
On the Estimation of Disability-Free Life Expectancy:
Sullivan’s Method and Its Extension

Kosuke IMAI and Samir SONEJI

A rapidly aging population, such as the United States today, is characterized by the increased prevalence of chronic impairment. Robust
estimation of disability-free life expectancy (DFLE), or healthy life expectancy, is essential for examining whether additional years of
life are spent in good health and whether life expectancy is increasing faster than the decline of disability rates. Over 30 years since its
publication, Sullivan’s method remains the most widely used method to estimate DFLE. Therefore, it is surprising to note that Sullivan did
not provide any formal justification of his method. Debates in the literature have centered around the properties of Sullivan’s method and
have yielded conflicting results regarding the assumptions required for Sullivan’s method. In this article we establish a statistical foundation
of Sullivan’s method. We prove that, under stationarity assumptions, Sullivan’s estimator is unbiased and consistent. This resolves the
debate in the literature, which has generally concluded that additional assumptions are necessary. We also show that the standard variance
estimator is consistent and approximately unbiased. Finally, we demonstrate that Sullivan’s method can be extended to estimate DFLE
without stationarity assumptions. Such an extension is possible whenever a cohort life table and either consecutive cross-sectional disability
surveys or a longitudinal survey are available. Our empirical analysis of the 1907 and 1912 U.S. birth cohorts suggests that while mortality
rates remain approximately stationary, disability rates decline during this time period.
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1. INTRODUCTION

A rapidly aging population, such as the United States today,
is characterized by the increased prevalence of chronic impair-
ment, which is especially pronounced among the elderly. Ro-
bust estimation of disability-free life expectancy (DFLE), or
healthy life expectancy, is essential for examining whether ad-
ditional years of life are spent in good health and whether life
expectancy is increasing faster than the decline of disability
rates. DFLE represents the expected number of years of remain-
ing disability-free life a member of the life table cohort would
experience if cohort age-specific rates of mortality and disabil-
ity prevailed throughout his/her lifetime.

In his seminal article, Sullivan (1971) developed a method
for combining mortality and morbidity rates into a single sum-
mary measure of a population’s health status. Over 30 years af-
ter its publication, Sullivan’s method remains the most widely
used method among applied researchers and government offi-
cials for estimating DFLE. The key idea of the method is to
combine the period life table, which is the main method to cal-
culate life expectancy, with the age-specific disability preva-
lence estimated from cross-sectional survey data. In particular,
Sullivan’s method simply partitions the total number of person-
years lived, which is obtained from the period life table, into
the disability and disability-free life expectancy based on the
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proportion disabled, which is in turn measured from the cross-
sectional disability survey.

Sullivan’s method is of prime methodological importance in
the ongoing exploration of morbidity (e.g., Crimmins, Saito,
and Ingeneri 1989, 1997). It has been used extensively to es-
timate DFLE in various populations (e.g., Iburg, Bronnum-
Hansen, and Bjerregaard 2001) as well as differences in DFLE
by socioeconomic status (e.g., Sihvonen, Kunst, Lahelma,
Valkonen, and Mackenbach 1998; Molla, Madans, and Wa-
gener 2004), educational levels (e.g., Minicuci 2005), occupa-
tional groups (e.g., Bronnum-Hansen 2000; Cambois, Robine,
and Hayward 2001), and between time periods (e.g., Crim-
mins et al. 1989; Bronnum-Hansen, Andersen, Kjoller, and
Rasmussen 2004; Graham, Blakely, Davis, Sporle, and Pearce
2004). The method has also been used to estimate the bur-
den of disease from chronic conditions such as diabetes (e.g.,
Manuel and Schultz 2004) and the contribution of specific dis-
eases to educational disparities in DFLE (e.g., Nusselder et al.
2005). Nusselder and Looman (2004) used Sullivan’s method
to analyze the contribution of various causes of death and dis-
ability to differences healthy life expectancy among popula-
tions and over time. Murray and Lopez (1996) compared the
disability-adjusted life expectancy, a quantity closely related to
DFLE, across world regions using Sullivan’s method as part
of their Global Burden of Disease Study. In addition to acad-
emic researchers, a number of governments and international
health organizations employ Sullivan’s method. The U.S. Na-
tional Center for Health Statistics uses Sullivan’s method as
part of the Healthy People 2010 Study (Molla, Madans, Wa-
gener, and Crimmins 2003). The Australian Institute of Health
and Welfare used Sullivan’s method in its 1996 Burden of Dis-
ease Study (Mathers, Vos, Stevenson, and Begg 2001). The
World Health Organization also used the method to estimate
disability-adjusted life expectancy for 191 member states (Mus-
grove et al. 2000).

Robust estimation of DFLE is also vital to the theoretical
understanding of morbidity. The existing research on DFLE of
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various populations and time periods has often reached contra-
dictory conclusions regarding the competing nature of mortal-
ity and morbidity. For example, Gruenberg (1977) and Kramer
(1980) argued that the decline in mortality rates only reflects a
decline in the mortality rate of chronic diseases rather than a
decline in their incidence. Greater life expectancy will result in
more severe chronic diseases. Fries (1980), on the other hand,
argued for the compression of morbidity. If the onset of the
chronic condition can be postponed and adult life expectancy is
relatively constant, morbidity will be compressed into a shorter
period of time. Moreover, Manton (1982) offered an alternative
theory of dynamic equilibrium in which the decline in mortal-
ity leads to an increase in the prevalence of milder chronic dis-
eases. Therefore, the accurate estimation of DFLE is essential
for the empirical evaluation of these competing theories.

Given the importance and popularity of Sullivan’s method,
it is surprising to note that Sullivan (1971) did not provide
any formal justification of his method. Debates in the litera-
ture have centered around the properties of Sullivan’s method
and have yielded conflicting results regarding the assumptions
required for Sullivan’s method to provide a valid estimate of
DFLE (e.g., Rogers, Rogers, and Belanger 1990; Mathers 1991;
Barendregt, Bonneux, and Van der Maas 1994, 1995; Van de
Water, Boshuizen, Perenboom, Mathers, and Robine 1995). In
this article, we establish a statistical foundation of Sullivan’s
method. After defining DFLE and reviewing the period life
table method in Section 2, we prove in Section 3 that under
stationarity assumptions, Sullivan’s estimator is consistent and
unbiased and that the standard variance estimator is consistent
and approximately unbiased. Our theoretical results imply that
Sullivan’s method requires no additional assumption other than
stationarity assumptions. This resolves the debate in the liter-
ature, which has generally concluded that additional assump-
tions are necessary (e.g., Newman 1988; Palloni, Guillen, Mon-
teverde, Ayuso, and White 2005). Our theoretical results appear
to be consistent with the existing simulation and empirical stud-
ies that investigate the performance of Sullivan’s method under
various conditions (e.g., Barendregt et al. 1994; Mathers and
Robine 1997; Lievre, Brouard, and Heathcote 2003).

In Section 4 we demonstrate that Sullivan’s method can be
extended to estimate DFLE without stationarity assumptions.
Such an extension is possible whenever a cohort life table and
either consecutive cross-sectional disability surveys or a longi-
tudinal survey are available. The multistate life table method is
a popular alternative in the literature (e.g., Rogers, Rogers, and
Branch 1989a; Robine et al. 1995), but it requires longitudinal
data as well as a number of theoretical and practical assump-
tions. In contrast, our extension of Sullivan’s method allows for
unbiased and consistent estimation of DFLE without adhering
to the assumptions and data requirement of the multistate life
table method. The computer code that implements the methods
proposed in this article is available at the first author’s website.
In Section 5 we apply our proposed methodology to estimate
DFLE for the 1907 and 1912 U.S. birth cohorts using mortality
data from U.S. Vital Statistics and disability data from the U.S.
Medicare Current Beneficiary Survey. Our empirical analysis
suggests that while mortality rates remained approximately sta-
tionary, disability rates may have declined during this time pe-
riod. Finally, in Section 6 we present conclusions.

