Supplementary Appendix
S1 Proof of Theorem

We first rewrite the expectation of the proposed estimator in Equation (3]) as,
E(7y) = KELY; (f"(Xi,6(s))) = Yi (S (X, ée-a(s)))

where f*(X;,¢) = 1{s(X;) < ¢}. Similarly, we can also write the estimand in
Equation as,

T = KELY; (f7(X5, er(s))) = Yi (" (Xi, cea(s))) -

Now, define F(c¢) = P(s(X;) < ¢). Without loss of generality, assume ¢(s) > ci(s)
and ¢,_1(s) > cx_1(s). If this is not the case, we simply switch the upper and lower
limits of the integrals in the proof below. Then, the bias of the estimator is given by,
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By the definition of ¢;(s), F(¢x(s)) is the nk/Kth order statistic of n independent
uniform random variables, and thus follows the Beta distribution with the shape and
scale parameters equal to nk/K and n —nk/K + 1, respectively. For the special case
where k — 1 = 0, we define the Oth order statistic of n uniform random variables to
be 0, and by extension also define the “beta distribution” with shape parameter < 0
to be H(x) where H(x) is the Heaviside step function. Therefore, we have,

k k k k k k k
P(‘F(ék(s))_?|>€> = 1-B <——|—e,n—,n—n——|—1>+B (__6,"_,n_”_+1>’

K K K K K K
where B(e,a, ) = [;t* (1 —t)?~'d¢ is the incomplete beta function. Similarly,
we have

P(F (6 (5)) k:—1|> ) = 1-B k:—1+ n(k—1) n(k:—l)+1
Crp_1(s 7 €) = e I
k=1)  ni—1)  nlk-1)
+B ( I €, I N % +1].
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Combining the above results yields the desired bias bound expression.
To derive the exact variance, we first apply the law of total variance to Equa-

tion (3),

V(#) =V E{K (%Zﬁ(ximn(l)—niozmxi)(l—m ) 'X {Y;(1), Yi(0)} H
+E V{K (%ka(ximm)—%Zﬁ(&-)(l—m ) ‘X {v;(1),Y:(0) ?1}]

:K2V< Z{Ykz Ykz )}>
{nlsz JTY(1 —n—osz ST | X () <o>71}]-

(S1)

+ K’E |V

Applying the standard result from Neyman’s finite sample variance analysis to the
second term shows that this term is equal to,

K°E {% (%5,31 + %5,30 + 25k01) } . (S2)
where Sior = 1 (Yi(0) — Yi(0)) (Yai(1) — Yi(1))/(n — 1). Since Yi;(t) and Y;(t)

are correlated, we apply Lemma 1 of [Nadeau and Bengio| (2000)) to the first term,
yielding,

v (% S () - Ykim)})

= Cov{¥ia(1) = Yia(0), Vig(1) = Yig (0)) + ~E(S} + 5% — 25i1),  (53)
for i # j where
Cov(Yii(1) = Yii(0), Yis (1) — ¥2;(0))
= Cov (fulXo)m, fu(X)7;)
= Pr(fi(X:) = fu(X;) = DE[nm; | fu(X0) = fu(X;) = 1] = Pr(fu(X3) = 1’Elr | fu(X3) = 1)°
R Bl | fo(X0) = fu(X,) = 1] — 5Bl | (X)) = 17

T K2(n—1)
. (n— K)I{ku _ li_il

K?*n—1) K?
Substituting Equations and into Equation , we obtain the desired variance
expression. O

1
K2

S2 Derivation of <y

We first rewrite ki as:

Rkttt = Z (_1)U+UE[K(U)YJ'(U) | ]Ek:(Xz) = fk(Xg) = t]-

u,ve{0,1}
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We can estimate each conditional expectation term inside of the summation using its
sample analogue:

>y 2 HUW(X) = fu(X5) = 1{1 — u + (2u = DTH1 — v+ (20 = DT}YY]
S Y W X0) = fu( X)) = {1 —u+ (2u = DT — v+ (20 = )T}

We can further simplify the computation by rewriting the numerator as:

n

DX = {1 — v+ (2v = DT}Y;

=1

[Z HA(Xi) = {1 —u+ (2u = DT;}Y,

=1

- Zn: { /(X)) = tH1l —u+ 2Qu— 1T 1 — v+ (20— DT}V

Similarly, we can rewrite the denominator as follows:

n

ST (X) = {1~ v + (20— T})

i=1

[Z 1{fk(X1) =t}(1—u+ 2u—1)T;)

