
Supplementary Appendix

S1 Proof of Theorem 1

We first rewrite the expectation of the proposed estimator in Equation (3) as,

E(τ̂k) = KE {Yi (f
∗(Xi, ĉk(s)))− Yi (f

∗(Xi, ĉk−1(s)))} ,

where f ∗(Xi, c) = 1{s(Xi) < c}. Similarly, we can also write the estimand in
Equation (2) as,

τk = KE {Yi (f
∗(Xi, ck(s)))− Yi (f

∗(Xi, ck−1(s)))} .

Now, define F (c) = P(s(Xi) ≤ c). Without loss of generality, assume ĉk(s) > ck(s)
and ĉk−1(s) > ck−1(s). If this is not the case, we simply switch the upper and lower
limits of the integrals in the proof below. Then, the bias of the estimator is given by,

|E(τ̂k)− τk|
K

≤ |E {Yi (f
∗(Xi, ĉk(s)))− Yi (f(Xi, ck(s)))}|+ |E {Yi (f

∗(Xi, ĉk−1(s)))− Yi (f
∗(Xi, ck−1(s)))}|

=

∣∣∣∣∣Eĉk(s)

[∫ ĉk(s)

ck(s)

E(τi | s(Xi) = c)dF (c)

]∣∣∣∣∣+
∣∣∣∣∣Eĉk−1(s)

[∫ ĉk−1(s)

ck−1(s)

E(τi | s(Xi) = c)dF (c)

]∣∣∣∣∣
=

∣∣∣∣∣EF (ĉk(s))

[∫ F (ĉk(s))

F (ck(s))

E(τi | s(Xi) = F−1(x))dx

]∣∣∣∣∣
+

∣∣∣∣∣EF (ĉk−1(s))

[∫ F (ĉk−1(s))

F (ck−1(s))

E(τi | s(Xi) = F−1(x))dx

]∣∣∣∣∣
≤ EF (ĉk(s))

[∣∣∣∣F (ĉk(s))−
k

K

∣∣∣∣× max
c∈[ck(s),ĉk(s)]

|E(τi | s(Xi) = c)|
]

+EF (ĉk−1(s))

[∣∣∣∣F (ĉk−1(s))−
k − 1

K

∣∣∣∣× max
c∈[ck−1(s),ĉk−1(s)]

|E(τi | s(Xi) = c)|
]

By the definition of ĉk(s), F (ĉk(s)) is the nk/Kth order statistic of n independent
uniform random variables, and thus follows the Beta distribution with the shape and
scale parameters equal to nk/K and n−nk/K +1, respectively. For the special case
where k − 1 = 0, we define the 0th order statistic of n uniform random variables to
be 0, and by extension also define the “beta distribution” with shape parameter ≤ 0
to be H(x) where H(x) is the Heaviside step function. Therefore, we have,

P
(
|F (ĉk(s))−

k

K
| > ϵ

)
= 1−B

(
k

K
+ ϵ,

nk

K
, n− nk

K
+ 1

)
+B

(
k

K
− ϵ,

nk

K
, n− nk

K
+ 1

)
,

where B(ϵ, α, β) =
∫ ϵ

0
tα−1(1 − t)β−1dt is the incomplete beta function. Similarly,

we have

P(|F (ĉk−1(s))−
k − 1

K
| > ϵ) = 1−B

(
k − 1

K
+ ϵ,

n(k − 1)

K
,n− n(k − 1)

K
+ 1

)
+B

(
(k − 1)

K
− ϵ,

n(k − 1)

K
,n− n(k − 1)

K
+ 1

)
.
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Combining the above results yields the desired bias bound expression.
To derive the exact variance, we first apply the law of total variance to Equa-

tion (3),

V(τ̂k) = V

[
E

{
K

(
1

n1

n∑
i=1

f̂k(Xi)TiYi(1)−
1

n0

n∑
i=1

f̂k(Xi)(1− Ti)Yi(0)

) ∣∣∣∣X, {Yi(1), Yi(0)}ni=1

}]

+ E

[
V

{
K

(
1

n1

n∑
i=1

f̂k(Xi)TiYi(1)−
1

n0

n∑
i=1

f̂k(Xi)(1− Ti)Yi(0)

) ∣∣∣∣X, {Yi(1), Yi(0)}ni=1

}]

= K2V

(
1

n

n∑
i=1

{Yki(1)− Yki(0)}

)

+K2E

[
V

{
1

n1

n∑
i=1

f̂k(Xi)TiYi(1)−
1

n0

n∑
i=1

f̂k(Xi)(1− Ti)Yi(0)

∣∣∣∣X, {Yi(1), Yi(0)}ni=1

}]
.