2. DISABILITY–FREE LIFE EXPECTANCY AND
PERIOD LIFE TABLE

Sullivan’s method utilizes the mortality data from a pe-
riod life table and the disability prevalence data from a cross-
sectional survey. In this section, we introduce the standard no-
tation of the period life table used in the field of demography
(e.g., Chiang 1984; Preston, Heuveline, and Guillot 2001) and
define the estimand (i.e., DFLE).

2.1 Theoretical Definitions of Life Expectancy and DFLE

Theoretically, mortality for a cohort (either real or hypothet-
ical) can be considered as a continuous-time process, which is
determined solely by the hazard function, μ(x, y), representing
the instantaneous rate of death at age x ∈ [0,∞) for a cohort
born at time y. Given the hazard function, one can derive life
expectancy at age x for this cohort, denoted by e(x, y), which
represents the expected remaining life of an individual at age
x who is born at time y. Let l(0, y) represent the total number
alive at age 0 for this cohort. Then, the number of survivors at
age x is given by

l(x, y) = l(0, y) exp

[
−

∫ x

0
μ(t, y)dt

]
. (1)

If l(0, y) is set to 1, as we do for the remainder of this arti-
cle, l(x, y) corresponds to the survival function of this cohort.
Given the survival function l(x, y), life expectancy at age x can
be written as

e(x, y) = 1

l(x, y)

∫ ∞

x
l(t, y)dt. (2)

Similarly, one can define DFLE, denoted by eDF(x, y), which
represents the expected remaining disability-free (DF) life of
an individual age x born at time y. Let π(x, y) be the propor-
tion disabled at exact age x for the cohort born at time y. In
other words, π(x, y) represents the conditional probability that
an individual of this cohort is disabled at age x given that he/she
survived up to age x. Because the proportion of survivors who
are disability-free at age x is equal to [1−π(x, y)]l(x, y), DFLE
is given by

eDF(x, y) = 1

l(x, y)

∫ ∞

x
[1 − π(t, y)]l(t, y)dt. (3)

2.2 Calculation of Life Expectancy From
a Period Life Table

Although the theoretical definition of life expectancy is given
within the continuous-time framework, the data are typically
recorded in a discrete form. A period life table is a common
source of discrete data and is often analyzed in order to approx-
imate the continuous-time mortality process. Sullivan’s method
also requires the use of a period life table. A main purpose of
a period life table is to calculate the life expectancy of a hy-
pothetical cohort that experiences the currently observed cross-
sectional mortality rates.

Let A be a set of the starting ages for the age intervals of
a period life table. We use ω to denote the starting age of the
oldest age interval. Let nx represent the width (years) of an age
interval starting at age x ∈ A. Typically, the width of age in-
tervals is the same for all but the oldest age interval [ω,∞),



Imai and Soneji: Estimation of Disability-Free Life Expectancy 1201

that is, nx = n for all x ∈ A \ {ω} and nω = ∞. When n = 1, a
period life table is said to be unabridged, whereas it is called
abridged if n > 1. In this article we allow for a more general
setting where each age interval may have a different width.

A period life table is created by first observing the midinter-
val population, denoted by nx Px, and the total number of deaths,
denoted by nx Dx, for each interval [x, x + nx). Then, the ob-
served mortality rate for each interval, denoted by nx Mx, is cal-
culated as nx Dx/nx Px. Keeping with the standard demographic
notation, we use prescripts to indicate the width of the interval
under consideration. A period life table relies on the following
stationarity assumptions of the population (e.g., Chiang 1984;
Preston et al. 2001):

1. The age-specific hazard rate is constant over time, that is,
μ(x, y) = μ(x) for all y.

2. The birth rate is constant over time.
3. The net migration rates are 0 at all ages.

The assumptions imply that the survival function is also con-
stant over time, that is, l(x, y) = l(x), and that the crude death
rate, that is,

∑
x∈A nx Dx/

∑
x∈A nx Px, equals the crude birth

rate, that is, B/
∑

x∈A nx Px, where B is the total number of
births to members of the population in the period. Therefore,
the total size of the hypothetical cohort is assumed to remain
constant over time. Another important consequence of station-
arity assumptions is that the age distribution of the hypothetical
cohort in any given interval, [x, x + nx), is constant over time
and is proportional to the survival function. Formally, for all
s ∈ [x, x + nx), the age distribution is defined by the following
density function:

l(s)∫ x+nx
x l(t)dt

. (4)

For example, a common departure from stationarity occurs in
many developing countries today, where annual births have
been growing relative to deaths. As we see in Section 5, a viola-
tion of the stationarity assumptions is also possible in developed
countries where the death rates are declining due to the advance
of medical technologies.

Because nx Px and nx Dx are directly obtained from the Census
data and vital statistics, they are typically large. Thus, in the
literature, the sampling variability about the mortality rate of
the hypothetical cohort, denoted by nx mx, is considered to be
small and, hence, typically ignored. That is, nx Mx is assumed to
equal nx mx, which is given by

nx mx =
∫ x+nx

x l(t)μ(t)dt∫ x+nx
x l(t)dt

(5)

for all x ∈A. Nevertheless, we later show how our results apply
to the case where nx mx is consistently estimated by nx Mx (see
Sec. 3.4).

Furthermore, it can be shown that the conditional probability
of death within an interval [x, x + nx) given that an individual
of the hypothetical cohort survived up to age x, which is de-
noted by nx qx, is equal to nx nx mx/[1 + (nx − nx ax)nx mx], where
nx ax represents the average person-years lived in a given inter-
val [x, x + n) among those who are alive at age x but die within
the interval. The values of nx ax are obtained from complete life

tables and used in subsequent calculations as a known quantity
(e.g., Molla, Wagener, and Madans 2001; Preston et al. 2001).

Within this framework, the total number of person-years
lived in an interval, [x, x + nx), is given by

nx Lx = nx lx+nx + lx nx qx nx ax, (6)

where the members of the lx+nx proportion who survive the en-
tire interval each contribute nx years, and the members of the
lx nx qx proportion who die in the interval contribute nx ax years,
on average. Finally, life expectancy at age x is equal to the total
number of person-years for subsequent age intervals:

ex = 1

lx

∑
i∈Ax

ni Li, (7)

where Ax = {i ∈ A : x ≤ i}. Under stationarity assumptions for
the unbounded last age interval [ω,∞), life expectancy at age
ω is equal to the inverse of the death rate, that is, eω = ∞m−1

ω .
The equality follows from the fact that all those alive at age ω

must die in the interval, that is, ∞qω = 1.
We now show that under the stationarity assumptions dis-

cussed previously, ex, which is the life expectancy calculated
from a period life table in (7), equals e(x), which is the the-
oretical definition of life expectancy given in (2). Although in
common demographic notation, l(x) is used in continuous nota-
tion and lx in discrete, both refer to the proportion alive at exact
age x and, hence, are numerically identical. Given the hazard
function, μ(x), the conditional probability of death for an age
interval, [x, x + nx), is equal to the number of deaths in an age
interval divided by the proportion alive at the beginning of the
age interval:

nx qx =
∫ x+nx

x l(t)μ(t)dt

l(x)
. (8)

Next, the average number of years lived in an interval among
those who die in the interval is equal to the total number of
person-years lived among those who will die divided by the
proportion who will die in the interval:

nx ax =
∫ x+nx

x l(t)μ(t) (t − x)dt∫ x+nx
x l(t)μ(t)dt

. (9)

Substituting (8) and (9) into (6) and integrating it by parts yield

nx Lx =
∫ x+nx

x
l(t)dt. (10)