=1

- Z {fu(X,) =t {1 —u+ 2u—DTH1L — v+ (20— DT}

Putting these terms together, we obtain the expression of Ay given in Section [2.2]

S3 Proof of Theorem

Given a tuple of n samples {Y;, T}, X}, we first reorder the sample to (Y 5, Tin), X[in))
based on the magnitude of the scoring rule, such that

(X)) < s(Xpm) < -0 < 8( X))

Then, the proposed GATES estimator can be rewritten as

1< (k—1)n . _kn
=y 19— <i < —  Upn S4
s { K Z_K} lin] (54)
where
s n) 1—T[m1>
Uin Z:KYi’n : — : 5 S5
iz [ 1( . ¢ (S5)

where ¢ = ny/n. Now, we prove the following two lemmas.

LEMMA S1 Let (X1,Y1),(Xs,Ys), -+ be a sequence of random vectors. For each n >

1, (X1,Y7), -, (Xn, Ys) possesses a joint distribution. Let Z, = ((X1,Y1), -, (Xn, Yn))
and X, = (X1, ,X,), and let W,(Z,) and S,(X,) be measurable vector-valued
functions of Z, and X, respectively. Suppose S,(X,) converges in distribution to
Fs and the conditional distribution W,,(Z,) | X, converges in distribution to Fy in
probability, where Fy, does not depend on X,,. Then, we have that:

(Wn(Zn)v Sn<Xn)) — FWFS
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Proof The characteristic function of the joint distribution of (W,,(Z,), S,(X,)) can
be written as:

ow, s, (t1,t2) = Elexp{i(tiW,,(Z,) + t25,(X,,)) }]

Let W ~ Fy and S ~ Fg. Then the characteristic function of Fy Fg can be written
as:

pws(t, t2) = Elexp{i(t;W) }E[exp{i(t2S5)}]
We then have:

[ow,s, (t1,t2) — pws(ti, ta)]
= |Elexp{i(tiWy(Z,) + t25,(X)) ] — Elexp{i(t: W) HE[exp{i(t25) }]|
< |[EE[exp{i(tiWi(Z,) + t250.(X0))} | Xa]] — E[exp{i(taW) }E[exp{i(25, (X)) H]

+ [Elexp{i(t: W) HE[exp{i(t25, (X)) }] — Elexp{i(t: W) }E[exp{i(25) }]|
<E[|[Elexp(itiW(Z,)) | X»n] — E[exp(it:W)][] + [Elexp{i(t25,(Xx)) } — Elexp{i(t25)}]|,

where the last inequality follows from the fact that all characteristic functions satisfy
|| < 1. This expression converges to zero in probability due to the convergence of
Sp(X,) and W, (Z,,) | X, respectively. Therefore, we have:

(Wa(Z,), Su(Xy)) = FwFs

LEMMA S2 lim E(7) — 7 = O (n_l)

n—oQ

Proof We bound the bias of E(7;) by appealing to Theorem 1 of{Imai and Li| (2023D)),
which implies,

F(ex(s))
|E(7x) — | < |KE / E(Yi(1) = Y;(0) | s(X;) = F_l(l‘))dl’]
F(ck(s))
F(ép-1(s))
+|kE / E(Yi(1) — Y;(0) | s(X;) = F‘l(x))dx] . (36)
F(ck—1(s))

By the definition of é(s), F'(¢x(s)) is the nk/Kth order statistic of n independent
uniform random variables, and therefore, follows the Beta distribution with the shape
and scale parameters equal to nk/K and n — nk/K + 1, respectively.

Now, by Assumption , we can compute the first-order Taylor expansion of fax E(Y;(1)—

Yi(0) | s(X,) = F~(a))du:

[E(7k) — 7i| <[KE[ao{F(cx(s)) — F(cr(s))} + o(F(Er(s)) — F(ck(s)))]]
+ [KE [a1{F(¢x-1(s)) = Fck-1(5))} + o(F (€x-1(s)) = Fler-1(s)))]|
nk ntk—1) k-1
K(n+1) K' Kn+1) K

=0 (n_l) .

