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SUMMARY

In his 1923 landmark article, Neyman introduced randomization-based inference to estimate average
treatment effects from experiments under the completely randomized design. Under this framework,
Neyman considered the statistical estimation of the sample average treatment effect and derived the
variance of the standard estimator using the treatment assignment mechanism as the sole basis of inference.
In this paper, I extend Neyman’s analysis to randomized experiments under the matched-pair design where
experimental units are paired based on their pre-treatment characteristics and the randomization of treatment
is subsequently conducted within each matched pair. I study the variance identification for the standard
estimator of average treatment effects and analyze the relative efficiency of the matched-pair design over
the completely randomized design. I also show how to empirically evaluate the relative efficiency of the
two designs using experimental data obtained under the matched-pair design. My randomization-based
analysis differs from previous studies in that it avoids modeling and other assumptions as much as possible.
Finally, the analytical results are illustrated with numerical and empirical examples. Copyright © 2008
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Despite the sharp disagreements on some issues [1], Neyman and Fisher agreed with each other on
the use of the randomized treatment assignment mechanism as the sole basis of statistical inference
in the statistical analysis of randomized experiments. Fisher introduced the method of permutation
inference where the sharp null hypothesis of zero unit treatment effect was postulated and a
distribution-free hypothesis test was developed [2, 3]. Since then, this method has been extensively
studied [4]. Similarly, in his 1923 landmark article, which was not translated into English until 1990,
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4858 K. IMAI

Neyman proposed randomization-based inference in experiments and considered the statistical
estimation of the sample average treatment effect (SATE) under the completely randomized design.
Under this setting, Neyman [5] derived the variance of the standard estimator using the treatment
assignment mechanism as the only source of randomness.

In this paper, after briefly reviewing Neyman’s original analysis (Section 2), I extend his analysis
to randomized experiments under the matched-pair design where experimental units are paired
based on their pre-treatment characteristics and the randomization of treatment is subsequently
conducted within each matched pair (Section 3). I derive the variances of the standard estimator
when the estimand is either the sample or population average treatment effect (PATE). I then
use these analytical results to study the relative efficiency of the matched-pair design over the
completely randomized design. Unlike previous studies on the topic (see Section 3.1), I avoid
modeling and other assumptions and base my inference solely on the randomization of treatment
and the random sampling of units. My analysis points out the important differences between
the matched-pair design and the randomized-block design, which appear to be neglected in the
literature. I also show that the randomization-based approach clarifies some of the important
questions raised in the statistical literature and identifies a hidden and yet unrealistic assumption
that is made for the efficiency analysis in a widely used textbook. Finally, Section 4 illustrates the
results of this paper with numerical and empirical examples, and Section 5 concludes.

2. NEYMAN’S ANALYSIS OF THE COMPLETELY RANDOMIZED DESIGN

In this section, I briefly review Neyman’s [5] analysis of randomized experiments under the
completely randomized design, which motivates my analysis of the matched-pair design. Suppose
that there exist 2n units. Consider a binary treatment variable 7;, which equals 1 if unit i receives
the treatment and O otherwise. Under the completely randomized design, n units are randomly
selected to receive the treatment while the remaining n units are assigned to the control group.
Using the potential outcomes notation that is commonly used in the literature of causal inference
[6], T use Y;(¢) to represent the potential outcomes under the treatment (¢ =1) and control (r =0)
for each i. Then, the observed outcome, Y, is equal to ¥; =T;Y; (1)+ (1 —T;)Y;(0).
Neyman considers the SATE as the estimand:

1 2n
o= (Yi(1)-Yi(0)

2n i
and derives the statistical properties of the standard estimator under the completely randomized
design. This estimator is unbiased and is defined by

1 2n
%cE_‘Z:I{TiYi_(l_Ti)Yi} ey
i=
The estimator corresponds to the mean difference in the observed outcome variable between the
two groups, and hence is often referred to as the ‘difference-in-means’ estimator.

Like Fisher [3], Neyman bases his analysis on the treatment assignment mechanism alone,
which is under the control of the experimenter, while assuming that all potential outcomes
are fixed (though possibly unknown) quantities. Under this randomization-based framework, the
variance of the estimator is derived conditional on the set of all potential outcomes, which I denote
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RANDOMIZED EXPERIMENTS UNDER MATCHED-PAIR DESIGN 4859

by 0.={Y;(0), Yi(l)}iziy Thus, the variability of the estimator can be attributed solely to the
randomization of the treatment. Neyman shows that under the completely randomized design, this
randomization-based variance of 7. is given by

> 2

V(i |00) = % {var(Yl- (1) -+ var(; (0y) — LD =1 O) }
where var(-) represents the sample variance. Note that within this randomization framework,
var(Y; (1)) and var(Y; (0)) can be estimated without bias by 51 = leil {(T;Y; — le/"zl T; Y,-//n}z/(n —
1) and so= 21221 ({(1=T))Y; — Ziz,":l(l —T;)Y;y/n}?/(n—1), respectively. Thus, equation (2)
implies that the standard variance estimator, 6. = (s| +50)/n, overestimates V(7. | (.) on average
unless the constant additive treatment effect assumption, i.e. ¥;(1) —Y;(0) =a for some constant
a, holds so that var(Y; (1) —Y;(0))=0.