Therefore, it follows that ex equals e(x).
Table 1 shows the 1999 U.S. unabridged period life table for

selected ages (Arias 2002). In keeping with common demo-
graphic notation, the left prescript, n = 1, is not written. The
radix, l0, is set at 1 so that lx represents the survival probabil-
ity. At age 20 years, 98.6% of the hypothetical life table co-
hort remains. From age 20 to ω = 85, the remaining 98.6% of
the cohort will live

∑85
i=20 Li = 54.9 person-years. Hence, a 20-

year-old member of the hypothetical cohort will live, on aver-
age, 55.9 years given he/she experiences the prevailing period
age-specific conditional probabilities of death. For the last age
group, ∞a85 = e85 because everyone who is alive at age ω = 85
dies within the last interval.
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Table 1. The 1999 U.S. period life table and life expectancy
for selected ages

Age lx qx ax Lx ex

20 .986 .001 .506 .986 55.851
25 .982 .001 .500 .981 51.101
30 .977 .001 .495 .976 46.338
35 .971 .001 .500 .970 41.597
40 .963 .002 .500 .962 36.916
45 .952 .003 .500 .950 32.323
50 .935 .004 .500 .933 27.853
55 .911 .007 .499 .908 23.516
60 .875 .011 .501 .870 19.391
65 .820 .016 .500 .813 15.499
70 .743 .025 .500 .733 11.839
75 .638 .038 .500 .626 8.356
80 .505 .059 .500 .490 4.873
85+ .345 1.000 .951 .328 .951

NOTE: The unabridged period life table (nx = 1 for all x ∈ A \ {85}) is created from the
conditional probability of death, qx , and the average person-years lived in the age interval
by those dying in the interval, ax . lx is the proportion of survivors at age x, whereas Lx
represents the total number of person-years lived within the age interval [x, x +1) for those
who were alive at age x. The last age interval is [85,∞). The final column gives the life
expectancy ex at each age.

3. STATISTICAL FOUNDATION OF
SULLIVAN’S METHOD

Unlike life expectancy, DFLE cannot be estimated from a
period life table alone without obtaining additional information
about disability prevalence. Sullivan (1971) proposed a measure
of DFLE by combining mortality information from a period life
table and disability information from a cross-sectional disabil-
ity survey. However, he did not offer any formal justification
of his method. In this section, we provide a statistical founda-
tion of Sullivan’s method by deriving the assumptions under
which Sullivan’s method yields a valid estimate of DFLE. We
also discuss how our theoretical findings relate to the previous
investigations of Sullivan’s method in the literature.

3.1 Sullivan’s Method

Sullivan’s method estimates DFLE by partitioning the per-
son-years lived in a given age interval into the proportion with
and without disability. Formally, Sullivan’s estimator is defined
by

êDF
x = 1

lx

∑
i∈Ax

(
1 − ni π̂i

)
ni Li, (11)

where ni π̂i is the sample fraction of the disabled survey respon-
dents within the age interval [i, i + ni). If simple random sam-
pling is used for the disability survey, ni π̂i is given by

ni π̂i = 1

ni Ni

ni Ni∑
j=1

Yij(tij), (12)

where ni Ni represents the total number of survey respondents
in the age interval, [i, i + ni), and Yij(tij) is the disability in-
dicator variable for the jth respondent of that interval whose
age is tij ∈ [i, i + ni) at the time of survey. Depending on one’s
sampling scheme, ni π̂i may be computed as a weighted average
with appropriate sampling weights. In this article, for notational

simplicity, we assume simple random sampling, but all the re-
sults can be easily generalized to other sampling schemes. Note
that in the original article Sullivan (1971) proposed and applied
an invalid estimator of disability prevalence, which is different
from the estimator of (12) used by subsequent researchers (see
Sec. 3.3).

In the literature, the standard way to obtain the variance of
Sullivan’s estimator is to assume that the total number of the
disabled within each age interval, [x, x + nx), follows an inde-
pendent binomial process with a constant probability, which is
estimated by nx π̂x (e.g., Mathers 1991; Montpellier 1997; Molla
et al. 2001). Given this distributional assumption, the variance
of Sullivan’s estimator can be estimated by

σ̂ DF
x = 1

l2x

∑
i∈Ax

ni π̂i(1 − ni π̂i)ni L
2
i

ni Ni
, (13)

where the sampling weights can be incorporated by calculating
ni π̂i as a weighted average.

We illustrate Sullivan’s method with the 1999 U.S. period life
table of Table 1. We estimate the disability prevalence from the
1999 National Health Interview Survey (NHIS) and the 1999
National Nursing Home Survey (NNHS), both of which are
conducted by U.S. Department of Health and Human Services.
The NHIS is a multipurpose health survey conducted by the
National Center for Health Statistics and is the principal source
of information on the health of the civilian, noninstitutional-
ized population of the United States, which included a sample
of 97,059 in 1999. The NNHS is a survey of the residents of
nursing homes and related care facilities in the United States
also conducted by the NCHS with 8,215 observations in 1999.
The use of the two surveys gives a complete picture of disability
prevalence among the noninstitutionalized and institutionalized
populations.

The second column of Table 2 shows the estimated disability
prevalence in each interval, π̂x, where the sampling weights are
incorporated so that respondents from the two surveys are ap-
propriately weighted. Following the literature (e.g., Crimmins
et al. 1997; Crimmins and Saito 2001; Molla et al. 2004), a re-
spondent was considered disabled if he/she responded affirma-
tively to the following question: “Because of a physical, mental,
or emotional problem, do you need the help of other persons
with personal care needs, such as. . . ?” where “. . . ” represents
various activities of daily living (ADL). ADL includes bathing
and showering, dressing, eating, getting in/out of bed or chair,
using the toilet, and getting around in home. The third column
of Table 2 presents the point estimates of DFLE based on Sulli-
van’s method, while the next four columns show their 95% con-
fidence intervals. The “nx mx known” 95% confidence intervals
(fourth and fifth columns) are based on the standard variance
in (13). The “nx mx estimated” 95% confidence intervals (sixth
and seventh columns) account for additional variability in the
estimation of nx mx based on the large-sample variance of êDF

in (A.6) and is discussed further in Section 3.4.

3.2 Assumptions and Statistical Properties of
Sullivan’s Method

Sullivan’s method inherits three stationarity assumptions dis-
cussed in Section 2.2 because it relies on a period life table. The
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Table 2. Estimated DFLE based on Sullivan’s method for selected
ages of the 1999 U.S. population

Estimated
disability

prevalence

nxmx known nxmx estimated

Estimated
DFLE

95% CI 95% CI

Age Lower Upper Lower Upper

20 .01 54.47 54.40 54.53 54.37 54.56
25 .00 49.73 49.67 49.79 49.64 49.82
30 .00 44.98 44.91 45.04 44.89 45.07
35 .00 40.25 40.19 40.32 40.16 40.34
40 .01 35.59 35.53 35.66 35.51 35.68
45 .01 31.02 30.96 31.09 30.94 31.10
50 .01 26.58 26.52 26.64 26.50 26.66
55 .02 22.26 22.19 22.32 22.18 22.34
60 .01 18.17 18.11 18.24 18.10 18.25
65 .03 14.31 14.24 14.37 14.24 14.38
70 .05 10.70 10.64 10.77 10.64 10.77
75 .08 7.30 7.24 7.37 7.24 7.37
80 .15 4.05 3.99 4.11 3.99 4.11
85 .20 .77 .75 .78 .74 .79

NOTE: The first column shows the estimated disability prevalence using the sample
(weighted) averages from the 1999 National Health Interview Survey and the 1999 Na-
tional Nursing Home Survey. The definition of disability is based on activities of daily
living. The remaining five columns present the point estimates of DFLE and their 95%
confidence intervals using Sullivan’s method, without and with accounting for the sam-
pling variability in the estimation of nx mx .

following proposition shows that the stationarity of age-specific
disability prevalence is the only additional assumption required
for Sullivan’s estimator to be unbiased and consistent for DFLE.
The stationarity assumption about the disability prevalence is
needed for the exact same reason as the other stationarity as-
sumptions. It guarantees that cross-sectional data from different
cohorts can be used to infer the age-specific disability preva-
lence of a hypothetical cohort.

