1
(
xi; μx, σ

2
x

)
φ1
(
βi; μβ, σ

2
β

)}

×
J∏

j =1

{
φ1
(
αj ; μα, σ

2
α

)
φ1
(
zj ; μz, σ

2
z

)}
. (53)

In Appendix F, we derive the variational EM algo-
rithm for the above ideal point model for network data
under the following factorization assumption:

q(Y∗, {αj }J
j =1, {βi}N

i=1, {xi}N
i=1, {zj }J

j =1)

=
N∏

i=1

J∏
j =1

q(y∗
ij )

N∏
i=1

q(xi)q(βi)
J∏

j =1

q(αi)q(zi). (54)

The variational distributions for the ideal points for
users and politicians are based on the second-order
Taylor approximation.

An Empirical Study. We test the performance of our
estimation algorithm by applying it to a subset of the
U.S. Twitter data made available by Barberá (2015).
The original data set includes N = 301,537 voters fol-
lowing J = 318 political elites. Since the replication
archive recommends using a subset of N = 10,000 vot-
ers following J = 176 political elites, we proceed with
this smaller data set instead. Even with this subset of
the original data, it took 6.5 days on our machine to

sample just 500 posterior draws using an MCMC algo-
rithm via RStan software.13 In contrast, our variational
EM algorithm was able to complete the estimation for
this same data set within 35 minutes even though we
did not use any parallelization. This demonstrates the
scalability of our algorithm when compared to a stan-
dard MCMC algorithm.

In Figure 14, we compare our ideal point estimates
with those of Barberá (2015) for both voters (left panel)
and political elites (right panel). In both cases, we
observe that the variational EM algorithm produces
essentially the same estimates as the Markov chain
Monte Carlo algorithm as implemented via RStan soft-
ware.

CONCLUDING REMARKS

Political ideology is at the core of political science the-
ories across all subfields. And yet, when conducting
empirical analyses, it is impossible to directly observe
political ideology. Instead, researchers must infer ide-
ological positions of various actors from their behavior
or expressed attitudes. Quantitative analysis of political
ideology begins with the specification of a measure-
ment model that formally connects latent ideological
positions with observed behavior and attitudes. Over
the last couple of decades, ideal point estimation meth-
ods based on spatial voting models and item response
theory have been the main workhorse for quantitative
researchers in political science to measure political ide-
ology. These models have been used to analyze the vot-
ing in U.S. Congress (e.g., Poole and Rosenthal 1997),
courts (e.g., Martin and Quinn 2002), other legislatures
(e.g., Hix, Noury, and Roland 2006; Londregan 2007),
and United Nations assembly (e.g., Bailey, Strezhnev,
and Voeten 2015; Voeten 2000). Beyond roll call votes,
the methods are also applied to survey data (e.g.,
Clinton and Lewis 2008), campaign contributions (e.g.,
Bonica 2014), party manifestos (e.g., Lowe et al. 2011),
speeches (e.g., Proksch and Slapin 2010), and social
media (e.g., Bond and Messing 2015).

Over the last decade, political science, like other so-
cial science disciplines, witnessed the “big data revo-
lution” where empirical researchers are collecting in-
creasingly large data sets of diverse types. These rich
data sets allow researchers to answer the questions
they were previously unable to tackle and often enable
to employ more realistic but complicated modeling
strategies. While the available computational power
is steadily increasing, the amount of data available
to social scientists and the degree of methodologi-
cal sophistication are growing at an even faster rate.
As a result, researchers are unable to estimate the
models of their choice within a reasonable amount
of time and are often forced to make a compromise
by adopting a feasible and yet undesirable statistical
procedure.

13 Barberá (2015) reports that the approximate run time on a more
advanced high performance computer at NYU took approximately
18 hours using parallelization.
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FIGURE 14. Comparison of Our Ideal Point Estimates with Those of Barberá (2015)

Notes: Our ideal point estimates are based on the variational EM algorithm whereas those of Barberá (2015) are based on the Markov
chain Monte Carlo algorithm as implemented in RStan. The left panel compares the two sets of ideal points for J = 176 political elites
whereas the right panel conducts the same comparison for N = 10,000 voters. In both cases, the correlation between the two sets of
estimates is very high. In addition, the variational EM algorithm only took 35 minutes to complete the estimation whereas RStan took
6.5 days to obtain 500 posterior draws on the same computer.