(S1)

Applying the standard result from Neyman’s finite sample variance analysis to the
second term shows that this term is equal to,

K2E
{
1

n

(
n0

n1

S2
k1 +

n1

n0

S2
k0 + 2Sk01

)}
. (S2)

where Sk01 =
∑n

i=1(Yki(0) − Yk(0))(Yki(1) − Yk(1))/(n − 1). Since Yki(t) and Ykj(t)
are correlated, we apply Lemma 1 of Nadeau and Bengio (2000) to the first term,
yielding,

V

(
1

n

n∑
i=1

{Yki(1)− Yki(0)}

)
= Cov(Yki(1)− Yki(0), Ykj(1)− Ykj(0)) +

1

n
E(S2

k1 + S2
k0 − 2Sk01), (S3)

for i ̸= j where

Cov(Yki(1)− Yki(0), Ykj(1)− Ykj(0))

= Cov
(
f̂k(Xi)τi, f̂k(Xj)τj

)
= Pr(f̂k(Xi) = f̂k(Xj) = 1)E[τiτj | f̂k(Xi) = f̂k(Xj) = 1]− Pr(f̂k(Xi) = 1)2E[τi | f̂k(Xi) = 1]2

=
n−K

K2(n− 1)
E[τiτj | f̂k(Xi) = f̂k(Xj) = 1]− 1

K2
E[τi | f̂k(Xi) = 1]2

=
(n−K)κk11

K2(n− 1)
− κ2

k1

K2

Substituting Equations (S2) and (S3) into Equation S1, we obtain the desired variance
expression. 2

S2 Derivation of κ̂ktt

We first rewrite κktt as:

κktt =
∑

u,v∈{0,1}

(−1)u+vE[Yi(u)Yj(v) | f̂k(Xi) = f̂k(Xj) = t].
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We can estimate each conditional expectation term inside of the summation using its
sample analogue:∑n

i=1

∑
j ̸=i 1{f̂k(Xi) = f̂k(Xj) = t}{1− u+ (2u− 1)Ti}{1− v + (2v − 1)Tj}YiYj∑n

i=1

∑
j ̸=i 1{f̂k(Xi) = f̂k(Xj) = t}{1− u+ (2u− 1)Ti}{1− v + (2v − 1)Tj}

We can further simplify the computation by rewriting the numerator as:[
n∑

i=1

1{f̂k(Xi) = t}{1− u+ (2u− 1)Ti}Yi

][
n∑

i=1

1{f̂k(Xi) = t}{1− v + (2v − 1)Ti}Yi

]

−
n∑

i=1

1{f̂k(Xi) = t}{1− u+ (2u− 1)Ti}{1− v + (2v − 1)Ti}Y 2
i .

Similarly, we can rewrite the denominator as follows:[
n∑

i=1

1{f̂k(Xi) = t}(1− u+ (2u− 1)Ti)

][
n∑

i=1

1{f̂k(Xi) = t}{1− v + (2v − 1)Ti}

]

−
n∑

i=1

1{f̂k(Xi) = t}{1− u+ (2u− 1)Ti}{1− v + (2v − 1)Ti}.

Putting these terms together, we obtain the expression of κ̂ktt given in Section 2.2.

S3 Proof of Theorem 2

Given a tuple of n samples {Yi, Ti,Xi}ni=1, we first reorder the sample to (Y[i,n], T[i,n],X[i,n])
based on the magnitude of the scoring rule, such that

s(X[1,n]) ≤ s(X[2,n]) ≤ · · · ≤ s(X[n,n])

Then, the proposed GATES estimator can be rewritten as

τ̂k =
1

n

n∑
i=1

1

{
(k − 1)n

K
< i ≤ kn

K

}
U[i,n] (S4)

where

U[i,n] := KY[i,n]

(
T[i,n]

q
−

1− T[i,n]

1− q

)
, (S5)

where q = n1/n. Now, we prove the following two lemmas.

Lemma S1 Let (X1, Y1), (X2, Y2), · · · be a sequence of random vectors. For each n ≥
1, (X1, Y1), · · · , (Xn, Yn) possesses a joint distribution. Let Zn = ((X1, Y1), · · · , (Xn, Yn))
and Xn = (X1, · · · , Xn), and let Wn(Zn) and Sn(Xn) be measurable vector-valued
functions of Zn and Xn respectively. Suppose Sn(Xn) converges in distribution to
FS and the conditional distribution Wn(Zn) | Xn converges in distribution to FW in
probability, where FW does not depend on Xn. Then, we have that:

(Wn(Zn), Sn(Xn))→ FWFS
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Proof The characteristic function of the joint distribution of (Wn(Zn), Sn(Xn)) can
be written as:

φWnSn(t1, t2) = E[exp{i(t1Wn(Zn) + t2Sn(Xn))}]

Let W ∼ FW and S ∼ FS. Then the characteristic function of FWFS can be written
as:

φWS(t1, t2) = E[exp{i(t1W )}]E[exp{i(t2S)}]

We then have:

|φWnSn(t1, t2)− φWS(t1, t2)|
= |E[exp{i(t1Wn(Zn) + t2Sn(Xn))}]− E[exp{i(t1W )}]E[exp{i(t2S)}]|
≤ |E[E[exp{i(t1Wn(Zn) + t2Sn(Xn))} |Xn]]− E[exp{i(t1W )}]E[exp{i(t2Sn(Xn))}]|

+ |E[exp{i(t1W )}]E[exp{i(t2Sn(Xn))}]− E[exp{i(t1W )}]E[exp{i(t2S)}]|
≤E[|E[exp(it1Wn(Zn)) |Xn]− E[exp(it1W )]|] + |E[exp{i(t2Sn(Xn))}]− E[exp{i(t2S)}]|,

where the last inequality follows from the fact that all characteristic functions satisfy
|φ| ≤ 1. This expression converges to zero in probability due to the convergence of
Sn(Xn) and Wn(Zn) |Xn respectively. Therefore, we have:

(Wn(Zn), Sn(Xn))→ FWFS

2

Lemma S2 lim
n→∞

E(τ̂k)− τk = O
(
n−1
)

Proof We bound the bias of E(τ̂k) by appealing to Theorem 1 of Imai and Li (2023b),
which implies,

|E(τ̂k)− τk| ≤

∣∣∣∣∣KE

[∫ F (ĉk(s))

F (ck(s))

E(Yi(1)− Yi(0) | s(Xi) = F−1(x))dx

]∣∣∣∣∣
+

∣∣∣∣∣KE

[∫ F (ĉk−1(s))

F (ck−1(s))

E(Yi(1)− Yi(0) | s(Xi) = F−1(x))dx

]∣∣∣∣∣ . (S6)

By the definition of ĉk(s), F (ĉk(s)) is the nk/Kth order statistic of n independent
uniform random variables, and therefore, follows the Beta distribution with the shape
and scale parameters equal to nk/K and n− nk/K + 1, respectively.

Now, by Assumption 4, we can compute the first-order Taylor expansion of
∫ x

a
E(Yi(1)−

Yi(0) | s(Xi) = F−1(x))dx:

|E(τ̂k)− τk| ≤ |KE [a0{F (ĉk(s))− F (ck(s))}+ o(F (ĉk(s))− F (ck(s)))]|
+ |KE [a1{F (ĉk−1(s))− F (ck−1(s))}+ o(F (ĉk−1(s))− F (ck−1(s)))]|

=|Ka0|
∣∣∣∣ nk

K(n+ 1)
− k

K

∣∣∣∣+ |Ka1|
∣∣∣∣ n(k − 1)

K(n+ 1)
− k − 1

K

∣∣∣∣+ o
(
n−1
)

=O
(
n−1
)
.

2
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Now, using these two lemmas, we prove the main result. Letting u(s) = E[Ui |
s(Xi) = s], we decompose τ̂k into two parts,

τ̂k =
1

n

∑
(k−1)n

K
<i≤ kn

K

U[i,n] − u(s(X[i,n]))

︸ ︷︷ ︸
τ̂
(1)
k

+
1

n

n∑
i=1

1

{
(k − 1)n

K
< i ≤ kn

K

}
u(s(X[i,n]))︸ ︷︷ ︸

τ̂
(2)
k

.

(S7)

Consider the first term. By the general theory of induced order statistics presented
in Bhattacharya (1974), U[i,n] − u(s(X[i,n])) for i = 1, · · · , n are independent of one
another conditional on Xn = (X[1,n], · · · ,X[n,n]). Define the random variables Z[i,n]

as distributed according to the joint conditional distribution U[i,n]−u(s(X[i,n])) |Xn.
Then, we have

τ̂
(1)
k =

1

n

∑
(k−1)n

K
<i≤ kn

K

Z[i,n],

where Z[i,n] are conditionally independent and E[Z[i,n]] = 0 by construction. There-
fore, by Assumption 5, we can utilize the Berry-Esseen Theorem. Define:

σ2
1(n) =

1

n

∑
(k−1)n

K
<i≤ kn

K

V(Z[i,n])

ρ1(n) =
1

n

∑
(k−1)n

K
<i≤ kn

K

E(|Z[i,n]|3)

Then the Berry-Esseen Theorem states that for W ∼ N(0, 1), we have:

d

( √
nτ̂

(1)
k√

σ2
1(n)

