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Abstract
Measurement error threatens the validity of survey research, especially when studying sensitive questions.
Although list experiments can help discourage deliberate misreporting, they may also su�er from
nonstrategic measurement error due to flawed implementation and respondents’ inattention. Such error
runs against the assumptions of the standard maximum likelihood regression (MLreg) estimator for list
experiments and can result in misleading inferences, especially when the underlying sensitive trait is
rare. We address this problem by providing new tools for diagnosing and mitigating measurement error
in list experiments. First, we demonstrate that the nonlinear least squares regression (NLSreg) estimator
proposed in Imai (2011) is robust to nonstrategic measurement error. Second, we o�er a general model
misspecification test to gauge the divergence of the MLreg and NLSreg estimates. Third, we show how to
modelmeasurement error directly, proposing newestimators that preserve the statistical e�iciency of MLreg
while improving robustness. Last, we revisit empirical studies shown to exhibit nonstrategic measurement
error, and demonstrate that our tools readily diagnose and mitigate the bias. We conclude this article with
a number of practical recommendations for applied researchers. The proposed methods are implemented
through an open-source so�ware package.

Keywords: auxiliary information, indirect questioning, item count technique, misspecification test, sensitive
survey questions, unmatched count technique

1 Introduction
Measurement error poses a serious threat to the validity of survey research. This is especially
true when studying sensitive questions, which present respondents with strong incentives to
disguise the truth. Along with othermethods such as the randomized response and endorsement
experiments (e.g., Gingerich 2010; Bullock, Imai, and Shapiro 2011; Blair, Imai, and Zhou 2015),
the list experiment (a.k.a. the item count technique and the unmatched count technique) is an
indirect questioning method that, by veiling individual responses, seeks to mitigate potential
social desirability and nonresponse biases (Miller 1984; Corstange 2009; Imai 2011; Blair and Imai
2012; Glynn 2013). While some studies have shown that list experiments can be e�ective for
reducingbias, awell-known limitationof themethod is that the extremevalue responses perfectly
reveal the sensitive trait, meaning that some respondents are still incentivized to disguise the
truth. Blair and Imai (2012) showhowtoaddress such “floor andceiling e�ects”within a regression
framework.
While the literature has since provided additional tools for alleviating strategicmeasurement

error in list experiments (e.g., Blair, Imai, and Lyall 2014; Aronow et al. 2015), it has not yet
addressed the consequences of nonstrategic measurement error, arising for example from
“the usual problems of miscoding by administrators or enumerators as well as respondents

Authors’ note: All the proposed methods presented in this paper are implemented as part of the R package, list:
Statistical Methods for the Item Count Technique and List Experiment, which is freely available for download at
http://cran.r-project.org/package=list (Blair, Chou, and Imai 2017). The replication materials are available as Blair, Chou,
and Imai (2018).
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misunderstanding or rushing through surveys” (Ahlquist 2018). Like floor and ceiling e�ects,
these behaviors run against the assumptions of the standardmaximum likelihoodmodel (MLreg)
for list experiments (Blair and Imai 2012), and can induce severe model misspecification biases,
especially when the underlying trait is rare (Ahlquist 2018). Of course, all forms of nonstrategic
measurement error are best avoided through careful interviewer training, pilot surveys, and other
best practices of survey research. Still, for some list experiments, a certain degree of careless
responding and administrative errors may be unavoidable. We do not yet have the necessary
tools for addressing nonstrategic measurement error in list experiments.
In this paper, we take up the challenge of providing new statistical methods for detecting such

error and alleviating the resultingmodelmisspecification bias. For concreteness, we consider two
specific measurement error mechanisms, originally proposed in Ahlquist (2018). First, top-biased
error occurs when a random subset of respondents chooses themaximal (ceiling) response value,
regardless of their truthful response. Such error can greatly bias MLreg, which achieves statistical
e�iciency by modeling each level of the response variable. However, as we argue in Section 2.2,
top-biased error is also unlikely to be common for truly sensitive questions (unless respondents
are not paying attention or survey implementation is poor), since choosing the ceiling response
amounts to a confession that onepossesses the supposedly sensitive trait. For this reason,wealso
consider a second, more plausible nonstrategic measurement error mechanism, uniform error,
which occurs when a subset of respondents chooses their responses at random.
As a point of reference, we begin by showing that existing methods, in particular the

standard di�erence-in-means (DiM) and nonlinear least squares regression (NLSreg) estimator,
are more robust than MLreg to these measurement error mechanisms. Leveraging this fact, we
propose a simple statistical test that gauges the di�erence between NLSreg and MLreg. Our test
provides a principled approach to determining when the additional assumptions required by
MLreg are justified. It can also be viewed as the formal and multivariate version of Ahlquist’s
recommendation to compare the sensitive item prevalence estimated by DiM and MLreg, as
NLSreg is a generalization of DiM.
Next, we show how to detect and adjust for top-biased and uniform error in a regression

modeling framework (Section 2). Our new regression models occupy a valuable middle ground
between existing approaches. On the one hand, they preserve the greater e�iciency of MLreg,
which can be invaluable when analyzing noisy methods such as the list experiment. On the other
hand, they also contain the model without measurement error as a limiting case, thus improving
robustness and providing another statistical test. We propose an additionalmethod for improving
the robustness of the standard regression estimators using the auxiliary information strategy of
Chou, Imai, and Rosenfeld (2017). All of our proposed methods are implemented via the open-
source R package list (Blair, Chou, and Imai 2017).
We examine the performance of the proposed methodology through small scale simulation

studies, which build on the simulations in Ahlquist (2018) (Section 3). We show that our proposed
test detects deviations from the modeling assumptions at a high rate. We also confirm the
theoretical expectation that NLSreg is robust to nonstrategic measurement error and the forms
ofmodelmisspecification contemplated in Ahlquist (2018). Turning to uniform response error, we
find that MLreg performs reasonably well despite this misspecification. Nevertheless, we show
that the robust estimators proposed here and in Chou, Imai, and Rosenfeld (2017) can improve the
performance of list experiment regression in the presence of both types of measurement error.
Finally,weapply theproposedmethodology to theempirical studypresented inAhlquist (2018)

(Section 4). When analyzed via MLreg, the study shows that unrealistically large proportions of
Americans engage in voter fraud and/or were abducted by aliens. By contrast, a list experiment
on texting while driving did not reveal such problems. Themost straightforward analysis of these
data yields a negative estimate (a positive estimate that is statistically indistinguishable fromzero)
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for the proportion of those who engage in voter fraud (were abducted by aliens). We caution that
multivariate analysis of such list experiments is bound to be unreliable, as a trait needs to exist for
it to covary with respondent characteristics. Nevertheless, we show that our methods yield more
sensible estimates of the prevalence of these traits than MLreg. In particular, our uniform error
model yields estimates of voter fraud and alien abduction that are statistically indistinguishable
from zero with the narrowest confidence intervals among the estimators we consider.
We further demonstrate that for the list experiment on texting while driving, which is not

an extremely rare event, MLreg yields reasonable results that agree with those of the other
methods. Given that all three list experiments were conducted in the same survey on the same
respondents, and sowere likely subject to the same formsof nonstrategicmeasurement error, this
finding indicates that researchers should primarily be concerned with the rarity of the sensitive
traits when deciding whether multivariate regression analyses are appropriate. Building on this
observation, we conclude this article by o�ering a set of practical recommendations for applied
researchers conducting list experiments (Section 5).

2 The Proposed Methodology
In this section, we propose statistical methods for analyzing list experiments with measurement
error. We begin by reviewing MLreg and NLSreg, introduced in Imai (2011) and extended in
Blair and Imai (2012). We then propose a statistical test of model misspecification for detecting
measurement error. Next, following Blair and Imai (2012), we show how to directly model
measurement error mechanisms and apply this strategy to the top-biased and uniform error
processes introduced in Ahlquist (2018). Finally, we adopt another modeling strategy developed
in Chou, Imai, and Rosenfeld (2017) to further improve the robustness of multivariate regression
models.

2.1 Multivariate Regression Models: A Review
Suppose that we have a simple random sample of N respondents from a population. In standard
list experiments, we have a total of J binary control questions and one binary sensitive question.
LetTi be the randomized treatment assignment indicator. That is,Ti = 1 indicates that respondent
i is assigned to the treatment group and is asked to report the total number of a�irmative
responses to the J + 1 items (J control items plus one sensitive item). In contrast,Ti = 0 implies
that the respondent is assigned to the control group and is asked to report the total number of
a�irmative answers to J control questions. We use Xi to represent the set of K pretreatment
covariates (including an intercept).
Let Yi denote the observed response. If respondent i belongs to the treatment group, this

variable can take any nonnegative integer less than or equal to J + 1, i.e.,Yi ∈ {0, 1, . . . , J + 1}.
On the other hand, if the respondent is assigned to the control group, the maximal value is
J , i.e., Yi ∈ {0, 1, . . . , J}. Furthermore, let Zi represent the latent binary variable indicating
the a�irmative answer to the sensitive question. If we use Y ∗i to represent the total number of
a�irmative answers to the J control questions, the observed response can be written as,

Yi = Ti Zi +Y
∗
i . (1)

In the early literature on list experiments, researchers estimated the proportion of respondents
with the a�irmative answer to the sensitive item using DiM, but could not characterize the
respondents most likely to have the a�irmative response. To overcome this challenge, Imai (2011)
considers the following multivariate regression model,

Å(Yi ` Ti ,Xi ) = TiÅ(Zi ` Xi ) + Å(Y ∗i ` Xi ) (2)
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where the randomization of treatment assignment guarantees the following statistical
independence relationships:Ti ⊥⊥ Zi ` Xi andTi ⊥⊥Y ∗i ` Xi .
Although this formulationcanaccommodatevarious regressionmodels, one simpleparametric

model, considered in Imai (2011), is the following binomial logistic regression model,

Zi ` Xi
indep.∼ Binom(1, g (Xi ; β )) (3)

Y ∗i ` Xi
indep.∼ Binom(J , f (Xi ; γ)) (4)

where f (Xi ; γ) = logit−1(X >i γ) and g (Xi ; β ) = logit−1(X >i β ), implying the following regression
functions, Å(Y ∗i ` Xi ) = J · f (Xi ; γ) and Å(Zi ` Xi ) = g (Xi ; β ). Note that β and γ represent vectors
of regression coe�icients.
Imai (2011) proposes two ways to estimate this multivariate regression model: nonlinear least

squares (NLSreg) and maximum likelihood (MLreg) estimation. NLSreg is obtained by minimizing
the sum of squared residuals based on equation (2).