In this article, we develop fast estimation algorithms
for ideal points with massive data. These algorithms
overcome the computational bottleneck created by
massive data in the ideal point measurement context.
Specifically, we develop the expectation-maximization
(EM) algorithms that maximize the posterior distri-
bution. When such an algorithm is not available in
a closed form, we derive a variational EM algorithm
that approximates posterior inference. Through empir-
ical and simulation studies, we show that the proposed
methodology improves the computational efficiency by
orders of magnitude without sacrificing the accuracy
of the resulting estimates.14 With this new methodol-
ogy, researchers can estimate ideal points from massive
data on their laptop within minutes rather than run-
ning other estimation algorithms for days on a high-
performance computing cluster.

We predict that this line of methodological research
will become essential for the next generation of empiri-
cal political science research. The political science data
now come in a variety of form—textual data, network
data, and spatial-temporal data to name a few—and in
a large quantity. To efficiently extract useful informa-
tion from these data will require the development of

14 We do note mean this as a general statement for other models and
applications. We find that the factorization assumption is appropriate
for the ideal point models where we used a variational approach. For
other problems, gains in computational efficiency may come at an
unacceptable cost of estimation accuracy.

scalable statistical estimation techniques like the ones
proposed in this article.

THE DETAILS OF THE PROPOSED EM
ALGORITHMS

In this section, we present the details of the proposed
EM algorithms. The derivation of these algorithms is
given in the Supplementary Appendix.

The Ordinal Ideal Point Model

Below, we describe the EM algorithm for the three-
category ordinal ideal point model. The latent variable
updates are equal to

z∗
ij

(t) = E

(
z∗

ij | x(t−1)
i , τ

(t−1)
j , β̃

(t−1)
j , yij

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m(t−1)
ij − 1

τ
(t−1)
j

λ
(

m(t−1)
ij , τ

(t−1)
j

)
if yij = 0,

m(t−1)
ij + 1

τ
(t−1)
j

δ
(

1 − m(t−1)
ij , τ

(t−1)
j

)
if yij = 1,

m(t−1)
ij + 1

τ
(t−1)
j

λ
(

1 − m(t−1)
ij , τ

(t−1)
j

)
if yij = 2,

(55)

where m(t−1)
ij = (x̃(t−1)

i )�β̃
(t−1)
j , λ(m, τ) = φ(mτ)/{1 −

�(mτ)} and δ(m, τ) = {φ(mτ) − φ((1 − m)τ)}/{�((1 −
m)τ) + �(mτ) − 1}. If yij is missing, then we set

652
http://dx.doi.org/10.1017/S000305541600037X
Downloaded from http:/www.cambridge.org/core. Princeton Univ, on 04 Jan 2017 at 07:29:30, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S000305541600037X
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


American Political Science Review Vol. 110, No. 4

z∗
ij

(t) = m(t−1)
ij . The required second moment is given

by

(
z∗

ij
2
)(t)

= E(z∗
ij

2 | x(t−1)
i , τ

(t−1)
j , β̃

(t−1)
j , yij )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
z∗

ij
(t)
)2

+ 1(
τ

(t−1)
j

)2

[
1 + τ

(t−1)
j m(t−1)

ij λ
(

m(t−1)
ij , τ

(t−1)
j

)

−
{
λ
(

m(t−1)
ij , τ

(t−1)
j

)}2
]

if yij = 0

(
z∗

ij
(t)
)2

+ 1(
τ

(t−1)
j

)2

×
[

1 − τ
(t−1)
j

{
m(t−1)

ij φ
(

m(t−1)
ij τ

(t−1)
j

)
+
(

1−m(t−1)
ij

)
φ
((

1−m(t−1)
ij

)
τ

(t−1)
j

)}
�
((

1−m(t−1)
ij

)
τ

(t−1)
j

)
+�

(
m(t−1)

ij τ
(t−1)
j

)
−1

−
{
δ
(

1 − m(t−1)
ij , τ

(t−1)
j

)}2
]

if yij = 1

(
z∗

ij
(t)
)2

+ 1(
τ

(t−1)
j

)2

[
1 − m(t−1)

ij λ
(

1 − m(t−1)
ij , τ

(t−1)
j

)