,W

)
≤ C0√

n

(
σ2
1(n)

)−3/2
ρ1(n)

where d(·, ·) is the Kolmogorov distance. Now define the asymptotic variance and
third moment by:

σ2
1 = lim

n→∞
σ2
1(n)

ρ1 = lim
n→∞

ρ1(n)

Both quantities exist by the strong law of large numbers for functions of order statis-
tics (see Theorem 4 of Wellner (1977)). Specifically, by the strong law, σ2

1 and ρ1
does not depend on Xn for all but at most a measure zero set of Xn. Therefore, the
Berry-Esseen theorem implies that:

√
nτ̂

(1)
k |Xn

d−→ N(0, σ2
1) with probability 1 (S8)

Next, consider the second term of Equation (S7). To prove the convergence of
this summation of a function of order statistics, we utilize Theorem 1 and Example 1
from Shorack (1972), which we restate in our notation below:
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Theorem S1 (Shorack (1972)) Consider an independently and identically dis-
tributed random sample X1, · · · , Xn of size n from a cumulative distribution function
F , and a function of bounded variation g such that E[g(X)3] <∞. Define:

Tn =
1

n

n∑
i=1

J

(
i

n

)
g(X[i,n])

where X[i,n] is the ith order statistics of the sample, and J is a function that is
continuous except at a finite number of points at which g(F−1) is continuous. Suppose
that there exists δ > 0 such that:

|J(t)| ≤M(t(1− t))−
1
6
+δ ∀0 < t < 1

Then, we have: √
n(Tn − E[Tn])

d−→ N(0, σ2)

where σ2 = limn→∞ nV(Tn) <∞.

Now, set Xi = s(Xi), g(·) = u(·), and J(t) = 1 {(k − 1)n/K < tn ≤ kn/K}.
Then, we have Tn = τ̂ 2k . Assumption 5 guarantees E[g(X)3] <∞. The function J(t)
is discontinuous only at the quantile points t = k/K and t = k−1

K
, and Assumption 4

guarantees the continuity of g(F−1) at those points. The function J clearly satisfies
the bounding condition with δ = 1/6 and M = 1. Therefore, define the asymp-

totic variance as σ2
2 = limn→∞ nV(τ̂ (2)k ), and we can utilize Theorem S1 to show the

following convergence: √
n(τ̂

(2)
k − E(τ̂ (2)k ))

d−→ N(0, σ2
2) (S9)

Now, we aim to combine the results given in Equations (S8) and (S9). Using
Lemma S2, we can replace τk with E(τ̂k) by adding a small bias term. Then, we have

√
n(τ̂k − τk) =

√
n(τ̂

(1)
k − E(τ̂ (1)k )) +

√
n(τ̂

(2)
k − E(τ̂ (2)k )) +O

(
n−1/2

)
d−→ N(0, σ2

1 + σ2
2) (S10)

where the last line follows from the application of Lemma S1 to the convergence
results given in Equations (S8) and (S9).

Equivalently, we can write Equation (S10) as,

√
n

τ̂k − τk√
σ2
1 + σ2

2

d→ N(0, 1)

Now, note that by the law of total variance, we have that

nV(τ̂k) = nE[V(τ̂ (1)k + τ̂
(2)
k |Xn)] + nV[E(τ̂ (1)k + τ̂

(2)
k |Xn)]

= nE[V(τ̂ (1)k |Xn)] + nV(τ̂ (2)k )

→ σ2
1 + σ2

2 (S11)

Therefore, by Slutsky’s lemma, we have that:

τ̂k − τk√
V(τ̂k)

d→ N(0, 1)

2
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S4 Proof of Proposition 1

We prove this proposition by finding an example that satisfies it. Define t(x) =
E(Yi(1)− Yi(0) | s(Xi) = F−1(x)). Then, consider a scoring function s and a popu-
lation such that:

t(x) =

{
2 x ≥ F (ck(s))

1 x < F (ck(s))

Note that t(x) is bounded everywhere but has a discontinuity. By definition of ĉk(s),
F (ĉk(s)) follows the Beta distribution with the shape and scale parameters equal
to nk/K and n − nk/K + 1, respectively. Therefore, we have the following normal
approximation:

√
n+ 1

(
F (ĉk(s))−

nk

K(n+ 1)

)
d−→ N

(
0,

k

K

(
1− k

K

))
In particular, as n → ∞, F (ĉk(s)) is distributed approximately symmetric around
F (ck(s)) = k

K
with an error of O(n−1) and has a standard deviation of O(n−1/2).

