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ABSTRACT
Researchers are increasingly turning to machine learning (ML) algorithms to investigate causal hetero-
geneity in randomized experiments. Despite their promise, ML algorithms may fail to accurately ascertain
heterogeneous treatment effects under practical settings with many covariates and small sample size. In
addition, the quantification of estimation uncertainty remains a challenge. We develop a general approach
to statistical inference for heterogeneous treatment effects discovered by a generic ML algorithm. We apply
the Neyman’s repeated sampling framework to a common setting, in which researchers use an ML algorithm
to estimate the conditional average treatment effect and then divide the sample into several groups based
on the magnitude of the estimated effects. We show how to estimate the average treatment effect within
each of these groups, and construct a valid confidence interval. In addition, we develop nonparametric tests
of treatment effect homogeneity across groups, and rank-consistency of within-group average treatment
effects. The validity of our methodology does not rely on the properties of ML algorithms because it is solely
based on the randomization of treatment assignment and random sampling of units. Finally, we generalize
our methodology to the cross-fitting procedure by accounting for the additional uncertainty induced by the
random splitting of data.
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1. Introduction

A growing number of researchers are turning to machine learn-
ing (ML) algorithms to uncover causal heterogeneity in ran-
domized experiments. ML algorithms are appealing because
in many applications the structure of heterogeneous treatment
effects is unknown. Despite their promise, however, relatively
little theoretical properties have been established for many of
these algorithms. In addition, the choice of tuning parameter
values remains to be often difficult and consequential in practice.
As a result, ML algorithms may fail to ascertain heterogeneous
treatment effects under common settings with many covariates
and small sample size. Furthermore, one major challenge is the
quantification of statistical uncertainty when estimating hetero-
geneous treatment effects using ML algorithms.

In this article, we develop a general approach to statistical
inference for heterogeneous treatment effects estimated through
the application of a generic ML algorithm to experimental data.
We apply the Neyman’s (1923) repeated sampling framework
to a common setting, in which researchers use ML algorithms
to estimate the conditional average treatment effect (CATE)
given pre-treatment covariates and then divide the sample into
several groups based on the magnitude of these estimated effects.
We show how to obtain a consistent estimate of the average
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treatment effect within each of these groups—the sorted group
average treatment effect (GATES; Chernozhukov et al. (2023))—
and construct an asymptotically valid confidence interval.

We also propose two nonparametric tests of treatment effect
heterogeneity that are of interest to applied researchers. First,
we test whether there exists any treatment effect heterogene-
ity across groups. Second, we develop a statistical test of the
rank-consistency of GATES. If an ML algorithm produces a
reasonable scoring rule, the rank ordering of GATES based on
their magnitude should be monotonic. To accommodate the
use of various ML algorithms, we make no assumption about
their properties. Specifically, ML algorithms do not have to be
consistent or unbiased. This is possible because the validity of
our confidence intervals and nonparametric tests solely depends
on the randomization of treatment assignment and random
sampling of units. Thus, our approach imposes only a minimal
set of assumptions on the underlying data generating process.

We first consider the setting, in which an external dataset is
used to estimate the CATE. For example, researchers may apply
an ML algorithm to an observational dataset. Alternatively, an
experimental dataset may be split into the training and vali-
dation datasets where an ML algorithm is first applied to the
training data to estimate the CATE, and the validation data is
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then used to estimate the GATES. Here, we treat the estimated
CATE function as fixed and do not account for the uncertainty
that arises from its estimation.

To incorporate this additional source of uncertainty, we fur-
ther generalize our methodology to the cross-fitting procedure,
which randomly splits the data into multiple folds. Each fold
is used as the validation data to estimate the GATES while the
remaining folds serve as the corresponding training data to esti-
mate the CATE. After repeating this for each fold, we aggregate
the GATES estimates to the entire sample. Unlike the sample-
splitting case where we condition on the split, we account for
additional uncertainty induced by the randomness of its cross-
fitting procedure. This directly addresses the fact that when the
sample size is small the GATES estimate may vary considerably
due to the random splitting of data.

Related Literature. The proposed methodology builds on the
existing literature about statistical inference for heterogeneous
treatment effects. In an early work, Crump et al. (2008) pro-
pose nonparametric tests of treatment effect heterogeneity.
The authors rely on the consistency of sieve methods under
the assumption that heterogeneous treatment effects are a
smooth function of covariates. In contrast, our methodology
does not require the consistent estimation of the CATE by
ML algorithms. Moreover, while Crump et al. assume the
continuous differentiability of the CATE, we only require its
continuity.

Ding, Feller, and Miratrix (2016) propose an alternative
approach based on Fisher’s randomization test. Similar to our
proposed methodology, this test neither requires modeling
assumptions nor imposes restrictive assumptions on data gen-
erating process. In fact, their test yields conservative p-values
without asymptotic approximation whereas other approaches
including ours are only valid in large samples. The authors,
however, test restrictive sharp null hypotheses. For example,
Ding, Feller, and Miratrix (2016) consider a null hypothesis that
the individual treatment effect is constant within each group and
the effect only varies across groups. In contrast, we focus on the
null hypotheses about average treatment effects that may vary
within and across groups under the Neyman’s repeated sampling
framework. While our tests are valid only asymptotically, our
simulation studies show that they perform reasonably well in
small samples. In addition, Ding, Feller, and Miratrix (2019)
use the Neyman’s repeated sampling framework to explore treat-
ment effect heterogeneity like we do, but rely entirely on the
linear regression and does not allow for the use of more flexible
ML algorithms.

More recently, Chernozhukov et al. (2023) study the settings
that are identical to the ones considered in this article. Similar to
our methodology, the authors do not impose strong assumptions
on the properties of ML algorithms that are used to estimate
the CATE. However, to incorporate the additional uncertainty of
the cross-fitting procedure, Chernozhukov et al. (2023) propose
to repeat the procedure many times and aggregate the resulting
p-values. We avoid such a computationally intensive proce-
dure and instead use the Neyman’s repeated sampling frame-
work to conduct valid statistical inference under cross-fitting.
In simulation studies reported elsewhere (Imai and Li 2023a),
we show that our confidence intervals are less conservative

than those proposed by Chernozhukov et al. (2023) in finite
samples.

Other researchers also have considered GATES and related
quantities. For example, Yadlowsky et al. (2021) establish the
asymptotic properties for a related general class of metrics that
summarize the effect of treatment prioritization rules. In addi-
tion to the different focus, the authors assume that a treatment
prioritization rule of interest is fixed and do not consider the
uncertainty that arises from its estimation. Dwivedi et al. (2020)
also estimate the GATES to explore treatment effect hetero-
geneity and develop calibration methods. However, they do not
derive the asymptotic distribution of GATES and hence stop
short of providing formal statistical methods.

Finally, Imai and Li (2023b) show how to evaluate an individ-
ualized treatment rule derived from the application of a generic
ML algorithm in general settings including the one based on
cross-fitting. We build on this work and derive the asymptotic
properties of the GATES estimator. Imai and Li (2023c) further
extends the methodology proposed in this article and develop
uniform asymptotic confidence bands. This allows researchers
to choose, with a statistical guarantee, a group of individuals who
are predicted to benefit from or be harmed by the treatment,
using the estimated CATE based on a generic ML algorithm.
They do not, however, consider the estimation uncertainty of the
CATE.

2. The Proposed Methodology

We start by developing our methodology in a setting where the
conditional average treatment effect (CATE) function is esti-
mated using a separate dataset, but is considered fixed when esti-
mating the sorted group average treatment effect (GATES) and
conducting statistical tests. For instance, the estimated CATE
might come from an external, possibly observational, dataset.
An alternative is sample splitting, where the sample is divided
randomly into training and evaluation sets. The training data
is used for CATE estimation via a machine learning algorithm,
and the evaluation data for GATES estimation. In this section,
we do not account for the uncertainty in estimating the CATE.
In Section 3, we extend our methodology to cross-fitting, incor-
porating this estimation uncertainty.

2.1. Setup

Suppose that we have an iid sample of n units from a super-
population P . Let Ti represent the treatment assignment indi-
cator variable, which is equal to 1 if unit i is assigned to the
treatment condition and is equal to 0 otherwise, that is, Ti ∈
T = {0, 1}. For each unit, we observe the outcome variable Yi ∈
Y and a vector of pre-treatment covariates, Xi ∈ X , where Y
and X represent the support of the outcome variable and that of
the pre-treatment covariates, respectively.

