
Supplementary Material for “Optimal Covariate Balancing Condi-

tions in Propensity Score Estimation”

A Locally Semiparametric Efficient Estimator

For clarification, we reproduce the following definition of locally semiparametric efficient estimator

given in Robins et al. (1994),

Definition A.1. Given a semiparametric model, say A, and an additional restriction R on the

joint distribution of the data not imposed by the model, we say that an estimator α̂ is locally

semiparametric efficient in model A at R if α̂ is a semiparametric estimator in model A whose

asymptotic variance attains the semiparametric variance bound for model A when R is true.

In our setting, the semiparametric model A corresponds to the joint distribution of the observed

data (Ti, Yi,Xi) subject to the strong ignorability of the treatment assignment {Yi(1), Yi(0)} ⊥ Ti |

Xi; see Hahn (1998). The semiparametric variance bound for model A is Vopt. The restriction

R is the intersection of R1 and R2 (denoted by R1 ∩ R2), where R1 is the model that satisfies

the first condition in Theorem 3.1 (i.e., the propensity score is correctly specified) and R2 is the

model that satisfies the second condition in Theorem 3.1 (i..e, K(Xi) = α>1 M1h1(Xi) and L(Xi) =

α>2 M2h2(Xi)). In Corollary 3.2, we show that the asymptotic variance of our estimator of ATE µ̂
β̂

is Vopt when R1∩R2 is true. From the above definition of locally semiparametric efficient estimator,

we can claim that µ̂
β̂

is locally semiparametric efficient at R1 ∩R2.

B Preliminaries

To simplify the notation, we use π∗i = πβ∗(Xi) and πoi = πβo(Xi). For any vector C ∈ RK , we

denote |C| = (|C1|, ..., |CK |)> and write C ≤ B for Ck ≤ Bk for any 1 ≤ k ≤ K.

Assumption B.1. (Regularity Conditions for CBPS in Section 2)

1. There exists a positive definite matrix W∗ such that Ŵ
p−→W∗.

2. The minimizer βo = argminβ E(ḡβ(T ,X))>W∗E(ḡβ(T ,X)) is unique.

3. βo ∈ int(Θ), where Θ is a compact set.
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4. πβ(X) is continuous in β.

5. There exists a constant 0 < c0 < 1/2 such that with probability tending to one, c0 ≤ πβ(X) ≤

1− c0, for any β ∈ int(Θ).

6. E|fj(X)| <∞ for 1 ≤ j ≤ m and E|Y (1)|2 <∞, E|Y (0)|2 <∞.

7. G∗ := E(∂g(βo)/∂β) exists and there is a q-dimensional function C(X) and a small constant

r > 0 such that supβ∈Br(βo) |∂πβ(X)/∂β| ≤ C(X) and E(|fj(X)|C(X)) <∞ for 1 ≤ j ≤ m,

where Br(βo) is a ball in Rq with radius r and center βo. In addition, E(|Y |C(X)) <∞.

8. G∗>W∗G∗ and E(gβo(Ti,Xi)gβo(Ti,Xi)
>) are nonsingular.

9. In the locally misspecified model (2.1), assume |u(X;β∗)| ≤ C almost surely for some constant

C > 0.

Lemma B.1 (Lemma 2.4 in Newey and McFadden (1994)). Assume that the data Zi are i.i.d., Θ

is compact, a(Z, θ) is continuous for θ ∈ Θ, and there is D(Z) with |a(Z, θ)| ≤ D(Z) for all θ ∈ Θ

and E(D(Z)) <∞, then E(a(Z, θ)) is continuous and supθ∈Θ |n−1
∑n

i=1 a(Zi, θ)−E(a(Z, θ))| p−→ 0.

Lemma B.2. Under Assumption B.1 (or Assumptions 3.1), we have β̂
p−→ βo.

