Supplementary Material for “Optimal Covariate Balancing Condi-

tions in Propensity Score Estimation”

A Locally Semiparametric Efficient Estimator

For clarification, we reproduce the following definition of locally semiparametric efficient estimator

given in Robins et al. (1994),

Definition A.1. Given a semiparametric model, say A, and an additional restriction R on the
joint distribution of the data not imposed by the model, we say that an estimator & is locally
semiparametric efficient in model A at R if & is a semiparametric estimator in model A whose

asymptotic variance attains the semiparametric variance bound for model A when R is true.

In our setting, the semiparametric model A corresponds to the joint distribution of the observed
data (73, Y, X;) subject to the strong ignorability of the treatment assignment {Y;(1),Y;(0)} L T; |
X;; see Hahn (1998). The semiparametric variance bound for model A is V,,;. The restriction
R is the intersection of Ry and Ry (denoted by R; N Ry), where Ry is the model that satisfies
the first condition in Theorem 3.1 (i.e., the propensity score is correctly specified) and Ry is the
model that satisfies the second condition in Theorem 3.1 (i..e, K (X;) = af M1h;(X;) and L(X;) =
ag Mahsy(X;)). In Corollary 3.2, we show that the asymptotic variance of our estimator of ATE lig
is Vopt when Ry N Ry is true. From the above definition of locally semiparametric efficient estimator,

we can claim that ﬁa is locally semiparametric efficient at Ry N Rs.

B Preliminaries

To simplify the notation, we use 7} = mg+«(X;) and 7? = 7go(X;). For any vector C € R, we
denote |C| = (|C4], ..., |Cx|)T and write C < B for C}, < By for any 1 < k < K.

Assumption B.1. (Regularity Conditions for CBPS in Section 2)
1. There exists a positive definite matrix W* such that W 2 W,
2. The minimizer 3° = argming E(gg(T, X)) W*E(gg(T', X)) is unique.
3. B° € int(©), where O is a compact set.
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4. mg(X) is continuous in 3.

5. There exists a constant 0 < ¢y < 1/2 such that with probability tending to one, ¢y < 18(X) <

1 — ¢p, for any 8 € int(0©).
6. E|fj(X)] <oofor1<j<mandE|Y(1)]?*< oo, E|Y(0)]? < .

7. G*:=E(0g(B°)/0B) exists and there is a g-dimensional function C(X) and a small constant
7 > 0 such that supgeg, g0y [0mp(X) /0B8] < C(X) and E(|f;(X)|C(X)) < oo for 1 < j <m,
where B,.(3°) is a ball in R? with radius r and center 3°. In addition, E(|Y|C(X)) < oco.

8. G*TW*G* and E(gg (T}, Xi)gg-(Ti, X;) ") are nonsingular.

9. In the locally misspecified model (2.1), assume |u(X; 8*)| < C almost surely for some constant

C>0.

Lemma B.1 (Lemma 2.4 in Newey and McFadden (1994)). Assume that the data Z; are i.i.d., ©
is compact, a(Z,0) is continuous for § € O, and there is D(Z) with |a(Z,0)| < D(Z) for all 6 € ©
and E(D(Z)) < oo, then E(a(Z, 0)) is continuous and supgeg [n ™1 Y%, a(Z;,0) —E(a(Z,0))| 25 0.

Lemma B.2. Under Assumption B.1 (or Assumptions 3.1), we have B 2, ge.

Proof of Lemma B.2. The proof of B SN 3° follows from Theorem 2.6 in Newey and McFadden
(1994). Note that their conditions (i)—(iii) follow directly from Assumption 3.1 (1)—(4). We only

need to verify their condition (iv), i.e., E(supgeg |9g;(Ti, Xi)|) < oo where

1; 1 -1,
931 (T2 X0) = (05 = 1=y ) X0

By Assumption B.1 (5), we have |gg; (T, X;)| < 2|f;(X;)[/co and thus E(supgeg |95 (Ti, Xi)|) < o0

by Assumption B.1 (6). In addition, for the proof of Theorem 3.1, we similarly verify the following
conditions to prove this lemma for the oCBPS estimator, i.e., E(supgeg |918;(Ti, Xi)|) < oo and
E(supgee 19285 (T3, Xi)|) < oo, where

T
m3(Xi)

9185 (Ti, X;) = ( L Lo ')>h1j(Xi)7 and gog;(Ti, X;) = ( - 1)h2j(Xi)‘

m8(X:) 11— ma(X;
We have |g18;(Ti, X;)| < 2|h1;(X;)|/co and thus E(supgeg 1918;(Ti, X;)|) < oco. Similarly, we can

prove E(supgeg 9285 (T3, Xi)|) < oo. This completes the proof. O
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Lemma B.3. Under Assumption B.1 (or Assumptions 3.1 and 3.2), we have
n*(8 — %) = —(Hf "W H) " 'n 2 Hf TW*ggo (T, X)) + 0p(1), (B.1)
n'2(B - B°) < N0, (Hf 'W"Hf) " Hf 'W'QW" Hf (H; 'W"H;)™"), (B.2)
where 2 = Var(gg-(T;, X;)). If the propensity score model is correctly specified with P(T; = 1 |
X;) = 130 (X;) and W* = Q1 holds, then n'/2(3 — 8°) -4 N(0, (H;TQ~1H})™1).

Proof. The proof of (B.1) and (B.2) follows from Theorem 3.4 in Newey and McFadden (1994).
Note that their conditions (i), (ii), (iii) and (v) are directly implied by our Assumption B.1
(3), (4), (2) and Assumption B.1 (1), respectively. In addition, their condition (iv), that is,
E(supgen |098°(Ti, Xi)/0B;j]) < oo for some small neighborhood N around 3°, is also implied

by our Assumption B.1. To see this, by Assumption B.1 some simple calculations show that

99s(T;, Xi) | _ (TIE(Xi)| | (1= T)|f(X)] oms(X;) | s

for N € B.(8°). Hence, E(supgeps [0980 (T3, Xi)/0Bj]) < oo, by Assumption B.1 (7). Thus,
condition (iv) in Theorem 3.4 in Newey and McFadden (1994) holds. In order to apply this lemma
to the proofs in Section 3, we need to further verify this condition for gg(-) = (gfﬁ(-),ggﬁ(-))T,

where

T; 1-1;
m8(Xi) 11— 7a(X5)

T;
m3(Xi)

918(T;, X;) = ( )hl(Xi)v and gog(T;, X;) = ( - 1)h2(Xi)-

To this end, by Assumption 3.1 some simple calculations show that when

0 T, X; T:|h1(X; 1—T;)|h1(X; 0 X;
Sup‘ 915( ) S( | 15 )| +( )|2 1( )|> ’ m3(Xi)
BeN 9B; &) € BeN 9B;

for N € B,.(8°). Hence, E(supgep [0g150 (T3, X;)/0p;]) < oo, by Assumption 3.1 (7). Following the

< Cj(X)|hi(X3)]/ <3,

similar arguments, we can prove that E(supge |0g2g0(Ti, X;)/0p;]) < oo holds. This completes
the proof of (B.2). As shown in Lemma B.2, if P(T; = 1 | X;) = m30(X;) holds, the asymptotic
normality of n'/2(8 — 8°) follows from (B.2). The proof is complete. O

C Proof of Results in Section 2

C.1 Proof of Theorem 2.1

Proof. First, we derive the bias of B By the arguments in the proof of Lemma B.3, we can show

that 3 = 3° + 0,(n~%/2), where B° satisfies 3° = argming E(gg(T, X)) W*E(gg(T, X)). Let
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uf = u(X;; B8%). By the propensity score model and the fact that |u(X;; 8%)| is a bounded random

variable and E|f;(X;)| < oo, we can show that

v u ) f(X; — = Emfu)f (X
E(gﬁt)):E{ z(1+§rqz) (X) . (1 7 15;91) (X)}‘i‘O(fZ)

In addition, following the similar calculation, we have E(gg-) = O(§). Therefore,

lim E(gg: (T, X)) W*E(gs-(T, X)) = 0.

n—oo

Clearly, this quadratic form E(gg(T, X)) W*E(gg(T, X)) must be nonnegative for any 3. By the

uniqueness of 3°, we have 8° — 8* = o(1). Therefore, we can expand 7{ around 7, which yields

E(gp) = E{( T )E(X0) + Hi (8~ 3)} + 0 + 18~ 8]3).