We require the standard causal inference assumptions of
consistency and no interference between units, denoting the
potential outcome for unit i under the treatment condition Ti =
t as Yi(t) for t = 0, 1 (e.g., Neyman 1923; Holland 1986;
Rubin 1990). The observed outcome is given by Yi = Yi(Ti). For
notation simplicity, we assume that the treatment assignment
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is completely randomized with exactly n1 units assigned to
the treatment condition though the extensions to other exper-
imental designs and unconfounded observational designs are
possible. We formally state these assumptions below.

Assumption 1 (No Interference between Units). The potential
outcomes for unit i do not depend on the treatment status of
other units. That is, for all t1, t2, . . . , tn ∈ {0, 1}, we have,
Yi(T1 = t1, T2 = t2, . . . , Tn = tn) = Yi(Ti = ti).

Assumption 2 (Random Sampling of Units). Each of n units, rep-
resented by a three-tuple consisting of two potential outcomes
and pre-treatment covariates, is assumed to be independently
sampled from a super-population P , that is,

(Yi(1), Yi(0), Xi)
iid∼ P

Assumption 3 (Complete Randomization). For any t ∈ {0, 1}n

such that
∑n

i=1 ti = n1, the treatment assignment probability is
given by,

Pr(T = t | {Yi′(1), Yi′(0), Xi′ }n
i′=1) = 1(n1

n
) .

Suppose that a researcher applies an ML algorithm to a
training dataset and estimate the CATE. As noted earlier, this
training dataset can be obtained through the sample splitting or
it may be an external dataset. The CATE is defined as,

τ(x) = E(Yi(1) − Yi(0) | Xi = x),

for any x ∈ X . The ML algorithm produces the following
scoring rule,

s : X −→ S ⊂ R (1)

where a greater score indicates a higher priority to receive the
treatment. Without loss of generality, we assume that the scoring
rule is bijective, that is, s(x) �= s(x′) for any x, x′ ∈ X with
x �= x′. Note that one can always redefine X to satisfy this
assumption.

As noted earlier, we assume almost nothing about the prop-
erties of this scoring rule derived by the ML algorithm. In
particular, the scoring rule does not have to be a consistent
estimate of CATE. In fact, the scoring rule need not even be an
estimate of CATE so long as it satisfies the definition given in
(1).

2.2. Estimation and Inference

Given the setup introduced above, we first consider the estima-
tion and inference for the sorted group average treatment effect
(GATES), which is a common quantity of interest in applied
research and is studied by Chernozhukov et al. (2023). The idea
is that researchers sort units into a total of K groups based on
the quantile of the scoring rule, and then estimate the average
treatment effect within each group. For simplicity, we assume
that the number of treated and control units, that is, n1 and n0,
are multiples of K. The formal definition of GATES is given by,

τk = E(Yi(1) − Yi(0) | ck−1(s) < s(Xi) ≤ ck(s)) (2)

for k = 1, 2, . . . , K where ck represents the cutoff between the
(k − 1)th and kth groups and is defined as,

ck(s) = inf{c ∈ R | Pr(s(Xi) ≤ c) ≥ k/K},

for k = 1, 2, . . . , K, with c0 = −∞. Equivalently, GATES can
be seen as a special case of the rank-weighted average treatment
effect (RATE) with α(u) = 1{ k−1

K < u ≤ k
K } (Yadlowsky et al.

2021).
Thus, units that belong to the Kth group, for example, rep-

resent those who are likely to have the greatest treatment effect
according to the ML algorithm whereas those in the first group
are likely to have the least treatment effect. However, we do not
assume that the GATES is monotonic, that is, τk ≤ τk′ for all
k < k′. This is important because we want to impose as little
restriction on the underlying scoring rule as possible. Indeed,
if the scoring rule is not a good estimate of CATE, such an
assumption may be violated. To address this problem, we later
develop a statistical test of this monotonicity assumption.

We consider the following estimator of GATES using the
experimental data,

τ̂k = K
n1

n∑
i=1

YiTif̂k(Xi) − K
n0

n∑
i=1

Yi(1 − Ti)f̂k(Xi), (3)

for k = 1, 2, . . . , K where f̂k(Xi) = 1{s(Xi) > ĉk−1(s)} −
1{s(Xi) > ĉk(s)}, and ĉk(s) = inf{c ∈ R :

∑n
i=1 1{s(Xi) ≤ c} ≥

nk/K} is the estimated cutoff. First, we derive the bias bound and
exact variance of the GATES estimator.

Theorem 1 (Bias Bound and Exact Variance of the GATES Estima-
tor). Under Assumptions 1–3, the bias of the proposed estimator
of GATES given in (3) can be bounded as follows,

P(|E{τ̂k − τk | ĉk(s), ĉk−1(s)}| ≥ ε)

≤ 1 − B
(

k
K

+ γk(ε),
nk
K

, n − nk
K

+ 1
)

+ B
(

k
K

− γk(ε),
nk
K

, n − nk
K

+ 1
)

−B
(

k − 1
K

+ γk−1(ε),
n(k − 1)

K
, n − n(k − 1)

K
+ 1

)

+B
(

k − 1
K

− γk−1(ε),
n(k − 1)

K
, n − n(k − 1)

K
+ 1

)
,

for any given constant ε > 0 where B(ε, α, β) is the incomplete
beta function (if α ≤ 0 and β > 0, we set B(ε, α, β) := H(ε) for
all ε where H(ε) is the Heaviside step function), and

γk(ε) = ε

K maxc∈[ck(s)−ε, ck(s)+ε] E(Yi(1) − Yi(0) | s(Xi) = c)
.

The variance of the estimator is given by,

V(τ̂k) = K2

(
E(S2

k1)

n1
+ E(S2

k0)

n0

)
+ (n − K)κk11

n − 1
− κ2

k1,

where S2
kt = ∑n

i=1(Yki(t) − Yk(t))2/(n − 1), κkt = E(Yi(1) −
Yi(0) | f̂k(Xi) = t), and κktt = E[(Yi(1)−Yi(0))(Yj(1)−Yj(0)) |
f̂k(Xi) = f̂k(Xj) = t] for i �= j with Yki(t) = f̂k(Xi)Yi(t), and
Yk(t) = ∑n

i=1 Yki(t)/n, for t = 0, 1.
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Proof is given in supplementary Appendix S1.
When compared to the standard variance estimator, there are

additional two terms. These terms result from the fact that the
cutoff points are estimated, yielding a cross-unit correlation in
terms of f̂k(Xi)Yi(t). Since exactly n/K data points are taken to
have f̂k(Xi) = 1, the value of this function is generally negatively
correlated across units, that is, corr(f̂k(Xi), f̂k(Xj)) < 0.

The variance can be consistently estimated by replacing each
unknown parameter with its sample analogue:

̂
E(S2

kt) = 1
nt − 1

n∑
i=1

1{Ti = t}(Yki − Ykt)
2,

κ̂kt =
∑n

i=1 1{f̂k(Xi) = t}TiYi∑n
i=1 1{f̂k(Xi) = t}Ti

−
∑n

i=1 1{f̂k(Xi) = t}(1 − Ti)Yi∑n
i=1 1{f̂k(Xi) = t}(1 − Ti)

,

κ̂ktt = [∑n
i=1 1{f̂k(Xi) = t}TiYi]2 − ∑n

i=1 1{f̂k(Xi) = t}TiY2
i

[∑n
i=1 1{f̂k(Xi) = t}Ti]2 − ∑n

i=1 1{f̂k(Xi) = t}Ti

+[∑n
i=1 1{f̂k(Xi) = t}(1 − Ti)Yi]2 − ∑n

i=1 1{f̂k(Xi) = t}(1 − Ti)Y2
i

[∑n
i=1 1{f̂k(Xi) = t}(1 − Ti)]2 − ∑n

i=1 1{f̂k(Xi) = t}(1 − Ti)

−2
[∑n

i=1 1{f̂k(Xi) = t}(1 − Ti)Yi][
∑n

i=1 1{f̂k(Xi) = t}TiYi]
[∑n

i=1 1{f̂k(Xi) = t}(1 − Ti)][
∑n

i=1 1{f̂k(Xi) = t}Ti]
.

for t = 0, 1 where Yki = f̂k(Xi)Yi and Ykt = ∑n
i=1 1{Ti =

t}Yki/nt . The expression of κ̂ktt above enables the calculation
in O(n) rather than O(n2) time. The details of the derivation is
given in Appendix S2.