(β̂NLS, γ̂NLS) = argmin
(β ,γ)

N∑
i=1

{Yi −Ti · g (Xi ; β ) − f (Xi ; γ)}2 (5)

where β̂NLS and γ̂NLS are the nonlinear least squares (NLS) estimates of the coe�icients. NLSreg
is consistent so long as the regression functions are correctly specified and does not require the
distributions to be binomial. One can obtain more e�icient estimates by relying on distributional
assumptions. In particular,MLreg is obtainedbymaximizing the following log-likelihood function,

(β̂ML, γ̂ML) = argmax
(β ,γ)

∑
i ∈J (1,0)

[log{1 − g (Xi ; β )} + J · log{1 − f (Xi ; γ)}]

+
J∑
y=0

∑
i ∈J (0,y )

y log f (Xi ; γ) + (J − y ) log{1 − f (Xi ; γ)}

+
∑

i ∈J (1,J+1)
{log g (Xi ; β ) + J log f (Xi ; γ)}

+
J∑
y=1

∑
i ∈J (1,y )

log
[
g (Xi ; β )

(
J

y − 1
)
f (Xi ; γ)y−1{1 − f (Xi ; γ)}J−y+1

+ {1 − g (Xi ; β )}
(
J

y

)
f (Xi ; γ)y {1 − f (Xi ; γ)}J−y

]
(6)

where β̂ML and γ̂ML are the maximum likelihood (ML) estimates of the coe�icients and J (t , y )
represents the set of respondents who haveTi = t andYi = y .
The choice between NLSreg and MLreg involves a fundamental tradeo� between bias and

variance. MLreg is more e�icient than NLSreg because the formermakes additional distributional
assumptions. In particular, MLreg models each cell of the observed response, including theYi =
J+1andYi = 0 cells in the treatment group,which cangreatly a�ectparameter estimates (Ahlquist
2018). In contrast, NLSreg only makes an assumption about the conditional mean functions
and hence is more robust to measurement errors in specific cells. In line with these theoretical
expectations, simulations in Ahlquist (2018) report that DiM, which is a special case of NLSreg
without covariates, is more robust for estimating the proportion of the sensitive trait than MLreg.
Two identification assumptions are required for DiM, NLSreg, and MLreg. First, respondents

in the treatment group are assumed not to lie about the sensitive item, i.e., no liars. Any other
behavior impliesmisreporting, and any estimator based onmismeasured responses is likely to be
biased. The second assumption is that respondents’ answers to the control items are not a�ected
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by the treatment, i.e., no design e�ect. Because list experiments rely upon the comparison of
responses between the treatment and control groups, responses to the control itemsmust remain
identical in expectation between the two groups. The violation of this assumption also leads to
mismeasured responses, yielding biased estimates. We emphasize that DiM is a special case of
NLSreg and is not exempt from these assumptions. In Appendix A, we prove that DiM is biased
under top-biased and uniform error. The bias is large when the prevalence of the sensitive trait
is small. NLSreg adds an assumption about the correctly specified regression function and MLreg
imposes an additional distributional assumption.
The main di�iculty of multivariate regression analysis for list experiments stems from the

fact that the response to the sensitive item is not observed except for the respondents in the
treatment group who choose the maximal or minimal response. Regression analysis under this
circumstance is more challenging than when the outcome is directly observed. If the sensitive
trait of interest is a rare event, then MLreg is likely to su�er from bias. Such bias is known to exist
evenwhen the outcome variable is observed (King and Zeng 2001), and is likely to be amplified for
list experiments. In addition, dealing withmeasurement error will also bemore di�icult when the
outcome variable is not directly observed. Below, we consider several methodological strategies
for addressing this issue.

2.2 Strategic and Nonstrategic Measurement Errors
Researchers most o�en use indirect questioning techniques to study sensitive topics, which
present respondents with strong incentives to disguise the truth. For this reason, much of
the existing literature on list experiments has been rightly concerned with mitigating strategic
measurement error, particularly floor and ceiling e�ects (e.g., Blair and Imai 2012; Glynn 2013).
These errors arise because the list experiment fails to mask the sensitive trait for respondents
whose truthful response under treatment occupies the floor or ceiling cells.
Although the literature has provided many tools for ameliorating such bias, much less

attention has been paid to nonstrategic measurement error, arising for example from poor
survey implementation or respondent inattention. Because these behaviors run against the
assumptions of the estimators described in Section 2.1, it is no surprise that they can induce
similar forms of bias. Illustrating this point, Ahlquist (2018) examines a specific nonstrategic
error mechanism—called top-biased error, where a random fraction of respondents provide
the maximal response value regardless of their truthful answer to the sensitive question—and
demonstrates that MLreg can be severely biased under this error mechanism.
Although we provide the tools to diagnose and correct this and other nonstrategic

measurement error mechanisms below, we are skeptical that top-biased error is common in
practice, at least for truly sensitive questions. The reason is that under the treatment condition,
giving themaximal value reveals that the respondent answers the sensitive question a�irmatively.
This implies, for example, that respondents are willing to admit engaging in such sensitive
behaviors as drug use and tax evasion or having socially undesirable attitudes such as gender
and racial prejudice. This scenario is unlikely so long as the behavior or attitudes researchers are
trying to measure are actually sensitive.
In our experience, when answering truly sensitive questions, respondents typically avoid

reporting the extreme values (rather than gravitating toward them as assumed under the top-
biased error mechanism). As an example of this phenomenon, we present a list experiment
conducted by Lyall, Blair, and Imai (2013) in the violent heart of Taliban-controlled Afghanistan,
which was designed for estimating the level of support for the Taliban. The control group was
given the following script (J = 3):
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I’m going to read you a list with the names of different groups and
individuals on it. After I read the entire list, I’d like you to tell
me how many of these groups and individuals you broadly support, meaning
that you generally agree with the goals and policies of the group or
individual. Please don’t tell me which ones you generally agree with;
only tell me how many groups or individuals you broadly support.

Karzai Government; National Solidarity Program; Local Farmers

For the treatment group, the sensitive actor, i.e., the Taliban, is added.

Karzai Government; National Solidarity Program; Local Farmers; Taliban

Table 1presentsdescriptive information,whichshowsclearevidenceof floorandceilinge�ects.
Indeed, no respondent gave an answer of 0 or 4. By avoiding the extreme responses of 0 and 4,
respondents in the treatment group are able to remain ambiguous as to whether they support
or oppose the Taliban. This strategic measurement error may have arisen in part because of the
public nature of interview. As explained in Lyall, Blair, and Imai (2013), interviewers are required
to ask survey questions to respondents in public while village elders watch and listen. Under this
circumstance, it is no surprise that respondents try to conceal their truthful answers. Because of
this sensitivity, the authors of the original study used endorsement experiments (Bullock, Imai,
and Shapiro 2011), which represent a more indirect questioning technique, in order to measure
the level of support for the Taliban. On the other hand, Blair, Imai, and Lyall (2014) find that in the
same survey the list experiment works well for measuring the level of support for the coalition
International Security Assistance Force, which is a less sensitive actor to admit support or lack
thereof for than is the Taliban.

2.3 Detecting Measurement Error
Although researchers areunlikely to knowthemagnitudeofmeasurement error,whether strategic
or not, we can sometimes detectmeasurement error fromdata. In addition to the tests developed
by Blair and Imai (2012) and Aronow et al. (2015), we extend and formalize the recommendation
by Ahlquist (2018) to compare the results of multiple models to assess their robustness to
measurement error. We focus on comparisons between MLreg and NLSreg, in order to focus on
comparisons of the quantity of interest most commonly used by applied researchers.
We employ a general specification test due to Hausman (1978) as a formal means of

comparison between MLreg and NLSreg, both of which are designed to examine the multivariate
relationships between the sensitive trait and respondents’ characteristics. The idea is that if the
regression modeling assumptions are correct, then NLSreg and MLreg should yield statistically
indistinguishable results. If their di�erences are significant,we reject thenull hypothesis of correct
specification. Note that model misspecification can arise for various reasons, with measurement
error being one possibility. Furthermore, the test assumes the linear regression specification
shared across NLSreg and MLreg. Then the test statistic and its asymptotic distribution are given
by,

(θ̂ML − θ̂NLS)>(GÖ(θ̂NLS) − FÖ(θ̂ML))−1(θ̂ML − θ̂NLS)> approx.∼ χ2
dim(β )+dim(γ) (7)

where θ̂NLS = (β̂NLS, γ̂NLS) and θ̂ML = (β̂ML, γ̂ML) are theNLSandMLestimators andGÖ(θ̂NLS) and FÖ(θ̂ML)
are their estimatedasymptotic variances.Weview this test as a logical extensionand formalization
of the recommendation in Ahlquist (2018) to compare the results from DiM and MLreg.
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Table 1. An Example of Floor and Ceiling E�ects from the List Experiment in Afghanistan Reported in Lyall,
Blair, and Imai (2013). No respondent in the treatment group gave an answer of 0 or 4, suggesting that the
respondents were avoiding revealing whether they support the Taliban.