Proposition 1. Suppose that three stationary assumptions of
period life tables hold. In addition, suppose that the age-specific
disability prevalence is constant over time, that is, π(x, y) =
π(x) for all y. Then, Sullivan’s method estimates DFLE without
bias, that is, E(êDF

x ) = eDF(x), and is also consistent, that is,

êDF
x

p→ eDF
x for eDF

x for all x ∈ A.

A proof is given in the Appendix. The result does not de-
pend on the interval widths and, hence, applies to both abridged
and unabridged period life tables. It also does not require re-
searchers to know the exact age of survey respondents, so long
as one knows the age interval to which they belong.

Next, we show that under the same stationarity assumptions,
the standard variance estimator of (13) is consistent and approx-
imately unbiased. Furthermore, these properties do not depend
on the assumption of the constant disability prevalence in each
interval, which is unlikely to hold when the age interval is wide,
as in many applications of Sullivan’s method to abridged period
life tables. Indeed, no additional assumption is required for the
functional form of π(x).

Proposition 2. Under the four stationarity assumptions of
Proposition 1, the variance of Sullivan’s estimator is given by

σ DF
x = 1

l2x

∑
i∈Ax

ni pi(1 − ni pi)ni L
2
i

ni Ni
,

where ni pi = ∫ i+ni
i π(t)l(t)dt/

∫ i+ni
i l(t)dt. The standard vari-

ance estimator of (13) is consistent and approximately unbiased
for σ DF

x for all x ∈ A.

A proof is given in the Appendix. As is the case of Proposi-
tion 1, the statistical validity of Sullivan’s method does not de-
pend on the way the age is partitioned into intervals. The proof
of Proposition 2 can also be used to derive the following al-
ternative variance estimator that is both (exactly) unbiased and
consistent:

1

l2x

∑
i∈Ax

ni L
2
i

∑ni Ni

j=1 (Yij(tij) − ni π̂i)
2

ni Ni(ni Ni − 1)
. (14)

3.3 Discussion

Proposition 1 shows that four stationarity assumptions are
sufficient to establish the unbiasedness and consistency of Sul-
livan’s estimator, whereas Proposition 2 shows that, under these
assumptions, the standard variance estimator is consistent and
approximately unbiased. Because three out of four stationarity
assumptions are needed for any analysis based on period life
tables, the only additional assumption required is the station-
arity of disability prevalence. This assumption may be reason-
able once the stationarity of mortality rates is invoked if mor-
bidity and mortality are closely related in a given population.
However, it is also possible that mortality rates remain approxi-
mately stationary while disability rates depart from stationarity
(see Sec. 5).

In his original article, Sullivan (1971) briefly touched on the
requirement of mortality and disability stationarity, which cor-
responds to the assumptions in Propositions 1 and 2,
This expectation of disability [DFLE] can be interpreted as the number of years
of disability a member of the life table cohort would experience if current age-
specific rates of mortality and disability prevailed throughout the cohort’s life-
time (p. 351).

Sullivan did not, however, give a formal proof of this sta-
tionarity requirement. Our results establish both finite-sample
and large-sample statistical properties of Sullivan’s method and,
consequently, provide a formal justification of his claim.

Furthermore, Sullivan incorrectly suggested the use of the
following estimator of disability prevalence, which was also
used in his own application:

nx π̂x = 1

nx Nx

nx Nx∑
j=1

Wij(tij)

365
, (15)

where Wij(tij) is the self-reported number of days the jth respon-
dent of the ith age interval spent in disability during the previ-
ous year. The proof of Proposition 1 in the Appendix implies
that the equality,

∫ x+nx
x

W(t)
365 l(t)dt = ∫ x+nx

x π(t)l(t)dt, must hold
for each x ∈ A in order for nx π̂x given in (15) to estimate
DFLE without bias, where W(t) represents the population av-
erage days spent in disability during the past year at age t. The
equality is unlikely to hold because π(t) measures the disabil-
ity prevalence at age t, while W(t) corresponds to the disability
prevalence over the one-year period. Fortunately, with the ex-
ception of few studies (e.g., Newman 1988), most applications
of Sullivan’s method used the valid disability prevalence esti-
mator of (12) rather than that of (15).
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Since the publication of Sullivan (1971), the literature has
generated controversies over Sullivan’s method. For example,
Rogers et al. (1990) argued that Sullivan’s method underes-
timates DFLE because of bias in the estimation of disability
prevalence. Yet, Mathers (1991) argued the observed bias actu-
ally results from a nonstationary population that has not reached
equilibrium associated with the given transition rates. Another
controversy has taken place over the question of whether Sul-
livan’s method allows for transitions from disabled status to
healthy status (e.g., Barendregt et al. 1994, 1995; Van de Wa-
ter et al. 1995; Laditka and Hayward 2003). However, the ar-
guments presented in these studies are informal and are often
based on simulation studies rather than theoretical results.

The lack of formal results has prompted some theoreti-
cal investigations about the required assumptions of Sullivan’s
method. Nevertheless, these studies yielded conflicting results
on what, if any, additional assumptions are required for Sul-
livan’s method. Some have argued that even with a station-
ary population, Sullivan’s method requires additional strong
assumptions about the probability of the transitions between
healthy and disabled status. For example, Newman (1988) ar-
gued that if the probability of transition from disabled state to
healthy state (i.e., the “recovery” probability) is large, Sulli-
van’s method provides a consistent estimator of DFLE. Con-
versely, Palloni et al. (2005) maintained that Sullivan’s method
assumes this recovery probability to be negligible and fur-
ther argued that Sullivan’s method requires another assumption
about the homogeneity in the mortality risks of the disabled and
healthy populations.

In contrast, Propositions 1 and 2 imply that Sullivan’s method
does not make any assumption about the hazard function and
disability prevalence rate other than that they must be station-
ary. They also show that Sullivan’s method does not make any
assumption regarding the homogeneity of mortality risk be-
tween the healthy and disabled populations. Note that the sta-
tionarity of transition probabilities implies that of prevalence
rates, but the latter do not necessarily imply the former. For ex-
ample, although perhaps rare, it is possible that more disabled
people are dying at a certain age over (calendar) time but more
people are transitioning into the disabled state over time such
that the proportion of the disabled among those who are alive
remains constant.

In addition to formal investigations, numerous simulation
and empirical studies have been conducted to examine the per-
formance of Sullivan’s method under various conditions. These
studies in general confirm our theoretical results. For example,
Mathers and Robine (1997) found that, under stationarity as-
sumptions, Sullivan’s method provides a consistent estimator of
DFLE. A number of studies also suggest that Sullivan’s method
performs poorly when the assumption of stationarity is grossly
violated, especially with respect to disability prevalence (e.g.,
Barendregt et al. 1994; Mathers and Robine 1997; Lievre et al.
2003).

3.4 Incorporating Additional Uncertainty About nxmx

As briefly mentioned in Section 2.2, the standard use of Sul-
livan’s method assumes stationarity and ignores the sampling
variability about nx mx by simply setting nx mx = nx Mx. Here, we
discuss how Propositions 1 and 2 extend to the situation where

nx mx is unknown but consistently estimated by nx Mx. First, al-
though êDF

x is no longer an unbiased estimate of eDF(x), the
former is still consistent for the latter because l(x) can be con-
sistently estimated by lx and, hence,

∫ x+nx
x l(t)dt can also be

consistently estimated by nx Lx.
Second, because the standard variance estimator of (13)

ignores this additional source of uncertainty, it generally leads
to underestimation of the true variance. In the Appendix we de-
rive the large-sample variance of êDF

x , which incorporates the
uncertainty about nx mx, and show that this variance can be con-
sistently estimated. The sixth and seventh columns of Table 2
present the 95% confidence intervals based on the large-sample
variance of (A.6). These confidence intervals are slightly wider
than the confidence intervals based on the standard variance es-
timator of (13). For example, at age 50, allowing for additional
variability about the estimation of nx mx, the 95% confidence
widens by .04 years from (26.52,26.64) to (26.50,26.66).