We can further derive the asymptotic sampling distribution
of the GATE estimator by requiring the following continuity
assumption and moment conditions:

Assumption 4 (Continuity of CATE at the Thresholds). Let F(c) =
Pr(s(Xi) ≤ c) represent the cumulative distribution function of
the scoring rule and define its pseudo-inverse F−1(p) = inf{c :
F(c) ≥ p} for p ∈ [0, 1]. The CATE function E(Yi(1) − Yi(0) |
s(Xi) = F−1(p)) is assumed to be left-continuous with bounded
variation on any interval (θ , 1 − θ) with θ > 0, and continuous
in p at p = 1/K, . . . , (K − 1)/K.

Assumption 5 (Moment Conditions). For each t = 0, 1, we have

1. V(Yi(t)) > 0;
2. E(Yi(t)3) < ∞.

Assumption 4 is similar to the assumption commonly used
in the literature that the CATE is continuous in the covariates
Xi (e.g., Künzel et al. 2018; Wager and Athey 2018), but we only
require continuity at the thresholds, 1/K, . . . , (K − 1)/K and
bounded variation everywhere else. We will show in Proposi-
tion 1 that Assumption 4 is among the weakest assumptions
necessary for our asymptotic results. In particular, this assump-
tion requires that the scoring rule cannot be discontinuous at
the thresholds unless the CATE is constant in the scoring rule,
that is E(Yi(1) − Yi(0) | s(Xi) = F−1(p)) = E(Yi(1) − Yi(0))

for all p.
We now present the asymptotic sampling distribution of

GATES estimator.

Theorem 2 (Asymptotic Sampling Distribution of GATES Estima-
tor). Under Assumptions 1–5, we have,

τ̂k − τk√
V(τ̂k)

d−→ N(0, 1)

for k = 1, . . . , K where V(τ̂k) is given in Theorem 1.

Proof is given in supplementary Appendix S3. We emphasize
that Theorem 2 does not impose a strong assumption about the
properties of the ML algorithm used to generate the scoring
rule s.

In fact, the continuity of the CATE at the thresholds
(Assumption 4) is among the weakest assumptions that can
ensure the validity of Theorem 2. To see this, consider an alter-
native assumption that there exists a threshold at which CATE
is bounded but discontinuous, slightly relaxing Assumption 4.
The following proposition shows that this assumption is not
sufficient for Theorem 2.

Proposition 1 (Insufficiency of Bounded Variation). Suppose
Assumptions 1–3 and 5 hold. Further assume that the there
exists a threshold k/K, such that E(Yi(1) − Yi(0) | s(Xi) =
F−1(p)), is discontinuous (but bounded) at p = k/K. Then,
there exist a scoring rule s and a population P such that
as n → ∞ with 0 < n1/n < 1 staying constant,
we have,

E

(
τ̂k − τk√
V(τ̂k)

)
�−→ 0.

Proof is given in supplementary Appendix S4. Proposition 1
shows that if the CATE is mildly discontinuous at a threshold,
then we cannot sufficiently control the bias in estimating the
boundary points, ck(s). Under this scenario, the bias decays at
the rate of n−1/2, which is not fast enough for the application of
the central limit theorem.

2.3. Nonparametric Test of Treatment Effect Heterogeneity

In many applications, heterogeneous treatment effects are
imprecisely estimated. Researchers may wish to know whether
the treatment effect heterogeneity discovered by ML algorithms
represents signal rather than noise. In addition, checking the sta-
tistical significance of each GATES suffers from multiple testing
problems. To address these challenges, we develop a nonpara-
metric test of treatment effect heterogeneity. In particular, we
consider the following null hypothesis that all GATEs are equal
to one another,

H0 : τ1 = τ2 = · · · = τK . (4)

This null hypothesis is equivalent to τk = τ for any k where
τ = E(Yi(1) − Yi(0)) represents the overall average treatment
effect (ATE). Thus, we consider the following test statistic,

τ̂ = (τ̂1 − τ̂ , . . . , τ̂K − τ̂ )�,

where

τ̂ = 1
n1

n∑
i=1

YiTi − 1
n0

n∑
i=1

Yi(1 − Ti).

To derive the asymptotic reference distribution of this test
statistic,
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Imai and Li (2023b) derive the bias bound and the exact
variance of this PAPE estimator. Leveraging those results, the
following theorem shows that we can use a χ2 distribution as
an asymptotic approximation to the reference distribution when
testing treatment effect heterogeneity.

Theorem 3 (Nonparametric Test of Treatment Effect Heterogene-
ity). Suppose Assumptions 1–5 hold. Under H0 defined in (4)
and against the alternative H1 : RK \ H0, as n → ∞ with
0 < n1/n < 1 stays constant, we have,

τ̂
�
�−1τ̂

d−→ χ2
K

where the entries of the covariance matrix � are defined as
follows,

�kk = K2

[
E(S∗2

k1)

n1
+ E(S∗2

k0)

n0

+ 1
K3

{
(K − 2)

(
n − K
n − 1

κkk11 − κ2
k1

)

−2n(K − 1)

(n − 1)
κkk01 + 2κk1κk0

}]
,

�kk′ = K2

{
E(S∗2

kk′1)

n1
+ E(S∗2

kk′0)

n0

}

+ 1
K

{
(K − 2) (κkk′11 − κk1κk′1)

− Kn − n − 1
n − 1

(κkk′10 + κkk′01)

+ κk1κk′0 + κk0κk′1

}
,

for k, k′ ∈ {1, . . . K} and k �= k′ where S∗2
kt = ∑n

i=1(Y∗
ki(t) −

Y∗
k (t))2/(n − 1), S∗2

kk′t = ∑n
i=1(Y∗

ki(t) − Y∗
k (t))(Y∗

k′i(t) −
Y∗

k′(t))/(n−1), κkt = E(Yi(1)−Yi(0) | f̂k(Xi) = t), and κkk′ts =
E[(Yi(1)−Yi(0))(Yj(1)−Yj(0)) | f̂k(Xi) = t, f̂k′(Xi) = s] for i �=
j with Y∗

ki(t) = (f̂k(Xi)−1/K)Yi(t), and Y∗
k (t) = ∑n

i=1 Y∗
ki(t)/n,

for t = 0, 1.

Proof is given in supplementary Appendix S5. Similar to
Theorem 1, there is an additional third term in the variance
beyond the two standard terms, induced by the fact that f̂k(Xi)
is negatively correlated across units. In practice, we replace
the entries of � with their sample analogues, which result in
a consistent estimator ̂�. By Slutsky’s lemma, the asymptotic
distribution is not affected by this substitution.

2.4. Nonparametric Test of Rank-Consistent Treatment
Effect Heterogeneity

To evaluate the quality of the scoring rule produced by an ML
algorithm, we can test whether or not the rank of estimated
GATES is consistent with that of the true GATES. The relevant
null hypothesis is given by,

H∗
0 : τ1 ≤ τ2 ≤ · · · ≤ τK . (5)

Unlike the null hypothesis for treatment effect heterogeneity
given in (4), this is a composite null hypothesis.

To characterize the sampling distribution under this null
hypothesis H∗

0 , we consider the following optimization problem,

μ∗(x) = argminμ‖μ − x‖2
2 subject to μ1 ≤ μ2 ≤ · · · ≤ μK ,

where μ = (μ1, μ2, . . . , μK)� and x ∈ RK . If x ∼ N(0, �), the
following test statistic has a mixture of appropriately weighted
χ2 distribution with K degrees of freedom, called chi-bar-
squared distribution (Shapiro 1988),

(x − μ∗(x))��−1(x − μ∗(x)) ∼ χ̄2
K .

Using this fact, the next theorem derives a nonparametric test of
rank-consistent treatment effect heterogeneity that is asymptot-
ically uniformly most powerful.

Theorem 4 (Nonparametric Test of Rank-Consistent Treatment
Effect Heterogeneity). Suppose that Assumptions 1–5 hold.
Then, as n → ∞ and 0 < n1/n < 1 stays constant, an
asymptotically uniformly most powerful test of size α for the null
hypothesis H∗

0 defined in (5) against the alternative H∗
1 : RK \H∗

0
has the following critical region,

{τ̂ ∈ RK | (
τ̂ − μ0(τ̂ )

)�
�−1 (

τ̂ − μ0(τ̂ )
)

> Cα},

for some constant Cα that only depends on α. The expression of
� is given in Theorem 3. Under H∗

0 and as n → ∞, we have,

(
τ̂ − μ∗(τ̂ )

)�
�−1 (

τ̂ − μ∗(τ̂ )
) d−→ χ̄2

K .

Proof is given in supplementary Appendix S6. In practice,
we use Monte Carlo simulations to approximately compute the
critical values.