List.y Control Taliban

0 20% (188) 0% (0)
1 29% (265) 47% (433)
2 29% (265) 31% (287)
3 22% (200) 22% (198)
4 0% (0) 0% (0)

2.4 Modeling Measurement Error Mechanisms
One advantage of the multivariate regression framework proposed in Imai (2011) is its ability to
directly model measurement error mechanisms, an approach which has demonstrated its value
in a variety of contexts (see e.g., Carroll et al. 2006), including list experiments (Blair and Imai
2012; Chou 2018). Measurement error models strike a valuable middle ground between MLreg
and NLSreg. First, these models include the model without measurement error as their limiting
case, requiring fewer and weaker assumptions than standard models. As a result, we can apply
the specification test as shown for NLSreg and MLreg above. Second, these models can be used
to check the robustness of empirical results to measurement error. Third, researchers can use
these models to test the mechanisms of survey misreporting in order to understand when list
experiments do and do not work.
Although we believe that top-biased error is unlikely to obtain in applied settings, we show

how to model this error process as an illustration of how our modeling framework can flexibly
incorporatevariousmeasurementerrormechanisms.We thenshowhowtomodeluniformerror in
which “a respondent’s truthful response is replaced by a random uniform draw from the possible
answers available to her, which in turn depends on her treatment status” (Ahlquist 2018, p. 5). We
think that this uniform response error process is more realistic and hence the proposed uniform
error model will be useful for applied researchers. As shown in Appendix A, DiM is biased under
these error processes.

Top-biased error. Under top-biased error, for the NLS estimation, equation (2) becomes,

Å(Yi ` Ti ,Xi ) = pJ +Ti {p + (1 − p)Å(Zi ` Xi )} + (1 − p)Å(Y ∗i ` Xi ) (8)

where p is the additional parameter representing the population proportion of respondents who
give the maximal value as their answer. When p = 0 the model reduces to the standard model
given in equation (2). The NLS estimator is obtained by minimizing the sum of squared error,

(β̂NLS, γ̂NLS) = argmin
(β ,γ,p)

N∑
i=1

[Yi − pJ −Ti {p + (1 − p)Å(Zi ` Xi )} − (1 − p)Å(Y ∗i ` Xi )]2. (9)

We can also model top-biased error using the following likelihood function,∏
i ∈J (1,J+1)

[g (Xi ; β )f (Xi ; γ)J + p{1 − g (Xi ; β )f (Xi ; γ)J }]
∏

i ∈J (0,J )
[f (Xi ; γ)J + p{1 − f (Xi ; γ)J }]

∏
i ∈J (1,0)

(1 − p){1 − g (Xi ; β )}{1 − f (Xi ; γ)}J
J−1∏
y=0

∏
i ∈J (0,y )

(1 − p)
(
J

y

)
f (Xi ; γ)y {1 − f (Xi ; γ)}J−y
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J∏
y=1

∏
i ∈J (1,y )

(1 − p)
[
g (Xi ; β )

(
J

y − 1
)
f (Xi ; γ)y−1{1 − f (Xi ; γ)}J−y+1

+ {1 − g (Xi ; β )}
(
J

y

)
f (Xi ; γ)y {1 − f (Xi ; γ)}J−y

]
. (10)

Again,whenp = 0, this likelihood function reduces to the likelihood functionof theoriginalmodel,
which is givenon the logarithmic scale inequation (6).While this likelihood function is toocomplex
tooptimize,wecanuse theexpectation–maximization (EM) algorithm (Dempster, Laird, andRubin
1977) to maximize it. The details of this algorithm are given in Appendix B.1.

Uniform error. Under the uniform error mechanism, we modify the regression model given in
equation (2) to the following,

Å(Yi ` Ti ,Xi ) =
p0(1 −Ti )J

2
+Ti

{
p1(J + 1)

2
+ (1 − p1)Å(Zi ` Xi )

}
+ {(1 −Ti )(1 − p0) +Ti (1 − p1)}Å(Y ∗i ` Xi ) (11)

where pt = Pr(Si ` Ti = t ) represents the proportion of misreporting individuals under the
treatment conditionTi = t . Again, when p0 = p1 = 0, this model reduces to the original model
withoutmeasurement error. As before, we can obtain the NLS estimator byminimizing the sumof
squared error. We can also formulate the ML estimator using the following likelihood function,∏

i ∈J (1,J+1)

{
(1 − p1)g (Xi ; β )f (Xi ; γ)J + p1

J + 2

}
∏

i ∈J (1,0)

{
(1 − p1){1 − g (Xi ; β )}{1 − f (Xi ; γ)}J + p1

J + 2

}
J∏
y=0

∏
i ∈J (0,y )

{
(1 − p0)

(
J

y

)
f (Xi ; γ)y {1 − f (Xi ; γ)}J−y + p0

J + 1

}
J∏
y=1

∏
i ∈J (1,y )

[
(1 − p1)

{
g (Xi ; β )

(
J

y − 1
)
f (Xi ; γ)y−1 {1 − f (Xi ; γ)}J−y+1

+ {1 − g (Xi ; β )}
(
J

y

)
f (Xi ; γ)y {1 − f (Xi ; γ)}J−y

}
+

p1
J + 2

]
. (12)

As shown in Appendix B.2, the EM algorithm can be used to obtain the ML estimator.

2.5 Robust Multivariate Regression Models
As another approach, we also show how to conduct multivariate regression analysis while
ensuring that the estimated proportion of the sensitive trait is close to DiM. To do this, we follow
Chou, Imai, and Rosenfeld (2017), who show how to incorporate available auxiliary information
such as the aggregate prevalence of sensitive traits when fitting regression models. The authors
find that supplying aggregate truths significantly improves the accuracy of list experiment
regression models. Adopting this strategy, we fit the multivariate regression models such that
they give an overall prediction of sensitive trait prevalence consistent with DiM. To the extent
that DiM rests on weaker assumptions, this modeling strategy may improve the robustness of the
multivariate regression models.
Specifically, we use the following additional moment condition,

Å{g (Xi ; β )} = Å



∑N
i=1TiYi∑N
i=1Ti

−
∑N
i=1(1 −Ti )Yi∑N
i=1(1 −Ti )



. (13)
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For the NLS estimation, we combine this moment condition with the following first order
conditions from the two-step NLS estimation.

Å
�
Ti {Yi − f (Xi ; γ) − g (Xi ; β )}g ′(Xi ; β )

�
= 0 (14)

Å
�
(1 −Ti ){Yi − f (Xi ; γ)}f ′(Xi ; γ)

�
= 0 (15)

where f ′(Xi ; γ) and g ′(Xi ; β ) are the gradient vectors with respect to γ and β , respectively.
Altogether, themoments form a generalizedmethod ofmoments (GMM) estimator. In fact, we can
use the same exact setup Chou, Imai, and Rosenfeld (2017) and use their code in the list package
in R to obtain theNLS estimatorwith this additional constraint, although the standard errorsmust
be adjusted as the auxiliary constraint does not provide additional information.
We can also incorporate the constraint in equation (13) in the ML framework. To do this,

we combine the score conditions obtained from the log-likelihood function with this additional
moment condition. Then, theGMMestimator canbe constructedusing all themoment conditions.
The details of this approach are given in Appendix B.3.

3 Simulation Studies
How do themethods we introduce above fare in estimating common quantities of interest for the
list experiment in the presence of measurement error? In this section, we build on the simulation
study presented in Ahlquist (2018) and examine the performance of the DiM and MLreg but also
the NLSreg introduced in Imai (2011) and the robust models introduced in Section 2. We examine
the performance for two common estimands: the sensitive item proportion, which on theoretical
grounds we recommend be primarily estimated using the DiM; and the relationship between the
sensitive item and covariates. For comparability, we rely on the simulation settings in Ahlquist
(2018) and examine whether the theoretical properties of the estimators hold in the presence of
top-biased error and uniform error.
Ahlquist (2018) finds that MLreg is more sensitive to top-biased error than DiM. The paper

also reports that the degree of sensitivity increases when the prevalence of the sensitive trait is
low and the control items are negatively correlated with each other. Below, we show that our
statistical test, developed in Section 2.3, can detect the misspecified data-generating process
used in Ahlquist (2018). We show that NLSreg is robust to these types of model misspecification.
Although we confirm that MLreg is sensitive to top-biased error, we find that it is more robust to
uniform error. Finally, we find that the new ML estimators proposed above perform reasonably
well in the presence of response errors, especially when the sensitive trait is su�iciently common.

3.1 Simulation Settings
We begin by replicating the “designed list” simulation scenario, which Ahlquist (2018) found to be
most problematic for MLreg.1 In addition to the introduction of top-biased error, this simulation
scenario violates the assumptions of MLreg in twoways. First, Ahlquist follows the advice of Glynn
(2013) and generates a negative correlation among the control items. By contrast, MLreg assumes
conditional independence of the control items. Second, control items are generatedwith di�erent
marginal probabilities, which is also inconsistent with the binomial distribution.2

Thedata-generatingprocess for theseproblematic “designed” lists is as follows. For the control
outcomeY ∗i , the marginal probabilities are fixed for each control item. For the simulations with
J = 3 control items, the probabilities of latent binary responses are specified to be (0.5, 0.5, 0.15),

1 Wedonot study the “Blair–Imai list” simulation scenario in Ahlquist (2018),whichdoes not follow thebinomial distribution
assumed for MLreg of Blair and Imai (2012), making it impossible to isolate the e�ects of measurement error.

2 Blair and Imai (2012) show how to model this data-generating process using the Poisson binomial distribution. Another
possibility is to model the joint distribution of control items by using the information from another survey, in which each
item is asked separately.
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whereas in the simulations with J = 4, the study uses (0.5, 0.5, 0.15, 0.85). The rmvbin() function
in the R package bindata is used to generate the latent responses to the control items such that
the correlationbetween the first two items is negative 0.6. To generate the sensitive trait, Zi , first a
single covariate,Xi , is sampled independently from the uniformdistribution for each observation
i = 1, 2, . . . ,N . Together with an intercept, we form the model matrix Xi = (1,Xi ). The sensitive
trait is then drawn according to the logistic regression given in equation (3). The coe�icients are
set to β = (0,−4) corresponding to the prevalence of the sensitive trait approximately equal to
0.12. Finally, we assign the half of the sample to the treatment group (Ti = 1) and the other half to
the control group (Ti = 0). The outcome variable then is generated according to equation (1). We
conduct 1,000 simulations with these parameters.
To introduce top-biased error, Ahlquist (2018) uses complete randomization to select 3% of the

sample and changes the outcome variableYi to J +1 (J ) if observation is assigned to the treatment
(control) group, independently of the values of Xi ,Y ∗i , and Zi . To generate uniform error, 3% of
the observations are similarly sampled, but are assigned their outcome variable with uniform
probability to one of the J + 2 (J + 1) possible values, depending on their treatment status. We
follow these procedures in our simulations.