The expression given in equation (2) has additional important implications [7]. First, note that
the variance in equation (2) can be rewritten as

V(i |O) = Zl—n{var(Yi(l)) +var(Y; (0)) —2cov(¥; (1), Y; (0))} 3

where cov(-, -) represents the sample covariance. Since Y;(1) and Y;(0) are never jointly observed,
correlation between them is not identifiable from the observed data. Consequently, V(7| 0,)
cannot be identified. After observing this result, Neyman [5, p. 471] states:

For the time being, we will conclude that since it is impossible to calculate directly an estimate
of r [the correlation between Y;(1) and Y;(0)], it is necessary to take r =1; the method of
comparing varieties or fertilizers by way of comparing average yields from several parallel
plots has to be considered inaccurate.

Equation (3) together with the covariance inequality implies the following bounds of V(.| C,):

1 2 1 2
V) - a0 < to<o Ve +vvaop) @)
n 2n

The variance equals the upper and lower bounds when the sample correlation between Y; (1) and
Y;(0) is 1 and —1, respectively. Although the variance itself V(7. | ©) is not identified, these bounds
can be consistently estimated from the observed data. Note that the upper bound in equation (4) is
informative because it is no greater than the expected value of the standard variance estimator, i.e.
E(6. | O;) ={var(Y;(1))+var(¥;(0))}/n. In contrast, the lower bound is unlikely to be informative
as it equals zero when var(Y; (1)) =var(Y;(0)).

Second, the standard variance estimator estimates the variance of T, without bias when the
estimand is the PATE. The definition of the PATE is given by E(Y; (1) —Y;(0)), where the expectation
is defined with respect to a population of interest. Under Neyman’s framework, the population
analysis can be considered as inference based on the two-step procedure: simple random sampling
of 2n units from a population of infinite size followed by the complete randomization of the
treatment.

Formally, let V(%) represent the population variance of 7. under the completely randomized
design and notice the following relationship:

1
V(z) =E{V(Tc| Oc)} + V{EG | Oc)} = —{V(¥i(1)) + V(Y (0))} (&)

n
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where the second equality follows from E(7.|®.)=1. and equation (2). The law of iterated
expectations implies that s; and sg estimate V(Y;(1)) and V(Y;(0)) without bias, respectively.
Thus, the standard variance estimator is unbiased for V(7.).

In sum, from Neyman’s randomization perspective, the variance of the standard difference-in-
means estimator is not identified when the SATE is the estimand. In this case, the standard variance
estimator is likely to be biased upwards. However, the bounds on this variance are derived and can
be consistently estimated from the observed data. When the PATE is the estimand, on the other
hand, the standard variance estimator is unbiased.

3. RANDOMIZATION-BASED ANALYSIS OF THE MATCHED-PAIR DESIGN

3.1. Overview of analytical results and previous studies

In this section, I extend the randomization-based inference of Neyman [5] reviewed above to the
analysis of randomized experiments under the matched-pair design. First, I derive the variance
of the standard estimator from the randomization-based perspective and show that the standard
variance estimator is likely to be biased upwards when the SATE is the estimand. Similar to the
case of the completely randomized design, the standard variance estimator is shown to be unbiased
for the true variance only when the within-pair average treatment effect is constant across different
pairs. Moreover, the standard variance estimator is unbiased, when the estimand is the PATE rather
than the SATE. To my knowledge, this paper presents the first randomization-based analysis of
the matched-pair design without making modeling assumptions. For example, Kempthorne [8]
conducts a randomization analysis of generalized randomized block design (which include the
matched-pair design as a special case) but entertains an additivity assumption. Wilk [9] considers
a similar analysis under weaker assumptions but for the matched-pair design block-treatment
interactions are assumed to be zero.

Second, using these results, I study the statistical efficiency of the matched-pair design relative
to the completely randomized design. In particular, I show a couple of ways in which the two
designs can be compared and derive the conditions under which the matched-pair design yields
more efficient estimates than the completely randomized design. There exist some studies on
the related topics. For example, Cochran [10] studies the efficiency of pairing in the context
of linear regression. Billewicz [11] conducts simulation studies and observes that some of the
findings are at odds with Cochran’s [10] results (see also Youkeles [12] who conducts a numerical
analysis using the sign test). Chase [13] shows that random matching does not result in the loss
of asymptotic power over the standard normal theory test for the two proportions. Miettinen [14]
also presents an asymptotic power analysis under particular modeling assumptions. More recently,
Freedman et al. [15] and Martin et al. [16] study the efficiency of the matched-pair design in
the context of community intervention trials using a model similar to the one used in Cochran
[10]. Here, I contribute to this literature by applying Neyman’s randomization-based approach to
conduct the efficiency analysis of the matched-pair design. Unlike previous studies, my analysis
is nonparametric and does not involve asymptotic approximations.