*
1—m;

This implies that the bias of 3¢ is

u*

B =B = —¢(H{ W H) T Hf WE{ (= )f(X0) } + 0(£). (c)

Our next step is to derive the bias of ﬁg. Similar to the proof of Theorem 3.2, we have

- 1 T/ A _
Mﬁ_uzﬁle—f_HyT(ﬁ_Bo)—'_op(n 1/2)7
i=1

where
_TY() (1= T)Yi(0)

0]
;

D:; —
1 1 _ﬂ-é) :ua

and

n'2(8 - %) = —(Hf "W*H{)'n'*Hi "W*ggo(T, X) + 0,(1).

In addition, following the similar steps, we can show that E(D;) = Bn~'/2 + o(n~/2). Thus,
1 < ~
fg—n=—> ADi—E(D)} + H;T (B~ 6°) + Bn'2 4 o(n™'/2).
=1

Then the asymptotic normality of \/ﬁ(ﬂﬁ — ) follows from the above asymptotic expansion and

the central limit theorem. This completes the proof. O
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C.2 Proof of Corollary 2.1

Proof. When Hy is invertible, it is easy to show the bias term can be written as

B {E {“<Xi;ﬁ*)(K()?)_; ﬁ(*l(;c Sﬁ*(xi))L(Xn)} HHE (u(lX_ éi)(iiii))]’

when the propensity score model is locally misspecified. If we choose the balancing function f(X)

such that o' f(X) = K(X;) + (1 — 7})L(X;) for some a € R, we have

. i -7 i) om ) (9m
H, = -E (K(X )7:;((11_ W:))L(X ) ’ o8 ) - _aTE<wjf§)f 372‘) < 19)¢] >T>’

Hy = —E(W)Z_E<m(%g>T>

So the bias becomes

o o) s ()

This proves that ﬁé is first order unbiased. O

C.3 Proof of Corollary 2.2

Proof. Recall that even if the propensity score mode is known or pre-specified, the minimum asymp-
totic variance over the class of regular estimators is given by Vi,¢. In the following, we will verify
that with the optimal choice of f(X) our estimator has asymptotic variance Vipy.

The asymptotic variance bound V¢ can be written as, Vope = X, — a ' Qa, where

) AT
Q =E(gpo(T;, Xi)gp-(Ti, X;) ) = E (fm)

3 K3

We can write the asymptotic variance of our estimator as

V=3,+2H;"%,5+ H; SgH;,
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where

Hy =k ( B
.8 = —(Hf) ! Cov(ug(T1, i, Xi), 95 (Ti, Xi)),

e (B (10 (0m1yT)

(KX + (1 - 70)L(X,) Ort
E( (- ) 8ﬁ)’

1 7

g = (Hy)~' Var(gg- (T, X)) (H ')~
. AT
V(g (7, X)) =B (1o 700 )

If K(X;)+(1—n})L(X;) lies in the linear space spanned by f(Xj;), that is, K(X;)+(1—7n})L(X;) =

o 'f(X;), we have

* an(Xl) 87‘-:{ T =T
Hy__E(Tr;‘(l—W;)aﬁ>_(a Hy) .
So
T T
T Tpeppe—ip (@ F(X)E(XG)\ o (E(XG)E(XG)
5150 = o mi(ai) e (S ) = —aTe (TEH )
and

. . (0.0 10.0N «Ty— . £(X)E(X,)"
HyTZBHy = aTHf (Hf) IE (7‘(‘*(1—77*) (HfT) l(aTHf)T = aT]E *— .
It is seen that H;Tzuﬁ = —HJTZ[;H;. Then we have

V=3,-a Qa,

which corresponds to the minimum asymptotic variance Vop. ]

D Proof of Results in Section 3

D.1 Proof of Theorem 3.1

Proof of Theorem 3.1. We first consider the case (1). That is the propensity score model is correctly
specified. By Lemma B.2, we have ,@ SN 3°. Let

Y  (1-7)Y
ma(X)  1-mg(X)

’f’ﬁ(T,KX) =
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It is seen that |rg(T,Y,X)| < 2|Y|/co and by Assumption 3.1 (6), E|Y| < co. Then Lemma B.1
yields supgeg [n ' Yo, 13(T5, Vi, Xi) — E(rg(T3, Y, X3))| = 0p(1). In addition, by B 25 B° and

the dominated convergence theorem, we obtain that

_ E(Ty - a-ny

tg = ) > +0p(1)7

1—m?
where 7¥ = 7go(X;). Since Y; = Y;(1)T; 4+ Y;(0)(1 —T;) and Y;(1), Y;(0) are independent of T; given

X;, we can further simplify the above expression,

o = o - ) o - 5(E ST
_ p(BEIXEGW | X)) (-BEXDEGWIXDY o)

In addition, if the propensity score model is correctly specified, it further implies
pg = EEYi(1) [ Xi) - E(Y;(0) | Xi)) + 0p(1) = E(Y;(1) = Yi(0)) + 0p(1) = 1 + 0p(1).

This completes the proof of consistence of i when the propensity score model is correctly specified.

In the following, we consider the case (2). That is K () € span{Mh;(-)} and L(-) € span{Maha(-)}.
By Lemma B.2, we have B —2+ 8°. The first order condition for 8° yields 0Q(B°)/0B = 0, where
QB) = E(gg)W*E(gg). By Assumption 3.1 (7) and the dominated convergence theorem, we can
interchange the differential with integral, and thus G*TW*E(Q@D) = 0. Under the assumption that
P(T; = 1| X;) = n(X;) # n¢, we have

W(XZ) _ 1 —W(Xi)

o
T

E(g1g0) = E{( )hl(Xi)}7

1-— Trio
E(g2°) = E{ (ﬂ(;fi) - 1>h2(Xi)}'

7

Rewrite G*TW* = (M, My), where M; € R?*™ and M; € R7*™2, Then, 3° satisfies

E{(”(Xi) _1= 7T(Xi))lvllm(xi) n (”(X” - 1)M2h2(XZ-)} — 0. (D.1)

0 0 o
5 1—m 5

Following the similar arguments to that in case (1), we can prove that

i = (- ) ra)
_ p(ETIXECO) | X) (B XDEGD X))

K3 K3
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By E(7; | X;) = m(X;) and the outcome model, it further implies

ZZE—M _ E{W(Xz)(K()iz)—i-L(Xl)) (1_7r§)fzr)f((Xl)} o)
_ E{(w(;fz) 1;1T(7ri§i))K(Xz)} {W(Xl?;()}—u+op(1)
= B{(F5 - o (T - 1)} + o)

where in the last step we use p = E(L(X;)). By equation (D.1), we obtain fi = p+ op(1), provided
K(X;) = af M1h1(X;) and L(X;) = ag Maho(X;), where a; and s are g-dimensional vectors

of constants. This completes the whole proof.

D.2 Proof of Theorem 3.2

Proof of Theorem 3.2. We first consider the case (1). That is the propensity score model is correctly

specified. By the mean value theorem, we have i = i + IA{(B)T(B\ — 3°), where
I~ (TY: (1-T)Yi\ & = 1~ (LY | (1-T)Y:\0F
- - 9 H = - ( ~ ~ ) )
n;(wf 1 -7 ) (8) n; 72 +(1—7ri)2 oB

where 7{ = wgo(X;), T = 7r5(

tion 3.2 (2), we can show that the summand in PAI(B) has a bounded envelop function. By Lemma

X;) and E is an intermediate value between /@ and 3°. By Assump-

B.1, we have supgcg, (ge) |ﬁ(ﬁ) - E(ﬁ(,@))] = o0p(1). Since B is consistent, by the dominated

convergence theorem we can obtain H(3) = H* + op(1), where

o — _E{(Eiﬁ_i_(l— )Y)(?Tr}:_E{<YZ-(1)+ ())877}

% (1-n9)?2/) 0B st 1—-n¢/ 0B
_ K(Xi) + L(Xi)(A = 77) On7
B _E{ (1 — ) B }

Finally, we invoke the central limit theorem and equation (B.1) to obtain that
n2(5 — p) -5 N (0, T SH?),
where H* = (1,LH*") T, 25 = (G*TW*G*)"I1G*TW*QW*G*(G*TW*G*)~! and
by

-
H Euﬂ

X Xp

> —
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Denote b;(T;, X;,Y3(1),Y;(0)) = T;Y;(1) /n¢ — (1 — T3)Y;(0) /(1 — w?) — p. Here, some simple calcu-

lations yield,

S, = BT, X, Vi), vi0)) — BP0y e

{irs 1—mn?
In addition, the off diagonal matrix can be written as 3,3 = (Eruﬁ, E;—uﬂ)T, where
z,uﬁ — —(G*TW*G*)ilG*TW*T,

where T = (E[g;—ﬁo(]jt?XZ)bl(E?X“E(1)7E(0))]7E[QJBO(E7Xl)bl(ThX“Y;(l)?}/l(o))])—r with

T, 1-T; T;
m(Xi) 1-75(X;) ma(X5)

915(T3 X:) = ( (X0, and gop (T Xo) = (— — 1) ha(X0).