=|Kayl | Ka| —I—o(n )
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Now, using these two lemmas, we prove the main result. Letting u(s) = E[U; |
s(X;) = s|, we decompose 7, into two parts,

n

=l —u<s<X[i,n]>>+%zl{@ <i< ’%’}u(s(m})).

=n i kn =l _
N ~~ 4 ~(2)
(1) Tk
Tk

(S7)

Consider the first term. By the general theory of induced order statistics presented
in [Bhattacharya| (1974)), Uy ) — w(s(X[n)) for i = 1,--- ,n are independent of one
another conditional on X, = (X, -+ ; Xjnn)). Define the random variables Z;
as distributed according to the joint conditional distribution U}; ;) —u(s(X[in))) | X

Then, we have
1) _ 1 3
vT Zlisns

(k—=n _._kn
xSk

where Z}; ;) are conditionally independent and E[Z}; ;] = 0 by construction. There-
fore, by Assumption [5] we can utilize the Berry-Esseen Theorem. Define:

1
ai(n) = - > V(Ziw)
1
pi(n) = " Z E(|Z[,-7n]|3)

(E—1)n

-~ kn
= <<

iy
Then the Berry-Esseen Theorem states that for W ~ N(0, 1), we have:

\/ﬁﬁgl) ) Co [ 5 —3/2
d W< — o1\n 1\n

where d(-,-) is the Kolmogorov distance. Now define the asymptotic variance and
third moment by:

o = lim oi(n)
n—oo

p1 = lim pi(n)
n—oo
Both quantities exist by the strong law of large numbers for functions of order statis-
tics (see Theorem 4 of [Wellner| (1977))). Specifically, by the strong law, 0% and p;
does not depend on X, for all but at most a measure zero set of X,,. Therefore, the
Berry-Esseen theorem implies that:

\/ﬁﬂgl) | X, 4, N(0,0?) with probability 1 (S8)

Next, consider the second term of Equation (S7)). To prove the convergence of
this summation of a function of order statistics, we utilize Theorem 1 and Example 1
from [Shorack| (1972)), which we restate in our notation below:
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THEOREM S1 (SHORACK| ({1972])) Consider an independently and identically dis-
tributed random sample X1,--- , X,, of size n from a cumulative distribution function
F, and a function of bounded variation g such that E[g(X)3] < oco. Define:

1 & i
== — ) (X,
N4 / (n) gl [m})

where X[; ) is the ith order statistics of the sample, and J is a function that is
continuous except at a finite number of points at which g(F ') is continuous. Suppose
that there exists 0 > 0 such that:

()] < M(t(1—1) s Vo<t <1

Then, we have:
VT, — E[T,]) & N(0,0%)
where 0% = lim,, o, nV(T},) < oo.
Now, set X; = S(X) g(-) = u(-), and J(t) = 1{(k—1)n/K <tn < kn/K}.
Then, we have T,, = 72. Assumption [5| guarantees E[g(X)?] < co. The function J(t)
is discontinuous only at the quantile points t = k/K and t = %, and Assumption

guarantees the continuity of g(F~!) at those points. The function J clearly satisfies
the bounding condition with 6 = 1/6 and M = 1. Therefore, define the asymp-

totic variance as o3 = lim,, o, nV(%,§2)), and we can utilize Theorem ﬂ to show the
following convergence:

Vi —E#P) % N(0,02) (S9)

Now, we aim to combine the results given in Equations (S8)) and ( . Using
Lemma [S2| we can replace 7, with E(7;) by adding a small bias term Then, we have

Vi =) = Vai” - E@GD) + V@ - EH?) +0 ()
4 N(0,0? + 02) (S10)

where the last line follows from the application of Lemma to the convergence

results given in Equations (S8]) and ( .
Equivalently, we can wr1te Equation (S10) as,

ﬂ 24 N(0,1)
O'% + 02
Now, note that by the law of total variance, we have that
nV(7,) = nEV (7" + 27 | X)) + nVIEGED + 77 | X))
= nE[V(#R” | X,)] +nV(7?)
— 07 + 03 (S11)

Therefore, by Slutsky’s lemma, we have that:




S4 Proof of Proposition

We prove this proposition by finding an example that satisfies it. Define t(z) =
E(Y;(1) = Yi(0) | s(X;) = F~!(x)). Then, consider a scoring function s and a popu-

lation such that:
)2 1> F(e(s))
te) = {1 < F(ew(s))

Note that t(x) is bounded everywhere but has a discontinuity. By definition of ¢x(s),
F(¢éx(s)) follows the Beta distribution with the shape and scale parameters equal
to nk/K and n — nk/K + 1, respectively. Therefore, we have the following normal
approximation:

Vi (P - s ) 28 (05 (1))

In particular, as n — oo, F(¢(s)) is distributed approximately symmetric around
F(ck(s)) = £ with an error of O(n™') and has a standard deviation of O(n~'/2).