While our test is the asymptotically most powerful test of
its type, it is likely to be conservative as we control the critical
value based on the worst-case scenario among all the distribu-
tions consistent with the null hypothesis. In the literature on
statistical tests of moment inequalities, scholars have developed
subsampling and moment selection techniques that can improve
their statistical power (see e.g., Andrews and Guggenberger
2009; Andrews and Soares 2010; Canay 2010; Chernozhukov,
Chetverikov, and Kato 2019). Canay, Illanes, and Velez (2023)
provides an up-to-date review.

3. Generalization to Cross-Fitting

In this section, we generalize our methodology to cross-fitting, in
which researchers use the same experimental data to first gener-
ate the scoring rule using an ML algorithm and then estimate the
GATES based on the resulting scoring rule. In comparison with
sample splitting discussed in Section 2 where they are done on
separate samples, cross-fitting could potentially be much more
efficient. The key challenge, however, is the incorporation of
additional uncertainty due to the random splitting of the data.
We show how to overcome this under the Neyman’s repeated
sampling framework.
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3.1. Estimation and Inference

Under cross-fitting, we randomly divide the experimental data
into L ≥ 2 folds of equal size m = n/L where for the sake of
simplicity we assume n is a multiple of L, and each fold contains
m1 treated units with m0 control units, that is, m = m0 + m1.
We maintain Assumptions 1–3 introduced in Section 2.1. Then,
for each 
 = 1, 2, . . . , L, we use the 
th fold as a validation
dataset Z
 = {X(
)

i , T(
)
i , Y(
)

i }m
i=1 to conduct statistical tests

and estimate the GATES. We use the remaining folds, Z−
 =
{X(−
)

i , T(−
)
i , Y(−
)

i }n−m
i=1 , as the training dataset to estimate the

scoring rule with an ML algorithm.
Suppose that we define a generic ML algorithm as a deter-

ministic map from the space of training data Z train to the space
of scoring rules S :

F : Z train → S .

Then, for a given training dataset Ztrain of size n − m, the
estimated scoring rule is given by,

ŝZn−m
train

= F(Zn−m
train ). (6)

We now generalize the definition of the GATES to the cross-
fitting case,

τk(F, n − m)

= E[E{Yi(1) − Yi(0) | ck−1(ŝZn−m
train

) ≤ ŝZn−m
train

(Xi) ≤ ck(ŝZn−m
train

)}],
(7)

where the inner expectation is taken over the distribution of
{Xi, Yi(0), Yi(1)} among the units who belong to the kth group,
and the outer expectation is taken over all possible training sets
of size n − m from Zn−m

train the population P .
This generalized GATES is not a function of fixed scoring

rule. Rather, it is a function of ML algorithm F itself (as well
as the sample size of training data, n − m). Intuitively, it rep-
resents the average of GATES based on all observations that
score between (k − 1)/K × 100th percentile and k/K × 100th
percentile under the ML algorithm F across all possible training
datasets of size n−m. Alternatively, the cross-fitted GATE can be
seen as a weighted average of GATEs that are specific to scoring
rules where weights are determined by the training data and the
particular ML algorithm.

We describe estimation and inference for τk(F, n − m). For
each fold 
, we first estimate a scoring rule s by applying an ML
algorithm F to the training data Z−
,

ŝ
 = F(Z−
). (8)

We then estimate the GATES based on the validation data Z
,
using the following estimator that is analogous to the one defined
in (3),

τ̂ 

k (F, n − m) = K

[
1

m1

m∑
i=1

Y(
)
i T(
)

i f̂ 

k (X(
)

i )

+ 1
m0

m∑
i=1

Y(
)
i (1 − T(
)

i )
{

1 − f̂ 

k (X(
)

i )
}

− 1
m0

m∑
i=1

Y(
)
i (1 − T(
)

i )

]
,

Algorithm 1 Estimation of the Sorted Group Average Treatment
Effects (GATES) under Cross-fitting

Input: Data Z = {Xi, Ti, Yi}n
i=1, Machine learning algo-

rithm F, Estimator τ̂k, Number of folds L
Output: Estimated GATES {τ̂k(F, n − m)}K

k=1
1: Split the data Z into L random subsets of equal size

{Z1, . . . ,ZL}
2: Set m ← n/L and 
 ← 1
3: while 
 ≤ L do
4: Z−
 = {Z1, · · · ,Z
−1,Z
+1, . . . ,ZL}
5: � Create the training dataset
6: ŝ−
 = F(Z−
)

7: � Estimate the scoring rule s by applying F to Z−


8: τ̂ 

k = τ̂k(Z
) for each k = 1, 2, . . . , K

9: � Calculate the GATES estimator using Z


10: 
 ← 
 + 1
11: end while
12: return τ̂k(F, n − m) = 1

L
∑L


=1 τ̂ 

k for each k = 1, 2, . . . , K

where f̂ 

k (X(
)

i ) = 1{ŝ
(X(
)
i ) ≥ ĉ


k−1(ŝ
)}−1{ŝ
(X(
)
i ) ≥ ĉ


k(ŝ
)},
and ĉ


k(ŝ
) = inf{c ∈ R :
∑m

i=1 1{ŝ
(X(
)
i ) > c} ≤ mk/K}

represents the estimated cutoff in the 
th subsample. Repeating
this for each fold and averaging the results gives us the final
GATES estimator,

τ̂k(F, n − m) = 1
L

L∑

=1

τ̂ 

k (9)

for k = 1, 2, . . . , K. Algorithm 1 summarizes this estimation
procedure.

We extend our bias and variance results under sample split-
ting (Theorem 1) to the cross-fitting case by incorporating the
additional randomness induced by the cross-fitting procedure.

Theorem 5 (Bias Bound and Exact Variance of the GATES Esti-
mator under Cross-fitting). Under Assumptions 1–3, the bias of
the proposed GATES estimator given in (9) can be bounded as
follows,

E

[
P

(∣∣∣E {
τ̂k(F, n − m) − τk(F, n − m)

∣∣∣ĉk(ŝZn−m
train

),

ĉk−1(ŝZn−m
train

)
}∣∣∣ ≥ ε

∣∣∣ Zn−m
train

)]

≤ 1 − B
(

k
K

+ γk(ε),
nk
K

, n − nk
K

+ 1
)

+B
(

k
K

− γk(ε),
nk
K

, n − nk
K

+ 1
)

−B
(

k − 1
K

+ γk−1(ε),
n(k − 1)

K
, n − n(k − 1)

K
+ 1

)

+B
(

k − 1
K

− γk−1(ε),
n(k − 1)

K
, n − n(k − 1)

K
+ 1

)
,

for any given constant ε > 0 where B(ε, α, β) is the incomplete
beta function (if α ≤ 0 and β > 0, we set B(ε, α, β) := H(ε) for
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all ε where H(ε) is the Heaviside step function), and

γk(ε) = ε

KE{maxc∈[ck(ŝZn−m
train

(Xi))−ε, ck(ŝZn−m
train

(Xi))+ε]
E(Yi(1) − Yi(0) | ŝZn−m

train
(Xi) = c)}

.

The variance of the estimator is given by,

V(τ̂k(F, n − m)) = K2

(
E(S2

Fk1)

m1
+ E(S2

Fk0)

m0

)

+ (n − K)E
(κ


k11)

n − 1
− E
[(κ


k1)
2]

+ V

(
κ


k1

)
− L − 1

L
E(S2

Fk),

where S2
Fkt = ∑m

i=1(Y

ki(t) − Y


k (t))2/(m − 1), S2
Fk =∑L


=1(τ̂
(
)

k − τ̂k(F, n − m))2/(L − 1), κ

kt = E(Yi(1) − Yi(0) |

f̂ 

k (Xi) = t), and κ


ktt = E[(Yi(1) − Yi(0))(Yj(1) − Yj(0)) |
f̂ 

k (Xi) = f̂ 


k (Xj) = t] for i �= j with Y

ki(t) = f̂ 


k (X(
)
i )Y(
)

i (t),
and Y


k (t) = ∑m
i=1 Y


ki(t)/n, for t = 0, 1.

Proof is given in supplementary Appendix S7. When com-
pared to Theorem 1, although the bias bound is of a similar
form, the variance expression implies two additional terms. The
first additional term, V

(
κ


k1
)
, accounts for the variation across

training datasets. The second negative term, −(L − 1)E(S2
Fk)/L,

represents the efficiency gain of the cross-fitting procedure. As
expected, when L = 1, the expression reduces to the sample
splitting case (see Theorem 1).