4. ESTIMATION OF DFLE WITHOUT
STATIONARITY ASSUMPTIONS

The assumption of stationary mortality and disability re-
quired for Sullivan’s method may be tenuous, especially in de-
veloped countries over the 20th century where mortality rates
for the oldest ages have declined. Therefore, it is often of inter-
est to estimate DFLE without stationarity assumptions. A pop-
ular approach in the literature has been the multistate life ta-
ble method, which models the transition probabilities among
the healthy state, disabled state, and death (e.g., Rogers et al.
1989b, 1990). This approach, however, requires a large-scale
longitudinal disability survey, which is rarely available. More-
over, as discussed later, the multistate life table method makes
assumptions about the transition probabilities that are often
strong and untestable.

In this section we show that if DFLE is the quantity of inter-
est, Sullivan’s method can be used to estimate DFLE without
stationarity and other assumptions by using a cohort life table.
The unbiased estimation of DFLE is also possible with consec-
utive cross-sectional disability surveys, which are often easier
to obtain than longitudinal data.

4.1 Cohort Life Table

A cohort life table describes the mortality experience of a
real cohort of individuals from birth of the first to death of the
last member of the group (e.g., Chiang 1984). An important
advantage of cohort life tables over period life tables is that
the three assumptions of stationarity discussed in Section 2.2
are not invoked. A main purpose of cohort life tables is to cal-
culate the life expectancy of a real birth cohort using cohort-
specific birth and mortality rates for each age. Cohort life ta-
bles are created by first observing the midinterval population of
the cohort born in year y, denoted by nx Px,y, and the total num-
ber of deaths in this cohort, denoted by nx Dx,y, for each interval
[x, x + nx). Other quantities such as lx,y and nx Lx,y are defined
analogously as done for period life tables. Calculation of cohort
life expectancy also follows the methods identical to the ones
described in Section 2.2.

There are two common ways to close a cohort life table. First,
an ideal way is to observe the birth cohort until the last member
dies. If a birth cohort cannot be observed until the last member
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dies, as is often the case, then the last age interval, [ω,∞), is
unbounded, and an assumption must be made about the hazard
function within the last age interval. For example, Horiuchi and
Coale (1982) derived an expression for eω by assuming that the
proportion of the last age group relative to the overall popula-
tion remains constant. Another commonly invoked assumption
is the stationarity of mortality in the last age group, which will
yield negligible error if the proportion of the birth cohort alive
at age ω is sufficiently small (e.g., Wilmoth, Andreev, Jdanov,
and Glei 2005).

4.2 Estimation of Cohort DFLE Using Sullivan’s Method

Next, we show that cohort DFLE can be estimated using Sul-
livan’s method. Specifically, Sullivan’s estimator of DFLE for
the cohort born in year y is defined by

êDF
x,y = 1

lx,y

∑
i∈Ax

(
1 − ni π̂i,y

)
ni Li,y, (16)

where ni π̂i,y is the sample fraction of the disabled survey re-
spondents within the age interval [i, i + ni) for the cohort born
in year y. Thus, nx π̂x,y can be computed for each x either from
consecutive cross-sectional surveys, which follow the cohort
born in year y, or from a longitudinal survey, which follows
the same individuals of that cohort over time. Proposition 1 ap-
plies directly to Sullivan’s estimator of (16) except that station-
arity assumptions are no longer necessary. The variance of this
estimator can be calculated in the exact same way as before,
and Proposition 2 also holds without stationarity assumptions.
The use of Census data and vital statistics implies that sam-
pling variability about nx mx can be ignored because a cohort
life table directly summarizes the cohort of interest rather than
a random sample from a hypothetical cohort. Thus, Sullivan’s
method, if applied to a cohort life table and either consecutive
cross-national disability surveys or longitudinal data, requires
no assumption.

When consecutive cross-sectional surveys are available, it is
possible to model π(x, y) as a function of y by assuming that
the disability prevalence does not experience a sudden change
of large magnitude across different cohorts. One may then esti-
mate π(x, y), for example, using the generalized additive mod-
els (GAMs) (Hastie and Tibshirani 1990) or a random-walk
model similar to the approach used by Lee and Carter (1992).
Borrowing the information across cohorts in this way may in-
crease the efficiency of estimation (see also Sec. 5).

So far, we have assumed that disability surveys cover all the
age intervals. However, it is possible that the starting age of the
oldest age group surveyed for disability prevalence, denoted by
ω∗ ∈ A, is less than the starting age of the last age interval for
the cohort life table, that is, ω∗ < ω. In this case, we can bound
DFLE by considering the maximum and minimum values of
the contribution of disability-free person-years within the last
age intervals that are not covered by disability surveys. Because
disability prevalence is bounded between 0 and 1, the bounds
for disability-free person-years for these intervals are given by

0 ≤
∫ ∞

ω∗+nω∗
[1 − π(t, y)]l(t, y)dt ≤ ∞Lω∗+nω∗ ,y. (17)

The preceding bounds do not impose any assumption, but may
not be informative in practice.

In order to further narrow the bounds, we entertain a
monotonicity assumption regarding the nature of disability for
older ages. In particular, we may assume that the disability
prevalence of a given birth cohort in the last interval of interest,
[ω∗ + nω∗ ,∞), is greater than or equal to the average disability
prevalence of the previous age interval, [ω∗,ω∗ + nω∗). For-
mally, we assume

π(t, y) ≥ E[π(s, y)] =
∫ ω∗+nω∗
ω∗ π(s, y)l(s, y)ds∫ ω∗+nω∗

ω∗ l(s, y)ds
, (18)

for all t ∈ [ω∗ + nω∗ ,∞). Then, the new bounds for disability-
free person-years in the last interval are given by

0 ≤
∫ ∞

ω∗+nω∗
[1 − π(t, y)]l(t, y)dt

≤ {
1 − E[π(s, y)]}∞Lω∗+nω∗ ,y, (19)

which are more informative than those in (17). Indeed, the new
upper bound is almost always more informative. The proof of
Proposition 1 in Appendix 1 shows that nω∗ π̂ω∗,y is an unbiased
and consistent estimator of E[π(s, y)], and, hence, the new up-
per bound can be estimated without bias and consistently.

Similarly, if disability surveys do not cover earlier age inter-
vals, one can obtain the bounds of DFLE using the monotonic-
ity assumption. Suppose that disability surveys start at age x
and we wish to bound the total number of disability-free years
for the preceding age interval, [x − nx−, x), with some nx− > 0,
where nx− indicates the length of the interval ending at age x.
The bounds are given by

{
1 − E[π(s, y)]}nx−Lx−n ≤

∫ x

x−nx−
[1 − π(t, y)]l(t, y)dt

≤ nx−Lx−nx−,y, (20)

where s ∈ [x, x+nx) and the expectation is taken with respect to
s and over the region, [x, x + nx). We can use nx π̂x,y to estimate
the lower bound without bias and consistently.

4.3 Confidence Intervals for the Bounds

When the bounds in (17) do not involve nx π̂x,y, they can be
estimated without sampling variability. This implies that the
upper (lower) confidence bound for the bounds of the DFLE
equals the usual upper (lower) confidence band separately ob-
tained for the upper (lower) bound of the DFLE based on its
estimated variance. The resulting confidence interval covers the
true bounds with exact (finite sample) probability.