3.2. Variance identification
Suppose that there exist 2n units and n matched-pairs are formed based on the observed pre-
treatment characteristics. Under the matched-pair design, the binary treatment is randomly assigned
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to one of the two units within each pair. An indicator variable, Z ;, is randomized by the experimenter
with equal probability Pr(Z;) = % and determines which unit receives the treatment within the jth
matched-pair, where j=1,2,...,n.If Z; =1, then the first unit in the jth pair receives the treatment
while the second unit does not. In contrast, Z; =0 means that the second unit within the jth
pair receives the treatment, whereas the first unit is assigned to the control group. Thus, if we
use T;; to indicate the value of the binary treatment variable for the ith unit in the jth matched
pair, T'j=Z; and T;=1—Z; hold for all j. Under the matched-pair design, Z; and Z; are
assumed to be randomized independently of each other for any j #k. Finally, let Y;;(¢) represent
the potential outcomes under the treatment (¢ =1) and control ( =0) conditions for the ith unit in
the jth matched pair. Then, Y;; can be used to represent the observed outcome variable for each
unit and Y;; =T;;Y;;(1)+(1—1T;;)Y;;(0).
Under the matched-pair design, the SATE can be expressed as

1 n 2
= Z > (Y (D) —Y;;(0)) (6)
j=li=l
The standard estimator under the matched-pair design is the sample average of within-pair differ-
ences, which is essentially the same as the difference-in-means estimator under the completely

randomized design, i.e. 7. in equation (1). The estimator is given by

{Z Y1j—Y2))+(A-Z))(Y2; —Y1;)}

™M=

S | =

S|||>—‘
,M:
M

Il
-

(Ti;Yij —(1-T;;)Y;;} @)

i=1

J

It is well known that this estimator is unbiased for the SATE. To show this familiar fact from the
randomization perspective, rewrite 7,, using potential outcomes as 7,, = (1/n) Z?:l {Z;(Y1;(1)—
Y2;(0))+(1—Z;)(Y2;(1)—Y1;(0))}. Then, since [E(Zj|6"m)=% for all j, it is immediate that
E@m | Om) =1m, where Oy, represents the set of all potential outcomes under the matched-pair
design, i.e. O, ={Y1;(1), Y1;(0), Y2;(1), ng(O)}’}:1

I now consider the identification of the variance of the standard estimator, 7,,,, under the matched-
pair design from the randomization perspective. Since Z; is assumed to be independent across
matched pairs, the variance of 7, equals

1 n
V(@ | On)= ) _Zl{(Ylj(l)—Yzj(O))—(Yzj(l)—Ylj(O))}2 ®)
J:

whereas the standard variance estimator, 6,,, is based on the sample variance of within-pair
differences:

n
a'mE;Z{Zj(Ylj_Y2j)+(1—Zj)(Y2j_Ylj)_%m}2 9
nn—1) j=1
The following proposition extends the results of Neyman [5] summarized in Section 2 to the
matched-pair design. In particular, the proposition shows that when the SATE is the estimand,
the standard variance estimator tends to overestimate the variance on average. Moreover, the true
variance is not identifiable from the observed data but its bounds can be derived.
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Proposition 1 (Identification of the variance)

Suppose that the estimand is the SATE, t,, defined in equation (6), and the estimator is given by
T, in equation (7). Then, in randomized experiments under the matched-pair design, the following
results hold:

1. Bias of the standard variance estimator: The standard variance estimator, G,,, defined in
equation (9), tends to overestimate the true variance on average, and its bias equals

R A 1 12
[E(Um|(9m)_\/(fm|@m)=;\’ar{§ Z(Yij(l)—yij(o))}
i=1

where var{-} represents the sample variance across pairs.
2. Bounds of the variance: While V (%,, | 0p,) is not identifiable, its bounds are given by

| . 12 . 17212
(gom) " (gom)

j=1

| . 172 . 1/2)2
<3 (Z D;(l)z) +<Z Dj(0>2>

j=1 j=1
where D;(1)=Y;;(1)—Y;(0) and D;(0)="Y5;(1)—Y1;(0).

A proof is given in Appendix A.1. The variance equals the lower (upper) bound when D;(1)=
aD;(0) for all j and some constant a<{0 (a>0). Proposition 1 has several implications. First, the
magnitude of the bias decreases as the variance of the within-pair SATE across pairs decreases.
When there is a considerable degree of heterogeneity (an important motivation for the matched-pair
design), then the bias is likely to be large. Indeed, the standard variance estimator is unbiased
if and only if the variance of the within-pair SATE is zero; for example, this occurs when the
constant additive treatment effect assumption holds, i.e. ¥;;(1) —Y;;(0) =« for all (i, j) and some
constant o. This is similar to the case of the completely randomized design in Section 2, where
the standard variance estimator is unbiased if and only if the constant additive treatment effect
assumption holds. Unfortunately, such an assumption is unlikely to hold especially in social science
experiments where the heterogeneity among experimental subjects tends to be large.