×
{
λ
(

1 − m(t−1)
ij , τ

(t−1)
j

)
−
(

1 − m(t−1)
ij

)
τ

(t−1)
j

}]
if yij = 2

,

(56)

where if yij is missing, then we set (z∗
ij

(t))2 = (m(t−1)
ij )2 +

(τ(t−1)
j )−2.
Finally, the M step consists of the following condi-

tional maximization steps:

x(t)
i =

⎛
⎝�−1

x +
J∑

j =1

(
τ

(t−1)
j

)2
β

(t−1)
j β

(t−1)
j

�
⎞
⎠

−1

�−1
x μx

+
J∑

j =1

(
τ

(t−1)
j

)2
β

(t−1)
j (z∗

ij
(t) − α

(t−1)
j ), (57)

β̃
(t)
j =

(
�−1

β̃
+
(
τ

(t−1)
j

)2 N∑
i=1

x̃(t)
i

(
x̃(t)

i

)�
)−1

�−1
β̃

μβ̃

+
(
τ

(t−1)
j

)2 N∑
i=1

x̃(t)
i z∗

ij
(t)

, (58)

(
τ

(t)
j

)2

= N + ντ − 2

s2
τ +

(
β̃

(t)
j

)� {∑N
i=1 x̃(t)

i

(
x̃(t)

i

)�}
β̃

(t)
j − 2

(
β̃

(t)
j

)� ∑N
i=1 x̃(t)

i z∗
ij

(t) +∑N
i=1

(
z∗

ij
2
)(t)

.

(59)

The Dynamic Ideal Point Model

The algorithm consists of three steps. First, the latent
propensity update step is based on the following opti-
mal approximating distribution:

q(y∗
ij t) =

{
T N (mij t, 1, 0,∞) if yij t = 1

T N (mij t, 1,−∞, 0) if yij t = 0
(60)

with mij t = E(x̃it)�
E(β̃j t). Then, the updated mean of

y∗
ij t is given by

E(y∗
ij t) =

⎧⎨
⎩

mij t + φ(mij t)
�(mij t)

if yij t = 1

mij t − φ(mij t)
1−�(mij t)

if yij t = 0
. (61)

For abstention (i.e., missing yij t), we set q(y∗
ij t) =

N (mij t, 1) and E(y∗
ij t) = mij t.

Second, the variational distribution for β̃ is given by

q(β̃j t) = N (B−1
j t bj t, B−1

j t ), (62)

where bj t = �−1
β̃

μβ̃ +∑
i∈It

E(x̃it)E(y∗
ij t) and Bj t =

�−1
β̃

+∑
i∈It

E(x̃itx̃�
it ) with It = {i : Ti ≤ t ≤ Ti}. Note

that the summation is taken over It, the set of legis-
lators who are present at time t.

Finally, we consider the variational distribution
of dynamic ideal points. Here, we rely on the
forward-backward algorithm derived for the varia-
tional Kalman filtering. Specifically, we first use the
forward recursion to compute

xit | ÿi1, . . . , ÿit
indep.∼ N (cit, Cit), (63)

where β̈t =
√∑Jt

j =1 E(β2
j t), ÿit = {∑Jt

j =1 E(y∗
ij t)E(βj t) −

E(βj tαj t)}/β̈t, cit = ci,t−1 + Kt(ÿit − β̈tci,t−1) and Cit =
(1 − Ktβ̈t)�t with �t = ω2

x + Ci,t−1, Kt = β̈t�t/St and
St = β̈2

t �t + 1. We recursively compute these quantities
by setting ci0 = μx and Ci0 = �x. Then, combined with
the backward recursion, we can derive the following
variational distribution:

xit | ÿiTi
, . . . , ÿiTi

indep.∼ N (dit, Dit), (64)

where dit = ct + Jt(dt+1 − cit) and Dit = Cit +
J 2

t (Dt+1 − �t+1) with Jt = Cit/�t+1. The recursive
computation is done by setting diTi

= ciTi
and

DiTi
= CiTi

. Thus, the required first and second
moments of xit can be easily obtained.