Under the monotonicity assumption, the estimated upper
bound in (19) and the lower bound in (20) have sampling vari-
ability. Thus, if we estimate the confidence interval for the
bounds of DFLE in the same way as before, the coverage prob-
ability of the resulting confidence intervals can be greater than
its nominal level, yielding wider confidence intervals than nec-
essary. Formally, let BL and BU be true lower and upper bounds
of DFLE. Then, applying the Bonferroni inequality, we see that
Pr([BL,BU] ⊂ [̂BL

α, B̂U
α ]) ≥ Pr(BL ≥ B̂L

α) + Pr(BU ≤ B̂U
α ) − 1 =

1 − α, where B̂U
α and B̂L

α represent the estimated lower and
upper (1 − α) confidence intervals and are found such that
Pr(BL ≥ B̂L

α) = Pr(BU ≤ B̂U
α ) = 1 − α/2.
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It is possible to obtain the balanced confidence interval for
the bounds with asymptotically exact coverage probability (e.g.,
Cheng and Small 2006). Beran (1988) provided such a method
based on the bootstrap method. To apply the method, we choose
c̃L
α = F̂−1

L [F̂−1(1 − α)] and c̃U
α = F̂−1

U [F̂−1(1 − α)], where F̂L
and F̂U are the empirical distribution functions of B̃L − B̂L

and B̂U − B̃U , and F̂ is the empirical distribution function of
max{F̂L(̃BL − B̂L), F̂U (̂BU − B̃U)}. The resulting confidence
interval, [̂BL − c̃L

α, B̂U + c̃U
α ], asymptotically covers the true

bounds by the fixed probability 1 − α. Moreover, these confi-
dence intervals are balanced in a sense that they treat upper and
lower bounds fairly; that is, Pr(̂BL − c̃L

α ≤ BL) = Pr(̂BU + c̃U
α ≥

BU) hold asymptotically. In contrast, the bootstrap confidence
intervals proposed by Horowitz and Manski (2000) have as-
ymptotically exact coverage probability but are not balanced.

4.4 Comparison With the Multistate Life Table Method

The multistate life table method is another popular approach
to estimating the DFLE in the literature. Here, we compare this
alternative method with the proposed extension of Sullivan’s
method described previously. The multistate life table method
models transitions among different states over age by assuming
the continuous-time first-order Markov process (e.g., Land and
Rogers 1982; Schoen 1988). Newman (1988) and Rogers et al.
(1989b) were among the first to apply the multistate life table
method to estimate DFLE. These authors modeled the transi-
tions of individuals of a specific cohort among nonabsorbing
states (e.g., disabled and disability-free) and an absorbing state
(e.g., death). The assumption of the first-order Markov process
implies that all individuals of the life table cohort who are found
in a given state at the same age will have the same transi-
tion probabilities regardless of their previous paths. Some re-
searchers have raised a concern that this assumption may be
tenuous because past history of disability is likely to affect
the probability of future disability (e.g., Nour and Suchindran
1983; Laditka and Wolf 1998).

The multistate life table method is similar to the period life
table method discussed in Section 2.2, but is based on transition
probabilities, τ (ij)(x, x + t), which represent the probability that
a person in state i at age x is in state j at exact age x + t for
t > 0. The estimation of these transition probabilities requires
the availability of longitudinal data. Ordinarily, researchers esti-
mate transition probabilities using either sample fractions (e.g.,
Rogers et al. 1990; Crimmins, Hayward, and Saito 1994) or
parametric models (e.g., Mathers and Robine 1997). Given
τ (ij)(x, x + t), one can recursively define the proportion of sur-
vivors at age x who are in state i, which we denote by l(i)x , as
l(i)x+t = l(i)x + ∑

j 	=i τ
(ji)(x, x + t) l(j)x − ∑

j 	=i τ
(ij)(x, x + t) l(i)x for

t > 0.
Next, let nx L(i)

x represent the number of person-years spent
in state i in a given age interval, [x, x + nx), that is, formally,

nx L(i)
x = ∫ x+nx

x l(i)(t)dt. To estimate this quantity, researchers
must make assumptions about the average number of person-
years spent in each state for the interval given that a person
starts in state j at age x and ends up in state k at age x + nx for
all j and k (e.g., Land and Rogers 1982; Schoen 1988). There
are four common methods to estimate this quantity within a
given age interval. They are based on the assumption that within
each age interval, the survival functions are linear (e.g., Schoen

1975; Mathers 1991; Crimmins et al. 1994), quadratic (e.g.,
Schoen 1979), exponential (e.g., Krishnamoorthy 1979), or cu-
bic (e.g., Schoen and Nelson 1974; Schoen and Urton 1979).
Finally, the expected number of remaining years spent in state i
can be computed by e(i)

x = ∑
j∈Ax nj L

(i)
j /lx, where lx represents

the survival function evaluated at age x as before.
In addition to these theoretical assumptions, typical applica-

tions of the multistate life table method invoke several other as-
sumptions. First, the stationarity of age-specific mortality rates
is often assumed because of limited observation of a birth co-
hort (e.g., Rogers et al. 1989b, 1990; Crimmins et al. 1994; Al-
barran, Ayuso, Guillen, and Monteverde 2005). While Mathers
and Robine (1997) did not assume the stationarity of mortality
rates, the lack of historical records forced the same researchers
to make the stationarity assumption about disability rates.

Second, because of limited data availability, the vast major-
ity of studies estimate transition probabilities from just a hand-
ful of panels from longitudinal disability surveys (e.g., New-
man 1988; Rogers et al. 1989a, b, 1990; Crimmins et al. 1994;
Albarran et al. 2005). Consequently, these studies assume the
stationarity of transition probabilities beyond the period cov-
ered by longitudinal surveys. Even in the United States, few
nationally representative and long-term longitudinal studies of
disability exist, due to the inherent difficulty in following the
same cohort of individuals during a long period of time. A no-
table exception is the National Long Term Care Survey, but its
panel waves are five years apart. In contrast, nationally repre-
sentative cross-sectional studies are conducted every year in the
United States, including the National Health Interview Survey,
the American Community Survey, the Medicare Current Ben-
eficiary Survey, and the National Health and Nutrition Exam-
ination Survey. As shown in Section 5, Sullivan’s method can
exploit the availability of these large-scale consecutive cross-
sectional disability surveys and estimate DFLE without station-
arity and other assumptions.

Finally, Davis, Heathcote, and O’Neil (2001) described the
estimation of cohort DFLE using the notation of multistate life
tables. However, as the authors correctly pointed out, it is not
possible to estimate transition probabilities from consecutive
cross-sectional surveys. Instead, Davis et al. (2001) proposed
a method that is similar to the one described in Section 4.2 by
estimating the marginal probabilities of various states of health
and death. Unlike the method proposed in this article, however,
the approach of Davis et al. (2001) requires numerical integra-
tion and the calculation of standard errors is more complex.

In sum, the multistate life table method provides valuable in-
formation about transitions among different states and, hence,
allows researchers to conduct a richer analysis of mortality and
morbidity than Sullivan’s method. However, the method also
requires a number of assumptions about transition probabilities
and the functional form of hazard function, none of which is
necessary for Sullivan’s method. Numerous studies investigate
the performance of the multistate life table method when its re-
quired assumptions are violated (Hoem and Jensen 1982; Nour
and Suchindran 1984; Liu, Liang, Jow-Ching, and Whitelaw
1997; Manton and Land 2000; Schoen 2001; Yi, Danan, and
Land 2004). If DFLE is the quantity of interest, Sullivan’s
method yields a valid estimate of DFLE with minimal assump-
tions and data requirement. If quantities other than DFLE are of
interest, on the other hand, the multistate life table method may
be useful.
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5. AN EMPIRICAL ANALYSIS OF THE 1907 AND 1912
U.S. BIRTH COHORTS

In this section we apply our extension of Sullivan’s method to
the 1907 and 1912 U.S. birth cohorts. We also compare cohort
DFLE estimated from the 1907 birth cohort with period DFLE
estimated from the 1991 to 2002 U.S. populations. Our analysis
is based on the mortality rates of the 1907 and 1912 birth co-
horts and the cross-sectional mortality rates from 1991 to 2002,
all of which are obtained from the Human Mortality Database
and are based on annual U.S. vital statistics. The data were
downloaded on April 1, 2006, from http://www.mortality.org,
the website maintained by the University of California, Berke-
ley, and the Max Planck Institute for Demographic Research.