Proof of Lemma B.2. The proof of β̂
p−→ βo follows from Theorem 2.6 in Newey and McFadden

(1994). Note that their conditions (i)–(iii) follow directly from Assumption 3.1 (1)–(4). We only

need to verify their condition (iv), i.e., E(supβ∈Θ |gβj(Ti,Xi)|) <∞ where

gβj(Ti,Xi) =
( Ti
πβ(Xi)

− 1− Ti
1− πβ(Xi)

)
fj(Xi),

By Assumption B.1 (5), we have |gβj(Ti,Xi)| ≤ 2|fj(Xi)|/c0 and thus E(supβ∈Θ |gβj(Ti,Xi)|) <∞

by Assumption B.1 (6). In addition, for the proof of Theorem 3.1, we similarly verify the following

conditions to prove this lemma for the oCBPS estimator, i.e., E(supβ∈Θ |g1βj(Ti, Xi)|) < ∞ and

E(supβ∈Θ |g2βj(Ti,Xi)|) <∞, where

g1βj(Ti,Xi) =
( Ti
πβ(Xi)

− 1− Ti
1− πβ(Xi)

)
h1j(Xi), and g2βj(Ti,Xi) =

( Ti
πβ(Xi)

− 1
)
h2j(Xi).

We have |g1βj(Ti,Xi)| ≤ 2|h1j(Xi)|/c0 and thus E(supβ∈Θ |g1βj(Ti,Xi)|) < ∞. Similarly, we can

prove E(supβ∈Θ |g2βj(Ti,Xi)|) <∞. This completes the proof.
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Lemma B.3. Under Assumption B.1 (or Assumptions 3.1 and 3.2), we have

n1/2(β̂ − βo) = −(H∗>f W∗H∗f )−1n1/2H∗>f W∗ḡβo(T ,X) + op(1), (B.1)

n1/2(β̂ − βo) d−→ N(0, (H∗>f W∗H∗f )−1H∗>f W∗ΩW∗H∗f (H∗>f W∗H∗f )−1), (B.2)

where Ω = Var(gβ∗(Ti,Xi)). If the propensity score model is correctly specified with P(Ti = 1 |

Xi) = πβo(Xi) and W∗ = Ω−1 holds, then n1/2(β̂ − βo) d−→ N(0, (H∗>f Ω−1H∗f )−1).

Proof. The proof of (B.1) and (B.2) follows from Theorem 3.4 in Newey and McFadden (1994).

Note that their conditions (i), (ii), (iii) and (v) are directly implied by our Assumption B.1

(3), (4), (2) and Assumption B.1 (1), respectively. In addition, their condition (iv), that is,

E(supβ∈N |∂gβo(Ti,Xi)/∂βj |) < ∞ for some small neighborhood N around βo, is also implied

by our Assumption B.1. To see this, by Assumption B.1 some simple calculations show that

sup
β∈N

∣∣∣∂gβ(Ti,Xi)

∂βj

∣∣∣ ≤ (Ti|f(Xi)|
c2

0

+
(1− Ti)|f(Xi)|

c2
0

)
sup
β∈N

∣∣∣∂πβ(Xi)

∂βj

∣∣∣ ≤ Cj(X)|f(Xi)|/c2
0,

for N ∈ Br(βo). Hence, E(supβ∈N |∂gβo(Ti,Xi)/∂βj |) < ∞, by Assumption B.1 (7). Thus,

condition (iv) in Theorem 3.4 in Newey and McFadden (1994) holds. In order to apply this lemma

to the proofs in Section 3, we need to further verify this condition for gβ(·) = (g>1β(·), g>2β(·))>,

where

g1β(Ti,Xi) =
( Ti
πβ(Xi)

− 1− Ti
1− πβ(Xi)

)
h1(Xi), and g2β(Ti,Xi) =

( Ti
πβ(Xi)

− 1
)
h2(Xi).

To this end, by Assumption 3.1 some simple calculations show that when

sup
β∈N

∣∣∣∂g1β(Ti,Xi)

∂βj

∣∣∣ ≤ (Ti|h1(Xi)|
c2

0

+
(1− Ti)|h1(Xi)|

c2
0

)
sup
β∈N

∣∣∣∂πβ(Xi)

∂βj

∣∣∣ ≤ Cj(X)|h1(Xi)|/c2
0,

for N ∈ Br(βo). Hence, E(supβ∈N |∂g1βo(Ti,Xi)/∂βj |) <∞, by Assumption 3.1 (7). Following the

similar arguments, we can prove that E(supβ∈N |∂g2βo(Ti,Xi)/∂βj |) < ∞ holds. This completes

the proof of (B.2). As shown in Lemma B.2, if P(Ti = 1 | Xi) = πβo(Xi) holds, the asymptotic

normality of n1/2(β̂ − βo) follows from (B.2). The proof is complete.