After some algebra, we can show that

o {E<K(Xi) +(1- Wf)L(Xi)th(Xi))E(K(Xi) +(1- Wf)L(Xi)h;(Xi)> }T.

(1 = 77)m? ™

This completes the proof of equation (3.4). Next, we consider the case (2). Recall that P(7; =1 |

X;) = n(X;) # mgo(X;). Following the similar arguments, we can show that
1 ¢ ~
Ag—hm=_ D Di+HT(B—B°) +o0,(n"?),
i=1

where

and

H' = -Ef (ﬂXﬁ(K %3 +L(X) | (1~ Z;({fﬁ;g(xi)) %2 |

By equation (B.1) in Lemma B.3, we have that
n'2(fig — p) -5 N(0, BT EHY),
where H* = (1L, H*1)T, £5 = (G*TW*G*)"'G*TW*QW*G*(G*TW*G*)~! and
ST
o [ = S
Xus g

Denote ¢;(T;, X;,Yi(1),Y;(0)) = T;Y;(1) /7 — (1 — T;)Y;(0) /(1 — 7?) — p. As shown in the proof of
Theorem 3.1, E[b;(T;, X;,Y:(1),Y;(0))] = 0. Thus,

Y2 _ T2

_ p(TRW | Q=m0 o

TrZ‘-’2 (1—m)?
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Similarly, the off diagonal matrix can be written as iu@ = (i;ruﬁ, EQTMB)T, where

Euﬂ — —(G*TW*G*)_IG*TW*S,

where § = (E[girﬁo(TlvX’L)CI(TMXl7}/;(1)ﬂE(O))LE[g;ﬁo(ﬂ:XZ)CZ(T’HXHY’L(ILYVZ(O))])T with

T; 1-1T;
m(Xi) 1 —mp(Xi)

T
m3(Xi)

gm(Ti,Xi):( )hl(Xi), and ggg(Ti,Xi):( —1)h2(XZ-). (D.2)

After some tedious algebra, we can show that S = (8], 85 )7, where

5, — B (TR L) —xt) , (0= wXI) (0= a1,
5y = e (FOOUCD + LN =) =] | (L= mKKEED + (0= my o)

This completes the proof of equation (3.6).
Finally, we start to prove part 3. By (3.4), the asymptotic variance of i denoted by V', can be
written as

V=3,+2H"3,5+H SH". (D.3)

Note that by Lemma B.3, we have X5 = (G*TQ~1G*)~!. Under this correctly specified propensity

score model, some algebra yields

hih| hih]
E(eimy) B
E(hgfzf) E(hgh;(l—wf)> ’

o
i s

Q = Elgge(Ti, X:) g0 (T3, X;)] =

where gg(T;, X;) = (ngB(E,Xi),ngﬁ(E,Xi))T and g18(T;, X;) and go8(T;, X;) are defined in
(D.2). In addition, G* = (G}",G3™) T, where

i L), - E) o
Since the functions K(-) and L(-) lie in the linear space spanned by the functions M;h;(-) and
Mosho(-) respectively, where M; € RI*™ and M; € R9*™2 are the partitions of G*TW* =
(M;,M;3). We have K(X;) = alTMlhl(Xi) and L(X;) = O’,;—Mghg(Xi), where av; and oy are

g-dimensional vectors of constants. Thus

T K(XZ)—FL(XZ)(l—?T,?) 67’(’?
H™ = *E{ mo(1 — m?) B }
- —IE{ af Mk (X;) + o Maho(X;)(1 — ) 877?}
- 7?(1 - 77) B
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Comparing to the expression of G* in (D.4), we can rewrite H* as

M/ oy

T

H* = G*T

Following the similar derivations, it is seen that

o Mihi (Xi)+af Maoha(X,) (1=
R ol Mihu( )ﬂg(f,,r;% 2 X)) b (X))
E{a;erhl(Xi)+a;roM2h2(Xi)(1_7rf)hQ(Xi)}

U

Euﬂ — 7(G*TQ_1G*)_1G*TQ_1

which is equivalent to

M/ o
Euﬂ _ —(G*Tﬂ_lG*)_lG*T 11
M;az
Hence,
«T T T Tl 1eeT [ Miea T *
H'X,53=—(a; Mi,a, Mp)G*(G" Q' G")"'G” =—-H" YgH".
MTQQ
2
Together with (D.3), we have
M/ a
V=%, (a]M;,a] )G (G TQlan e T |
M;—ag
This completes of the proof.
O
D.3 Proof of Corollary 3.1
Proof of Corollary 3.1. By Theorem 3.2, it suffices to show that
_ o M/ a M/ o
(@I My, a] Ma)G*CG T | L7 | <(efMy,adMu)G*CG T [ 1T |, (D)
M &, M

where C = (G*"Q7'G*)~! and &; and M; among others are the corresponding quantities with
hi(X) and hy(X). Assume that hi(X) € R™T% and hy(X) € R™*t%2,  Since K(X;) =
aIMlhl(Xz) and L(XZ) = a;—MghQ(XZ), we find that (dIMl,d;—Mg) = (aIMl,O,a;Mg,O),

which is a vector in R™™® with a = a1 + as. Because some components of (d?l\_/ll, d;l\_/lg) are 0,
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by the matrix algebra, (D.5) holds if C — C is positive semidefinite. Without loss of generality, we

rearrange orders and write the (m + a) X ¢ matrix G* and the (m + a) x (m + a) matrix Q* as

_ G* _ Q Q
G*=< ), and QZ(Ql Q:>

For simplicity, we use the following notation: two matrices satisfy O; > O if O — O is positive

semidefinite. To show C > C, we have the following derivation

¢Tae - (@TAT)( L )*1< G’ )

Q Q2 A
> (G*T,AT)( 90—1 2)( C: ) —aTa e

This completes the proof of (D.5), and therefore the corollary holds.

D.4 Proof of Corollary 3.2

Proof of Corollary 3.2. The proof of the double robustness property mainly follows from Theorem
3.1. In this case, we only need to verify that span{hi(-)} = span{Mhi(-)} and span{ha(-)} =
span{Myhs(-)}, where M; € R9*™ and M; € R?*™2 are the partitions of G*T W* = (M, M>).
Apparently, we have span{Mh;(-)} C span{hi(-)}, since the former can always be written as a
linear combination of hj(-). To show span{h;(-)} C span{Mh1(-)}, note that the m; xm; principal
submatrix My; of M; is invertible. Thus, span{hi(-)} = span{Mji1hi(-)} C span{Mjh;(-)}. This
is because the my dimensional functions Mjihq(-) are identical to the first m; coordinates of
M; hq(-). This completes the proof of double robustness property. The efficiency property follows
from Theorem 3.2. We do not replicate the details. ]

E Regularity Conditions in Section 4
Assumption E.1. The following regularity conditions are assumed.
1. The minimizer 3° = argmingcg |[E(gg(T, X))||3 is unique.
2. 3° € int(O), where © is a compact set.
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3. There exist constants 0 < ¢y < 1/2, ¢4 > 0 and ¢co > 0 such that ¢ < J(v) < 1 — ¢
and 0 < ¢; < 8J(v)/0v < co, for any v = B B(x) with B € int(0). There exists a small
neighborhood of v* = 3*T B(x), say B such that for any v € B it holds that |0%J(v)/0v?| < ¢3

for some constant c3 > 0.
4. E|Y(1)]? < oo and E|Y(0)]? < oc.

5. Let G* := E[B(X;)h(X;) T Ai(¢* (X)), where A;(4( X)) = diag(&i (¢ (X)) Ly, ¢i(9( X)) 1y

is a k X k diagonal matrix with

B b U )
X)) T O—T@XENE) o
T, 9J((X))
PX) ob

Here, 1,,, is a vector of 1’s with length m;. Assume that there exists a constant C; > 0, such

GWX) =~ (53

¢i(V(X5)) = —

that Apmin(G*T G*) > C1, where Ayin(-) denotes the minimum eigenvalue of a matrix.