Second, as is the case for the completely randomized design, the true variance is not identifiable
from the data. The expectation of the standard variance estimator is an upper bound but this
bound is in general not sharp and can be improved. Indeed, a tighter upper bound is given in
Proposition 1. Similar to the case of the completely randomized design, the lower bound may not
be very informative as it equals zero when Z?:l D;j(1)?= Z’}:] D;(0)2.

Finally, as it is the case under the completely randomized design, although the standard variance
estimator is biased when the SATE is the estimand, it is an unbiased estimator of the variance
when the PATE is the estimand. Here, as in Section 2, I prove this fact formally by assuming the
two-step procedure: an experimenter obtains a simple random sample of n matched pairs from an
infinite population, and then conducts the simple randomization of the treatment within each pair.
I further assume that the order within each pair is randomized so that the population distribution
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of (¥1;(1),Y1;(0)) is identical to that of (¥2;(1),Y2;(0)). Then, under these assumptions, the
population variance of 7,, can be derived as follows:

1 n 2
V(@) = V@ | On)}+V (E > ;(Yij(l)—yij(o)))

j=1
ZE{E(6m|@m)}=E(6m) (10)

where the last line follows from Proposition 1 and the fact that the sample variance is an unbiased
estimate of the population variance. Note that using equation (A1) in Appendix A.1 and the law
of iterated expectations, E(G,,) can be written as

1
E@m) = - EHX;(D =12 (00)% 4 (Y2; (1) = Y1 ;(0)%)
1
— —E{(Y1;(1)+Y2;(1) = Y1;(0) = Y2;(0)) (Y1 (1) + Y21, (1) = Y1£(0) — Y2, (0)) }
4n
1
= [E(Y;(D =Yy, (0)* —{E(Y;; (1) — Yir; (0))}*]

1
= ;\/(Yij(l)_yi/j(o)) (1)

where i #i’, j#k, and E(Y;;(1) =Yy ;(0)) =E(Y1; (1) —Y2;(0)) =E(Y2; (1) — Y1;(0)) (this follows
from the assumption that the order within each pair is randomized), and the second equality follows
from the random sampling of pairs, e.g. E{(Y7;(1)—Y2;(0))(Y2r (1) —Y1£(0))} ={E(Y;; (1) —
Yy (0)}>.

3.3. Efficiency analysis

Using the variance expressions obtained above, I next evaluate the statistical efficiency of the
matched-pair design relative to the completely randomized design. I compare the efficiency of the
matched-pair design with that of the completely randomized design in three different ways. First,
I consider the relative efficiency of the matched-pair design for the estimation of the SATE. Next,
the comparison of variances is made for the estimation of the PATE assuming that the completely
randomized design uses the simple random sampling of units, whereas the matched-pair design
uses the simple random sampling of matched pairs. Finally, the comparison of population variances
is made under the assumption that the simple random sampling of matched units is made for
both designs. Unlike the existing approaches, Neyman’s randomization-based analysis clarifies the
distinctions among these three types of comparisons.

The following proposition presents the result of the efficiency analysis when the SATE is the
estimand.

Proposition 2 (Efficiency comparison for the SATE estimation)
Suppose that the SATE is the estimand. Let V(%,,|0,,) represent the variance of the stan-
dard estimator, %,,, under the matched-pair design. Let V(I |(,,) denote the variance of the
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standard estimator, 7. = (1/2n) P 12 ({Ti;Yij—(1—=T;;)Y;;}, under the completely random-
ized design, where T, j is completely randomlzed so that n units receive the treatment. Then, the
relative efficiency of the matched-pair design over the completely randomized design is character-
ized by

VE N Op) =V (@ | On)

n—1 ~ o~ 1 - - 5, 1 ~ ~
Zm{COV(Ylj,YZj)—Z(Yl—Yz) +EVar(Y1j—Y2j)}

where ¥;;=Y;;(1)+Y;;(0) and Y; =3"1_, ¥;; /n.

A proof is given in Appendix A.2. The next proposition summarizes the results of the efficiency
analysis when the PATE is the estimand. In particular, the comparisons are made under different
assumptions about sampling procedures.

Proposition 3 (Efficiency comparison for the PATE estimation)

Suppose that the PATE is the estimand. Let V(%,,) and \/(%2‘) denote the variances of the standard
estimator under the matched pair and completely randomized designs, respectively, when the simple
random sampling of matched pairs is assumed. Let V(.) represent the variances of the standard
estimator under the completely randomized design when the simple random sampling of units is
assumed. Then, the relative efficiency of the matched-pair design over the completely randomized
design is characterized by

A o n—1 ~ ~
V(ED - V(i) = nn—1) cov(Yy;, Yaj)

2
V(i) = V(i) = - cov(¥i; (1), ¥ir;(0))

where cov(-, -) is the population covariance, 17,~j =Y;;(1)+7Y;;(0) and i #i’.