The estimation of E(S2
Fkt), E{(κ


kt)
2}, E{(κ


ktt)} and V(κ

kt) is

straightforward and based on their sample analogues:

Ê(S2
Fkt) = 1

(m − 1)L

L∑

=1

m∑
i=1

1{T(
)
i = t}(Y


ki − Y

kt)

2,

̂E
{
(κ


kt)
2
} = 1

L

L∑

=1

(
κ̂


kt

)2
,

V̂(κ

kt) = 1

L − 1

L∑

=1

(κ̂

kt − κ̂


kt)
2,

where Y

ki = f̂ 


k (Xi)Y(
)
i , Y


kt = ∑m
i=1 1{Ti = t}Y(
)

ki /m, κ̂

kt =∑L


=1 κ̂

kt/L and

κ̂

kt =

∑m
i=1 1{f̂ 


k (X(
)
i ) = t}T(
)

i Y(
)
i∑m

i=1 1{f̂ 

k (X(
)

i ) = t}T(
)
i

−
∑m

i=1 1{f̂ 

k (X(
)

i ) = t}(1 − T(
)
i )Y(
)

i∑m
i=1 1{f̂ 


k (X(
)
i ) = t}(1 − T(
)

i )
,

κ̂

ktt = [∑m

i=1 1{f̂ 

k (X(
)

i ) = t}T(
)
i Y(
)

i ]2 − ∑m
i=1 1{f̂ 


k (X(
)
i ) = t}T(
)

i (Y(
)
i )2

[∑m
i=1 1{f̂ 


k (X(
)
i ) = t}T(
)

i ]2 − ∑m
i=1 1{f̂ 


k (X(
)
i ) = t}Ti

− [∑m
i=1 1{f̂ 


k (X(
)
i ) = t}(1 − T(
)

i )Y(
)
i ]2 − ∑m

i=1 1{f̂ 

k (X(
)

i ) = t}(1 − T(
)
i )(Y(
)

i )2

[∑m
i=1 1{f̂ 


k (X(
)
i ) = t}(1 − T(
)

i )]2 − ∑m
i=1 1{f̂ 


k (X(
)
i ) = t}(1 − T(
)

i )
,

In contrast, the estimation of E(S2
Fk) requires care. In par-

ticular, although it is tempting to estimate E(S2
Fk) using a real-

ization of S2
Fk, this estimate is highly variable especially when

L is small. As a result, it often yields a negative overall vari-
ance estimate. We address this problem by applying Lemma

1 from Nadeau and Bengio (2000) to τ̂k(F, n − m), which
gives,

V(τ̂k(F, n − m)) ≥ E(S2
Fk).

Since Theorem 5 implies:

V(τ̂k(F, n − m))

≤ K2
(
E(S2

Fk1)

m1
+ E(S2

Fk0)

m0

)
+ (n − K)E
[κ


k11]
n − 1

− E
[(κ

k1)2] + V

(
κ


k1

)
,

this inequality suggests the following estimator of E(S2
Fk),

Ê(S2
Fk) = min

⎛
⎝S2

Fk, K2

⎛
⎝ Ê(S2

Fk1)

m1
+ Ê(S2

Fk0)

m0

⎞
⎠

+ (n − K)E
[κ

k11]

n − 1
− E
[(κ


k1)
2] + V̂

(
κ


k1
))

. (10)

Although this yields a conservative estimate of V(τ̂k(F, n − m))

in finite samples, the bias appears to be relatively small in prac-
tice (see Section 4). In Appendix S8, we show that the estimator
is consistent as L goes to infinity and sufficiently large m.

To establish the asymptotic sampling distribution of our
cross-fitting GATES estimator, we first extend our CATE con-
tinuity condition (Assumption 4) by assuming that each CATE
given a training dataset is continuous and the average CATE
(over all possible training datasets) is bounded.

Assumption 6 (Continuity of CATE at the Thresholds under
Cross-Fitting). Let FZn−m

train
(c) = Pr(ŝZn−m

train
(Xi) ≤ c) represent

the cumulative distribution function of the scoring rule under
training set Zn−m

train and define its pseudo-inverse as F−1
Zn−m

train
(p) =

inf{c : FZn−m
train

(c) ≥ p} for p ∈ [0, 1]. Then, for all but
asymptotically measure-zero set of possible training sets Zn−m

train
of size n − m, the CATE function τZn−m

train
(p) = E(Yi(1) −

Yi(0) | ŝZn−m
train

(Xi) = F−1
Zn−m

train
(p)) is left-continuous with bounded

variation on any interval (ε, 1 − ε) with 0 < ε < 1/2, and
continuous in p at p = 1/K, . . . , (K − 1)/K. Furthermore, we
assume limn→∞ EZn−m

train
[maxp∈[0,1] τZn−m

train
(p)] < ∞.

In addition, we require the ML algorithm F to be stable.

Assumption 7 (ML Algorithm Stability). Let Zn
train be a training

dataset of size n and ŝZn
train

= F(Zn
train) represent the estimated

scoring rule that results from the application of an ML algorithm
F to the training dataset. Then, as m → ∞ (with L fixed), for any
a, b with a < b:

‖E[Yi(1) − Yi(0) | a ≤ ŝZn
train

(Xi) ≤ b]‖2 = o
(
m−1) .

The expectation is taken over the distribution of
{Xi, Yi(0), Yi(1)} among those units in the population P who
belong to the group defined by the conditioning set. The outer
norm is computed across the random sampling of training
dataset of size n from the same population. Assumption 7
implies that as the size of training data approaches infinity, L2
norm of the resulting scoring rule ŝZn

train
stabilizes sufficiently

quickly at a rate faster than O(m−1). The required rate is



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 263

consistent with the asymptotic conditions needed for other
related cross-validation settings (e.g., Austern and Zhou 2020).
Importantly, we do not assume that the ML algorithm converges
to the true CATE.

Finally, the next theorem established the asymptotic distribu-
tion of GATES estimator under cross-fitting.

Theorem 6 (Asymptotic Sampling Distribution of GATES Esti-
mator under Cross-Fitting). Suppose L is fixed. Then, under
Assumptions 1–3, 5–7, we have, as m goes to infinity,

τ̂k(F, n − m) − τk(F, n − m)√
V(τ̂k(F, n − m))

d−→ N(0, 1)

where the expression of V(τ̂k(F, n − m)) is given in Theorem 5.

Proof is given in supplementary Appendix S9, and is similar
to the proof of Theorem 2.

3.2. Nonparametric Tests of Treatment Effect
Heterogeneity

We now extend the nonparametric tests of treatment effect
heterogeneity and its rank-consistency introduced in Sec-
tions 2.3 and 2.4 to the cross-fitting setting. Similar to Cher-
nozhukov et al. (2023), we account for the additional uncer-
tainty due to random splitting. Unlike their method, however,
the proposed tests do not require a computationally intensive
resampling procedure.

Our first null hypothesis of interest is that the GATES are all
equal to the ATE,

HF0 : τ1(F, n − m) = τ2(F, n − m) = · · · = τK(F, n − m).
(11)

This null hypothesis depends on the ML algorithm F whereas
the null hypothesis given in (4) depends on the (fixed) scoring
rule.

The following theorem generalizes the result of Theorem 3 to
cross-fitting.

Theorem 7 (Nonparametric Test of Treatment Effect Heterogeneity
Under Cross-fitting). Suppose L is fixed. Then, under Assump-
tions 1–3, 5–7, and the null hypothesis HF0 defined in (11) and
against the alternative HF1 : RK \ HF0, as m → ∞, and
0 < m1/m < 1 stays constant, we have,

τ̂
�
F �−1τ̂ F

d−→ χ2
K

where τ̂ F = (τ̂1(F, n − m) − τ̂ , . . . , τ̂K(F, n − m) − τ̂ ), and � is
defined as for k, k′ ∈ {1, . . . K}:

�kk = K2

(
E(S∗2

Fk1)

m1
+ E(S∗2

Fk0)

m0

)
− L − 1

L
E(S2

Fk) + V

(
κ


k1

)

+ 1
K
E


{
(K − 2)

(
n − K
n − 1

κ

kk11 − (κ


k1)
2
)

−2n(K − 1)

(n − 1)
κ


kk01 + 2κ

k1κ



k0

}

�kk′ = K2

(
E(S∗2

Fkk′1)

m1
+ E(S∗2

Fkk′0)

m0

)
− L − 1

L
E(S2

Fkk′)

+cov
(
κ


k1, κ

k′1

)
+ 1

K
E


{
(K − 2)

(
κ


kk′11 − κ

k1κ



k′1

)
− Kn − n − 1

n − 1

(
κ


kk′10 + κ

kk′01

)
+ κ


k1κ


k′0 + κ


k0κ


k′1

}

where S∗2
Fkt = ∑m

i=1(Y∗

ki (t) − Y∗


k (t))2/(m − 1), S∗2
Fkk′t =∑m

i=1(Y∗

ki (t) − Y∗


k (t))(Y

k′i(t) − Y∗


k′ (t))/(m − 1), S2
Fkk′ =∑L


=1(τ̂


k (F, n − m) − τ̂k(F, n − m))(τ̂ 


k′(F, n − m) − τ̂k′(F, n −
m))/(L − 1), κ


kt = E(Yi(1) − Yi(0) | f̂ 

k (Xi) = t) and

κ

kk′ts = E[(Yi(1) − Yi(0))(Yj(1) − Yj(0)) | f̂ 


k (Xi) =
t, f̂ 


k′(Xi) = s]with Y∗

ki (t) = (f̂ 


k (X(
)
i ) − 1/K)Y(
)

i (t), and
Y∗


k (t) = ∑m
i=1 Y∗


ki (t)/m, for t = 0, 1.