3.2 Detecting Model Misspecification
Given thediscrepancies between this data-generatingprocess and theprocess assumedbyMLreg,
MLreg is shown to be severely biased by these procedures (Ahlquist 2018). However, as explained
in Section 2.1, NLSreg should be more robust than MLreg, though it is less e�icient. This bias-
variance tradeo� arises becauseNLSreg does not assume the binomial distribution for the control
items. Under the assumptions of NLSreg, the control items can be arbitrarily correlated and have
di�erent marginal probabilities (although a specific functional form—here, the logistic function—
is assumed for the conditional expectation). This implies that NLSreg should only be subject to the
potential bias from response error.
This theoretical expectation suggests that the Hausman test proposed in Section 2.3 may

be able to detect departures from the modeling assumptions. We find that this is indeed the
case. Table 2 shows that our test diagnoses the inconsistency of MLreg in the presence of
such severe model misspecification. The table presents the rejection rate for our simulations
at di�erent combinations of J and N with a p-value of 0.1 as the threshold. As the “p-value”
columns show, we find su�iciently large (and positive) test statistics to reject the null hypothesis
of no misspecification in a large proportion of trials, especially when there is no response error.
The finding is consistent with substantial model misspecification, in excess of response error,
introduced by the designed list procedure in Ahlquist (2018). Interestingly, the top-biased error
appears to mask this misspecification.
Importantly, we discovered that in all cases a large proportion of the trials yielded a negative

valueof the test statistic,which corresponds toextremelypoor fit of MLreg relative toNLSreg. Such
values are only consistent with model misspecification so long as the test is su�iciently powered
(Schreiber 2008). While the test statistic can by chance take a negative value in a finite sample,
in our simulations such statistics are strikingly prevalent. As shown in the “p-value & negative”
columnsof the table, byusing anegative or largepositive test statistic as the criterion for rejection,
we obtain a much more powerful test for misspecification even in the case of top-biased error.
Although this test may be conservative, leading to overrejection of the null hypothesis, the fact
that these rejection rates are large even when the sample size is moderate suggests that the test
is well powered in this simulation study.
In sum, the proposed model misspecification test readily diagnoses the designed list

misspecification studied in Ahlquist (2018). Although the test may not work in all settings, we
find here that it detects the significant problems in the designed lists simulations at a high rate.
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Table 2. Results of the Model Misspecification Test for the Designed List Simulations. The proportions
rejecting the null hypothesis of no model misspecification are shown. The “p-value” column is based on the
standard Hausman test with a p-value of 0.1 as the threshold, while the “p-value & negative” column is based
on the combined rejection criteriawherewe reject the null hypothesis if the p-value is less than 0.1 or the test
statistic takes a negative value.

Hausman_p_ Hausman_stat_ Hausman_p_ Hausman_stat_ Hausman_p_ Hausman_stat_

noerror_ noerror_ topcoded_ topcoded_ uniform_ uniform_

J N prop_sig prop_neg prop_sig prop_neg prop_sig prop_neg

3 1000.00 0.70 0.96 0.12 0.74 0.40 0.87
3 1500.00 0.84 0.97 0.08 0.68 0.48 0.84
3 2000.00 0.92 0.98 0.06 0.66 0.49 0.82
4 1000.00 0.88 0.97 0.33 0.86 0.64 0.93
4 1500.00 0.93 0.97 0.32 0.94 0.67 0.92
4 2000.00 0.95 0.98 0.35 0.98 0.71 0.91

3.3 Robustness of the Nonlinear Least Squares Regression Estimator
Our second main finding is that NLSreg is robust to these misspecifications. This fortifies our
previous result that the model misspecification test, which is based on the divergence between
NLSreg and MLreg, is e�ective for diagnosingmodel misspecification. To illustrate the robustness
of NLSreg, in Figure 1, we present the bias, root-mean-squared error (RMSE), and the coverage of
90% confidence intervals of our estimates of the population prevalence of the sensitive trait. We
also present results for MLreg, filtered using the p-value plus negative value criterion for rejection
describedabove.3 Last, given thegoalsofmultivariate regression,wealso compute these statistics
for the estimated coe�icients.
Figure 1 shows the results for J = 3 control items for top-biased error (le� three columns)

and uniform error (right three columns). Given space limitations, the analogous figure for J = 4

control items is shown in Figure 2 in the Supplementary Appendix. We include the two estimators
considered in Ahlquist (2018): DiM and MLreg (solid square with solid line), as well as the NLSreg
estimator proposed in Imai (2011) (solid triangle with dashed line). Our main finding here is that
NLSreg is robust to all of these model misspecifications, doing as well as DiM. This is consistent
with our prior expectation: DiM is a special case of NLSreg.
Although filtering based on the model misspecification test addresses the overestimation of

the sensitive trait under top-biased error observed in Ahlquist (2018), we note thatMLreg does not
performwell for theestimationof the coe�icients, nordoes it improve inference for theprevalence
of the sensitive trait under uniform error. However, as Table 2 showed, these results are based on
the small fraction of trials that did not result in a negative or large positive test statistic. In such
trials, the NLS estimates were also inaccurate due to sampling error. This suggests that, while our
proposed statistical test will o�en be able to detect misspecification in practice, in the instances
where it does not, NLSreg (and, by extension, DiM) will also be biased.
The results confirm our theoretical expectation that NLSreg is robust to various types of

misspecification. As a final point, we note that our simulation results, based on the grossly
misspecified data-generating process described above, do not necessarily imply that MLreg will
perform badly for designed lists. The simulation settings we adapted from Ahlquist (2018) are
not realistic. They imply, for example, that the individual covariates have no predictive power for

3 For the purpose of presentation, we adopt the Bayesian approach suggested by Blair and Imai (2012), which is based on
weakly informative priors for logistic regression. Although the use of such prior distribution typically yields estimates that
are similar to those of MLreg, it acts as regularization and avoids complete separation of covariates in a small number of
simulations when the model is misspecified. We follow Gelman et al. (2008) and use their default recommendation of a
Cauchy prior with center parameter set to 0 and scale set to 2.5 (10) for the coe�icients (intercept). Note that fewer than
1% of simulations are a�ected by separation issues.
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Figure 1. Robustness of the Nonlinear Least Squares Regression Estimator in the Presence of Several Model
Misspecifications Considered in Ahlquist (2018). We consider the three estimators of the prevalence of the
sensitive trait: the DiM estimator (open circle with dotted line), the ML regression estimator (solid square
with solid line; filteredby themodelmisspecification test using the combined criteria), and theNLSestimator
(solid triangle with dashed line). The result shows that the NLS regression estimator is as robust as the DiM
estimator.

responses to the control items. Furthermore, our model misspecification test is able to detect the
distributionalmisspecification in these simulations. Thus, in practice, such amisspecificationwill
o�en be apparent from the divergence of the NLSreg and MLreg results.

3.4 Addressing Response Error
The simulation settings adopted above include several violations of the modeling assumptions,
including correlation between control items, varying control item propensities, model
misspecification, and measurement error. As such, it is di�icult to disentangle which model
misspecifications, or combination of them, are a�ecting the performance of di�erent methods.
In this section, we focus on assessing the impacts of top-biased and uniform error processes
and examine how the multivariate models proposed in Section 2 can address them. To be sure,
applied researchers will rarely know which (if any) of these mechanisms characterize their data.
Nevertheless, we show here that these methods can eliminate these errors when they arise, and
illustrate in Section 4 how they can be used to assess the robustness of empirical results.
To isolate the e�ects of measurement errors, we develop a data-generating process that

assumes no other model misspecification. First, we draw the latent response to the sensitive
item Zi and the control items Y ∗i according to the model defined in equations (3) and (4).
Following Ahlquist (2018), we set the true values of the coe�icients for the control items to γ
to (0, 1), corresponding to a conditional mean of observed response about J × 0.62, whereas
the coe�icients for the sensitive item are set to β = (0,−4), generating a low propensity of
approximately 0.12. In the Supplementary Appendix, we present a high propensity scenario of
about 0.38. Last, we introduce each response error using the same procedure described earlier.
We conduct 5,000 simulations with these parameters.
Figure2presents the findings for J = 3,whereasFigure3of theSupplementaryAppendix shows

the results for J = 4. In the le�-hand columns, we show the top-biased error simulation with the
standard ML estimator (solid square with solid line), the constrained ML estimator (solid triangle
with dot-dash line), the top-biased ML model (open circle with dash line), and the uniform ML
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Figure 2. Robustness of the Constrained and Measurement Error Maximum Likelihood Estimators in the
Presence of Response Errors when the Propensity of Sensitive Trait is Low. We consider four estimators
of the prevalence of the sensitive trait and slope and intercept regression coe�icients: the standard ML
estimator (solid square with solid line), the constrained ML estimator (solid triangle with dot-dash line), the
ML estimators adjusting for top-biased response error (open circle with dashed lines) and uniform response
errors (open diamondwith dot-long-dash line). The result shows that both the constrainedML estimator and
the models adjusting for response error are an improvement over the performance of the ML estimator.