A proof is in Appendix A.3. These two propositions have several important implications. First,
when the PATE is the estimand, under the simple random sampling of matched pairs, the matched-
pair design yields more efficient estimates than the completely randomized design when Y;; and
Y ; are positively correlated. Unfortunately, this correlation is not identifiable from the observed
data since Y;;(1) and Y;;(0) are never jointly observed for the ith unit in the jth pair. When the
SATE is the estimand, two additional terms determine the relative efficiency together with the
correlation between Y 1j and Yz ;- However, as n increases, cov(Y 1, Y>;) dominates (Y -Y 2)/4,
which tends to O by the law or large numbers, as well as var(Y 1j— Y> i) /4n.

Second, the matched-pair design under the simple random sampling of matched pairs is compared
with the completely randomized design under the simple random sampling of units. In this
case, the difference between the two variances, i.e. V(7.) and V(%,,), equals cov(Y;;(1), Y;7;(0)),
which is identifiable from the observed data under the simple random sampling of matched pairs.
Indeed, one can estimate V(7.) from the matched sample without bias (see equation (11) and
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Appendix A.4):
N ~ 2 1 * *
V(@) =E@m)+ - cov(¥ij (1), ¥y (0)) = Elst +5p)

where s7" and s; be the sample variances of the observed outcomes for the treatment and control
groups, i.e.

- 12
1 2 12
STE > ZiY\i+(1-Zj))Yr;—— Z{Zj’Ylj’+(1_Zj/)Y2j’}
n—1 j=1 L njzzl ]
- 12
1 L 12
SSE Z (l—Zj)Y]j—}—Zngj—— Z{(]—Zj/)Ylj/—l—Zj/Yzj/}
n_ljzl L l’lj/=1 ]

Thus, depending on the sampling procedures under which the comparison is made, the efficiency
analysis leads to different conclusions. In both cases, however, random matching neither reduces
nor increases the variance relative to the completely randomized design. This result is consistent
with the asymptotic results obtained by Chase [13].

Third, it is of interest to compare the above efficiency analysis with that of Imai ef al. [17] who
examine the relative efficiency of the stratified design over the completely randomized design.
The stratified design refers to the procedure where the complete randomization of the treatment
is conducted within a group of more than two observations. Imai ef al. [17] show that when the
estimand is the PATE, the variance of the standard difference-in-means estimator is no greater under
the stratified design than under the completely randomized design. They also prove that when the
estimand is the SATE, the same result holds asymptotically. Thus, Propositions 2 and 3 show that
there is an important difference between these two seemingly closely related designs. While the
adaptation of the stratified design over the completely randomized design can never hurt researchers
in terms of statistical efficiency, the relative efficiency of the matched-pair design depends on
whether matching induces positive or negative correlations regarding potential outcomes within
each pair. This distinction appears to be neglected in the literature where the efficiency gain of the
two designs are often discussed altogether (see Section 1 of Greevy et al. [18]).

Finally, the comparison between \/(%Zf) and V(7,,) may be of interest to researchers who are
analyzing a pilot study in order to determine which design to employ in the main study. Snedecor
and Cochran [19] conduct such a comparison and provide a formula (p. 100), which they argue
estimates V(%) without bias from the observed matched sample:

R 2(n—1) Om
9o = on— S0 T3, (12)
However, Proposition 3 implies that while V(%.) can be identified from the observed matched
sample, V(77) is not identifiable. Thus, &7 is generally a biased estimate of V(%}). The following
proposition derives the expressions for the bias of 67 and the bounds on V(1}).

Proposition 4 (Identification of \/(%f))
Suppose that the PATE is the estimand. Let V(%)) be the variance of the standard estimator,
- =(1/2n) ZLl Z§=1{Tij Y;j —(1—T;;)Y;;}, under the completely randomized design when the
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simple random sampling of matched pairs is assumed.
1. Bias of &, The bias of 4. is given by
V(27) —E(G,)
n—1
= m{COV(YU(l), Y2 (1)) +cov(Y1;(0), ¥2;(0)) —2cov(Y;;(1), ¥;;(0))}
2. Bounds of V(1:): V(1)) is not identifiable but its bounds are given by
4n—1)
n(2n—1)

n

T cov(¥;; (1), Yy (0))

. iy _3n—=2 _
[E(Gm)é\/(T:)g—[E(O'm) +
2n—1

A proof is given in Appendix A.4. The proposition shows that the bias of ;. is not always zero,
and that the direction of bias is unknown. One possible condition under which the bias is zero is
given by cov(Yy;(2), Y2;(t))=cov(Y;;(1),Y;:;(0)) for =0, 1, but this need not hold in general.
Although Snedecor and Cochran [19] introduce & under the assumption of equal variances, i.e.
V(Y;;(1)) =V (Y;;(0)), this additional assumption does not alter the conclusion that 67 is generally
biased.