We estimate the disability prevalence using consecutive
cross-sectional surveys. In particular, we use the 1991 Medicare
Current Beneficiary Survey (MCBS) [available through the
Inter-university Consortium for Political and Social Research
(ICPSR)], 1992 and 1993 MCBS Access to Care (available
through the ICPSR), and 1994 to 2002 MCBS Cost and Use
(available through the U.S. Department of Health and Human
Services). The MCBS is a continuous, multipurpose survey of
a representative national sample of the Medicare population,
which includes both the noninstutitionalized and the institu-
tionalized populations, and is conducted by the Centers for
Medicare and Medicaid Services. Medicare is the largest health
insurance program in the United States, which covered over
95% of the U.S. population age 65 and older between the years

1991 and 2002 (DeNavas-Walt, Proctor, and Hill Lee 2005).
Thus, the use of this survey gives us a complete picture of dis-
ability status for the overall U.S. population for each year. We
use the MCBS rather than the NHIS and NNHS discussed in
Section 3.1 because while the NHIS is administered annually
from 1991 to 2002, the NNHS was only administered in 1995,
1997, and 1999 during the period of interest.

As in Section 3.1, a respondent was considered disabled if
he or she reported at least one activity of daily living limita-
tion. In all the analyses presented in this section, the survey
weights are incorporated so that respondents are appropriately
weighted according to their population size. We estimate dis-
ability prevalence for the 1907 (1912) birth cohort from age 81
(76) to 90 (90) using the first MCBS survey in 1991 to the 2002
MCBS. We estimate DFLE for ages 81 (76) to 83 (78) using
the monotonicity assumption and estimate the bounds shown
in (20). For the sake of a comparison between the 1907 and
1912 birth cohorts, we close both cohort life tables by assuming
a stationary population at age ω = 90 and beyond. We use only
the first 7 years of mortality and disability data (1991–1997) for
the 1907 birth cohort, while all 12 years of the data are used for
the 1912 birth cohort.

The upper left (right) panel of Figure 1 shows the estimated
bounds of DFLE for the 1907 (1912) birth cohort along with
life expectancy. Based on the mortality experience of the 1907
birth cohort, for example, individuals who are alive at age 85
lived, on average, 7.20 years, and they spent between 1.30 and

Figure 1. Estimated bounds of disability-free life expectancy (DFLE) and proportion of life spent disability-free for the 1907 and 1912 U.S.
birth cohorts. The upper left (right) panel shows the estimated bounds of DFLE along with life expectancy for the 1907 (1912) birth cohort from
age 81 (76) to 90 (90). The lower panels show the estimated bounds of the proportion of remaining life spent disability-free. The 95% confidence
intervals are shown as dashed lines. For the 1907 (1912) birth cohort, DFLE and proportion of remaining life spent disability-free are calculated
using the monotonicity assumption for ages from 81 (76) to 83 (78).

http://www.mortality.org
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3.06 years without disability. The lower left (right) panel of the
figure shows another quantity of interest, the estimated bounds
of the proportion of remaining life spent disability-free, êDF

x /ex,
for the 1907 (1912) birth cohort. For example, at age 85, mem-
bers of the 1907 birth cohort are expected to spend between
18.0% and 42.5% of their remaining life without disability. The
estimated proportion decreases gradually with age. For both
DFLE and the proportion, the 95% balanced confidence inter-
vals are estimated using the bootstrap procedure alluded to in
Section 4.3 with 10,000 replications.

The comparison of the two birth cohorts shows that while
life expectancy increased slightly over the two birth cohorts,
the estimated proportion of remaining life spent disability-free
does not show clear differences between the two cohorts due
to the wide confidence intervals. For example, life expectancy
at age 85 increases by .28 years between the two birth cohorts.
Yet, the 95% balanced confidence intervals of DFLE overlap
significantly, that is, (1.30,3.06) for the 1907 birth cohort and
(1.76,3.82) for the 1912 birth cohort. Consequently, the 95%
balanced confidence interval of the proportion of remaining life
spent disability-free for the 1907 birth cohort (.18, .42) over-
laps with that of the 1912 birth cohort (.24, .51). The wide con-
fidence intervals are in part due to the fact that the mortality
and disability data are available only up to 90 years of age for
the 1912 birth cohort (i.e., year 2002). If the additional years
of data become available in the future, the bounds may become
substantially narrower and exhibit statistically significant dif-
ferences between the two cohorts.

As described in Section 4.2, we also use a model-based ad-
justment and estimate π(x, y) as a smooth function of y. In par-
ticular, we modeled π(x, y) using the GAM with binomial fam-
ily and logistic link. The estimated DFLE based on GAM is be-
tween .05 (.10) and .30 (.29) years smaller for the 1907 (1912)
birth cohort than those based on the observed disability preva-
lence. The 95% balanced confidence intervals of DFLE are also
slightly narrower for both birth cohorts using GAM. For exam-
ple, at age 93 for the 1907 birth cohort, the confidence interval
for DFLE was (.18, 1.62) using sample weighted averages and
(.19, 1.51) using GAM.

For the purpose of comparison, we also estimate life ex-
pectancy, DFLE, and the proportion of remaining life spent
disability-free for the 1991 hypothetical period cohort using the
standard Sullivan method and compare the results with those of
the 1907 birth cohort. In this case, we use the full mortality and
disability information available, 1991 to 2002, corresponding
to ages 84 to 95. We begin our analysis at age 84, the age of the
1907 birth cohort in 1991, and examine the differences between
the period and cohort estimates for subsequent ages. The upper
panel of Figure 2 plots the difference between the 1991 period
and 1907 birth cohort life expectancy, that is, 1991 period esti-
mate minus 1907 cohort estimate. Age-specific life expectancy
is nearly identical for the birth cohort than for the hypotheti-
cal period cohort from age 84 to 95, which indicates virtually
stationary age-specific mortality rates.

The middle panel plots the estimated bounds for the same
differences for DFLE. The 1907 birth cohort DFLE is signif-
icantly higher than the 1991 period cohort DFLE from age 84
(the age of the 1907 birth cohort in 1991) to 88 as seen from the

Figure 2. Comparison between the 1991 period and 1907 U.S. birth
cohorts. The upper, middle, and lower panels compare the difference in
life expectancy, DFLE, and the proportion or remaining life spent dis-
ability-free (i.e., 1991 period minus 1907 birth cohort). The estimated
bounds of the differences are shown. The 95% balanced confidence in-
tervals are calculated from the bootstrap method and shown as dashed
lines.

fact that the 95% confidence intervals for the bounds of the dif-
ferences do not contain 0 in this range. Given the near station-
arity of mortality rates, this nonstationarity of DFLE is possi-
ble only with the nonstationarity of age-specific disability rates.
The lower panel plot shows that for the proportion of remaining
life spent disability-free is also significantly higher for the birth
cohort than the hypothetical period cohort from age 84 to 88.
The evidence shows that while mortality rates remain approxi-
mately stationary, disability rates may have declined during this
time period.