6. For some constant C, it holds ||E[h(X;)h(X;) ]|z < C and |E[B(X;)B(X;)"]||2 < C, where
|A||2 denotes the spectral norm of the matrix A. In addition, sup,ey ||h(z)|]2 < Cx/?, and

Supycy || B(z)|2 < Crl/2.

7. Let m*(-) € Mand K(-), L(-) € H, where M and H are two sets of smooth functions. Assume
that log N[ (e, M, L2(P)) < C(1/e)'/F and log N[ (e, H, L2(P)) < C(1/€e)'/*2, where C is a
positive constant and k1, k2 > 1/2. Here, N (€, M, La(P)) denotes the minimum number of
e-brackets needed to cover M; see Definition 2.1.6 of van der Vaart and Wellner (1996).

Note that the first five conditions are similar to Assumptions 3.1 and 3.2. In particular, Condi-
tion 5 is the natural extension of Condition 1 of Assumption 3.2, when the dimension of the matrix
G* grows with the sample size n. Condition 6 is a mild technical condition on the basis functions
h(x) and B(x), which is implied by Assumption 2 of Newey (1997). In particular, this condition
is satisfied by many bases such as the regression spline, trigonometric polynomial, wavelet bases;
see Newey (1997); Horowitz et al. (2004); Chen (2007); Belloni et al. (2015). Finally, Condition 7
is a technical condition on the complexity of the function classes M and H. Specifically, it requires
that the bracketing number N (e, -, L2(P)) of M and H cannot increase too fast as € approaches to

0. This condition holds for many commonly used function classes. For instance, if M corresponds
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to the Holder class with smoothness parameter s defined on a bounded convex subset of R¢, then
log Nj j(e, M, La(P)) < C(1/€)%* by Corollary 2.6.2 of van der Vaart and Wellner (1996). Hence,
this condition simply requires s/d > 1/2. Given Assumption E.1, the following theorem establishes

the asymptotic normality and semiparametric efficiency of the estimator ﬁﬁ-

F Proof of Results in Section 4

For notational simplicity, we denote 7*(x) = J(m*(x)), J*(x) = J(3* B(z)), and J(z) =
J(BTB(z)). Define Q,(3) = 1gs(T, X)||3 and Q(B) = | Egg(T;, X;)||3. In the following proof, we
use C,C’" and C” to denote generic positive constants, whose values may change from line to line.

In this section, denote K = x and ¢(X) = m(X).

Lemma F.1 (Bernstein’s inequality for U-statistics (Arcones, 1995)). Giveni.i.d. random variables
Z1, ... Zy, taking values in a measurable space (S, B) and a symmetric and measurable kernel func-
tion h: 8™ — R, we define the U-statistics with kernel h as U = (:1)_1 Yoivenciy, M Ziys s Ziy).
Suppose that Eh(Zi,, ..., Zi,,) = 0, B{E[M(Zi,, ..., Zi,)) | Zi]}” = 0% and ||h]le < b. There exists

a constant K (m) > 0 depending on m such that
P(|U| > t) < 4exp{ — nt?/[2m2o? + K(m)bt]}, vVt > 0.

Lemma F.2. Under the conditions in Theorem 4.1, it holds that

sup ‘Qn(ﬁ) - Q(B)‘ = 0p<\/K21nm)'

Proof of Lemma F.2. Let £(8) = (&1(8), -, &(8))T and ¢(8) = (61(8), .., on(B)) T, where

T; 1-1; T;

SO =By 1oJe BX)) P sETRxy)
Then we have
Qn(B) =172 > [6(B)&(B)h1(X:) Thi(X;) + ¢i(B)¢; (B)ha(Xi) Tha(X )]
i=1 j=1
=n? Y [G(B)6(B)h (X)) Thi (X)) + 6i(B) ¢ (B)ha(Xi) Tha(X)] + An(B),
1<i#j<n

where A,(8) = n™ 23" [&(8)*|h1(X9)|13 + ¢i(8)?[|ha(X5)[13]. Since there exists a constant
<1

co > 0 such that ¢g < |J(BT B(z))| —¢p for any 3 € © and T; € {0,1}, it implies that
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Supgee maxi<i<n |&i(B)| < C and supgeg maxi<i<n [¢i(8)| < C for some constant C' > 0. Then
we can show that
¢ >
E( sup [4,(8)]) < CE(Ih(X)[3) = O(K/n).
Bcoe n
By the Markov inequality, we have supgeg |4n(B)| = Op(K/n) = o,(1). Following the similar
arguments, it can be easily shown that supgeg |Q(8)|/n = O(K/n). Thus, it holds that

2
Beco geo In(n—1)

> ()| + 0plK/m), (F.1)

1<i<j<n

where u;;(8) = u13;(8) + u2i;(B) is a kernel function of a U-statistic with
ui;(8) = &(B)&;(B)h1(Xi) "hi(X;) — E&(8)E;(B)hi(Xi) T ha (X)),
uzi(8) = 6i(8)9;(B)ha(Xi) "ha(X;) — E¢i(8)d;(8)h2(X,) " ha( X))

Since © is a compact set in R by the covering number theory, there exists a constant C' such that
M = (C/r)¥ balls with the radius  can cover ©. Namely, © C Ut<m<m©Om, where 0, = {3 €

RE . ||B — Bmll2 < 7} for some By, ..., Bar. Thus, for any given € > 0,

P(SUP (n2—1) Z Ulij(lg)‘>€> <m§[:1p< sup (nQ—l) Z uuj(ﬁ)’>€)

peo! N 1<i<j<n BEO, I 1<i<j<n
M
<Y [y X moten] > )
—+ P(ﬁselg)m 7”L(7”L2—1) Z ‘um(ﬂ) — um(,@m)‘ > 6/2)] . (FQ)

1<i<j<n

By the Cauchy-Schwarz inequality, |h1(X;) h1(X;)| < [|hi(Xi)|2]|h1(X;)|]2 < CK, and thus
|u14(Bm)| < CK. In addition, for any 3,

E{&(8)h1(X:) "E[&;(B)h1(X;)] — E[&(8);(B)h1(X:) Thi(X;)]}
< E{&(8)h1(X,) "E[5;(B)h1 (X))} < [EE(B)h1(Xi)hi(X)T ||z - | EE (B)ha(X,)|3 < CK,

for some constant C' > 0. Here, in the last step we use that fact that

IEE; (B)h1(X;)II3 < Ell&; (B)h1(X))|5 < C - E[lh1(X;)II5 < CK,
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and ||[E€2(B)h1(X;)h1(X;) |2 is bounded because |Ehi(X;)hi(X;) |2 is bounded by assumption.
Thus, we can apply the Bernstein’s inequality in Lemma F.1 to the U-statistic with kernel function

15 (Bm),

]P’(‘n(jl) 1%;@ w1ig(B)| > €/2) < 2exp (~ One[K + K, (F.3)
for some constant C' > 0. Since |0.J(v)/dv| is upper bounded by a constant for any v = 8" B(z), it
is easily seen that for any 8 € O, [£(8) & (Bm)| < Cl(B—Bm) B(X;)| < CrK'Y/2, where the last
step follows from the Cauchy-Schwarz inequalty. This further implies |£;(8)&;(8) —&i(8m)&; (Bm)| <

CrK'? for some constant C' > 0 by performing a standard perturbation analysis. Thus,
[u1i5(8) — w5 (Bm)| < CrK Ry (X) Tha (X;)] < CrEK?/?,
and note that with » = K~2, then CrK'/?E|h1(X;)"h1(X;)| < /4 for n large enough. Thus

Z ‘“Uj(ﬁ) - ulij(ﬂm)‘ > e/2>

1<i<j<n

> (X) Th(X))] > €/2)

1<i<j<n

> [1h(X0) T ha(X)] — Bl (X0) Tha(X;)]] > ¢/4)

1<i<j<n

IP( sup ———~
BEO, n(n — 1)

1/2
< P(QCTK

n(n—1)

2CrK1/?