model (open diamond with dot-long-dash line) introduced in Section 2. The right-hand columns
present the uniform error simulation results. As before, we show the bias, RMSE, and coverage of
90% confidence intervals.
As the upper le�-hand corner plot shows, we replicate the main finding in Ahlquist (2018) that

a small amount of top-biased error is enough to significantly bias the standard ML estimator.
Looking at the regression coe�icients, we find that this positive bias follows from the bias in the
estimated slope. Our proposedmethods appear to address this issue e�ectively. The constrained
estimator slashes the bias of the overall prevalence by almost 75%. This is unsurprising, as it
constrains the regression-basedprediction to theDiMestimate.However, because theconstrained
ML does not model the error mechanism directly, it does not improve the bias of the estimated
regression coe�icients. Indeed, the dashed lines show, the constrainedmodel reduces the bias by
decreasing the intercept rather than the slope, which does not help in this particular simulation
setting where the bias for the intercept is small to begin with. As a result, the coverage of the
confidence interval for the slope is only slightly improved.
As expected, the top-biased error model most e�ectively addresses this measurement error

mechanism, eliminating the bias of the three quantities of interest almost entirely. Likewise,
coverage is at the nominal rate for all three quantities of interest. We find that the uniform error
model, whichmodels a di�erent error process to the one assumed, nevertheless is no worse than
the standardMLmodel. Indeed, it exhibits less bias, better coverage, and lower RMSE thanMLreg.
In both cases, there is a small finite-sample bias that reduces as sample size increases.
The right-hand columns of Figure 2 examine the performance of the same four estimators

under uniform error. We find several interesting results. Most importantly, we find that MLreg is
significantly less biased under this measurement error mechanism than under the top-biased
error process. Given the greater plausibility of uniform error relative to top-biased error, this
finding suggests that MLreg may be more robust to nonstrategic measurement error than the
simulations of Ahlquist (2018) suggest.
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We find that the uniform error model leads to some underestimation of the sensitive trait
prevalence. While no estimator is unbiased for estimating the intercept, the uniform error model
yields a large finite-sample bias for the estimation of the slope coe�icient. However, these biases
are small relative to the standard error as shown by the proper coverage of the corresponding
confidence intervals, and they go to zero as the sample size increases. In contrast, the constrained
ML estimator appears to perform well with small bias and RMSE as well as proper coverage of
confidence intervals. We also note that the top-biased error model, which assumes a di�erent
error process than the simulation DGP, performs well under uniform error, exhibiting low bias,
RMSE, and nominal coverage.

4 Empirical Applications
In this section, we illustrate ourmethods in application to a set of list experiments, which Ahlquist
(2018) found to su�er frommeasurement error. These experiments were originally conducted by
Ahlquist,Mayer, and Jackman (2014) for thepurposeofmeasuring voter impersonation in the 2012
US election—a phenomenon that many scholars of American politics consider to be exceedingly
rare (see, e.g., Sobel 2009, and references therein). While the DiM estimate from the voter fraud
experiment, negative 1.2%, confirms this expectation, Ahlquist (2018) finds that the multivariate
regression model significantly overestimates voter fraud. Ahlquist, Mayer, and Jackman (2014)
also conducted two additional list experiments, one on alien abduction and the other on texting
while driving. Ahlquist (2018) finds that MLreg similarly overestimates the prevalence of alien
abduction, while no such problem is found for the texting-while-driving list.
Below, we reanalyze these list experiments using the proposedmethodology. As a preliminary

point, we note that a simple descriptive analysis of these list experiments demonstrates the
impracticality of multivariate regression models for the voter fraud and alien abduction lists.
Our analysis—as basic as taking the DiM—confirms that these are extremely rare or nonexistent
events, and consequently there is no association that exists to be studied. Nevertheless, our new
methods yieldmuchmore sensible estimates of theprevalenceof voter fraudandalien abduction.
In particular, when accounting for uniform error, the estimated prevalence of these events is
precisely zero. Finally, we analyze the texting-while-driving list, which measures a much more
common event, and show that the proposed methods as well as the standard ML estimator yield
reasonable results, indicating that rarity, rather than nonstrategicmeasurement error, was chiefly
responsible for the problems with these lists.

4.1 Extremely Rare Sensitive Traits and Multivariate Regression Analysis
As a general rule of thumb, we caution against the use of multivariate regression models when
studying extremely rare or even nonexistent sensitive traits. The reason is simple. The goal
of multivariate regression analysis is to measure the association between sensitive traits and
respondent characteristics. If almost all respondents do not possess such traits, thenmultivariate
regression analysis is likely to be unreliable because no association exists in the first place (and
any existing association is likely to bedue to noise). In linewith these expectations, Ahlquist (2018)
finds theML regression estimator to bemisleading for the list experiments on voter fraud andalien
abduction but unproblematic for the list experiment on texting while driving, the more common
phenomenon by far.
Indeed, we find that the voter fraud and alien abduction list experiments elicit extremely small

proportions of the a�irmative answer. As discussed in Section 2.3 and recommended in Blair and
Imai (2012), Table 3 presents the estimated proportion of each respondent J (y , z ) type defined
by two latent variables, i.e., the total number of a�irmative answers to the control itemsY ∗i = y

and the answer to the sensitive item Zi = z . We also present the DiM for each list experiment.
The list experiment on voter fraud is most problematic, yielding an overall negative estimate and
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Table3. EstimatedProportionof Respondent Typesby theNumberof A�irmativeAnswers to theControl and
Sensitive Items. The table shows the estimated proportion of respondent typeJ (y , z ), where y ∈ {0, . . . , J}
denotes the number of a�irmative answers to the control items and z ∈ {0, 1} denoteswhether respondents
would answer yes to the sensitive item. In the last row, we also present the DiM estimator for the estimated
proportion of those who would a�irmatively answer the sensitive item. The voter fraud and alien abduction
list experiments have an extremely small proportion of those who would answer yes to the sensitive item,
and for voter fraud some proportions are estimated negative, suggesting the problem of list experiment.

est. s.e. est. s.e. est. s.e.

pi(Yi (0) = 0, Zi = 1) −0.015 0.015 0.004 0.017 0.034 0.015
pi(Yi (0) = 1, Zi = 1) −0.020 0.017 0.007 0.014 0.087 0.016
pi(Yi (0) = 2, Zi = 1) −0.008 0.012 0.016 0.009 0.047 0.012
pi(Yi (0) = 3, Zi = 1) 0.004 0.009 0.011 0.006 0.022 0.008
pi(Yi (0) = 4, Zi = 1) 0.027 0.004 0.024 0.004 0.033 0.005
pi(Yi (0) = 0, Zi = 0) 0.232 0.011 0.348 0.012 0.217 0.011
pi(Yi (0) = 1, Zi = 0) 0.469 0.016 0.467 0.016 0.419 0.017
pi(Yi (0) = 2, Zi = 0) 0.204 0.015 0.106 0.012 0.104 0.014
pi(Yi (0) = 3, Zi = 0) 0.070 0.011 0.012 0.008 0.032 0.010
pi(Yi (0) = 4, Zi = 0) 0.037 0.008 0.004 0.006 0.005 0.007

−0.012 0.041 0.062 0.036 0.223 0.039

exhibiting three negative estimates for respondent types who would answer the sensitive item
a�irmatively.
Although these negative estimates are not statistically significant, this simple diagnostic shows

that the list experiment on voter fraud su�ers from either the violation of assumptions or
an exceedingly small number of respondents with the sensitive trait or both. The descriptive
informationclearly suggests thatmultivariate regressionanalysis cannotbe informative for the list
experiments on voter fraud and alien abduction. Virtually no respondent would truthfully answer
yes to these questions; thus, there is no association to be studied.
The application of themultivariate ML regressionmodel to the alien abduction and voter fraud

lists compounds the weakness of indirect questioning methods, which are ill-suited to studying
extremely rare sensitive traits. Although indirect questioning methods seek to reduce bias from
social desirability and nonresponse by partially protecting the privacy of respondents, they are
much lesse�icient thandirectquestioning. Asaconsequence, theestimateswill lack the statistical
precision required formeasurement andanalysis of extremely rare traits. Indirectmethods further
amplify the finite-sample bias associated with rare events (King and Zeng 2001).
Given these tradeo�s, we recommend that list experiments be used only when studying

truly sensitive topics. The increased cognitive burden on respondents and the loss of statistical
e�iciency are too great for this survey methodology to be helpful for nonsensitive traits. Among
the three list experiments, the one on alien abduction provides the least insight into the e�icacy
of list experiments. In fact, such questions may themselves increase measurement error if they
prompt respondents to stop taking the survey seriously. Better designed validation studies are
needed to evaluate the e�ectiveness of list experiments and their statistical methods (see e.g.,
Rosenfeld, Imai, and Shapiro 2016).
Despite our reservations about the application of the multivariate regression models to two

of the three list experiments, we now examine whether the methods proposed in Section 2 can
detect and adjust for measurement error by applying them to these list experiments.
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Figure 3. The Estimated Prevalence of Voter Fraud, Alien Abduction, and Texting while Driving. Along with
the DiM estimator, we present the estimates based on various multivariate regression analyses including
the maximum likelihood and nonlinear least squares regression estimators and estimates are much more
stable. The results based on the twomeasurement errormodels, i.e., top-biased and uniform errors, are also
presented.

Table 4. Results of the Proposed Specification Tests. The p-values are based on the absolute value of the test
statistic. The results show that for the list experiments based on voter fraud and alien abduction we detect
model misspecification. For the list experiment on texting while driving, we fail to reject the null hypothesis.

df stat p

1 2.000 −0.000 1.000
2 8.000 −29.216 0.000
3 2.000 −13.283 0.001
4 8.000 14.961 0.060
5 2.000 0.662 0.718
6 8.000 2.366 0.968

4.2 Comparison Between the ML and NLS Regression Estimators
We conduct two types of analyses. First, we fit themultivariate regressionmodelwith age, gender,
and race as covariates using theMLandNLSestimationmethods.We show that theNLS regression
estimator does not overestimate the incidence of voter fraud and abduction. Next, we implement
the test outlined in Section 2.3, and show that the di�erence between MLreg and NLSreg clearly
indicates model misspecification.
We begin by showing that NLSreg does not overestimate the prevalence of voter fraud and

alien abduction. Figure 3 presents the estimated proportion of the sensitive trait based on DiM,
NLSreg, and MLreg as well as two other estimators that will be described later. We find that the
NLS regression estimates closely track the DiM estimates. Indeed, the NLS estimate is statistically
indistinguishable from the DiM estimate in all three cases. In the case of voter fraud, the NLS
estimate—around 1.4%and statistically indistinguishable from zero—exceeds theDiM estimate by
2.59 percentage points, with a 90% bootstrap confidence interval equal to [−3.74, 9.30]. For the
alien abduction list experiment, the NLS estimate exceeds the DiM estimate by 1.70 percentage
points, also an insignificant di�erence (90% CI: [−0.60, 5.90]). Last, for the texting-while-driving
list experiment, the di�erence is 1.10 percentage points (90% CI: [−1.40, 2.60].)
Having shown thatNLSregdoesnot yieldmeaningfully larger estimates thanDiM,wenowapply

the statistical test developed inSection2.3 to these list experiments. Table4presents the results of
this proposed specification test. For the list experiments onvoter fraudandalienabduction,which
our earlier analysis found most problematic, we obtain negative and large, positive values of the
Hausman test statistic. For the negative test statistic, we compute p-values based on the absolute
value. The results of the statistical hypothesis tests strongly suggest that themodel ismisspecified
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for the voter fraud and alien abduction experiments. In contrast, for the list experiment on texting
while driving, we fail to reject the null hypothesis of correct model specification.
In sum, the proposed model specification test reaches the same conclusion as the descriptive

analysis presented above: multivariate regression models should not be applied to list
experiments with extremely rare sensitive traits. For the list experiments on voter fraud and alien
abduction, we find strong evidence for model misspecification, suggesting the unreliability of
multivariate regressionanalysis for these list experiments. In contrast,we fail to find suchevidence
for the list experiment on texting while driving, for which the proportion of a�irmative answers is
relatively high.