Thus, we have,

E(τ̂k)− τk = KE

[∫ F (ĉk(s))

F (ck(s))

f(x)dx

]
+KE

[∫ F (ĉk−1(s))

F (ck−1(s))

f(x)dx

]
= (2− 1)O

(
n−1/2

)
+ (1− 1)O

(
n−1/2

)
+O

(
n−1
)

= O
(
n−1/2

)
We can now conclude

√
n(E(τ̂k)− τk) ̸→ 0. 2

S5 Proof of Theorem 3

We wish to prove that for τ̂ = (τ̂1, · · · , τ̂K), τ = (τ1, · · · , τK), and Σn = V(τ̂ ), we
have:

Σ−1/2
n (τ̂ − τ )

d→ N(0, I)

where I is the K ×K identity matrix.
By Equation (S10) in the proof of Theorem 2, for all k = 1, · · · , k we have,

√
n(τ̂k − τk)

d→ N(0, σ2
k),

where σ2
k = limn→∞ nV(τ̂k). To prove the multi-dimensional result, we utilize the

Cramer-Wold device, which we restate below:

Theorem S2 (Cramér and Wold (1936)) Let Xn = (Xn1, · · · , Xnk) and X =
(X1, · · · , Xk) be k-dimensional random vectors. Then Xn →X if and only if for all
(t1, · · · , tk) ∈ Rk, we have:

k∑
i=1

tiXni
d−→

k∑
i=1

tiXi

Now, consider t = (t1, · · · , tK) ∈ RK and τ̂t =
∑K

k=1 tkτ̂k. Then, we can write τ̂t
as:

τ̂t =
1

n

n∑
i=1

(
K∑
k=1

tk1

{
(k − 1)n

K
< i ≤ kn

K

})
U[i,n]
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where U[i,n] is defined in Equation (S5). We use the same proof strategy as the one
used to prove Theorem 1. We define u(s) = E[Ui | s(Xi) = s] and write:

τ̂t =
1

n

K∑
k=1

tk
∑

(k−1)n
K

<i≤ kn
K

U[i,n] − u(s(X[i,n]))

︸ ︷︷ ︸
τ̂
(1)
t

+
1

n

n∑
i=1

(
K∑
k=1

tk1

{
(k − 1)n

K
< i ≤ kn

K

})
u(s(X[i,n]))︸ ︷︷ ︸

τ̂
(2)
t

Using Lindberg’s Central Limit Theorem for the conditional distribution of τ̂
(1)
t given

Xn and applying Theorem S1 to τ̂
(2)
t yield,

√
n(τ̂

(1)
t − E(τ̂ (1)t )) |Xn

d→ N(0, σ2
1)

√
n(τ̂

(2)
t − E(τ̂ (2)t ))

d→ N(0, σ2
2)

where σ2
1 = lim

n→∞
nV(τ̂ (1)t |Xn) and σ2

2 = lim
n→∞

nV(τ̂ (2)t ). This implies,

√
n(τ̂t − τt) =

√
n
(
τ̂
(1)
t − E[τ̂ (1)t ]

)
+
√
n
(
τ̂
(2)
t − E[τ̂ (2)t ]

)
+O

(
n−1/2

) d−→ N(0, σ2
1 + σ2

2)

where the result follows from Lemma S1. Since we can easily show nV(τ̂t)→ σ2
1 +σ2

2,
we have:

√
n(τ̂t−τt)→ N(0, limn→∞ nV(τ̂t)). Therefore, by the Cramer-Wold device

(Theorem S2), we have
√
n(τ̂ − τ ) → N(0, limn→∞ nΣn). Finally, Slutsky’s Lemma

implies the desired result,

Σ−1/2
n (τ̂ − τ )→ N(0, I).

To derive the expression for the covariance matrix Σkk′ , we utilize the same ap-
proach as the one used in the proof of Theorem 1. We first apply the law of total
covariance to obtain:

Cov(τ̂k, τ̂k′)

= K2Cov

(
1

n

n∑
i=1

{Y ∗
ki(1)− Y ∗

ki(0)},
1

n

n∑
i=1

{Y ∗
k′i(1)− Y ∗

k′i(0)}

)

+K2E

[
Cov

{
1

n1

n∑
i=1

(
f̂k(Xi)−

1

K

)
TiYi(1)−

1

n0

n∑
i=1

(
f̂k(Xi)−

1

K

)
(1− Ti)Yi(0),

1

n1

n∑
i=1

(
f̂k′(Xi)−

1

K

)
TiYi(1)−

1

n0

n∑
i=1

(
f̂k′(Xi)−

1

K

)
(1− Ti)Yi(0)

∣∣∣∣X, {Yi(1), Yi(0)}ni=1

}]
.