C Proof of Results in Section 2

C.1 Proof of Theorem 2.1

Proof. First, we derive the bias of β̂. By the arguments in the proof of Lemma B.3, we can show

that β̂ = βo + Op(n
−1/2), where βo satisfies βo = argminβ E(ḡβ(T ,X))>W∗E(ḡβ(T ,X)). Let
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u∗i = u(Xi;β
∗). By the propensity score model and the fact that |u(Xi;β

∗)| is a bounded random

variable and E|fj(Xi)| <∞, we can show that

E(ḡβo) = E
{π∗i (1 + ξu∗i )f(Xi)

πoi
− (1− π∗i − ξπ∗i u∗i )f(Xi)

1− πoi

}
+O(ξ2).

In addition, following the similar calculation, we have E(ḡβ∗) = O(ξ). Therefore,

lim
n→∞

E(ḡβ∗(T ,X))>W∗E(ḡβ∗(T ,X)) = 0.

Clearly, this quadratic form E(ḡβ(T ,X))>W∗E(ḡβ(T ,X)) must be nonnegative for any β. By the

uniqueness of βo, we have βo − β∗ = o(1). Therefore, we can expand πoi around π∗i , which yields

E(ḡβo) = E
{
ξ
( u∗i

1− π∗i

)
f(Xi) +H∗f (βo − β∗)

}
+O(ξ2 + ‖βo − β∗‖22).

This implies that the bias of βo is

βo − β∗ = −ξ(H∗>f W∗H∗f )−1H∗>f W∗E
{( u∗i

1− π∗i

)
f(Xi)

}
+O(ξ2). (C.1)

Our next step is to derive the bias of µ̂
β̂

. Similar to the proof of Theorem 3.2, we have

µ̂
β̂
− µ =

1

n

n∑
i=1

Di + H∗>y (β̂ − βo) + op(n
−1/2),

where

Di =
TiYi(1)

πoi
− (1− Ti)Yi(0)

1− πoi
− µ,

and

n1/2(β̂ − βo) = −(H∗>f W∗H∗f )−1n1/2H∗>f W∗ḡβo(T ,X) + op(1).

In addition, following the similar steps, we can show that E(Di) = Bn−1/2 + o(n−1/2). Thus,

µ̂
β̂
− µ =

1

n

n∑
i=1

{Di − E(Di)}+ H∗>y (β̂ − βo) +Bn−1/2 + op(n
−1/2).

Then the asymptotic normality of
√
n(µ̂

β̂
− µ) follows from the above asymptotic expansion and

the central limit theorem. This completes the proof.
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C.2 Proof of Corollary 2.1

Proof. When H∗f is invertible, it is easy to show the bias term can be written as

B =

[
E
{
u(Xi;β

∗)(K(Xi) + (1− πβ∗(Xi))L(Xi))

1− πβ∗(Xi)

}
+H∗yH

∗−1
f E

(
u(Xi;β

∗)f(Xi)

1− πβ∗(Xi)

)]
,

when the propensity score model is locally misspecified. If we choose the balancing function f(X)

such that α>f(X) = K(Xi) + (1− π∗i )L(Xi) for some α ∈ Rq, we have

H∗y = −E
(
K(Xi) + (1− π∗i )L(Xi)

π∗i (1− π∗i )
· ∂π

∗
i

∂β

)
= −α>E

( f(Xi)

π∗i (1− π∗i )

(∂π∗i
∂β

)>)
,

H∗f = −E
(
∂gβ∗(Ti,Xi)

∂β

)
= −E

(
f(Xi)

π∗i (1− π∗i )

(∂π∗i
∂β

)>)
.

So the bias becomes

B =

[
α>E

{
u(Xi;β

∗)f(Xi)

1− πβ∗(Xi)

}
+α>H∗f (H∗f )−1E

(
u(Xi;β

∗)f(Xi)

1− πβ∗(Xi)

)]
= 0.