4.3 Modeling Response Error
Next, we apply the nonstrategic measurement error models developed in Section 2.4 to these
data and examinewhether they yield di�erent results. Earlier, we argued that the top-biased error
process is o�en implausible, as it implies that respondents arewilling to reveal sensitive traits. We
would expect top-biased error to be most unlikely for the list experiment on voter fraud, as this
is the most unambiguously stigmatized trait. On the other hand, uniform error may be the more
plausible measurement error mechanism, for example due to satisficing.
As shown in Figure 3, the results based on thesemeasurement errormodels are consistentwith

our arguments. For the list experiment on voter fraud, the top-biased error gives a relatively large
estimate that is statistically indistinguishable from the ML estimate. In contrast, the uniform error
model provides an estimate that is indistinguishable from zero with a 90% confidence interval
that is narrower than any other estimator. The list experiment on alien abduction yields a similar
result. Like all other models, the top-biased error model gives an estimate that is statistically
distinguishable from zero, suggesting that 6 percent of respondents were abducted by aliens
(even the DiM estimate is barely statistically insignificant). On the other hand, the prevalence
estimate based on the uniform error process model has the narrowest 90% confidence interval
that contains zero, suggesting a superior model fit. The results indicate that the uniform error
model is more e�ective for mitigating nonstrategic respondent error in these data than the top-
biased error model.
Finally, the results for the list experiment on texting while driving show that the top-biased

and uniform measurement error models yield estimates that are much more consistent with the
other models. Although the estimate based on the uniform error model is smaller, it has a wider
confidence interval than other estimates, suggesting a possibly poor model fit. Together with the
other results shown in this section, this finding implies that only the estimates based on the list
experiment on texting while driving are robust to various model specification and measurement
errors, whereas the estimates for voter fraud and alien abduction are quite sensitive.
Our statistical analysis suggests that the problems described in Ahlquist (2018) arise mainly

from the fact that voter fraud in the US and alien abduction are rare to nonexistent events. Given
all three lists were implemented in the same survey on the same sample, and were consequently
subject to the same nonstrategic measurement error, the robustness of the texting-while-driving
lists indicates that researchers should be concerned more with the rarity of the traits under
study than with nonstrategic measurement error per se. We provide additional evidence for this
statement below by showing that accounting for measurement error does not alter any of the
multivariate inferences that one would draw from the texting-while-driving list experiment.

4.4 Multivariate Regression Analysis of Texting While Driving
Recall that the goal of multivariate regression models for list experiments is to measure the
association between the sensitive trait and respondent characteristics. We reiterate that voter
fraud and alien abduction are so rare that multivariate analysis of these traits is likely to be
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Table 5. Multivariate Regression Analysis of the Texting-While-Driving List. This table shows the estimated
coe�icients from the baseline NLS and ML multivariate regression models, as well as the proposed robust
ML, top-biased, and uniform measurement error models. Younger respondents are more likely to text while
driving. We also find suggestive evidence that male respondents are more likely to text while driving.

coef. stde. coef. stde. coef. stde.

coef. stde. coef. stde. sms. sms. sms. sms. sms. sms.

sms. sms. sms. sms. mle. mle. mle. mle. mle. mle.

nls nls mle mle robust robust topcode topcode uniform uniform

sensitive.(Intercept) 0.031 0.550 −0.272 0.305 −0.466 0.437 −0.351 0.414 −0.109 0.620
sensitive.age −0.032 0.017 −0.017 0.008 −0.015 0.009 −0.015 0.013 −0.063 0.034
sensitive.white −0.331 0.482 −0.333 0.299 −0.412 0.330 −0.303 0.466 0.290 0.877
sensitive.female −0.325 0.447 −0.186 0.267 −0.175 0.258 −0.765 0.440 −1.508 1.043
control.(Intercept) −0.575 0.078 −0.540 0.060 −0.527 0.064 −0.658 0.069 −0.658 0.080
control.age −0.008 0.002 −0.009 0.002 −0.010 0.002 −0.011 0.002 −0.012 0.002
control.white −0.204 0.067 −0.217 0.055 −0.208 0.056 −0.169 0.067 −0.216 0.073
control.female 0.003 0.062 −0.014 0.049 −0.020 0.049 0.030 0.060 0.077 0.071

unreliable. By contrast, the texting-while-driving list o�ers a unique opportunity to examine
how accounting for measurement error a�ects the estimated regression parameters. Studies
commonly assume that younger drivers are especially likely to text while driving. However,
frequently used methods, such as analysis of tra�ic accidents, are unable to measure this
association directly (e.g., Delgado, Wanner, and McDonald 2016). Clearly, DiM also fails to shed
light on this relationship.
Figure 4 and Table 5 present the results from our multivariate analysis of the texting-while-

driving list. In Figure 4, we present predicted values for the di�erent subgroups defined by the
three covariates. These values are calculated by changing the variable of interest while fixing the
other variables to their observed values. The highlighted comparisons correspond to statistically
significant coe�icients at the α = 0.10 level (see Table 5). As the bottom-le� panel of the figure
shows, we find a consistent association between age and texting while driving. In all models
younger respondents are more likely to text while driving than older respondents. We find some
evidence of gender di�erentiation aswell;male respondents appear to be consistentlymore likely
to textwhile driving than female respondents, although this di�erence is not generally statistically
significant.
The overall conclusion is that accounting for uniform error does not have a substantial e�ect

on the conclusions that one would draw from the standard ML or NLS models. Moreover, the
results illustrate the primary advantage of multivariate regression modeling, which is to assess
the relationship between the sensitive trait and covariates.

5 Concluding Recommendations
In this paper, we develop statistical tools that researchers can use to detect and ameliorate
nonstrategic measurement error in list experiments, arising for instance from enumerator
or respondent noncompliance. Of course, our view is that the best cure for nonstrategic
measurement error is to minimize it at the design and administration stages of surveys, and
consequently that the presence of such error signals more fundamental flaws in the survey
implementation. For example, because the top-biased error process runs directly against
respondents’ incentives to conceal sensitive traits, its presence suggests that they do not actually
consider the topic to be sensitive in the first place. We would advise against the use of indirect
questioning for such topics. The increased cognitive burden and variance of indirect questioning
are too great to be used for nonsensitive traits. By extension, we also discourage the use of list
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Figure 4.Multivariate Regression Analysis of the Texting-While-Driving List. This figure shows the estimated
prevalence of texting while driving based on the di�erent values of the predictor variables. Highlighted
estimates correspond to significant coe�icients at the α = 0.10 level. Accounting for measurement error,
we find that younger respondents are significantly more likely to report texting while driving. We also find
that male respondents are more likely to report texting while driving, though the di�erences are generally
insignificant.

experiments for topics like alien abduction, as this can prevent serious engagement with the
survey and increase measurement error as a result.
We conclude this paper by o�ering seven recommendations onhow to analyze list experiments

with measurement error:

(1) If the goal is to estimate the prevalence of the sensitive trait, researchers should use theDiM
estimator as the primary estimator for its simplicity and robustness. Multivariate regression
models should be used mainly when inferring the association between the sensitive trait
and respondent characteristics.

(2) Multivariate regression models should not be used if the DiM estimator yields a small or
negative estimateof theprevalence. A sensitive traitmust exist for it to varywith respondent
characteristics. In general, list experiments are not suitable for studying rare sensitive traits
because they lack statistical power.

(3) It is important to first conduct a descriptive analysis as shown in Table 3. In particular,
negative estimates of respondent type proportions would suggest that at least one of the
identification assumptions of list experiments may have been violated (related statistical
tests are described in Blair and Imai (2012) and Aronow et al. (2015)).

(4) Researchers should compare the NLS andML regression estimates. NLSreg relies onweaker
assumptions than MLreg, and as a result the former is more robust (though less e�icient)
than the latter. Despite the greater fragility of MLreg, its reduced variance can matter
when analyzing list experiments, an underpowered questioningmode. To help researchers
adjudicate this bias-variance tradeo�, we provide amodel misspecification test predicated
on the di�erence between MLreg and NLSreg.

(5) Multivariate regression models can be extended to model strategic and nonstrategic
measurement error processes. These models can be used as robustness checks. Although
practical steps can be taken to address nonstrategic error, even perfectly administered
surveys are subject to strategic measurement error.
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(6) It is possible tomake theNLS andML estimatorsmore robust by using auxiliary information
whenever available. In particular, aggregate truths will be helpful. Even when such
information is not available, one can ensure that the NLS and ML regression estimators
give results consistent with the DiM estimator.

(7) When possible, it is helpful to combine list experiments with direct questioning and other
indirect questioning techniques. ThemethodsdevelopedbyBlair, Imai, and Lyall (2014) and
Aronow et al. (2015) can be used to conduct more credible analyses by combining the data
from di�erent survey methods.