K
F(ér(s)) F(ék—1(s))
/ f(2)de / f(z)de
F(ckp—1(s))

Thus, we have,
+ KE
F(ck(s))

=2-10(n ") +1-1D0 ") +0 ()

E(f'k) — T — K]E

=0 (n_l/Q)
We can now conclude /n(E(7,) — 73,) # 0. O
S5 Proof of Theorem
We wish to prove that for 7 = (74, ,7x), T = (71, -+ ,7x), and 3, = V(7), we

have:
3,2+ — 1) 5 N0, )

n

where I is the K x K identity matrix.
By Equation (S10]) in the proof of Theorem , forall k=1,---,k we have,

Vi — 1) 5 N(0,02),

where 7 = lim,_,,, nV(7;). To prove the multi-dimensional result, we utilize the
Cramer-Wold device, which we restate below:

THEOREM S2 ((CRAMER AND WoLD| (1936))) Let X, = (X1, -+, Xox) and X =
(X1, -, Xg) be k-dimensional random vectors. Then X,, — X if and only if for all
(t1,-+ ,tr) € R* we have:

k k
S X 5 ) X
=1 =1

Now, consider t = (t1,--- ,tx) € RX and 7, = Zszl t.7r. Then, we can write 7;
as:
1 ( - (k—1)n kn
f=13 (S ha {— <i< _} Ui
i3 =t K K
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where Uj; ) is defined in Equation (S5). We use the same proof strategy as the one
used to prove Theorem [I] We define u(s) = E[U; | s(X;) = s] and write:

K
) 1
T = ﬁ Z tr Z U[z,n} - u(‘S(X[%”]))

k=l (elngichn
%E;
n K
1 (k= n kn
n Wl <S¢ ) uls(X
+”z:1 (;k { K ! K})“(S( fin)))

Using Lindberg’s Central Limit Theorem for the conditional distribution of 7 Tt glven
X, and applying Theorem |S ! to Tt yleld,

where o2 = lim nV(#" | X,,) and 02 = lim nV(#”). This implies,

n—o0 n—o0
Vil = 1) = v (7 =B + v (3 EIEP)) + 0 (n772) 5 N (0,03 + o)

where the result follows from Lemma [S1] Since we can easily show nV(7,) — o7 + 03,
we have: /n(7,—7) — N(0,lim,, .o nV(7)). Therefore, by the Cramer-Wold device
(Theorem [S2), we have /n(+ — 7) — N(0,lim,, 0o n%,). Finally, Slutsky’s Lemma
implies the desired result,

>-Y2(+ — 1) = N(0,1).

n

To derive the expression for the covariance matrix 3., we utilize the same ap-
proach as the one used in the proof of Theorem [I} We first apply the law of total
covariance to obtain:

COV(%]{, 7A'k/>

— K2?Cov (% Z{Ykgu) — Y (0 Z{Yk, — Y )})

Cov {i 3 <fk(X,-) - ) T - Iy (Ax) - ) (1= Tvi0),

n
Loz

+ K’E

nili (fk, - _) T,Y(1) — nigz (fk,(xi) - %) (1—T)Y;(0) ’ X, {Yi(1), i(0)

(S12)

Applying Neyman’s finite sample variance analysis to the second term shows that
this term is equal to:

1 *
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where S0, = Y0 (¥(0) = Y (0)) (Y, (1) = Vi (1))/(n —1). Since ¥(t) and Y, (¢)
are correlated, we have:

n
i=1 i=1

Cov (% > (V1) = Y(0)), 1 > (1) - Y,j,i(())))

* * * * 1 * * *
= Cov(Yy;(1) = Y35(0), Yy, (1) — Y35,;(0)) + EE(SkI?:’l + Sivo — 25701)- (S14)

For k # k', we have:

Cov(Yyi(1) = ¥5i(0), Yy (1) = Yir;(0))