SP(n(n— 1)

< 2exp(—CnKeé?), (F.4)

where the last step follows from the Hoeffding inequality for U-statistic. Thus, combining (F.2),
(F.3) and (F.4), we have for some constants C7,Cy,C3 > 0, as n goes to infinity,
2
P( sup|———~ uh](ﬁ)‘ > 6)
geoln(n —1) 1<;<n

< exp(C1 K log K — Cone*/[K + Ke]) 4 exp(C1 K log K — C3ne’K) — 0,

where we take e = C'y/K?log K /n for some constant C' sufficiently large. This implies

glelgn(nQ—l) Z ulij(,B))—OpO/K”ng).

1<i<j<n

Following the same arguments, we can show that with the same choice of ¢,

il 2 )] =0 ()

1<i<j<n

Plugging these results into (F.1), we complete the proof. O
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Lemma F.3 (Bernstein’s inequality for random matrices (Tropp, 2015)). Let {Zj} be a sequence
of independent random matrices with dimensions d; x do. Assume that EZ; = 0 and ||Zg|l2 < R,

almost sure. Define
2 _ T T
7= max {| L E@z]), | ez, )
k=1 k=1
Then, for all £ > 0,
- t2/2
IP’(H ZH >t)<d d (—7>

Lemma F.4. Let H = (h(X}),...,h(X,))" and B = (B(X}), ..., B(X,))" be two n x K matrices.

Under the conditions in Theorem 4.1, then

IH"H/n — E[h(X;)h(X;) ]2 = Op(v/K log K/n) (F.5)
and
|IB"B/n — E[B(X;)B(X;)"]||l2 = Op(v/Klog K/n). (F.6)

Proof of Lemma F.4. We prove this result by applying Lemma F.3. In particular, to prove (F.5),
we take Z; = n" ! [h(X;)h(X;)" — E(h(X;)h(X;)")]. It is easily seen that

1Zill2 < 0~ er(R(X)R(X0) ") + [[E(R(X)R(X;) )||2] < (CK + C)/n,
where C' is some positive constant. Moreover,

| Yo E@zD)|| <o (IER(X)R(X) TR(X)R(X) T [l + [ E(R(X)R(X) DI3)
=1
<n Y CK - ||[E(h(X;)h(X:) D)2 + C?) < n YHC K + C?).

Note that /K log K/n = o(1). Now, if we take t = C'\/K log K/n in Lemma F.3 for some constant
C sufficiently large, then we have P(|| >_p_; Zg|l2 > t) < 2K exp(—C"log K) for some C’ > 1. Then,

the right hand side converges to 0, as K — oo. This completes the proof of (F.5). The proof of

(F.6) follows from the same arguments and is omitted for simplicity. O

Lemma F.5. Under the conditions in Theorem 4.1, the following results hold.

1Let U=1%" U, U= (U;],U})", with

U = (-~ 1= ) m(X0), Un = (2 —1)ha(Xy)

Then ||U||z = O,(K/?/n'/?).
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2 Let B(r) = {8 € RE : ||B — B*|]2 <}, and 7 = O(K'/?/n'/2 4 K~"). Then

) :Op(K1/2r+ /Kl(;LgK>'

3 Let J; = J(BT B(X)), Ji = 8J(v)/0v|,—g7 B(x,) and

(B0 LX) EOGO) X015 )

dgs(T, X)

o8 -G

sup
BeB(r)

(s 1 -
Then
1 —1;)Yi(0)7 T 1/2 -
iB(X:)+ G ar|| =0, (K'Y?r+ K7 ).
SeBir nZ;[ (1—Ji)2 JiB(X:) + G el Op( rE )

Proof of Lemma F.5. We start from the proof of the first result. Note that E(U;) = 0. Then

E|U|2 = E(U, U;)/n and then there exists some constant C' > 0,

E||U|2 = E[n’l i (WZ - ; L ) hio(X:)2I(k < my) + (Z - 1)2hk(Xi)21(kz > my)

*
1 i ;

K
< CY E{hi(X:)*}/n = O(K/n).

k=1
By the Markov inequality, this implies |U|s = O,(K'/?/n'/?), which completes the proof of the

first result. In the following, we prove the second result. Denote

T; 1-1T; .
&0n(X)) =~ (a2 + T Tmaey) )
¢i(m(Xi)) = —mj(m(Xi)),

and A;(m(X;)) = diag(&(m(X;))1m,, ¢i(m(X;))1m,) is a K x K diagonal matrix, where 1,,, is a

vector of 1 with length m;. Then, note that

0gs(T.X) . _ 1y .
iT -G = > B(X)h(X;)"Ai(B"B(X;)) - E[B(X))h(X;) " Ai(m* (X)),
i=1
which can be decomposed into the two terms Ig + I, where

n

ZB ) [A(B B(X)) — Ai(m* (X)), I1=) 7,

i=1

Z; - n—l{B(X»h(Xi)TAi(m*(Xi)) ~ E[B(X)h(X,)" Ay(m* (X)) }.
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We first consider the term II. It can be easily verified that ||A;(m*(X;))|l2 < C for some constant
C > 0. In addition, ||B(X;)h(X;) |2 < [|1B(X))|l2 - |R(X:)|l2 < CK. Thus, ||Zi|lz < CK/n.

Following the similar argument in the proof of Lemma F.4,
n
| Yo E@z])|| < v IEB(X)R(G) T Aum* (X)) Ai(m* (Xi)R(X) B(X) 2
+n 7 [EB(Xa)h(X;) T Ai(m*(X0))[3-
We now consider the last two terms separately. Note that

IEB(Xi)h(X,) A(m*(X))[3 = sup  |[Eu' B(Xi)h(X;) " Ay(m*(X)v[”

[alla=1,[[v[2=1

< sup |[Eu'B(X;)B(X;) ul- sup [Ev'Ai(m*(X:)h(X)h(X:)" Ai(m*(X;))v]

[all2=1 [vil2=1

< |E(B(X:)B(X;) ")l - CIE(R(X:)h(X;)T)|l2 < C', (F.7)
where C, C’ are some positive constants. Following the similar arguments to (F.7),

IEB(X:)h(X) " Ai(m* (X)) Ay (m* (X)) h(X:)B(X;) |2

<CK- sup |Eu' B(X;)B(X;) 'u|<CK - ||EB(X;)B(X;) | <C'K

[ulla=1
for some constants C, C’ > 0. This implies || >_1 E(Z;Z;)||2 < CK/n. Thus, Lemma F.3 implies

|1I]l2 = Op(y/KlogK/n). Next, we consider the term Ig. Following the similar arguments to
(F.7), we can show that

sup |[Igll2 = sup sup ‘*ZUTB X)'[A(B"B(X;)) — Ai(m*(X;))]v
BeB(r) BeB(r) |lull2= 1HVH2 1
1S moomonr | |2 S hocmcn].

- sup max [|A;(BTB(X))) — Ai(m* (X))
BeB(r )1<z<n

< C sup sup |(B"~ ) B()|+ Csup |m"(z) - 5" B(x)|
BEB(r) TEX zCX

S C/(KI/QT‘—FK_TZ’) S C//K1/2T,

for some C,C’,C" > 0, where the second inequality follows from Lemma F.4 and the Lipschitz

property of &;(-) and ¢;(), and the third inequality is due to the Cauchy-Schwarz inequality and
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approximation assumption of the sieve estimator. This completes the proof of the second result.

For the third result, let

TY() | (Q-T)Y(O)
w5 = () + @ Tonxp ) "X

Thus, the following decomposition holds,
1 n
~> m(BTB(X:)B(X:) + G =Tig +Tp + T,
i=1

where

n

Tis = = > (BT BIX0) — il (B(X.)) BX)
i=1
7= 3 [t (BX) B(X) — Eni(m* (B(X.)) B(X,)|

n -
=1

T3 = En;(m*(B(X,)))B(X;) + G*Ta*.

Similar to the proof for supgep(,) [|/all2 previously, we can easily show that supgep [|T18l2 =
Op(Kl/zr). Again, the key step is to use the results from Lemma F.4. For the second term
Ty, we can use the similar arguments in the proof of the first result to show that E|T3||3 <
CK -En;(m*(B(X;))?/n = O(K/n). The Markov inequality implies || T5||2 = O,(K'/?/n!/?). For
the third term T3, after some algebra, we can show that
ITsll> < O sup |K () — o ha(@)| + sup [L(@) — a3 ha()]) = Op(K ™).
zeX zeX

Combining the Ly error bound for Tig, T5 and T3, we obtain the last result. This completes the
whole proof. O

Lemma F.6. Under the conditions in Theorem 4.1, it holds that

18 = B*ll2 = 0p(1).