Furthermore, both the upper and the lower bounds of V(1}) can be estimated without bias where
the sample covariance between Y1 ; and Y»; is an unbiased estimator of its population counterpart,
cov(Y;;(1), Yi;(0)). Moreover, the lower bound is unlikely to be informative. Thus, one possible
assumption to entertain is to assume that the correlation between Y1 (¢) and Y3 () is greater than
or equal to O for =0, 1. The assumption may be reasonable if matching is based on pre-treatment
covariates that are known to be good predictors of the outcome and hence a positive correlation is
likely to result. Under this assumption, the lower bound becomes

. 2m-1)
EOm)+ 5

cov(Y;;(1), Yir;(0)) (13)
while the upper bound remains the same. This lower bound is typically much greater than the
lower bound given in Proposition 4 (see also Section 4.2).

3.4. Practice of ‘breaking the matches’

The results given in the previous section have some implications for the practice of ‘breaking the
matches’ where researchers analyze the matched-pair data as if matching had not occurred. Prior
studies have investigated the statistical properties of such practice largely via simulation studies
based on parametric models [20, 21]. From Neyman’s nonparametric randomization perspective
that is advocated in this paper, such practice that ignores the key aspect of experimental design
cannot yield valid inferences. In particular, the variance estimator used when breaking the matches
will be biased, and hence the resulting confidence intervals and statistical tests will also be biased.

4. ILLUSTRATIONS

In this section, the analytical results derived in the previous section are illustrated with numerical
and empirical examples.
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4.1. Numerical examples

I first illustrate the fact that the matched-pair design can reduce statistical efficiency when compared
with the completely randomized experiment (Proposition 2) using a simple numerical example
given in Table I. In this example, there are four observations, all of which have zero treatment
effect. All the potential outcomes are assumed to be known so that the exact variance can be
calculated for the standard estimator of the SATE.

For the completely randomized design, there exist a total of six permutations of the treatment
assignment and the same number of estimates of the SATE, i.e. {—2,—1,0,0,1,2}. Since each
of these values has the equal probability of being realized, the variance of the standard estimator
equals % Next, consider a matched-pair design where unit a is paired with d and unit b is
paired with c. This is clearly a “poor’ design since it eliminates the two permutations that yield
the accurate estimate O for the SATE (the possible values the standard estimator can take are
now {—2,—1,1,2}). Thus, under this design, the variance is %, which is larger than the one
under the completely randomized design. It is easily confirmed that the difference in variance
between the two designs equals the result based on the formula given in Proposition 2 by noting
that cov(Y1J, Y1]) =—2,Y—-Y,=—4, and Var(Ylj — Y1]) 8. In contrast, consider the matching
of similar units where unit a is paired with b and unit ¢ is paired with d. In this case, the
permutations that yield the least accurate estimate, i.e. —2 and 2, are eliminated. Then, the variance
under this matched-pair design is %, which is smaller than that under the completely randomized
design.

The second numerical example illustrates the efficiency results for the estimation of the PATE.
Consider the following population model and let the sample size be 8, i.e. n=4:

Y1 (1) 2 1 -025 —-025 05

Y150 |4 1| |-025 1 05 -025 "

’

Y,;(1) 2 —-0.25 05 1 —-0.25

Y,;(0) | \1 05 =025 -0.25 1

Table 1. An illustrative numerical example: Y;(1) and
Y; (0) represent the potential outcomes under the treat-
ment and control conditions, respectively.

Potential outcomes

Units Y(1) Y (0)

QU >
B W=
AW =

Pairing unit @ with b and unit ¢ with d yields a more
efficient estimate than the completely randomized design,
whereas pairing unit ¢ with d and unit b with c results in
the loss of relative efficiency.
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Then, using the results in Section 3.2, \/(%m)zi and \/(%C)z%. The latter result can also be
verified through a Monte Carlo simulation procedure where one first draws a large number of
samples from the model in equation (14) and then obtains a simple random sample of size n
from this larger pool of draws. As shown in Proposition 3, the dlfference between V(7,,) and
V() equals the 2cov(Y;; (1), ¥;;(0))/n. Moreover, since cov(Ylj, Yg,) = 2 in this example, \/(r )

can be calculated using the same proposition, and the resulting value is %NO.?). Finally, as
shown in Proposition 4, the estimator of V(i}) proposed by Snedecor and Cochran [19], i.e.