= Cov ((fk(Xi) - %) Ti, (fk'(Xj) - %) Tj)

= (1= ) CovAXIm X)) = e Con((1 = (X)) X))

_ %Cov((l — fk/(Xi))Ti7 fk(Xj)Tj)

2 1 1
= 1— ? ﬁﬁkk’ll — ﬁﬁklﬁk’l

1 (n/K(n—n/K—1) n/K(n—n/K —1) 1 1
B K Rkk10 — 5 Kkl K0 — — KkoRE/
1% nn—1) kk/01 n(n—1) kK110~ Zog FRLRKO = Zo3 FRORKL
1 Kn—n-—1

{(K —2) (Kkk11 — Kk1kwn) — (Kkkr1o + Kiko1) + Krikro + Hkoffkfl} .

:ﬁ n—1
For k = k/, we have

Cov(Yy;(1) — Y3:(0), Yk*j(l) - Yk*](o))

= Cov ((fk(XZ-) — %) Ti, (fk(Xj) - %) Tj)

= (1= ) CovtAXim, AX)m) -  Cov((L = AX)m (X))

B 2 n—K 1 2 [(n(K—-1) 1
= (%) R~ mh R Ry e

1 n— K 2n(K —1
= ﬁ{(K_Z) <n— 1 kL —’@%) - ﬁ’ﬁcM‘i‘Qﬁklﬁko}-

Substituting Equations (S13) and (S14) into Equation [S12, we obtain the desired
covariance expression.
O

S6 Proof of Theorem

The proof of Theorem |3 above establishes that 3~/2# is asymptotically normally
distributed with the identity variance matrix I. For simplicity, throughout this proof,
we will assume that X~'/27 is exactly normally distributed with unknown mean
0= (r—7,-,7x —7), i.e, BV2F ~ N(O,1).

Let the likelihood of the data 7 under the null and alternative hypotheses as
L:(HS) and Lz(HE). Under the asymptotic normal assumption, the likelihood ratio
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is given by:

LHSJ):{@XP{(?—M( NENF — (7))} 6€6
exp {—(F — po($) TS HF — po(7)} 66

Where p;(7) are the optimal mean vectors given data 7 for region j of the hypothesis
test, and is the solution to the following optimization problems for j € {0, 1}:

p;() = argmin |7 — p|*
HEB;
We can identify the optimal means (p1, o) for each region of the hypothesis test
through this optimization problem because the multivariate normal distribution is
spherical and symmetric.

We use (7 — po(7)) X717 — po(F)) as our test statistic. Note that when 7 € Oy,
the statistic is always 0, so the null hypothesis is never rejected and thus we are
consistent. Given that we have a composite test, we are interested in finding the
uniformly most powerful test. This requires calculating the size of a test «, as a
function of the critical value C'(«):

a = sup Pr((# — po(7)) 27 — po(F)) > C(a) | 6)
6cO,
Since the supremum must occur at the boundary 00, of the polytope @ the set O,
the probability of exceeding C'(«) is maximized when the solid angle of the @, region
is minimized. By considering the shape of the polytope ©,, we recognize that the
boundary points, which minimize the solid angle, are precisely those on the boundary
when all constraints are active:

o = sup Pr((7 — po(7)) T B(F — po(#)) > Cla) | =7 =+ =i — 7 = 1),
t
We now note that we have translational invariance on this boundary, i.e., all points
along 71 — 7 = ... = 7, — 7 have the same probability, yielding,
a=Pr((F — po(F) BN F — po(7) > Cla) [ 7= =7 —7=0)

Therefore, to identify the value of «, we just need the CDF of the statistic (¥ —
o (7 ))TE Y+ — po(F)) when 7 ~ N(0,X). This can be easily estimated using
Monte Carlo simulation. O

S7 Proof of Theorem

The derivation of bias is essentially identical to that given in Supplementary Ap-
pendix [S1|and thus is omitted. To derive the variance, we first introduce the following
useful lemma, adapted from [Nadeau and Bengiol (2000]).