Proof of Lemma F.6. Recall that 3° is the minimizer of Q(8). We now decompose Q(3) — Q(3°)

as

Q(B) — Q(B°%) = [Q(B) — Qun(B)] + [Qn(B) — @n(B°)] + [Qn(B°) — Q(B7)]. (F.8)

I 17 IE

In the following, we study the terms I, II and III one by one. For the term I, Lemma F.2 implies
1Q(B) — Qu(B)| < supgee |@n(B) — Q(B)| = 0p(1). This shows that |I| = 0,(1) and the same
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argument yields |/1]| = oy(1). For the term II, by the definition of B, it is easy to see that IT < 0.
Thus, combining with (F.8), we have for any constant 7 > 0 to be chosen later, Q(B) —Q(B°) <n
with probability tending to one. For any € > 0, define E. = ©N{||3—3°||2 > €}. By the uniqueness
of @°, for any B € E, we have Q(8) > Q(8°). Since E. is a compact set, we have infgep, Q(8) >
Q(B°). This implies that for any € > 0, there exists n’ > 0 such that Q(8) > Q(8°) + n/ for
any B € E.. If B € E,, then QB°) +n > Q(B) > Q(B°) + n' with probability tending to one.
Apparently, this does not holds if we take n < 7. Thus, we have proved that 5 ¢ E, that is
18 — 3°||2 < € for any € > 0. Thus, we have |3 — 8°||2 = op(1).

Next, we shall show that ||3° — 8*|l2 = 0p(1). It is easily seen that these together lead to the

desired consistency result
18 =B7l2 < 187 = B%[l2 + I8 — B°[l2 = 0p(1).

To show ||3° — B*||2 = 0,(1), we use the similar strategy. That is we want to show that for any
constant 7 > 0, Q(8*) — Q(B°) < n. In the following, we prove that Q(3*) = O(K'~2?"). Note
that

Q(B <CQ —2r Z]E‘h’ (Kl 2rb)

where the first inequality follows from the Cauchy—Schwarz inequality and the last step uses the as-
sumption that supgey |[h(z)|l2 = O(K'/?). In addition, it holds that Q(3°) < Q(8*) = O(K'~2™).
As K — oo, it yields Q(8*) — Q(B°) < n, for any constant n > 0. The same arguments yield

|B° — B*||2 = 0p(1). This completes the proof of the consistency result. O

Lemma F.7. Under the conditions in Theorem 4.1, there exists a global minimizer ,5 (if Qn(B)

has multiple minimizers), such that
18— B"[l2 = Op(K'/2/n!/? + K=™). (F.9)

Proof of Lemma F.7. We first prove that there exists a local minimizer A of Qn(B* + A), such
that A € C, where C = {A € RE : ||Al]y < r}, and r = C(KY/2/n/2 4 K—") for some constant C

large enough. To this end, it suffices to show that

IP’{ Auggc Qn(B"+A) — Qn(B") > 0} — 1, asn — oo, (F.10)
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where dC = {A € R¥ : |Allz = r}. Applying the mean value theorem to each component of
gﬁ*JrA(T?X)v
gﬁ*—‘,—A(T) X) = gﬁ* (T7 X) + éAa

~ 095(T, X . . . . . =
where G = % and for notational simplicity we assume there exists a common 3 = v3* +

(1- v),é for some 0 < v <1 lies between B* and B* + A (Rigorously speaking, we need different
B for different component of gg«ya (T, X)). Thus, for any A € 9C,
B*+

Qn(B"+ A) — Qu(B") = 2g5- (T, X)GA + AT(G'G)A
> —2||ga- (T, X)|2 - |Gz - |All2 + | A3 - Anin(G T G)

> —C(KY2 /2 4 K7™) o+ C - 12, (F.11)

for some constant C' > 0. In the last step, we first use the results that ||gg« (T, X)||2 = Op(K /2 /n'/?+
K~"), which is derived by combining Lemma F.5 with the arguments similar to (F.14) in the proof
of Lemma F.8. In addition, |G|z < ||G—G*|2+|/G*||2 < C, since ||G*||2 is bounded by a constant
and ||G — G*||; = op(1) by Lemma F.5. By the Weyl inequality and Lemma F.5,

Amin(GTG) > Anin(G*TGH) — |GTG — GG

>C |G~ Glz- |Gllz = |G = G"[l2- |G*[l = C/2,

for n sufficiently large. By (F.11), if » = C(K'/2/n'/2 4 K~") for some constant C' large enough,
the right hand side is positive for n large enough. This establishes (F.10). Next, we show that
B =0[3*+ Ais a global minimizer of @, (3). This is true because the first order condition implies
(8§5(T, X)

B

provided GQE(T,X )/0B is invertible. Following the similar arguments by applying the Weyl in-

)95(T.X) =0, = g5(T,X) =0,

equality, 8QE(T , X')/0B is invertible with probability tending to one. Since gE(T, X)) =0, it implies
Qn(ﬁ) = 0. Noting that @,,(8) > 0 for any 3, we obtain that B is indeed a global minimizer of
Qn(B). o

Lemma F.8. Under the conditions in Theorem 4.1, B satisfies the following asymptotic expansion

B-B"=-GU+A,, (F.12)
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where U = %Z?:l U;,, U; = (Ui—lr, UZE)T, with

T, 1-T; T;
Ui = <7T* — *> hi(X;), Up= <* — 1) ho(X5),

i 1 —m;

e =0, () + R (U + 50)

Proof of Lemma F.8. Similar to the proof of Lemma F.7, we apply the mean value theorem to each

7

and

component of gE(T, X),

995(T, X)
op

where for notational simplicity we assume there exists a common 3 = v3* + (1 — v)ﬁ for some

3o (T, X) + ( )(B-p") =0,

0 < v <1 lies between B* and ,é After rearrangement, we derive

a * x—1 = *— 8@*(T,X) -1
BB =G ge(T.X) + [@ - (FH20) gp (T, X)
= -G U+ A +An+ A, (F.13)
where
_ 0gz(T, X)\-17 _
Aw =G0 - ga- (T, X)), Aw=[a - (RN
and

0g5(T, X )\ - _

We first consider A, in (F.13). Let € = (&, ...,&,) ", where

A, = [G*—l _ <

1 1 1 1
=T - ) - -1 (= - ), for1<i<m,
gz 7 77-;* Ji* ( 7,) 1771_; 1*JZ~* or STsS MMy
and
1 1 )
&:TZ(E_f)’ formi+1<i<K.

(2 (2

Let H = (h(X1),...,h(X,))" be a n x K matrix. Then, for some constants C,C’ > 0,

|AuE = n 26 THG G HT¢ < n 2]} [HG'G*'H |,

< Cn7Hgl3 - HH/nl2 < C'n7HiE]13, (F.14)

where the third step follows from the fact that ||G*~!||y is bounded and the last step follows from
Lemma F.4 and the maximum eigenvalue of E[h(X;)h(X;)"] is bounded. Since |0.J(v)/dv| is upper
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bounded by a constant for any v < sup,cy |m*(z)|, then there exist some constants C,C’ > 0, suc

that for any m; +1 <i < K,
& < Clrf = Jf| < C'sup Im*(x —B*TB:(: < C'K™™,
! ! ex
xr

Similarly, |&] < 2C"K~™ for any 1 < i < m;. Thus, it yields n~![|£]|3 = O,(K~?™). Combining
with (F.14), we conclude that [[A,1|2 = Op(K™).

Next, we consider A,5. Since ||[G*~!||2 is bounded, we have

| Anaflz < G2 H<8gﬁ§£m)_l\\2 e - WH

~ Klog K K
<O(IB =Bk + /=255 ) /=

where the last step follows from Lemma F.5.