Proof is given in supplementary Appendix S10. Compared
to Theorem 3, the only difference appears in the expression of
the covariance matrix � due to the efficiency gains of the cross-
validation procedure. Similar to Theorem 5, the estimation of
E(S2

Fkk′) for k = k′ requires care, and we use the consistent
estimator as identified in (10). If the resulting covariance matrix
estimate is not positive definite, we find the nearest positive
definite matrix in the L2 norm by using the algorithm of Higham
(2002).

Finally, we extend the nonparametric test of rank-consistent
treatment effect heterogeneity (Theorem 4) to cross-fitting. The
null hypothesis is given by,

H∗
F0 : τ1(F, n − m) ≤ τ2(F, n − m) ≤ · · · ≤ τK(F, n − m).

(12)

Now, we present the result.

Theorem 8 (Nonparametric Test of Rank-Consistent Treatment
Effect Heterogeneity Under Cross-Fitting). Suppose L is fixed.
Then, under Assumptions 1–3, 5–7, as m → ∞ and 0 <

m1/m < 1 stays constant, the uniformly most powerful test
of size α for the null hypothesis H∗

F0 defined in (12) against the
alternative H∗

F1 : RK \ H∗
F0 has the following critical region,

{τ̂F ∈ RK | (
τ̂ F − μ0(τ̂F)

)�
�−1 (

τ̂ F − μ0(τ̂ F)
)

> Cα},

for some constant Cα that only depends on α. Furthermore,
under HF0 and as n → ∞, we have,

(
τ̂ F − μ0(τ̂ F)

)�
�−1 (

τ̂ F − μ0(τ̂ F)
) d−→ χ̄2

K ,

where τ̂ F and � are defined in Theorem 7.

Proof directly follows from the fact by Theorem 7, �−1/2τ̂ F
is asymptotically normally distributed with variance-covariance
matrix I, which is an identity matrix of size K × K. Then,
following the same steps as those in supplementary Appendix S6
immediately establishes the result.

4. A Simulation Study

We undertake a simulation study to examine the finite sample
performance of the proposed methodology. We consider both
sample-splitting and cross-fitting cases. For the estimation of
GATES, we evaluate the bias and variance of the proposed
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estimators as well as the coverage of their confidence intervals.
For hypothesis tests, we examine the actual power and size
of the proposed tests. We show that the proposed method-
ology performs well even when the sample size is as small
as 100.

4.1. The Setup

We use the data generating process from the 2016 Atlantic
Causal Inference Conference (ACIC) Competition. We briefly
describe its simulation setting here and refer interested readers
to Dorie et al. (2019) for additional details. The focus of this
competition was the inference of average treatment effect in
observational studies. There are a total of 58 pre-treatment
covariates X, including three categorical, 5 binary, 27 count data,
and 13 continuous variables. The data were taken from a real-
world study with the sample size n = 4802.

In our simulation, we assume that the empirical distribution
of these covariates represent the population P and obtain each
simulation sample via bootstrap. We consider small and mod-
erate sample sizes: n = 100, 500, and 2500. For the sample-
splitting case, the models are pre-trained on the original dataset
from the 2016 ACIC data challenge, and the sample size n
refers to the number of testing samples. For the cross-validation
case, n refers to the total dataset size, which we then conduct
5-fold cross-validation, L = 5. One important change from
the original competition is that instead of using a propensity
model to determine T, we assume that the treatment assignment
is completely randomized, that is, Pr(Ti = 1) = 1/2, and
the treatment and control groups are of equal size, that is,
n1 = n0 = n/2.

To generate the outcome variable, we use one of the settings
from the competition, which is based on the generalized additive
model with polynomial basis functions. The model represents a
setting, in which there exists a substantial amount of treatment
effect heterogeneity. The formula for this outcome model is
reproduced here:

E(Yi(t) | Xi)

= 1.60 + 0.53 × x29 − 3.80 × x29(x29 − 0.98)(x29 + 0.86)

− 0.32 × 1{x17 > 0}
+ 0.21 × 1{x42 > 0} − 0.63 × x27 + 4.68 × 1{x27 < −0.61}
− 0.39 × (x27 + 0.91)1{x27 < −0.91}
+ 0.75 × 1{x30 ≤ 0} − 1.22 × 1{x54 ≤ 0}
+ 0.11 × x371{x4 ≤ 0} − 0.71 × 1{x17 ≤ 0, t = 0}
− 1.82 × 1{x42 ≤ 0, t = 1} + 0.28 × 1{x30 ≤ 0, t = 0}
+ {0.58 × x29 − 9.42 × x29(x29 − 0.67)(x29 + 0.34)}
× 1{t = 1} + (0.44 × x27 − 4.87 × 1{x27 < −0.80})
× 1{t = 0} − 2.54 × 1{t = 0, x54 ≤ 0}.

Throughout, we set K = 5 so that observations are sorted
into five groups based on the magnitude of the CATE. For the
case of sample-splitting, we can directly compute the true values
of GATES using the outcome model and evaluate each quantity
based on the entire original dataset. For the cross-validation
case, however, the exact calculation of GATES true values would
require averaging over all combinations of training datasets from

the original dataset. Since this is computationally prohibitive, we
obtain their approximate true values by independently sampling
10,000 training datasets. For each training dataset, we train an
ML algorithm F using 5-fold cross-validation. Then, we use the
sample mean of each estimated causal quantity across the 10,000
simulated datasets as our approximate truth.

We evaluate Bayesian Additive Regression Trees (BART) (see
Chipman et al. 2010; Hill 2011; Hahn et al. 2020) and Causal For-
est (Wager and Athey 2018), and LASSO (Tibshirani 1996). The
number of trees were tuned through the 5-fold cross-validation
for both algorithms. For implementation, we use R 3.6.3 with
the following packages: bartMachine (version 1.2.6) for BART,
grf (version 2.0.1) for Causal Forest, and glmnet (version 4.1-
2) for LASSO. The number of trees was tuned through 5-fold
cross-validation for BART and Causal Forest. The regularization
parameter was tuned similarly for LASSO.

4.2. Finite-Sample Performance of the Proposed
Estimators

Table 1 presents the results for the estimation of GATES in
the sample-splitting case. According to this simulation setup,
Causal Forest and BART appear to identify treatment effect
heterogeneity better than LASSO. For example, for BART, the
largest and smallest GATES are 5.89 and 2.09, respectively. In
contrast, the gap between the corresponding quantities is much
smaller for the LASSO, roughly equaling 2 points.

For each sample size, we conducted 1000 simulation trials.
For all three algorithms, the estimated biases of the proposed
GATES estimators are negligibly small, accounting for less than
5% of their estimated standard deviation in almost all cases. The
bias also generally decreases as the sample size grows. We also
find that the empirical coverage of the confidence intervals is
close to the theoretical 95% value even when the sample size is
as small as n = 100.

We obtain similar findings for the cross-fitting case. Table 2
shows the results for Causal Forest and LASSO. Unfortunately,
BART is too computationally intensive to include for this sim-
ulation. For the results of Causal Forest and LASSO, we use
1000 trials as before. As seen in the sample-splitting case, the
estimated biases of the proposed GATES estimators are rela-
tively small even when n = 100 and becomes negligible when
n = 500.