The Hierarchical Ideal Point Model

The proposed EM algorithm cycles through the follow-
ing updating steps until convergence. First, we update
the variational distribution for the latent propensities
y∗

� for all � = 1, . . . , L:

q(y∗
�) =

⎧⎪⎨
⎪⎩
T N (m�, 1,−∞, 0) if y� = 1

T N (m�, 1, 0,∞, ) if y� = 0

N (m�, 1) if y� is missing

,

(65)
where m� = E(αj [�]) + E(βj [l])E(γg[i[�]])�zi[�] +
E(ηi[�])E(βj [�]). The required moment update step
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is given by

E(y∗
�) =

⎧⎪⎨
⎪⎩

m� + φ(m�)
�(m�) if y� = 1

m� − φ(m�)
1−�(m�) if y� = 0

m� if y� is missing

. (66)

Next, we update the first and second moments of the
ideal point error term ηn using the following variational
distribution:

q(ηn) = N (A−1
n an, A−1

n ), (67)

where An = E(σ−2
g[n]) +∑L

�=1 1{i[�] = n}E(β2
j [�]) and

an = ∑L
�=1 1{i[�] = n}{E(y∗

�)E(βj [�]) − E(αj [�]βj [�]) −
E(β2

j [�])E(γg[n])�zn}. Thus, the required moments are
given by E(ηn) = A−1

n an and E(η2
n) = A−1

n + (A−1
n an)2.

Third, we derive the variational distribution for the
item parameters. This distribution is equal to

q(β̃k) = N (B−1
k bk, B−1

k ), (68)

where Bk = �−1
β̃

+∑L
�=1 1{j [�] = k}E(x̃i[�]x̃�

i[�]) and

bk = �−1
β̃

μβ̃ +∑L
�=1 1{j [�] = k}E(y∗

�)E(x̃i[�]) with

x̃i[�] = (1, γ�
g[i[�]]zi[�] + ηi[�])�. We note that E(x̃i[�]) =

(1, E(γg[i[�]])�zi[�] + E(ηi[�]))� and

E

(
x̃i[�]x̃�

i[�]

)

=

⎛
⎜⎜⎜⎜⎜⎝

1 E(γg[i[�]])�zi[�] + E(ηi[�])

E(γg[i[�]])�zi[�] z�
i[�]E(γg[i[�]]γ

�
g[i[�]])zi[�]

+ E(ηi[�]) + 2E(γg[i[�]])�zi[�]E(ηi[�])

+ E(η2
i[�])

⎞
⎟⎟⎟⎟⎟⎠ .

(69)

This gives the required moment update, E(β̃k) =
B−1

k bk.
Fourth, the variational distribution for the group-

level coefficients is given by

q(γm) = N (C−1
m cm, C−1

m ), (70)

where Cm=�−1
γ +∑L

�=1 1{g[i[�]]=m}E(β2
j [�])zi[�]z�

i[�]

and cm = �−1
γ μγ +∑L

�=1 1{g[i[�]] = m}zi[�][E(βj [�])
{E(y∗

�) − E(αj [�])} − E(β2
j [�])E(ηi[�])]. Thus, the re-

quired moment updates are given by E(γm) = C−1
m cm

and E(γmγ�
m) = C−1

m + C−1
m cmc�

mC−1
m .

Finally, we derive the variational distribution for the
group-level variance parameters. This distribution is

equal to

q(σ2
m) = IG

(
νσ +∑N

n=1 1{g[n] = m}
2

,

×1
2

(
s2
σ +

N∑
n=1

1{g[n] = m}E(η2
n)

))
, (71)

where the desired moment update is given by E(σ−2
m ) =

[νσ +∑N
n=1 1{g[n] = m}]/[s2

σ +∑N
n=1 1{g[n] =

m}E(η2
n)]. These updating steps are repeated until

convergence.