(S12)

Applying Neyman’s finite sample variance analysis to the second term shows that
this term is equal to:

K2E
{
1

n

(
n0

n1

S∗2
kk′1 +

n1

n0

S∗2
kk′0 + 2S∗

kk′01

)}
, (S13)

42



where S∗
kk′01 =

∑n
i=1(Y

∗
ki(0)−Y ∗

k (0))(Y
∗
k′i(1)−Y ∗

k′(1))/(n−1). Since Y ∗
ki(t) and Y ∗

k′j(t)
are correlated, we have:

Cov

(
1

n

n∑
i=1

(Y ∗
ki(1)− Y ∗

ki(0)),
1

n

n∑
i=1

(Y ∗
k′i(1)− Y ∗

k′i(0))

)
= Cov(Y ∗

ki(1)− Y ∗
ki(0), Y

∗
k′j(1)− Y ∗

k′j(0)) +
1

n
E(S∗2

kk′1 + S∗2
kk′0 − 2S∗

kk′01). (S14)

For k ̸= k′, we have:

Cov(Y ∗
ki(1)− Yki(0), Y

∗
k′j(1)− Yk′j(0))

= Cov

((
f̂k(Xi)−

1

K

)
τi,

(
f̂k′(Xj)−

1

K

)
τj

)
=

(
1− 2

K

)
Cov(f̂k(Xi)τi, f̂k′(Xj)τj)−

1

K
Cov((1− f̂k(Xi))τi, f̂k′(Xj)τj)

− 1

K
Cov((1− f̂k′(Xi))τi, f̂k(Xj)τj)

=

(
1− 2

K

)(
1

K2
κkk′11 −

1

K2
κk1κk′1

)
− 1

K

{
n/K(n− n/K − 1)

n(n− 1)
κkk′01 +

n/K(n− n/K − 1)

n(n− 1)
κkk′10 −

1

K2
κk1κk′0 −

1

K2
κk0κk′1

}
=

1

K3

{
(K − 2) (κkk′11 − κk1κk′1)−

Kn− n− 1

n− 1
(κkk′10 + κkk′01) + κk1κk′0 + κk0κk′1

}
.

For k = k′, we have

Cov(Y ∗
ki(1)− Y ∗

ki(0), Y
∗
kj(1)− Y ∗

kj(0))

= Cov

((
f̂k(Xi)−

1

K

)
τi,

(
f̂k(Xj)−

1

K

)
τj

)
=

(
1− 2

K

)
Cov(f̂k(Xi)τi, f̂k(Xj)τj)−

2

K
Cov((1− f̂k(Xi))τi, f̂k(Xj)τj)

=

(
1− 2

K

){
n−K

K2(n− 1)
κk11 −

1

K2
κ2
k1

}
− 2

K

{
n(K − 1)

K2(n− 1)
κk01 −

1

K2
κk1κk0

}
=

1

K3

{
(K − 2)

(
n−K

n− 1
κk11 − κ2

k1

)
− 2n(K − 1)

(n− 1)
κk01 + 2κk1κk0

}
.

Substituting Equations (S13) and (S14) into Equation S12, we obtain the desired
covariance expression.

2

S6 Proof of Theorem 4

The proof of Theorem 3 above establishes that Σ−1/2τ̂ is asymptotically normally
distributed with the identity variance matrix I. For simplicity, throughout this proof,
we will assume that Σ−1/2τ̂ is exactly normally distributed with unknown mean
θ = (τ1 − τ, · · · , τK − τ), i.e., Σ−1/2τ̂ ∼ N(θ, I).

Let the likelihood of the data τ̂ under the null and alternative hypotheses as
Lτ̂ (H

C
0 ) and Lτ̂ (H

C
1 ). Under the asymptotic normal assumption, the likelihood ratio
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is given by:

Lτ̂ (H
C
0 )

Lτ̂ (HC
1 )

=

{
exp

{
(τ̂ − µ1(τ̂ ))

⊤Σ−1(τ̂ − µ1(τ̂ ))
}

θ ∈ Θ0

exp
{
−(τ̂ − µ0(τ̂ ))

⊤Σ−1(τ̂ − µ0(τ̂ ))
}

θ ∈ Θ1

Where µi(τ̂ ) are the optimal mean vectors given data τ̂ for region j of the hypothesis
test, and is the solution to the following optimization problems for j ∈ {0, 1}:

µj(τ̂ ) = argmin
µ∈Θj

∥τ̂ − µ∥2

We can identify the optimal means (µ1,µ0) for each region of the hypothesis test
through this optimization problem because the multivariate normal distribution is
spherical and symmetric.