Recall that under the 5-fold cross-fitting, for example, n =
500 implies the evaluation sample of size 100 for each fold. And,
yet, combining the five folds leads to a much lower standard
deviation than the sample-splitting case with the n = 100
case in Table 1. The results are similar when comparing the
n = 2500 cross-fitting case with the n = 500 sample-splitting
case. Indeed, in some cases, the reduction in standard devia-
tion is more than 50%. This experimentally demonstrates the
efficiency gain from using a cross-fitting approach. We further
find that although Theorem 5 implies that the proposed vari-
ance estimate is conservative, the results show only the slight
overcoverage of the confidence intervals. In Imai and Li (2023a)
we show that the methodology proposed in Chernozhukov et al.
(2023) leads to more significant overcoverage of the confidence
intervals.
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Table 1. The finite sample performance of the GATES estimators under sample-splitting.

ntest = 100 ntest = 500 ntest = 2500

Estimator Truth Bias SD Coverage Bias SD Coverage Bias SD Coverage

Causal Forest
τ̂1 2.164 0.034 2.486 93.8% 0.041 1.071 95.0% 0.007 0.467 96.0%
τ̂2 4.001 0.011 2.551 93.7 −0.060 1.183 94.4 −0.002 0.510 95.3
τ̂3 4.583 −0.018 2.209 94.0 −0.003 0.956 96.4 0.020 0.421 95.8
τ̂4 4.931 −0.077 2.500 94.6 0.001 1.138 94.3 0.003 0.517 95.6
τ̂5 5.728 −0.058 3.332 96.0 −0.010 1.499 95.0 −0.009 0.661 95.2

BART
τ̂1 2.092 0.016 3.188 94.0% −0.014 1.402 96.2% 0.009 0.626 95.8%
τ̂2 3.913 0.127 2.918 95.1 0.028 1.388 94.0 −0.003 0.618 95.3
τ̂3 4.478 −0.077 2.218 94.3 −0.041 0.968 95.0 −0.001 0.425 95.1
τ̂4 5.042 −0.154 2.366 94.2 0.014 1.106 95.8 0.015 0.495 95.4
τ̂5 5.881 −0.019 2.510 94.7 −0.019 1.104 94.4 −0.000 0.489 95.0

LASSO
τ̂1 3.243 0.028 2.507 94.1% 0.049 1.119 95.1% 0.003 0.769 95.1%
τ̂2 3.817 −0.012 1.848 93.6 −0.013 0.834 94.5 −0.000 0.684 95.4
τ̂3 4.318 −0.013 2.095 94.2 −0.002 0.930 94.5 0.010 0.516 95.0
τ̂4 4.788 −0.041 2.475 94.0 −0.015 1.101 94.6 −0.001 0.480 94.6
τ̂5 5.241 −0.046 3.921 94.4 0.021 1.739 95.1 0.002 0.505 95.3

NOTE: The table presents the estimated bias and standard deviation of the GATES estimators as well as the empirical coverage of their 95% confidence intervals for Causal
Forest, BART, and LASSO. The machine learning algorithms are trained on the original dataset from the 2016 ACIC data challenge.

Table 2. The finite sample performance of the GATES estimators under cross-fitting.

n = 100 n = 500 n = 2500

Estimator Truth Bias SD Coverage Truth Bias SD Coverage Truth Bias SD Coverage

Causal Forest
τ̂1 3.976 −0.053 2.971 94.0% 2.900 −0.007 1.572 95.6% 2.210 −0.007 0.594 97.7%
τ̂2 4.173 −0.061 2.584 95.9 4.112 −0.038 1.075 98.2 4.057 0.011 0.541 98.6
τ̂3 4.286 −0.012 2.560 96.7 4.510 −0.054 1.058 97.7 4.545 0.019 0.465 98.1
τ̂4 4.400 −0.119 2.865 97.4 4.799 0.066 1.149 97.9 4.951 −0.009 0.509 98.6
τ̂5 4.569 0.140 3.447 94.1 5.086 0.001 1.620 96.0 5.643 −0.006 0.620 98.3

LASSO
τ̂1 4.191 −0.125 3.196 97.6% 4.017 −0.025 1.488 96.0% 3.752 −0.004 0.669 96.0%
τ̂2 4.205 0.036 2.281 97.5 4.137 −0.069 1.027 97.9 4.028 −0.019 0.590 98.9
τ̂3 4.268 −0.126 2.354 96.6 4.291 −0.019 1.000 97.9 4.323 0.037 0.488 97.5
τ̂4 4.334 −0.003 2.536 96.8 4.430 0.035 1.174 96.8 4.571 0.033 0.642 97.2
τ̂5 4.406 0.111 3.615 96.2 4.530 0.047 1.811 95.0 4.732 0.022 0.697 95.3

NOTE: The table presents the estimated bias and standard deviation of the proposed GATES estimators as well as the empirical coverage of their 95% confidence intervals
for Causal Forest and LASSO.

4.3. Finite-Sample Performance of the Proposed
Hypothesis Tests

We next examine the finite sample performance of the pro-
posed hypothesis tests. Due to the aforementioned compu-
tational intensity of BART, we focus on Causal Forest and
LASSO. For each simulated dataset, we conduct hypothe-
sis tests of two null hypotheses of interest: treatment effect
homogeneity (see (4) and (11) for sample-splitting and cross-
fitting, respectively) and rank-consistency of the GATES (see
(5) and (12) for sample-splitting and cross-fitting cases,
respectively).

According to the true values shown in Tables 1 and 2, the
null hypothesis of treatment effect homogeneity is false while
the rank-consistency null hypothesis is correct. This suggests
that the proposed test should reject the former hypothesis more
frequently as the sample size increases whereas it should reject
the latter hypothesis no more frequently than the specified size
of the test, which we set to 5% throughout.

We first consider the sample-splitting setting based on 500
simulation trials. Table 3 presents the rejection rate and median
p-value for each scenario across different training and testing

data sizes, denoted by ntrain and ntest, respectively. We find
that for Causal Forest, the training data of size 400 and the
test data of size 2000 are required to reject the null hypothesis
of treatment effect homogeneity with a high probability. This
highlights the difficulty of identifying treatment effect hetero-
geneity in randomized experiments. For the hypothesis test of
the rank-consistency of GATES, we find that if trained with a
small sample (ntrain = 100), Causal Forest might falsely reject
the null hypothesis but this false rejection rate is less than the
size of the test regardless of the size of the test data. This reflects
the conservative nature of our test as discussed at the end of
Section 2.

We obtain similar findings for LASSO, where small train-
ing data leads to low rejection rates for the treatment effect
homogeneity hypothesis and some false rejection of the rank
consistency hypothesis. As before, the false rejection rates are
approximately 5% or lower (the small number of simulations
induce some noise). Interestingly, the proposed test is much
less powerful for LASSO than for Causal Forest. Even when the
size of training data is 2000 and the test data size is 2500, the
rejection rate is only slightly above 25%. This is consistent with
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Table 3. The finite sample performance of the hypothesis tests for treatment effect homogeneity and rank-consistency of GATES under sample-splitting.

ntest = 100 ntest = 500 ntest = 2500

Rejection Median Rejection Median Rejection Median
rate p-value rate p-value rate p-value

Causal Forest
H0:Treatment effect homogeneity

ntrain = 100 5.2% 0.504 7.4% 0.529 19.6% 0.361
ntrain = 400 9.0 0.459 22.0 0.254 74.4 0.002
ntrain = 2000 13.0 0.367 40.4 0.092 96.0 0.000

H∗
0 : Rank consistency of GATES

ntrain = 100 4.0% 0.583 2.2% 0.624 2.2% 0.704
ntrain = 400 2.8 0.687 0.2 0.820 0.2 0.907
ntrain = 2000 1.2 0.707 0.2 0.852 0.0 0.967

LASSO
H0: Treatment effect homogeneity

ntrain = 100 5.8% 0.496 5.2% 0.544 9.6% 0.516
ntrain = 400 7.0 0.557 4.0 0.578 10.4 0.468
ntrain = 2000 6.2 0.489 9.4 0.519 26.2 0.249

H∗
0 : Rank consistency of GATES

ntrain = 100 4.6% 0.525 3.0% 0.584 5.4% 0.596
ntrain = 400 6.0 0.494 1.8 0.600 2.4 0.687
ntrain = 2000 3.2 0.608 1.4 0.698 1.2 0.851

NOTE: The results are based on Causal Forest and LASSO. The table presents the percent of 500 simulation trials where each null hypothesis is rejected using the 5% test
size. In addition, the median p-value across all trials is also shown. The results are presented for different training data sizes ntrain and different test data sizes ntest.