LEMMA S3
E(Si) = V(i) — COV(fk,Tzf ),
7t L — y
V(7 (F,n—m)) = V7i) + Cov(%,f,i',f ).
L L
where £ # 1.
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The lemma implies,

V((Fin—m)) = V(i) — C1E(Sh)

We then follow the same process of derivation as in Appendix [S1] for the first term.
The only difference occurs in the derivation of the covariance term:

Cov(Y (1) = Yi£(0), Y5 (1) = Yi5(0))
—E, |Covx.y (fX)m, FX)7 )| + Cove [Bxy (X )7), Exey [FU(X )7

(n — K)kt 1 1
5 Gty | + v ),

L~

S8 Proof of Consistency of E(S5%,)

We show that E(S%,) is consistent as L approaches infinity under the assumption
that the fourth moments E(Y;(¢)?) < co for t = 0,1 and a sufficiently large value of
m. Theorem [5] implies,

V(#(F,n—m)) = K (E(S%’“) + E<S%’“°)>

my mo

n— K)k! 1 L—-1
v (G0 L] v (o) - S EsR0)
Now, define:
o E(S%.) E(S%0)\ (n— K)EK,] 1 ——, —
- _ g2 Fk1 FkO ki1l L T2 7
V(7 (F,n—m)) = K ( o + o K2(n—1) 702 (E[s,])*+V (mkl)

By construction, we have that as m — oc:

V(7 (F,n — m)) ;
Vi —m) + EIE(SL)

Applying Lemma 1 from [Nadeau and Bengio| (2000)) to 7 (F,n —m) gives

V(#u(Fyn —m)) > E(Sgy).

Therefore, we have:

Note that we can write E(S%,) as:

—

E(S2,) = min (sgk,V(fk(f,n\— m))).
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By definition of S%,, if the fourth moments of Y;(t) exist, we have V(S%,) = O(L™'),
and thus as L — oo:

Let € > 0. There exists Lq such that for all L > Ly, — 1] < €. Similarly, there

’IE 52
exists mg such that for all V(7. (F,n —m)) > (1 —¢)E (S%k) Vm > my. Therefore, for
all m > mg, we have that:

R min (2, V(7(F,n — m)) )
lim ]E(Sgk) = lim ( Fk 5 ) = lim S 2 L
L—oo E(S%,) L—oo E(SE) L—oo E(SE))

S9 Proof of Theorem @

We first shows the bias is small.

LEMMA S4 lim |7 (F,n—m) — 7(F,n—m)| =0 (m™")

n—o0

Proof

L
1
Fe(Fon—m) —m(Fon—m)| < + > [B(FH(F,n—m)) = 7(F,n —m)|

= 0 (m’l) .

The first equality follows because the estimator for each fold 7¢(F, n—m) is equivalent
to the non-cross-fitting estimator under m samples and so Lemma [52| is applicable.

The second equality follows from Assumption [6] O
We first write:
. 1 & . _km
Tk(F,TL— :EZ { <Z§?}U[z7m]

where Up; ) € R is defined as,

7O 11
. © 1y © [ Lim i)
Uim] = Zka XY < - ‘

q 1—g¢q

and (Y[Z(Zm], T[%)n], X [(f?n}) are ordered separately for each split ¢ such that:
¢ 0) ¢
3£<X[(i72n]) <s (X[(z mp) S0 S 3£<X[(i,3n])

Now by Assumption , there exists a fixed scoring rule s(X) and corresponding
treatment rule fi(X;) = 1{s(X;) > cx-1(s)} — 1{s(X;) > cx(s)} such that we can
write:

Uz [i,m] — U['L m] + €[i,m]
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: (0) 0
~ 1 0 0 T[z m] L= T[Z m]
Upin = 7 > K Sl X () Yoy | =2 =
1 <& k—1 . km|
Tk(Fvn_m):Ezl{( K) < f}U[zm}
i=1
where
@ )
1 (¢ o ( Tam 1= Tim
Elegm] = E | 7 2K (FA(X(00) = XG0V ( T
=1
@ () ’
1 X )y Tim 1= T

Then, we can apply the proof of Theorem [2/ on U i,;m] as fi is fixed, which gives:

Tk(Fyn —m) — E[Tx(F,n — m)]
\/V(%k(F, n—m))

Since V(7 (F,n—m)) = V(7(F,n—m))+o(m™') and 7,(F,n—m) = 7.(F,n—m) +
o(m~1/2), we have:

— N(0,1)

T(F,n—m) — 1.(F,n —m)

N I

S10 Proof of Theorem

The proof follows identically to the proof of Theorem [3| by applying the Cramer-Wold
Device in Theorem [S2| to the sequence S 1, t37%(F,n — m).
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