This proves that µ̂
β̂

is first order unbiased.

C.3 Proof of Corollary 2.2

Proof. Recall that even if the propensity score mode is known or pre-specified, the minimum asymp-

totic variance over the class of regular estimators is given by Vopt. In the following, we will verify

that with the optimal choice of f(X) our estimator has asymptotic variance Vopt.

The asymptotic variance bound Vopt can be written as, Vopt = Σµ −α>Ωα, where

Ω = E(gβo(Ti,Xi)gβo(Ti,Xi)
>) = E

(
f(Xi)f(Xi)

>

π∗i (1− π∗i )

)
.

We can write the asymptotic variance of our estimator as

V = Σµ + 2H∗>y Σµβ +H∗>y ΣβH
∗
y ,
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where

H∗y = E
(
∂µβ∗(Ti, Yi,Xi)

∂β

)
= −E

(
K(Xi) + (1− π∗i )L(Xi)

π∗i (1− π∗i )
∂π∗i
∂β

)
,

Σµβ = −(H∗f )−1 Cov(µβ∗(Ti, Yi,Xi), gβ∗(Ti,Xi)),

H∗f = E
(
∂gβ∗(Ti,Xi)

∂β

)
= −E

(
f(Xi)

π∗i (1− π∗i )

(
∂π∗i
∂β

)>)
,

Cov(µβ∗(Ti, Yi,Xi), gβ∗(Ti,Xi)) = E
(
K(X) + (1− π∗i )L(Xi)

π∗i (1− π∗i )
f(Xi)

)
,

Σβ = (H∗f )−1 Var(gβ∗(Ti,Xi))(H
∗>
f )−1,

Var(gβ∗(Ti,Xi)) = E
(

f(Xi)f(Xi)
>

π∗i (1− π∗i )

)
.

If K(Xi)+(1−π∗i )L(Xi) lies in the linear space spanned by f(Xi), that is, K(Xi)+(1−π∗i )L(Xi) =

α>f(Xi), we have

H∗y = −E
(
α>f(Xi)

π∗i (1− π∗i )
∂π∗i
∂β

)
= (α>H∗f )>.

So

H∗>y Σµβ = −α>H∗f (H∗f )−1E
(
α>f(Xi)f(Xi)

π∗i (1− π∗i )

)
= −α>E

(
f(Xi)f(Xi)

>

π∗i (1− π∗i )

)
α,

and

H∗>y ΣβH
∗
y = α>H∗f (H∗f )−1E

(
f(Xi)f(Xi)

>

π∗i (1− π∗i )

)
(H∗>f )−1(α>H∗f )> = α>E

(
f(Xi)f(Xi)

>

π∗i (1− π∗i )

)
α.

It is seen that H∗>y Σµβ = −H∗>y ΣβH
∗
y . Then we have

V = Σµ −α>Ωα,

which corresponds to the minimum asymptotic variance Vopt.

D Proof of Results in Section 3

D.1 Proof of Theorem 3.1

Proof of Theorem 3.1. We first consider the case (1). That is the propensity score model is correctly

specified. By Lemma B.2, we have β̂
p−→ βo. Let

rβ(T, Y,X) =
TY

πβ(X)
− (1− T )Y

1− πβ(X)
.
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It is seen that |rβ(T, Y,X)| ≤ 2|Y |/c0 and by Assumption 3.1 (6), E|Y | < ∞. Then Lemma B.1

yields supβ∈Θ |n−1
∑n

i=1 rβ(Ti, Yi,Xi) − E(rβ(Ti, Yi,Xi))| = op(1). In addition, by β̂
p−→ βo and

the dominated convergence theorem, we obtain that

µ̂
β̂

= E
(TiYi
πoi
− (1− Ti)Yi

1− πoi

)
+ op(1),

where πoi = πβo(Xi). Since Yi = Yi(1)Ti+Yi(0)(1−Ti) and Yi(1), Yi(0) are independent of Ti given

Xi, we can further simplify the above expression,

µ̂
β̂

= E
(TiYi
πoi
− (1− Ti)Yi

1− πoi

)
+ op(1) = E

(TiYi(1)

πoi
− (1− Ti)Yi(0)

1− πoi

)
+ op(1)

= E
(E(Ti |Xi)E(Yi(1) |Xi)

πoi
− (1− E(Ti |Xi))E(Yi(1) |Xi)

1− πoi

)
+ op(1).