Table 4. The finite sample performance of the hypothesis tests for treatment effect homogeneity and rank-consistency of GATES under cross-fitting.

ntest = 100 ntest = 500 ntest = 2500

Rejection Median Rejection Median Rejection Median
rate p-value rate p-value rate p-value

Causal Forest
Homogeneous treatment effects 1.4% 0.790 4.6% 0.712 51.4% 0.041
Consistent treatment effects 1.4% 0.702 0.8% 0.845 0.0% 0.976
LASSO
Homogeneous treatment effects 0.6% 0.880 1.8% 0.850 9.0% 0.664
Consistent treatment effects 1.0% 0.722 0.6% 0.769 0.2% 0.889

NOTE: The results are based on Causal Forest and LASSO. The table presents the percent of 500 simulation trials where each null hypothesis is rejected using the 5% test
size and also the median p-value across all trials.

the finding in Section 4.2 that LASSO discovers less treatment
effect heterogeneity than Causal Forest.

We also examine the performance of our hypothesis tests
under cross-fitting, again using 500 simulation trials. Table 4
presents the rejection rate and median p-value across different
sample sizes. We use L = 5 fold cross-fitting for all simulations.
Note that the n = 500 case under cross-fitting is analogous in the
size of training and testing data to the (ntrain = 400, ntest = 100)

case for sample splitting. Similarly, the n = 2500 case under
cross-fitting corresponds to the (ntrain = 2000, ntest = 500) case
under sample-splitting.

For both Causal Forest and LASSO, the rejection rate of
the homogeneous treatment effect hypothesis is lower in the
n = 500 case compared with the corresponding sample-splitting
case, reflecting the additional uncertainty due to the sampling
of training data (under sample-splitting, the scoring rule is
regarded as fixed). However, when the sample size is n = 2500,
for both algorithms the rejection rate of homogeneous treat-
ment effects is higher under cross-fitting than sample-splitting,
demonstrating that the efficiency gain of cross-fitting outweigh
its additional sampling uncertainty. For the hypothesis test of
rank-consistency, we find that the rejection rate under cross-
fitting is significantly lower than the nominal test size for all
cases.

5. An Empirical Application

To demonstrate the applicability of the proposed framework,
we use the experimental data from the male sub-sample of
the National Supported Work Demonstration (NSW) (LaLonde
1986; Dehejia and Wahba 1999). NSW was a temporary employ-
ment program to help disadvantaged workers by providing them
with work experience and counseling in a sheltered environ-
ment. Specifically, qualified applicants were randomly assigned
to the treatment and control groups, where the workers in the
treatment group were given a guaranteed job for 9–18 months.
The primary outcome of interest is the annualized earnings in
1978, 36 months after the program. The data contains a total of
n = 722 observations, with n1 = 297 participants assigned to
the treatment group and n0 = 425 participants in the control
group. There are seven available pre-treatment covariates X that
records the demographics and pre-treatment earnings of the
participants.

We evaluate Causal Forest, BART, and LASSO under the
two settings considered in this article. For sample-splitting, we
randomly select 67% of the data (484 observations) to serve
as a training dataset. We use the remaining 238 samples to
estimate the GATES and conduct the proposed hypothesis tests.
For cross-fitting, we first randomly split the data into 3-fold,
that is, L = 3. We use each fold once as a testing set, while
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Table 5. The Estimated GATES and their 95% confidence intervals based on Causal Forest, BART, and LASSO under sample-splitting and cross-fitting.

τ̂1 τ̂2 τ̂3 τ̂4 τ̂5

Sample-splitting
Causal Forest 3.40 0.13 −0.85 −1.91 7.21

[−1.29,3.40] [−5.37,5.63] [−5.22, 3.52] [−5.16,1.34] [1.22,13.19]
BART 2.90 −0.73 −0.02 3.25 2.57

[−2.25,8.06] [−5.05,3.58] [−3.47,3.43] [−1.53,8.03] [−3.82,8.97]
LASSO 1.86 2.62 −2.07 1.39 4.17

[−3.59, 7.30] [−1.69,6.93] [−5.39,1.26] [−2.95,5.73] [−2.30,10.65]

Cross-fitting
Causal Forest −3.72 1.05 5.32 −2.64 4.55

[−6.52,−0.93] [−2.28,4.37] [2.63,8.01] [−5.07,−0.22] [1.14,7.96]
BART 0.40 −0.15 −0.40 2.52 2.19

[−3.79,4.59] [−2.54,2.23] [−3.37,2.56] [−0.99,6.03] [−0.73,5.11]
LASSO 0.65 0.45 −2.88 1.32 5.02

[−3.65,4.94] [−3.28,4.18] [−5.38,−0.38] [−1.83,4.48] [−0.14,10.18]

NOTE: The estimated GATES based on quintiles are reported in units of 1000 US dollars. Sample-splitting is done using 67% of the sample as the training data and 33% of
the sample as the evaluation data. For cross-fitting, we use 3-fold of equal size.

Table 6. The results of the proposed hypothesis tests under sample-splitting and cross-fitting using Causal Forest, BART, and LASSO.

Causal Forest BART LASSO

stat p-value stat p-value stat p-value

Sample-splitting
Homogeneous treatment effects 9.78 0.082 2.76 0.737 5.26 0.362
Rank-consistent treatment effects 3.07 0.323 1.13 0.657 3.14 0.302

Cross-fitting
Homogeneous treatment effects 30.29 0.000 2.32 0.803 10.79 0.056
Rank-consistent treatment effects 0.06 0.691 0.04 0.885 0.45 0.711

NOTE: The values of test statistics and p-values are presented. We test the null hypotheses of treatment effect homogeneity and rank-consistency of the GATES.

the remaining two folds are the training set. The number of
trees was tuned through 5-fold cross-validation for BART and
Causal Forest within each training dataset. The regularization
parameter was tuned similarly for LASSO.

We focus on the quintile GATES (K = 5). Table 5 presents
the results (reported in 1000 U.S. dollars) under the sample-
splitting and cross-fitting settings. We find that Causal Forest
is able to produce statistically significantly positive GATES for
the highest quintile group (τ̂5) under both sample-splitting and
cross-fitting. Thus, unlike the other two algorithms, Causal For-
est can identify a 20% subset that benefits significantly from the
temporary employment program.

Two additional observations are worth noting. First, the con-
fidence intervals are generally narrower in the cross-fitting case
compared to the sample-splitting case. This finding is consistent
with the fact that cross-fitting is more efficient than sample-
splitting. Second, the three algorithms failed to produce any sta-
tistically significant positive GATES for the remaining groups.
This may be because there are few additional workers who
benefit from the program. Alternatively, it is also possible that
such workers exist but the algorithms are unable to identify
them.

To formally evaluate the statistical significance of several
GATES estimates, we must account for the potential multiple
testing problem. Thus, we apply the proposed hypothesis tests
to evaluate the null hypotheses of treatment effect homogeneity
and rank-consistency of the GATES. Table 6 presents the result-
ing values of test statistics and p-values. We find that under
sample-splitting, only Causal Forest is able to reject the null
hypothesis of treatment effect homogeneity at the 10% level.

However, under cross-fitting, both Causal Forest and LASSO
algorithms can reject the null hypothesis at the 10% level, with
Causal Forest being able to reject the hypothesis at even the 0.1%
level. In contrast, BART fails to reject the treatment effect homo-
geneity hypothesis under both sample-splitting and cross-fitting.
The results with Causal Forest suggest that the identification of a
statistically significant GATES estimate for one subgroup under
cross-fitting is able to grant enough power to reject the null
hypothesis that the average treatment effects are homogeneous
across all subgroups. Finally, we find that all three algorithms fail
to reject the null hypothesis of the rank-consistency of GATEs.
Thus, under our conservative tests, there is no strong statistical
evidence that these algorithms are producing unreliable GATES.

6. Concluding Remarks

Many randomized experiments have a limited sample size and
the resulting treatment effect estimates are often small and
noisy. Yet, applied researchers often use machine learning algo-
rithms to estimate heterogeneous treatment effects. Therefore,
it is important to statistically distinguish signal from noise. We
have developed the framework that does not impose a strong
assumption on machine learning algorithms and hence is appli-
cable to a wide range of situations. The proposed methodol-
ogy allows researchers to construct confidence intervals on the
estimated average treatment effects within a group identified by
any machine learning algorithm. We also show how to conduct
formal hypothesis tests about heterogeneous treatment effects.
Our method solely relies upon the randomization of treatment
assignment and the random sampling of units, and hence, yields
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reliable statistical inference even when the sample size is rela-
tively small and machine learning algorithms are not performing
well.

Supplementary Materials

All proofs to the theorems in the article are contained in the supplementary
materials available online.
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