6% in equation (12), is biased. In this example, the bias equals ——~—O 16 where E(67)=

13
B ~0.46.

4.2. An empirical example

I next illustrate the theoretical results derived in this paper with an empirical example. I use the data
from a public health randomized field experiment where health clusters in Mexico were randomly
assigned to the treatment and control groups. In the treatment clusters, residents are encouraged
to sign up the universal health insurance program called Segro Popular de Salud (SPS), whereas
in the control group no such encouragement was given. The experiment was designed using the
matched-pair design where clusters were paired based on the pre-treatment characteristics and
cluster sizes. For the details of the design, see King et al. [22]. Researchers are interested in the
causal effects of the SPS program on household heath-care expenditure, utilization of medical
services, and individual health outcomes. Here, we conduct a cluster level analysis and focus on
the intention-to-treat effect on the proportion of households suffering catastrophic health expendi-
tures, i.e. out-of-pocket health-care expenditures totaling more than 30 per cent of a household’s
annual disposable income. An individual-level analysis of the same variable appears in Imai
et al. [23].

The matched-pair design was implemented with 50 pairs of health clusters. The ITT (Intention-
to-Treat) effect is estimated as 7,, = 1.27 percentage point increase with the standard error of 0.69
(i.e. 6, =0.48). Now, the population variance under the completely randomized design (with the
simple random sampling of units), i.e. V(3.), is estimated to be 0.91, which is almost twice large as
the estimated variance under the matched-pair design. In fact, the estimated within-pair correlation
coefficient is as high as 0.48. Furthermore, under the simple random sampling of matched pairs,
the variance bounds under the completely randomized design are estimated to be [0.24,1.15]
without any assumption. However, if one entertains the assumption of positive correlation between
Y1;(¢) and Y7;(¢) for t=0, 1, which appears reasonable in this case given the fact that matching
was based on pre-test scores, the lower bound is estimated to be 0.69, which is about 1.5 times
higher than the estimated variance obtained under the matched-pair design (see equation (13)).
Thus, I conclude that in this experiment, the matched-pair design was highly effective reducing
the estimation variance relative to the completely randomized design.

5. CONCLUDING REMARKS

In this paper, I study the variance identification and relative efficiency of the matched-pair design
in the statistical analysis of randomized experiments by applying and extending the randomization-
based framework of Neyman [5]. By doing so, I derive the conditions under which the matched-
pair design yields more efficient estimates of the average treatment effects than the completely
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randomized design. These analytical results are illustrated with numerical and empirical examples.
Researchers may wish to apply the variance formulae (or the bounds formulae when the variance
is not identified) of this paper to their pilot study in order to determine whether the matched-pair
design should be used in the main experiment. Furthermore, this paper also demonstrates the
advantages of the potential outcomes framework, which dates back to Neyman [5] and Fisher [3],
and is now widely used in the literature of causal inference. My analysis clarifies important
questions concerning the statistical efficiency of the matched-pair design in the experimental
design literature and reveals an implicit and yet unrealistic assumption for the efficiency analysis
in a classic textbook. Finally, the analytical strategies of this paper can be extended to cluster-
randomized trials where the matched-pair design is frequently employed. Such an extension has
been undertaken by Imai et al. [23].

APPENDIX A

A.1. Proof of Proposition 1

Let Dj(1)=Y;;(1)—Y2;(0) and D;(0)=Y;(1)—Y1;(0). Using the potential outcome notation
and taking the expectation with respect to Z; yield

n(n—DEGm | On)

1 n 1 1 n n

=3 > X%)Dj(z)z_; > kzl E{Z;D;j(1)+(1—-Z;)D;(0){Zx D (1) + (1 — Zi) D (0)}]
j=lz= j=lk=

1

— (=1 Z Z Dj(z)*—= Z > (D;j(0)+D;(1))(Dr(0)+ Dy (1)) (A1)

“ j=12z=0 2 . Dkzj

where the second equality follows from the fact that E(Z;)= E(Z?) = %, E{Z;(1-Z;)}=0, and
E(Z;Z)=E{Z;(1-Zp)}= 1 for all j #k. Thus, we have

EGm | Om) =V (T | Op)

:m{]é:l(Dj(l)'f‘Dj(o))z g ; Dj(O)+Dj(1))(Dk(0)+Dk(1))}
1 n n
42—{Z(D ()+D;j0)*—= Z(Dj(O)+Dj(1))(Dk(0)+Dk(1))}
n=(n—1) nj=1k=1

1
= EV&I(D](O)‘FD]'(I))

From this equality, the desired bias expression immediately follows.
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The above result implies
2

1
\/(%m | Op) = [E(a'm | O) — EVar { Z (Yij(l) - Yij (0))}

i=1

However, Valr{ZiZ= 1(Yi;(1)—=Y;;(0))} is not identifiable since ¥;;(1) and Y;;(0) are never jointly
observed. To derive the bounds of V (1, | Op,), use equation (8) and write

1
\/(fmIOm)— ) Z{D (1)*+D;(0)*—2D;(1)D;(0)}

where the mean of the product D; (1) D;(0) is not identifiable since they are never jointly observed.
Thus, applying the Cauchy—Schwartz inequality to Z;l: 1 Dj(1)D;(0), the desired expressions for
the lower and upper bounds follow.