In addition, if the propensity score model is correctly specified, it further implies

µ̂
β̂

= E(E(Yi(1) |Xi)− E(Yi(0) |Xi)) + op(1) = E(Yi(1)− Yi(0)) + op(1) = µ+ op(1).

This completes the proof of consistence of µ̂ when the propensity score model is correctly specified.

In the following, we consider the case (2). That isK(·) ∈ span{M1h1(·)} and L(·) ∈ span{M2h2(·)}.

By Lemma B.2, we have β̂
p−→ βo. The first order condition for βo yields ∂Q(βo)/∂β = 0, where

Q(β) = E(g>β )W∗E(gβ). By Assumption 3.1 (7) and the dominated convergence theorem, we can

interchange the differential with integral, and thus G∗>W∗E(gβo) = 0. Under the assumption that

P(Ti = 1 |Xi) = π(Xi) 6= πoi , we have

E(g1βo) = E
{(π(Xi)

πoi
− 1− π(Xi)

1− πoi

)
h1(Xi)

}
,

E(g2βo) = E
{(π(Xi)

πoi
− 1
)
h2(Xi)

}
.

Rewrite G∗>W∗ = (M1,M2), where M1 ∈ Rq×m1 and M1 ∈ Rq×m2 . Then, βo satisfies

E
{(π(Xi)

πoi
− 1− π(Xi)

1− πoi

)
M1h1(Xi) +

(π(Xi)

πoi
− 1
)
M2h2(Xi)

}
= 0. (D.1)

Following the similar arguments to that in case (1), we can prove that

µ̂
β̂

= E
(TiYi
πoi
− (1− Ti)Yi

1− πoi

)
+ op(1)

= E
(E(Ti |Xi)E(Yi(1) |Xi)

πoi
− (1− E(Ti |Xi))E(Yi(1) |Xi)

1− πoi

)
+ op(1).
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By E(Ti |Xi) = π(Xi) and the outcome model, it further implies

µ̂
β̂
− µ = E

{π(Xi)(K(Xi) + L(Xi))

πoi
− (1− π(Xi))K(Xi)

1− πoi

}
− µ+ op(1)

= E
{(π(Xi)

πoi
− 1− π(Xi)

1− πoi

)
K(Xi)

}
+ E

{π(Xi)L(Xi)

πoi

}
− µ+ op(1)

= E
{(π(Xi)

πoi
− 1− π(Xi)

1− πoi

)
K(Xi)

}
+ E

{(π(Xi)

πoi
− 1
)
L(Xi)

}
+ op(1),

where in the last step we use µ = E(L(Xi)). By equation (D.1), we obtain µ̂ = µ+ op(1), provided

K(Xi) = α>1 M1h1(Xi) and L(Xi) = α>2 M2h2(Xi), where α1 and α2 are q-dimensional vectors

of constants. This completes the whole proof.

D.2 Proof of Theorem 3.2

Proof of Theorem 3.2. We first consider the case (1). That is the propensity score model is correctly

specified. By the mean value theorem, we have µ̂ = µ̄+ Ĥ(β̃)>(β̂ − βo), where

µ̄ =
1

n

n∑
i=1

(TiYi
πoi
− (1− Ti)Yi

1− πoi

)
, Ĥ(β̃) = − 1

n

n∑
i=1

(TiYi
π̃2
i

+
(1− Ti)Yi
(1− π̃i)2

)∂π̃i
∂β

,

where πoi = πβo(Xi), π̃i = π
β̃

(Xi) and β̃ is an intermediate value between β̂ and βo. By Assump-

tion 3.2 (2), we can show that the summand in Ĥ(β̃) has a bounded envelop function. By Lemma

B.1, we have supβ∈Br(βo) |Ĥ(β) − E(Ĥ(β))| = op(1). Since β̂ is consistent, by the dominated

convergence theorem we can obtain Ĥ(β̃) = H∗ + op(1), where

H∗ = −E
{(TiYi

πo2i
+

(1− Ti)Yi
(1− πoi )2

)∂πoi
∂β

}
= −E

{(Yi(1)

πoi
+

Yi(0)

1− πoi

)∂πoi
∂β

}
= −E

{K(Xi) + L(Xi)(1− πoi )
πoi (1− πoi )

∂πoi
∂β

}
.