1T

Finally, we consider A,3. By the same arguments in the control of terms A,; and A2, we can

prove that

255 oo -

~ Klog K
<O(11B = B[ V2 + /2282 g,
n

Combining the rates of || Apil2, [|An2|2 and [[Ans||2 with (F.13), by Lemma F.5, we obtain

Al < |G = (

18— B2 < |G gp-(T, X)ll2 + | Antllz + [ Anz]l2 + [ Ans]l2

< c(ff/f b ) (18 - g ar e 4 R (ff/f +L),

for some constants C,C’" > 0. Therefore, (F.12) holds with A, = A,1 + A2 + Ays, where

a0, (o )+ R (G + )

This completes the proof. ]
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Proof of Theorem 4.1. We now consider the following decomposition of ﬁg — U,

1o~ [LYi(1) - K(Xi) - L(Xy)) (1= T)(Yi(0) - K (X))
>l J; - 1-J, |

g 1=
=1

1~ /T;
a5

1-1T, 1 /T, 1 &
: _J:_)K<Xi>+ n; (Z- —1)L<Xi>+n;L<Xi> yr

1 [L(Yi(1) - K(Xi) — L(X3)  (1-T)(Yi(0) — K(X;))
:nz[ J; - 1 J; )
i=1 7 7
Il /T, 1-T; 1<~ /T;
+n;(ji—1_z)AK(Xi)+n;(L—1)AL ZL

where J; = J(BTB(X,)), Ax(X:) = K(X;) — o Thi(X;) and AL(X;) = L(X;) — o Tho(X).
Here, the second equality holds by the definition of B. Thus, we have

1 n
Lz — :72 S; Ri+R
fig— 1 n 2 + Ro+ R1+ R2+ Rs

where

_ IGO0 - K(X) . 5
Rl_n; A

i—1
RzZii(% 1_J>AK( i) RSZ:ZZZn;<§Zl>AL(Xi)~

In the following, we will show that R; = op(n_l/ 2) for 0 < j < 3. Thus, the asymptotic normality of
nl/ 2(n 5 ) follows from the previous decomposition. In addition, S; agrees with the efficient score
function for estimating p (Hahn, 1998). Thus, the proposed estimator ﬁ[j is also semiparametrically
efficient.
Now, we first focus on Ry. Consider the following empirical process G,(fo) = n'/?(P, —

P)fo(T,Y (1), X), where P, stands for the empirical measure and P stands for the expectation, and

H(TY (1), X) = [7*(X) — J(m(X))].
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By Lemma F.7, we can easily show that

sup|J(B" B()) — *(x)| S sup |8" B(z) — 8*T B(w)|
reX zreX

+ sup m*(z) — BT B(w)| = Op(K/n'/? + K'/>77) = 0,(1).
reX

For notational simplicity, we denote || f|loc = supgcy |f(x)]. Define the set of functions F = {fo :
|lm — m*||ee < 6}, where 6 = C(K/n'/? + K'/27™) for some constant C' > 0. By the strong
ignorability of the treatment assignment, we have that Pfy(7,Y (1), X) = 0. By the Markov
inequality and the maximal inequality in Corollary 19.35 of Van der Vaart (2000),

n'/2Ry < sup Gy(fo) S E sup Gu(fo) < J ([ Fol
foE]'— foE]:

P,27~F7L2(P))7

where J[ ](HF()‘
bounded away from 0, we have |fo(T,Y (1), X)| S 0|Y (1) — K(X) — L(X)]| := Fy. Then || Fy||p2 <
S{E|Y (1)*}*/2 < 6. Next, we consider N[ (e, F, Lo(P)). Define Fo = {fo : [m — m*||c < C} for

P2, F,La(P)) is the bracketing integral, and Fy is the envelop function. Since J is

some constant C' > 0. Thus, it is easily seen that log N (¢, F, La(P)) S log Ny (e, Fod, L2(P)) =
log N[ (€/6, Fo, L2(P)) < log Np(e/6, M, La(P)) S (6/€)Y/*1 where we use the fact that J is
bounded away from 0 and J is Lipschitz. The last step follows from the assumption on the brack-

eting number of M. Then

1 1
J[](HF()HRQ,]:,LQ(P)) S/ \/IOgN[](G,F7L2(P))d6§/ (5/6)1/(2]“)(16,
0 0

which goes to 0, as 6 — 0, because 2k; > 1 by assumption and thus the integral converges. Thus,
this shows that n'/2Ry = 0,(1). By the similar argument, we can show that n'/2R; = 0,(1).
Next, we consider Ry. Define the following empirical process G, (f2) = n'/?(P, — P) fo(T, X),

where
T —J(m(X))
J(m(X))(1 - J(m(X)))

By the assumption on the approximation property of the basis functions, we have ||Ax||co S K.

f?(T7X) =

Ax(X).

In addition,

I7(BTB(X)) — 7" (X)|lp2 < I7(B"B(X)) = J(8" T B(X))lp2 + 178" B(X)) - 7*(X)|| 2

SIBTB(X) - BT B(X)|p2 + sup m*(x) — B* B(x)|

= O, (K2 /n'/? 4 K=,
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where the last step follows from Lemma F.7.
Define the set of functions F = {fa : [|[m—m*|p2 < 01, [|Allec < d2}, where &1 = C(K/2/nl/2 4

K~"™) and d; = CK~" for some constant C' > 0. Thus,

n'?Ry < sup Gy (f2) +n'/? sup Pfy.
fo€F foEF

We first consider the second term n!/2 supr,er Pfo. Let Gy = {m € M : |[m —m*||p2 < 61} and

Go={A € H—ai"hy : ||All < d2}. By the definition of the propensity score and Cauchy

inequality,
“(X) — J(m(X))
nl/? sup Pf2:n1/2 sup [E it A(X
o meo R eg, “Tm XN — Jmx)) K
<n'/? sup ||7* — J(m)||p2 sup [|A|pa

megy A€Ga

5 n1/25152 S nl/Z(Kl/Q/nl/Q +K*T5)K*7”h _ 0(1)’

where the last step follows from 7, > 1/2 and the scaling assumption n'/2 < K747 in this
theorem. Next, we need to control the maximum of the empirical process supy,cr Gn(f2). Fol-
lowing the similar argument to that for Ry, we only need to upper bound the bracketing integral

Ji (1P|

P2, F,La(P)). Since J is bounded away from 0 and 1, we can set the envelop func-

< 52. Define .FO = {f2 :

~

tion to be Fy := U6y for some constant C' > 0 and thus [[F3| p2
|m —m*||p2 < C,||A||p2 < 1} for some constant C' > 0, Gig = {m € M +m* : ||m|p2 < C} and
G ={A €H—ai"hy:|A]p2 <1}. Similarly, we have
log N (€, F, Lo(P)) < log N j(€/62, Fo, L2(P))

< log Np(€/62, Gro, L2(P)) + log N j(€/d2, Gao, La(P))

< log Np(€/62, M, L2(P)) + log N |(€¢/d2, H, L2(P))

< (S2/)! 1 4 (62/€)' "2,
where the second step follows from the boundness assumption on J and its Lipschitz property, the
third step is due to Gig — m* C M and Gy + a’{Thl C ‘H and the last step is by the bracketing
number condition in our assumption. Since 2k; > 1 and 2ky > 1, it is easily seen that the bracketing
integral Jp (|| F2l|p2, F, L2(P)) = o(1). This shows that sup,c » Gn(f2) = 0,p(1). Thus, we conclude

that n'/2Ry = 0,(1). By the similar argument, we can show that n'/2R3 = 0,(1). This completes

the whole proof. O
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G Discussion on the Results in Section 4

Under the conditions in Theorem 4.1, it is well known that the convergence rate for estimating
K(x) (and also L(x), ¥*(x)) in the La(P) norm (i.e, f(f((m) — K(x))?P(dz)) is Op(k~ 2™ + K /n);
see Newey (1997). Thus, the optimal choice of s that minimizes the rate is £ =< n!/n+D - Assume
that r, = r,. With & < n/@n+D the conditions x = o(n!'/3) and T = o(k) always hold
as long as 1, > 1. Recall that from the previous discussion r;, = s/d, where s is the smoothness
parameter and d is the dimension of X. Thus under very mild conditions s > d, we do not need to

under-smooth the estimator.

Remark G.1. By the proof of Theorem 4.1, we find that when x = o(n'/®»*1) and s =
o(n'/(?rn+1)) hold, the asymptotic bias of the estimator ﬁg is of order O,(K~("+7n)) which is
the product of the approximation errors for ¢*(x) and K(x) (also L(x)). Thus, to make the bias
of the estimator ﬁg asymptotically ignorable, we can require either 7, or 7, sufficiently large (not
necessarily both). This phenomenon can be viewed as the double robustness property in the non-
parametric context, which holds for the kernel based doubly robust estimator (Rothe and Firpo,
2013) and the targeted maximum likelihood estimator (Benkeser et al., 2017). In addition, our es-
timator has smaller asymptotic bias than the usual nonparametric method. For simplicity, assume
ry = rp = r. The asymptotic bias of the IPTW estimator in Hirano et al. (2003) is generally of

order O,(k~"), whereas our estimator has a smaller bias of order O, (x™2").