The Generalized Wordfish Model

The approximate update distribution for the document
verboseness parameter ψk for k = 1, . . . , K is given by

q(ψk) ≈ N (A−1
k ak, A−1

k ) (72)

where ak = ∑J
j =1[yj k − exp(ξj k){1 − ξj k + E(αj ) +

E(βj )E(xi[k])}] + σ−2
ψ μψ and Ak = ∑J

j =1 exp(ξj k) + σ−2
ψ .

Next, the variational distribution for ideal points xn
for n = 1, . . . , N is given by

q(xn) ≈ N (B−1
n bn, B−1

n ), (73)

where bn = ∑J
j =1

∑K
k=1 1{i[k] = n}E(βj ){yj k −

exp(ξj k)(1 + E(αj ) − ξj k + E(ψk))} + σ−2
x μx and Bn =∑J

j =1

∑K
k=1 1{i[k] = n} exp(−ξj k)/E(β2

j ) + σ−2
x . Finally,

the update for the term parameters β̃j for j = 1, . . . , J
is given by

q(β̃j ) ≈ N (C−1
j cj , C−1

j ), (74)

where cj = {yj k − exp(ξj k)(1 − ξj k + E(ψk))}E(x̃i[k]) +
�−1

β̃
μβ̃ and Cj = ∑K

k=1 exp(ξj k)E(x̃i[k]x̃�
i[k]) + �−1

β̃
.

The Network Ideal Point Model

The variational distribution for the latent propensity is
given by the following truncated normal distribution:

q(y∗
ij ) =

{T N (mij , 1, 0,∞) if yij = 1

T N (mij , 1,−∞, 0) if yij = 0
, (75)

where mij = E(αj ) + E(βi) − E(x2
i ) − E(z2

j ) +
2E(xi)E(zj ).

The variational distribution for the user-specific in-
tercept is given by

q(βi) = N (B−1bi, B−1), (76)
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where B = J + 1/σ2
β and bi = μβ/σ

2
β +∑J

j =1

(
E(y∗

ij ) − E(αj ) + E(x2
i ) − 2E(xi)E(zj ) + E(z2

j )
)

.
The update step for the users’ ideal points is based on
the following variational distribution:

q(x) =
N∏

i=1

q(xi) ≈
N∏

i=1

N (D−1
i di, D−1

i ), (77)

where Di = E(f ′′(x̂i))/2 and di = {E(f ′′(x̂i))x̂i −
E(f ′(x̂i))}/2. The relevant expectations are given by

E(f ′(x)) = 2
σ2

x
(x − μx)

+ 4
J∑

j =1

{
(x − E(zj ))

(
E(y∗

ij ) − E(αj ) − E(βi)
)

+ (
x3 − 3x2

E(zj ) + 3xE(z2
j ) − E(z3

j )
)}

,

(78)

E(f ′′(x)) = 2
σ2

x
+ 4

J∑
j =1

{(
E(y∗

ij ) − E(αj ) − E(βi)
)

+ 3
(
x2 − 2xE(zj ) + E(z2

j )
)}

. (79)

The updates for the politician-specific intercept and
politicians’ ideal points are similar to the ones for
users,

q(αj ) = N (A−1aj , A−1), (80)

where A = N + 1/σ2
α and aj = μα/σ

2
α +∑N

i=1(E(y∗
ij ) −

E(βi) + (E(x2
i ) − 2E(xi)E(zj ) + E(z2

j ))),

q(zj ) ≈ N (E−1
j ej , E−1

j ),

where Ej = E(g′′(ẑj ))/2 and ej = {E(g′′(ẑj ))ẑj −
E(g′(ẑj ))}/2. The relevant expectations are given by

E(g′(z)) = 2
σ2

z
(z − μz)

−4
N∑

i=1

{
(E(xi) − z)

(
E(y∗

ij ) − E(αj ) − E(βi)
)

+ (
E(x3

i ) − 3E(x2
i )z + 3E(xi)z2 − z3)} ,

E(g′′(z)) = 2
σ2

z
+ 4

N∑
i=1

{(
E(y∗

ij ) − E(αj ) − E(βi)
)

+ 3
(
E(x2

i ) − 2E(xi)z + z2)} .
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