Appendix A. The Bias of the Di�erence-in-Means Estimator under
Nonstrategic Measurement Error
In this appendix, we show that the DiM estimator is generally biased under the top-biased and
uniform error processes. In both cases, the DiM estimator is generally biased because the range of
the response variable (and therefore the magnitude of the measurement error bias) is correlated
with the treatment status. In particular, bias is largewhen the prevalence of sensitive trait is small.
First, under the top-biased error process, the bias of the DiM estimator is given by:

{Å[(1 − p)(Y ∗i + Zi ) + p(J + 1)] − Å[(1 − p)Y ∗i + pJ ]} − τ = (1 − p)τ + p − τ = p(1 − τ)

where τ = Pr(Zi = 1) is the proportion of those with a sensitive trait, p is the proportion of those
who answer J +1 regardless of truthful response. The result shows that the bias is zero only when
τ = 1, i.e., everyone has a sensitive trait. The bias increases as the prevalence of the sensitive trait
decreases. Similarly, under the uniformmeasurement error mechanism, the bias is given by,{

Å

[
(1 − p)(Y ∗i + Zi ) + p

J + 1

2

]
− Å

[
(1 − p)Y ∗i + p

J

2

]}
− τ = (1 − p)τ + p

2
− τ = p

(
1

2
− τ

)
.

Thus, in this case, the bias disappears only when the proportion of those with a sensitive trait
exactly equals 0.5. Again, the bias is large when the prevalence of the sensitive trait is small.

Appendix B. Computational Details for Measurement Error Models
B.1 The EM Algorithm For the Model of Top-Biased Error

We treat (Si , Zi ,Y ∗i ) as (partially) missing data to form the following complete-data likelihood
function,

N∏
i=1

pSi (1 − p)1−Si g (Xi ; β )Ti Zi {1 − g (Xi ; β )}Ti (1−Zi )
(
J

Y ∗
i

)
f (Xi ; γ)Y

∗
i {1 − f (Xi ; γ)}J−Y ∗i . (B 1)

With this much simpler form, we can use the EM algorithm, which consists of a series of weighted
regressions, to obtain the ML estimator.
We first derive the E-step. For the latent variable of misreporting, we have,

ξ(Xi ,Ti ,Yi ) = Å(Si ` Xi ,Ti ,Yi ) =




p

p{1−g (Xi ;β )f (Xi ;γ)J }+g (Xi ;β )f (Xi ;γ)J if i ∈ J (1, J + 1)
p

p{1−f (Xi ;γ)J }+f (Xi ;γ)J if i ∈ J (0, J )
0 otherwise.
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The E-step for the latent variable of truthful response to the sensitive item is given by,

η(Xi , 1,Yi ) = Å(Zi ` Xi ,Ti = 1,Yi )

=




0 if i ∈ J (1, 0)
(1−p)g (Xi ;β )f (Xi ;γ)J+p ·g (Xi ;β )

p{1−g (Xi ;β )f (Xi ;γ)J }+g (Xi ;β )f (Xi ;γ)J if i ∈ J (1, J + 1)

g (Xi ;β )( J
Yi −1)f (Xi ;γ)

Yi −1{1−f (Xi ;γ)}J−Yi +1
g (Xi ;β )( J

Yi −1)f (Xi ;γ)
Yi −1{1−f (Xi ;γ)}J−Yi +1+{1−g (Xi ;β )}( JYi )f (Xi ;γ)

Yi {1−f (Xi ;γ)}J−Yi otherwise.

Finally, the E-step for the latent variable representing the response to the control itemshas several
di�erent expressions depending on the values of observed variables. We begin with the control
group,

ζJ (Xi , 0,Yi ) = Pr(Y ∗i = J ` Xi ,Ti = 0,Yi ) =



f (Xi ;γ)J

p{1−f (Xi ;γ)J }+f (Xi ;γ)J if i ∈ J (0, J )
0 otherwise

and for 0 6 y < J ,

ζy (Xi , 0,Yi ) = Pr(Y ∗i = y ` Xi ,Ti = 0,Yi ) =




p(Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y
p{1−f (Xi ;γ)J }+f (Xi ;γ)J if i ∈ J (0, J )

1 ifYi = y

0 otherwise.

For the treatment group, we have,

ζJ (Xi , 1,Yi ) = Pr(Y ∗i = J ` Xi ,Ti = 1,Yi )

=




(1−p)g (Xi ;β )f (Xi ;γ)J+p ·f (Xi ;γ)J
p+(1−p)g (Xi ;β )f (Xi ;γ)J if i ∈ J (1, J + 1)

{1−g (Xi ;β )}f (Xi ;γ)J
{1−g (Xi ;β )}f (Xi ;γ)J+g (Xi ;β )·J ·f (Xi ;γ)J−1{1−f (Xi ;γ)} if i ∈ J (1, J )

0 otherwise
ζ0(Xi , 1,Yi ) = Pr(Y ∗i = 0 ` Xi ,Ti = 1,Yi )

=




p{1−f (Xi ;γ)}J
p+(1−p)g (Xi ;β )f (Xi ;γ)J if i ∈ J (1, J + 1)

1 if i ∈ J (1, 0)
0 otherwise

and for 0 < y < J ,

ζy (Xi , 1,Yi ) = Pr(Y ∗i = y ` Xi ,Ti = 1,Yi )

=




p(Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y
p+(1−p)g (Xi ;β )f (Xi ;γ)J if i ∈ J (1, J + 1)

g (Xi ;β )(Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y
g (Xi ;β )(Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y+{1−g (Xi ;β )}( J

y+1)f (Xi ;γ)y+1{1−f (Xi ;γ)}J−y−1 }
if i ∈ J (1, y + 1)

{1−g (Xi ;β )}(Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y
{1−g (Xi ;β )}(Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y+g (Xi ;β )( J

y−1)f (Xi ;γ)y−1{1−f (Xi ;γ)}J−y+1
if i ∈ J (1, y )

0 otherwise.
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Finally, the Q-function is given by,

N∑
i=1

ξ(Xi ,Ti ,Yi ) log p + {1 − ξ(Xi ,Ti ,Yi )} log(1 − p)

+
N∑
i=1

Ti [η(Xi , 1,Yi ) log g (Xi ; β ) + {1 − η(Xi , 1,Yi )} log{1 − g (Xi ; β )}]

+
N∑
i=1




J∑
y=1

y · ζy (Xi ,Ti ,Yi )


log f (Xi ; γ) +



J −

J∑
y=1

y · ζy (Xi ,Ti ,Yi )


log{1 − f (Xi ; γ)}.

Thus, the M-step for p is,

p =
1

N

N∑
i=1

ξ(Xi ,Ti ,Yi ). (B 2)

The M-steps for β and γ consist of a series of weighted logistic regressions.

B.2 The EM Algorithm For the Model of Uniform Error
The complete-data likelihood is given by,

n∏
i=1

{pSi1 (1 − p1)1−Si }Ti {pSi0 (1 − p0)1−Si }1−Ti

× g (Xi ; β )Ti Zi {1 − g (Xi ; β )}Ti (1−Zi )
(
J

Y ∗
i

)
f (Xi ; γ)Y

∗
i {1 − f (Xi ; γ)}J−Y ∗i . (B 3)

Then, the EM algorithm, which consists of a series of weighted regressions, is used to obtain the
ML estimator.
The E-steps for the latent variables of misreporting and truthful answer to the sensitive item

are given by,

ξ(Xi ,Ti ,Yi ) = Å(Si ` Xi ,Ti ,Yi ) = Pr(Si = 1 ` Xi ,Ti ,Yi )

=




p1
J+2

p1
J+2+(1−p1)g (Xi ;β )f (Xi ;γ)J

if i ∈ J (1, J + 1)
p1
J+2

p1
J+2+(1−p1){1−g (Xi ;β )}{1−f (Xi ;γ)}J

if i ∈ J (1, 0)
p0
J+1

p0
J+1+(1−p0)(Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y

if i ∈ J (0, y )
p1
J+2

p1
J+2+(1−p1)

[
g (Xi ;β )( J

Yi −1)f (Xi ;γ)
Yi −1{1−f (Xi ;γ)}J−Yi +1+{1−g (Xi ;β )}( JYi )f (Xi ;γ)

Yi {1−f (Xi ;γ)}J−Yi
] otherwise

η(Xi ,Ti = 1,Yi ) = Å(Zi ` Xi ,Ti = 1,Yi )

=




p1
J+2 g (Xi ;β )+(1−p1)g (Xi ;β )f (Xi ;γ)J

(1−p1)g (Xi ;β )f (Xi ;γ)J+ p1
J+2

if i ∈ J (1, J + 1)
p1
J+2 g (Xi ;β )

(1−p1){1−g (Xi ;β )}{1−f (Xi ;γ)}J+ p1
J+2

if i ∈ J (1, 0)
[
p1
J+2+(1−p1)( J

Yi −1)f (Xi ;γ)
Yi −1{1−f (Xi ;γ)}J−Yi +1

]
g (Xi ;β )

p1
J+2+(1−p1)

[
g (Xi ;β )( J

Yi −1)f (Xi ;γ)
Yi −1{1−f (Xi ;γ)}J−Yi +1+{1−g (Xi ;β )}( JYi )f (Xi ;γ)

Yi {1−f (Xi ;γ)}J−Yi
] otherwise.
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For the latent variable of response to the control items, we obtain the E-steps separately for
di�erent sets of observations. For the control group, we have

ζy (Xi , 0,Yi ) = Pr(Y ∗i = y ` Xi ,Ti = 0,Yi ) =




[ p0
J+1+(1−p0)

]
(Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y

p0
J+1+(1−p0)(Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y

if i ∈ J (0, y )
p0
J+1 (Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y

p0
J+1+(1−p0)( JYi )f (Xi ;γ)

Yi {1−f (Xi ;γ)}J−Yi otherwise

where y = 0, 1, . . . , J . For the treatment group, the E-step is more complex,

ζJ (Xi , 1,Yi ) = Pr(Y ∗i = J ` Xi ,Ti = 1,Yi )

=




{(1−p1)g (Xi ;β )+ p1
J+2}f (Xi ;γ)