We use (τ̂ −µ0(τ̂ ))
⊤Σ−1(τ̂ −µ0(τ̂ )) as our test statistic. Note that when τ̂ ∈ Θ0,

the statistic is always 0, so the null hypothesis is never rejected and thus we are
consistent. Given that we have a composite test, we are interested in finding the
uniformly most powerful test. This requires calculating the size of a test α, as a
function of the critical value C(α):

α = sup
θ∈Θ0

Pr((τ̂ − µ0(τ̂ ))
⊤Σ−1(τ̂ − µ0(τ̂ )) > C(α) | θ)

Since the supremum must occur at the boundary ∂Θ0 of the polytope Θ0 the set Θ0,
the probability of exceeding C(α) is maximized when the solid angle of the Θ0 region
is minimized. By considering the shape of the polytope Θ0, we recognize that the
boundary points, which minimize the solid angle, are precisely those on the boundary
when all constraints are active:

α = sup
t

Pr((τ̂ − µ0(τ̂ ))
⊤Σ−1(τ̂ − µ0(τ̂ )) > C(α) | τ1 − τ = · · · = τK − τ = t).

We now note that we have translational invariance on this boundary, i.e., all points
along τ1 − τ = · · · = τK − τ have the same probability, yielding,

α = Pr((τ̂ − µ0(τ̂ ))
⊤Σ−1(τ̂ − µ0(τ̂ )) > C(α) | τ1 − τ = · · · = τK − τ = 0)

Therefore, to identify the value of α, we just need the CDF of the statistic (τ̂ −
µ0(τ̂ ))

⊤Σ−1(τ̂ − µ0(τ̂ )) when τ̂ ∼ N(0,Σ). This can be easily estimated using
Monte Carlo simulation. 2

S7 Proof of Theorem 5
The derivation of bias is essentially identical to that given in Supplementary Ap-
pendix S1 and thus is omitted. To derive the variance, we first introduce the following
useful lemma, adapted from Nadeau and Bengio (2000).

Lemma S3

E(S2
Fk) = V(τ̂ ℓk)− Cov(τ̂ ℓk, τ̂

ℓ′

k ),

V(τ̂k(F, n−m)) =
V(τ̂ ℓk)
L

+
L− 1

L
Cov(τ̂ ℓk, τ̂

ℓ′

k ).

where ℓ ̸= ℓ′.
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The lemma implies,

V(τ̂k(F, n−m)) = V(τ̂ ℓk)−
L− 1

L
E(S2

Fk).

We then follow the same process of derivation as in Appendix S1 for the first term.
The only difference occurs in the derivation of the covariance term:

Cov(Y ℓ
ki(1)− Y ℓ

ki(0), Y
ℓ
kj(1)− Y ℓ

kj(0))

=Eℓ

[
CovX,Y

(
f̂ ℓ
k(X

(ℓ)
i )τi, f̂

ℓ
k(X

(ℓ)
j )τj

)]
+ Covℓ

[
EX,Y [f̂

ℓ
k(X

(ℓ)
i )τi],EX,Y [f̂

ℓ
k(X

(ℓ)
j )τj]

]
=Eℓ

[
(n−K)κℓ

k11

K2(n− 1)
− 1

K2
(κℓ

k1)
2

]
+

1

K2
Vℓ

(
κℓ
k1

)
.

2

S8 Proof of Consistency of Ê(S2
Fk)

We show that Ê(S2
Fk) is consistent as L approaches infinity under the assumption

that the fourth moments E(Yi(t)
4) < ∞ for t = 0, 1 and a sufficiently large value of

m. Theorem 5 implies,

V(τ̂k(F, n−m)) = K2

(
E(S2

Fk1)

m1

+
E(S2

Fk0)

m0

)
+ Eℓ

[
(n−K)κℓ

k11

K2(n− 1)
− 1

K2
(κℓ

k1)
2

]
+ V

(
κℓ
k1

)
− L− 1

L
E(S2

Fk),

Now, define:

̂V(τ̂k(F, n−m)) = K2

(
Ê(S2

Fk1)

m1

+
Ê(S2

Fk0)

m0

)
+
(n−K)Ê[κℓ

k11]

K2(n− 1)
− 1

K2
(Ê[κℓ

k1])
2+V̂

(
κℓ
k1

)
By construction, we have that as m→∞:

̂V(τ̂k(F, n−m))

V(τ̂k(F, n−m)) + L−1
L

E(S2
Fk)

p−→ 1

Applying Lemma 1 from Nadeau and Bengio (2000) to τ̂k(F, n−m) gives

V(τ̂k(F, n−m)) ≥ E(S2
Fk).