A.2. Proof of Proposition 2

Using equation (2), write the variance under the completely randomized design as

2
1 n 2 ~ 1 n 2 _
V(i |€m)_722(yij__z ZM")
n(2n = = 2 1

n i'=1

_i i(Y1,+Y2,)(Y1k+Y2k)}

n ~ 1 n ~ ~ ~ ~ no oo ~
:—|:_Z_ZY£'_ {Z Z(Y1j+Y2j)(Y1k+Y2k)+22YleZj}:|

J=1k#j j=1
Then, together with equation (8), we have

1 no. n - - - no.
=w|:2 ZlYlezj P {Z ;(Ylj-f—Yzj)(Y]k-i-sz)—i-ZZY]jYzj}j|
j: :

j=1

n—1 ~ ~
— Yi:+Yr:
Inn—1) 125
1 n 2 n 2 2 no_
—_— — Yij 22n—1 Y1;Y2;
+ 4”2(21’1—1) ng g g " Z g - ( " )ng 1R
ot o+ o= 3 7y~ T2 (A2)
=——— {var(¥y; i)—— i—Ya;
4n2n—1) VR TR
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Using this result, the desired expression can be derived from equation (A2) as follows:

~ ~ 1 . ~ ~
Var(Y1j+Y2j)—; Z(Ylj—YZj)2
j=1

reoviy ot —— sy (D) (27427
= Z2COV i P So— _— . — . .
R nin=1) ;25 Y \n—1 n)\iZ1 ') nj5 e

deov(Fr i Toi) b S (71— Ta))2 = (T —Ta)?
—deov(Pr i Tr) B R
1j,12j n(n_l)jzl 1j 2j n—1 1 2

~ o~ - — 1 ~ ~
=dcov(¥1j, Vo)) = (V1 =¥2)? + —var(V1j = 12))
This completes the proof.

A.3. Proof of Proposition 3

Equation (11) and the fact that the order within each matched pair is randomized imply V(%,,) =
{V(Y;; (1) +V(Y;;(0)) —2cov(Y;;(1), Yy j(0)}/n. Since V(Y;;(#))=V(Y;(t)) for t=0,1, the
result follows from the expression in equation (2). To prove the second equality, I use the
expression in equation (A2) to show that

V(ED) = V(@) = EVE On) =V (Em | On))

n—1 ~ o~ -~
= m{\/(Ylj+Y2j)—E(Y1j—Y2j)2}

n—1 ~ " o - _
= anan = T ETY = (X2 4B 12) = 2B (2]
_m cov( 1j» 2])_1 ( 1j— 2])
— " ov(Tii T
_n(zn_l)cov( 1. Y25)

where the last equality follows from the fact that the order of units within each pair is assumed
to be randomized, i.e. the population distributions of (¥1;(1),Y1;(0)) and (Y2;(1), Y2;(0)) are
identical.
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A.4. Proof of Proposition 4

First, I derive the expression of E(s}) by calculating E(s} | ¢),) and then using the law of iterated
expectation. Since Z?:Zj, (1 —ZJ-)2= 1-Z;,and Z;(1—-Z;)=0, rewrite s] as

1 n
= g 1Z;Y1;(02+(1=Z)Y2; (1))
1 n
_ > 2 AZin(H+A=Zp)Yr;(WDHZeYie (D + (1= Zp) Yar (D)}
nin—1) iZ1(Z;

Using the fact that E(Z;) =1 and E(Z;Zy) =E{Z;(1—Z)}=1 for all j #k, I obtain

1 n
EGs | O) = 2 2 (Y1;(D?+Y2;(1)?)

1
Z 2 (Y (D) +Y2; (D) (Yix(1) +Yor (1))
4"(1’! 1) j=1k#j
Thus, the independence across matched pairs and the law of iterated expectations give E(s}) =
E(Y;;(1)*) —{E(Y;;(1))*=V(¥;;(1). Similarly, we have E(s3)=E(Y;;(0)*)—{E(Y;;(0)}*=
V(Y;;(0)). This implies that

—1 1 o~ o~ 1
V@ ) [E(A*) ((n 1)) |:n[E(8m)+§COV(Y1j, Y2j)— %{E(Yij(t)z)_{[E(Yij(t))}2}i|
1=l
2(n—1)
:m{ cov(Ylj,Yzj) 2cov(Yy;(D), Yl,(O))}
—1
= —n(gn_l){cov(Ylj(l),Yzj(l))—i-cov(Ylj(O),Yzj(O))—Zcov(Yij(l),Yi/j(O))}

To derive the bounds on V(%}), the Cauchy—Schwarz inequality implies that
— V(¥ (1) =Yy (0)<cov(¥y j, V2)) < V(Y (1) = Yir; (0) +4 cov(¥i; (1), Yir; (0))

where i #i’. This together with the result in Proposition 3 implies

n-l V(E)<SVEHL 1 nol V(% 4n—1) Y:i(1). Y : (0
( 271—]) (Tm)< (Tc)\< +2}’l——l) (Tm)+mCOV( 1]( ), l/j( ))

Then, the desired expressions for the bounds immediately follow.
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