Indeed, as shown in Figure 3, mortality rates remained nearly
stationary while disability rates did not between the 1991 period
and 1907 birth cohorts. The upper panel plots 1991 period and
1907 birth cohort mortality rates for ages 81 to 95. Mortality
rates for this age range are approximately stationary as shown
by the equality of period and cohort rates. As shown in the lower
panel of Figure 3, however, age-specific disability rates are non-
stationary and decrease over time. The disability rate for each
age of the hypothetical cohort in the 1991 period is uniformly
greater than the corresponding disability rate experienced by
the birth cohort of 1907.
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Figure 3. Comparison of the 1991 period cohort with the 1907 birth cohort. The left panel compares the 1991 period cohort mortality rate
(vertical axis) with the 1907 birth cohort mortality rate (horizontal axis) from age 81 to 95. The right panel compares the 1991 period disability
prevalence (vertical axis) with the 1907 birth cohort disability prevalence (horizontal axis) from age 84 to 95. The 45° solid line represents
equality.

6. CONCLUDING REMARKS

Robust estimation of DFLE is vital to testing the compet-
ing theories of morbidity and mortality. Over the last 30 years,
Sullivan’s method has been the most widely used method for
estimating DFLE. Academic researchers and government of-
ficials use this method because of the relative ease of obtain-
ing mortality data from a period life table and disability data
from a cross-sectional survey. Yet, the statistical properties of
Sullivan’s method have not been understood. In this article we
establish a statistical foundation of Sullivan’s method by prov-
ing that, under stationarity assumptions, Sullivan’s estimator is
unbiased and consistent and the standard variance estimator is
also consistent and approximately unbiased. Our results resolve
methodological debates in the literature, which generally con-
cluded that Sullivan’s method requires additional assumptions.

Finally, we show how to extend Sullivan’s method to co-
hort life tables so that the valid estimation of DFLE is pos-
sible without stationarity assumptions. When compared with
the multistate life table method, which is popular among ap-
plied researchers, this extension of Sullivan’s method avoids
the strong assumptions about transition probabilities and can
be applied even with consecutive cross-sectional disability sur-
veys, which are often easier to obtain than a longitudinal sur-
vey. While the multistate life table method allows for a richer
analysis of morbidity and mortality, if DFLE is the quantity of
interest, Sullivan’s method is easier to implement and can es-
timate DFLE with fewer assumptions and less stringent data
requirement. Our empirical analysis of the 1907 and 1912 U.S.
birth cohorts suggests that while mortality rates remain approxi-
mately stationary, disability rates may have declined during this
time period.

APPENDIX: PROOFS

A.1. PROOF OF PROPOSITION 1

Under the assumptions, DFLE may be expressed as

eDF(x) = 1

l(x)

∑
i∈Ax

[
ni Li −

∫ i+ni

i
π(t)l(t)dt

]
, (A.1)

where the equality follows from the fact that, under the stationarity as-
sumptions, (10) holds for all x ∈ A. Moreover, under the stationarity
assumptions, the age distribution is given by (4) and is proportional to
the probability that an individual of exact age x being sampled. There-
fore, for any age interval, [x, x + nx), if t ∈ [x, x + nx), then we have

E(nx π̂x) = E[π(t)] =
∫ x+nx

x π(t)l(t)dt∫ x+nx
x l(t)dt

, (A.2)

where the first equality follows from (12) and E[Y(t)|t] = π(t). Equa-
tion (A.2) implies nx LxE(nx π̂x) = ∫ x+nx

x π(t)l(t)dt for any age inter-
val, [x, x + nx). Together with (A.1), we have the desired result:

E(êDF
x ) = 1

lx

∑
i∈Ax

[
1 − E

(
ni π̂i

)]
ni Li = eDF(x). (A.3)

To prove the consistency, observe that the variance of Y(t) is
bounded from above by 1 because Y(t) is binary. Therefore, as nx Nx
goes to ∞, the variance of nx π̂x goes to 0, which together with its un-
biasedness implies that nx π̂x converges in probability to E[π(t)] for
any age interval, [x, x + nx). Thus, Sullivan’s estimator is consistent
for eDF

x .

A.2. PROOF OF PROPOSITION 2

We first derive the variance of Sullivan’s estimator. Given any age
interval, [x, x + nx), we can write the variance of Y(t) as follows:

var[Y(t)] = E[Y(t)] − {
E[Y(t)]}2 = nx px

(
1 − nx px

)
, (A.4)

where the first equality follows from the fact that Y(t) is binary and
the second equality follows from E[Y(t)] = E[π(t)], the expression
of which is given in (A.2). Together with the definition of Sullivan’s
estimator in (11), this implies that the variance equals σDF

x .
To prove the consistency of σ̂DF

x , note that the proof of Proposi-
tion 1 shows that, under the stationarity assumptions, for any age in-
terval, [x, x + nx), nx px can be estimated by nx π̂x consistently. Thus, it
follows that σ̂DF

x in (13) is a consistent estimator of σDF
x . To prove the

approximate unbiasedness of σ̂DF
x , we note that

E
[

ni π̂i
(
1 − ni π̂i

)] = E

[
1

ni Ni

ni Ni∑
j=1

(
Yij(tij) − ni π̂i

)2

]
(A.5)

for any age interval, [i, i+ni), where the equality follows from the fact
that Yij(tij) is binary. Then, the right side of this equation approximates
nx px(1 − nx px) = var[Y(t)] if and only if ni Ni ≈ ni Ni − 1.
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A.3. LARGE–SAMPLE VARIANCE OF êx
DF WHEN

nxmx IS ESTIMATED

Because nx Lx = nx ax lx + (nx − nx ax)lx+nx , we rewrite êDF
x as

êDF
x = (

1 − nx π̂x
)

nx ax + (1 − ∞π̂ω)∞aω p̂xω

+
∑

i∈Ax+nx \{ω}

(
1 − ni π̂i

)
ci p̂xi,

where ci = (ni− − ni−ai−) + ni ai is a constant and i− indexes the
age interval ending at age i and nj p̂xi = li/lx. Recall that p̂xi =∏

j∈Ax\{i} nj p̂j, where nj p̂j = 1 − nj q̂j. Because nx Mx is a consistent
estimate of nx mx, p̂xi also converges to pxi in probability. Then, fol-
lowing Chiang (1984, chap. 4), we expand the variance of eDF

x around
E(nx π̂x) and pxi, which is true value of p̂xi, using Taylor’s theorem to
obtain the large-sample variance:

Var(êDF
x )

= nx a2
x Var(nx π̂x)

+ Var

(
(1 − ∞π̂ω)∞aω p̂xω +

∑
i∈Ax+nx \{ω}

(
1 − ni π̂i

)
ci p̂xi

)

≈ nx a2
x Var(nx π̂x)

+
∑

i∈Ax\{ω}
p2

xi
[{

1 − E
(
ni

π̂i+ni

)}(
ni − ni ai

) + eDF
i+ni

]2 Var
(
ni

p̂i
)

+ (∞aω pxω)2 Var(∞π̂ω)

+
∑

i∈Ax+nx \{ω}
(ci pxi)

2 Var
(
ni π̂i

)
, (A.6)

where

Var
(
ni p̂i

) = [E(ni q̂i)]2[1 − E(ni q̂i)]
ni Di

and

Var
(
ni π̂i

) = E(ni π̂i)[1 − E(ni π̂i)]
ni N

2
i

.

Note that the independence of nx π̂x across age groups and between

nx π̂x and p̂x′ for any x 	= x′ as well as the independence of p̂x across age
groups are assumed. (These independence assumptions are reasonable
if the cross-sectional disability survey is conducted separately from
the construction of the period life table, as is often the case.) Finally,
the large-sample variance in (A.6) can be consistently estimated by
replacing E(nx π̂x) and pxi with their consistent estimates, that is, nx π̂x

and p̂xi, respectively.

[Received April 2006. Revised July 2006.]
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