Therefore, we have:

lim
m→∞

̂V(τ̂k(F, n−m))

E(S2
Fk) +

L−1
L

E(S2
Fk)
≥ 1

Note that we can write Ê(S2
Fk) as:

Ê(S2
Fk) = min

(
S2
Fk,

̂V(τ̂k(F, n−m))
)
.
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By definition of S2
Fk, if the fourth moments of Yi(t) exist, we have V(S2

Fk) = O(L−1),
and thus as L→∞:

S2
Fk

E(S2
Fk)

p−→ 1

Let ϵ > 0. There exists L0 such that for all L > L0, |
S2
Fk

E(S2
Fk)
− 1| < ϵ. Similarly, there

exists m0 such that for all ̂V(τ̂k(F, n−m)) > (1− ϵ)E(S2
Fk) ∀m > m0. Therefore, for

all m > m0, we have that:

lim
L→∞

Ê(S2
Fk)

E(S2
Fk)

= lim
L→∞

min
(
S2
Fk,

̂V(τ̂k(F, n−m))
)

E(S2
Fk)

= lim
L→∞

S2
Fk

E(S2
Fk)

p−→ 1

2

S9 Proof of Theorem 6
We first shows the bias is small.

Lemma S4 lim
n→∞

|τ̂k(F, n−m)− τk(F, n−m)| = O
(
m−1

)
Proof

|τ̂k(F, n−m)− τk(F, n−m)| ≤ 1

L

L∑
ℓ=1

|E(τ̂ ℓk(F, n−m))− τ ℓk(F, n−m)|

=
1

L

L∑
ℓ=1

EZ−ℓ

[
O
(
m−1

)]
= O

(
m−1

)
.

The first equality follows because the estimator for each fold τ̂ ℓk(F, n−m) is equivalent
to the non-cross-fitting estimator under m samples and so Lemma S2 is applicable.
The second equality follows from Assumption 6. 2

We first write:

τ̂k(F, n−m) =
1

m

m∑
i=1

1

{
(k − 1)m

K
< i ≤ km

K

}
U[i,m]

where U[i,m] ∈ R is defined as,

U[i,m] :=
1

L

L∑
ℓ=1

Kf̂ ℓ
k(X

(ℓ)
[i,m])Y

(ℓ)
[i,m]

(
T

(ℓ)
[i,m]

q
−

1− T
(ℓ)
[i,m]

1− q

)
.

and (Y
(ℓ)
[i,m], T

(ℓ)
[i,m],X

(ℓ)
[i,m]) are ordered separately for each split ℓ such that:

sℓ(X
(ℓ)
[i,m]) ≤ sℓ(X

(ℓ)
[i,m]) ≤ · · · ≤ sℓ(X

(ℓ)
[i,m])

Now by Assumption 7, there exists a fixed scoring rule s(X) and corresponding
treatment rule fk(Xi) = 1{s(Xi) > ck−1(s)} − 1{s(Xi) > ck(s)} such that we can
write:

U[i,m] = Ũ[i,m] + ϵ[i,m]
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Ũ[i,m] :=
1

L

L∑
ℓ=1

Kfk(X
(ℓ)
[i,m])Y

(ℓ)
[i,m]

(
T

(ℓ)
[i,m]

q
−

1− T
(ℓ)
[i,m]

1− q

)

τ̃k(F, n−m) =
1

m

m∑
i=1

1

{
(k − 1)m

K
< i ≤ km

K

}
Ũ[i,m]

where

E[ϵ[i,m]] = E

[
1

L

L∑
l=1

K(fk(X
(ℓ)
[i,m])− f̂ ℓ

k(X
(ℓ)
[i,m]))Y

(ℓ)
[i,m]

(
T

(ℓ)
[i,m]

q
−

1− T
(ℓ)
[i,m]

1− q

)]

≤

√√√√√E

( 1

L

L∑
l=1

K(fk(X
(ℓ)
[i,m])− f̂ ℓ

k(X
(ℓ)
[i,m]))Y

(ℓ)
[i,m]

(
T

(ℓ)
[i,m]

q
−

1− T
(ℓ)
[i,m]

1− q

))2


= o
(
m−1/2

)
Then, we can apply the proof of Theorem 2 on Ũ[i,m] as fk is fixed, which gives:

τ̃k(F, n−m)− E[τ̃k(F, n−m)]√
V(τ̃k(F, n−m))

→ N(0, 1)

Since V(τ̃k(F, n−m)) = V(τ̂k(F, n−m))+o(m−1) and τ̂k(F, n−m) = τ̃k(F, n−m)+
o(m−1/2), we have:

τ̂k(F, n−m)− τk(F, n−m)√
V(τ̂k(F, n−m))

→ N(0, 1)

2

S10 Proof of Theorem 7
The proof follows identically to the proof of Theorem 3 by applying the Cramer-Wold
Device in Theorem S2 to the sequence

∑K
k=1 tkτ̂k(F, n−m).
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