J

p1
J+2+(1−p1)g (Xi ;β )f (Xi ;γ)J

if i ∈ J (1, J + 1)

[(1−p1){1−g (Xi ;β )}+ p1
J+2 ]f (Xi ;γ)

J

(1−p1)[{1−g (Xi ;β )}f (Xi ;γ)J+g (Xi ;β )Jf (Xi ;γ)J−1{1−f (Xi ;γ)}]+ p1
J+2

if i ∈ J (1, J )
p1
J+2 f (Xi ;γ)

J

p1
J+2+(1−p1){1−g (Xi ;β )}{1−f (Xi ;γ)}J

if i ∈ J (1, 0)
p1
J+2 f (Xi ;γ)

J

(1−p1)
[
{1−g (Xi ;β )}( JYi )f (Xi ;γ)

Yi {1−f (Xi ;γ)}J−Yi +g (Xi ;β )( J
Yi −1)f (Xi ;γ)

Yi −1{1−f (Xi ;γ)}J−Yi +1
]
+
p1
J+2

otherwise

ζ0(Xi , 1,Yi ) = Pr(Y ∗i = 0 ` Xi ,Ti = 1,Yi )

=




p1
J+2 {1−f (Xi ;γ)}J

p1
J+2+(1−p1)g (Xi ;β )f (Xi ;γ)J

if i ∈ J (1, J + 1)

[ p1J+2+(1−p1){1−g (Xi ;β )}]{1−f (Xi ;γ)}J
p1
J+2+(1−p1){1−g (Xi ;β )}{1−f (Xi ;γ)}J

if i ∈ J (1, 0)
[(1−p1){1−g (Xi ;β )}+ p1

J+2 ]{1−f (Xi ;γ)}J

(1−p1)
[
{1−g (Xi ;β )}( JYi )f (Xi ;γ)

Yi {1−f (Xi ;γ)}J−Yi +g (Xi ;β )( J
Yi −1)f (Xi ;γ)

Yi −1{1−f (Xi ;γ)}J−Yi +1
]
+
p1
J+2

otherwise

and for 0 < y < J , we have,

ζy (Xi , 1,Yi ) = Pr(Y ∗i = y ` Xi ,Ti = 1,Yi )

=




{ p1
J+2+(1−p1)g (Xi ;β )}(Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y

p1
J+2+(1−p1)

[
g (Xi ;β )(Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y+{1−g (Xi ;β )}( J

y+1)f (Xi ;γ)y+1{1−f (Xi ;γ)}J−y−1
] if i ∈ J (1, y + 1)

[ p1J+2+(1−p1){1−g (Xi ;β )}](Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y
p1
J+2+(1−p1)

[
g (Xi ;β )( J

y−1)f (Xi ;γ)y−1{1−f (Xi ;γ)}J−y+1+{1−g (Xi ;β )}(Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y
] if i ∈ J (1, y )

p1
J+2 (Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y

p1
J+2+(1−p1){1−g (Xi ;β )}{1−f (Xi ;γ)}J

if i ∈ J (1, 0)
p1
J+2 (Jy)f (Xi ;γ)y {1−f (Xi ;γ)}J−y

p1
J+2+(1−p1)

[
{1−g (Xi ;β )}( JYi )f (Xi ;γ)

Yi {1−f (Xi ;γ)}J−Yi +g (Xi ;β )( J
Yi −1)f (Xi ;γ)

Yi −1{1−f (Xi ;γ)}J−Yi +1
] otherwise.

Finally, the Q-function is given by,

n∑
i=1

Å(Si ` Xi ,Ti = 1,Yi ) log p1 + {1 − Å(Si ` Xi ,Ti = 1,Yi )} log(1 − p1)

+Å(Si ` Xi ,Ti = 0,Yi ) log p0 + {1 − Å(Si ` Xi ,Ti = 0,Yi )} log(1 − p0)
Å(Zi ` Xi ,Ti = 1,Yi ) log g (Xi ; β ) + {1 − Å(Zi ` Xi ,Ti = 1,Yi )} log{1 − g (Xi ; β )}
+Å(Y ∗i ` Xi ,Ti ,Yi ) log f (Xi ; γ) + {J − Å(Y ∗i ` Xi ,Ti ,Yi )} log{1 − f (Xi ; γ)}. (B 4)

Hence, the M-steps for p0 and p1 are immediate. The M-steps for β and γ consist of a series of
weighted logistic regressions.

Graeme Blair et al. ` Political Analysis 23



B.3 Details of the Robust Maximum Likelihood Multivariate Regression Estimator
We focus on the logistic regression model whose log-likelihood function is given as,

−
N∑
i=1

[J log{1 + exp(X >i γ)} + log{1 + exp(X
>
i β )}] +

∑
i ∈J (1,J+1)

(X >i β + JX >i γ)

+
J∑
y=0

∑
i ∈J (0,y )

[yX >i γ + log{1 + exp(X
>
i β )}]

+
J∑
y=1

∑
i ∈J (1,y )

[
(y − 1)X >i γ + log

{(
J

y − 1
)
exp(X >i β ) +

(
J

y

)
exp(X >i γ)

}]
+ constant. (B 5)

Let Li (β , γ;Xi ,Yi ) represent the log-likelihood function for observation i . Then, the first order
condition for each observation is given by,

∂

∂β
Li (β , γ;Xi ,Yi )

=


− exp(X >i β )
1 + exp(X >

i
β )

+ 1{i ∈ J (1, J + 1)}

+
J∑
y=0

1{i ∈ J (0, y )} exp(X >i β )
1 + exp(X >

i
β )

+
J∑
y=1

1{i ∈ J (1, y )}
� J
y−1

�
exp(X >i β )� J

y−1
�
exp(X >

i
β ) +

�J
y

�
exp(X >

i
γ)


Xi

(B 6)
∂

∂γ
Li (β , γ;Xi ,Yi )

=


− J exp(X >i γ)
1 + exp(X >

i
γ)

+ J1{i ∈ J (1, J + 1)}

+
J∑
y=0

y 1{i ∈ J (0, y )} +
J∑
y=1

1{i ∈ J (1, y )} *.
,
(y − 1) +

�J
y

�
exp(X >i γ)� J

y−1
�
exp(X >

i
β ) +

�J
y

�
exp(X >

i
γ)

+/
-


Xi .

(B 7)

The sample analogue of the moment condition given in equation (13) can be written as,

1

N

N∑
i=1

Mi (β ;Xi ,Yi ) =
1

N

N∑
i=1

( exp(X >i β )
1 + exp(X >

i
β )
− τ̂

)
= 0 (B 8)

where τ̂ is the DiM estimator. We can also express this condition as

1

N

N∑
i=1

Mi (β ;Xi ,Yi ) =
1

N

N∑
i=1

[
Ti

( exp(X >i β )
1 + exp(X >

i
β )
− N

N1
Yi

)
+ (1 −Ti )

( exp(X >i β )
1 + exp(X >

i
β )

+
N

N0
Yi

)]
,

(B 9)
in order to account for the correlation between this moment and the score function.
Putting together all these moment conditions, the e�icient GMM estimator is given by,

(β̂GMM, γ̂GMM) = argmin
(β ,γ)

G(β , γ)>W(β , γ)−1G(β , γ) (B 10)
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where

G(β , γ) = 1

N

N∑
i=1

Gi (β , γ) = 1

N

N∑
i=1

[
∂

∂β
Li (β , γ;Xi ,Yi )> ∂

∂γ
Li (β , γ;Xi ,Yi )>Mi (β ;Xi ,Yi )>

]>

(B 11)

W(β , γ) =
1

N

N∑
i=1

Gi (β , γ)Gi (β , γ)>. (B 12)

The asymptotic distribution of this estimator is given by:

√
N

*.
,

*.
,

β̂

γ̂

+/
-
− *.

,

β

γ

+/
-

+/
-
 N *

,
0,

[(
Å
∂Gi (β , γ)
∂(β> γ>)>

)>
Ω (β , γ)−1Å

∂Gi (β , γ)
∂(β> γ>)>

]−1
+
-

(B 13)

where

Å
∂Gi (β , γ)
∂(β> γ>)>

= Å

*.....
,

∂2

∂β∂β>Li (β , γ;Xi ,Yi ) ∂2

∂β∂γ>Li (β , γ;Xi ,Yi )
∂2

∂γ∂β>Li (β , γ;Xi ,Yi ) ∂2

∂γ∂γ>Li (β , γ;Xi ,Yi )
∂
∂β>Mi (β ;Xi ,Yi ) 0

+/////
-

(B 14)

and

Ω (β , γ) = Å

[(
∂Gi (β , γ)
∂(β> γ>)>

) (
∂Gi (β , γ)
∂(β> γ>)>

)>]
. (B 15)

Note that the second derivatives are given by,

∂2

∂β∂β>
Li (β , γ;Xi ,Yi )

=


− exp(X >i β )
{1 + exp(X >

i
β )}2

+
J∑
y=0

1{i ∈ J (0, y )} exp(X >i β )
{1 + exp(X >

i
β )}2

+
J∑
y=1

1{i ∈ J (1, y )}
exp

{� J
y−1

��J
y

�
X >i (γ + β )

}

{� J
y−1

�
exp(X >

i
β ) +

�J
y

�
exp(X >

i
γ)

}2


XiX

>
i (B 16)

∂2

∂γ∂γ>
Li (β , γ;Xi ,Yi )

=


− J exp(X >i γ)
{1 + exp(X >

i
γ)}2

+
J∑
y=1

1{i ∈ J (1, y )}
exp

{� J
y−1

��J
y

�
X >i (γ + β )

}

{� J
y−1

�
exp(X >

i
β ) +

�J
y

�
exp(X >

i
γ)

}2


XiX

>
i

(B 17)
∂2

∂β∂γ>
Li (β , γ;Xi ,Yi )

= −


J∑
y=1

1{i ∈ J (1, y )}
exp

{� J
y−1

��J
y

�
X >i (γ + β )

}

{� J
y−1

�
exp(X >

i
β ) +

�J
y

�
exp(X >

i
γ)

}2


XiX

>
i . (B 18)
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