H Estimation of ATT
We consider the estimation of the average treatment effect for the treated (ATT)
= B(Yi(1) — Yi(0)|T; = 1),
Let 77 = E(Y;(1) | T; = 1) and 7§ = E(Y;(0) | 7; = 1). By the law of total probability,
= B(TY;(1) | T = 1) = E(LY;(1))/B(T; = 1),

Thus, a simple estimator of 7| is
~ _ 2im LY

DY



To estimate 7, we notice that

7o = E[E(Y;(0) [ Ti =1, X5) [ Ti = 1] = E[E(Y;(0) | X;) [ T = 1]
_ B[LE(Y(0) | Xi)] _ E(x(8"T X)E(Y;(0) | X))
P(T;=1) P(T; = 1)
L (8" X;)(1 — T;)Yi(0)
- P(T= I)E{ 1—m(B*1Xi) } '

Similar to the bias and variance calculation for the ATE, we can estimate 3 by the solving the

following estimating equations

e 1-T)r(BTX
" 1;(ﬂ_(1—ﬂ)(ﬂ(fX) )>f(X>_O'

Then, we set T; = W(BTXZ') and estimate 7y by

i (A =Tyr

where 7; = 7; /(1 — 7;). The final estimator of the ATT is 7 = 73 — 7p. Similar to the proof of the

main results on ATE, we can show that when both models are correct, n'/2(7 — 7*) —4 N (0, W),

where
*2

1—nF

2

Here, ¢ =Y (0) - K(X),e1 =Y(1) - K(X) - L(X) and p=P(Y =1)

W = p B |TE(S | X) + B | X) + 7 (LX) - 7).

I Derivation of (3.10) and (3.11)

In this appendix, we only provide a sketch of the proof of (3.10) and (3.11), because the detail is very
similar to the proof of Theorem 2.1. Recall that as in Section 2, 3° which satisfies E(gg. (T, X)) = 0
is the limiting value of 3 as in Lemma B.2. In addition, denote Ko(X;) = a*Thi(X;)+5A1h1(X;)
and L°(X;) = v*Thy(X;) + § Ashy(X;), where the vectors A; and Ay are to be determined. We

have the following decomposition

n

= 3 20 [ 60— OO0 — BP0} = s (0(0) = K90+ 1(0)
2 ey 7 0 70 =)
i T O R = h
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We first consider I5. The mean value theorem implies

7, Ony(X))

I = —% ; "2(X;) 0P {Yi(1) - K°(X:) — LX)} (B — B°),

where 5 is an intermediate value between 3 and 8°. Under Assumptions similar to B.1, the
dominated convergence theorem implies

1 n Tz aWE(Xz) o o B
el mx g ) - KX - LX)} = 0,(6)

T4
i=1"j

Similar to Lemma B.3, we can show that B —B° = Op(n_l/Q). The Slutsky theorem yields I, =
0,(6n~/2). The same argument implies that I3 = O,(dn~"/2). Finally, we focus on I;. Note that

n

L % ; [W(J;i(i) {Vi(1) - K(X;) - L(X,)} — 1:g’('i){yi(o) ~ K(Xi)}+ LX)~ ] = i; B
where
i = {wﬁo(x,-) T (X)) POi) — KO(X0) — LX)
- {1 —17;30?&) 1 i;(j;(i) }{Yi(o) - KX}
T; ol x . N '
~ gy U (X + LX) = K(XG) = LX)}
ey (KO0 = K (X)) + 1°(X) - L(X,),

The central limit theorem implies n1/2(% S Ay —EA;)/sd(A;) — N(0,1). In order to derive
the order of 2 > | A;, it suffices to compute the E(A;) and sd(A;). As in the derivation of (C.1),

after some algebra, we similarly obtain

B — B* =ET "M+ 0(€?),

where
M — (it (X3)
E(utha(X)
1 Omg+(Xi) 1 Omg=(X4)
and T = [B(r gy o5 1 (X)) Bl — g he (X))
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Denote ?1(Xz) =17 (Xl) — A1hg (Xl) and ?Q(XZ) = Tz(Xi) — Aghg(Xi). Note that

W(XZ) ~ ] ’IA; ) . 1 —7T(XZ')
7T60 (Xz) 5(r1(XZ) * 2(X’L)) 1-— 7T/30<X0

1 Omp (X)), ., . N )
T (Xi) 0P (B = B7)}o(r(X;) + r2(X5))

—=1z wﬂ*(Xi)fui T 5 (X:) 0B

_ 1 ur 1 07+ (X3)  1n v o

_&SE[{l —r (X0 U= XX 08 Y ()|
1 87‘(’3* (Xz)

me<(X;) 0B

E(A;) = IE{ or1(Xi) — 5?2(Xz')}

E{{l +eur —

(8° = B)}61(Xi) — 672( X)) | + O(€29)

+ EOE | {u; - T 'M}7(X0)| + 0(€%).

Assume that at least one entry of E[{l,ﬂ; s ol (17%*()(1‘))”6*()(') 8wﬁgéxi)T*1M}h1(X,-)} is

nonzero. Then, there exists A; such that

1 * 1 871'/3* (XZ) 1 ‘
AlE[{l (X)) (L= mpe (Xa)) e (X)) OB T M}hl(X’)}
N E[{l —ma(Xa) (1= mpe (X)) e (Xe) OB T M) 1(XZ)}’

which implies

1 u — 1 O« (Xs) 1 . N
[{1 —mp(Xi) ' (1 — 7 (X)) e+ (X5) o8 T M} I(Xz)} 0.

Similarly, by choosing a proper Ao, we have

E[{u;‘—ﬂﬁ*(Xi) % T-IM}7(X;)| = 0.

As a result, we obtain E(A;) = O(£26). Finally, after some tedious calculation, we can show that
sd(A;) = O(¢£+6). This implies 2 3™ | A; = 0,(625 +&n~1/2 + 5n~1/2). This completes the proof

n

of (3.10). The proof of (3.11) follows from the similar argument and we omit the details.

J Asymptotic Variance Formulas Used for Simulations

In this appendix, we present the asymptotic variance formulas used for constructing the 95%
confidence intervals for calculating the coverage probabilities in the simulations in Section 5.1. In
particular, for a generic estimator [, the 95% confidence interval is (i —1.96% 7, i+ 1.96%7), where

52 is the estimate of the asymptotic variance of /n(ji — ).
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For the True estimator, the asymptotic variance formula is similar to the one given in Section 2

and is as follows:

Y;(1)? Y;(0)?
Spo = Var (g, (Ti, Vi, X3)) = E(ﬂﬁj&a + ety — (E(Yi(1) —E<n<o>>>2)-
For the GLM estimator, the asymptotic variance formula is as follows:
YoM = Xy, — H) I7'H,

where X, is defined like before, I is the Fisher Information Matrix, and

Ho

(KX + (1=, (X4)) L(Xs)  Omp, (Xii)
B = E( o (Xi) (1 — 7, (X)) 9B ) '

Since the second term is positive definite, ¥gryr < X, and thus the variance decreases.
The GAM estimator achieves the semiparametric efficiency bound (Hirano et al., 2003) and so
we can use Vopt given in (2.6) as the asymptotic variance formula. The CBPS estimator has the

following asymptotic variance formula:

Sceps = Y, + H,(H{Q 'H) 'H,

— 2H, (H{ Q@ 'Hy) ™ H{ Q7' Cov(ug, (T}, Vi, Xi), g8, (Ti, X))

where X, and H,, are defined like before, and we have:

_ £(X;) Oms (X)) |
Hy = E(ﬂ-ﬁo(Xi)(l—ﬂ'BO(Xi))< B ) >

Q = Var(gﬁo (Tl7 X%))

T; 1-T;
900 (T, X) ( - ) F(X)
po T8 (XZ) 1- TBo (Xl)
TY; (1-T,)Y;

MﬁO(I—ZL’E?X’L) =

oo (Xi) 1 —mpy(Xi)

The asymptotic variance for the DR estimator is automatically computed in the R package
drtmle and the confidence interval was constructed accordingly.

Finally, we note that when we estimate the asymptotic variances, we simply replace the quan-
tities mg, and K (X) and L(X) with their estimates and replace the expectation with the sample

average. To save space, we do not repeat the formulas of the estimated variances.
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