Finally, we invoke the central limit theorem and equation (B.1) to obtain that

n1/2(µ̂− µ)
d−→ N(0, H̄∗>ΣH̄∗),

where H̄∗ = (1,H∗>)>, Σβ = (G∗>W∗G∗)−1G∗>W∗ΩW∗G∗(G∗>W∗G∗)−1 and

Σ =

 Σµ Σ>µβ

Σµβ Σβ

 .
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Denote bi(Ti,Xi, Yi(1), Yi(0)) = TiYi(1)/πoi − (1− Ti)Yi(0)/(1− πoi )− µ. Here, some simple calcu-

lations yield,

Σµ = E[b2i (Ti,Xi, Yi(1), Yi(0))] = E
(Y 2

i (1)

πoi
+
Y 2
i (0)

1− πoi

)
− µ2.

In addition, the off diagonal matrix can be written as Σµβ = (Σ>1µβ,Σ
>
2µβ)>, where

Σµβ = −(G∗>W∗G∗)−1G∗>W∗T,

where T = (E[g>1βo(Ti,Xi)bi(Ti,Xi, Yi(1), Yi(0))],E[g>2βo(Ti,Xi)bi(Ti,Xi, Yi(1), Yi(0))])> with

g1β(Ti,Xi) =
( Ti
πβ(Xi)

− 1− Ti
1− πβ(Xi)

)
h1(Xi), and g2β(Ti,Xi) =

( Ti
πβ(Xi)

− 1
)
h2(Xi).

After some algebra, we can show that

T =

{
E
(K(Xi) + (1− πoi )L(Xi)

(1− πoi )πoi
h>1 (Xi)

)
,E
(K(Xi) + (1− πoi )L(Xi)

πoi
h>2 (Xi)

)}>
.

This completes the proof of equation (3.4). Next, we consider the case (2). Recall that P(Ti = 1 |

Xi) = π(Xi) 6= πβo(Xi). Following the similar arguments, we can show that

µ̂
β̂
− µ =

1

n

n∑
i=1

Di + H∗>(β̂ − βo) + op(n
−1/2),

where

Di =
TiYi(1)

πoi
− (1− Ti)Yi(0)

1− πoi
− µ,

and

H∗ = −E
{(π(Xi)(K(Xi) + L(Xi))

πo2i
+

(1− π(Xi))K(Xi)

(1− πoi )2

)∂πoi
∂β

}
.

By equation (B.1) in Lemma B.3, we have that

n1/2(µ̂
β̂
− µ)

d−→ N(0, H̃∗>Σ̃H̃∗),

where H̃∗ = (1,H∗>)>, Σβ = (G∗>W∗G∗)−1G∗>W∗ΩW∗G∗(G∗>W∗G∗)−1 and

Σ̃ =

 Σµ Σ̃>µβ

Σ̃µβ Σ̃β

 .

Denote ci(Ti,Xi, Yi(1), Yi(0)) = TiYi(1)/πoi − (1− Ti)Yi(0)/(1− πoi )− µ. As shown in the proof of

Theorem 3.1, E[bi(Ti,Xi, Yi(1), Yi(0))] = 0. Thus,

Σµ = E[c2
i (Ti,Xi, Yi(1), Yi(0))] = E

(TiY 2
i (1)

πo2i
+

(1− Ti)Y 2
i (0)

(1− πoi )2

)
− µ2

= E
(π(Xi)Y

2
i (1)

πo2i
+

(1− π(Xi))Y
2
i (0)

(1− πoi )2

)
− µ2.
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Similarly, the off diagonal matrix can be written as Σ̃µβ = (Σ̃>1µβ, Σ̃
>
2µβ)>, where

Σ̃µβ = −(G∗>W∗G∗)−1G∗>W∗S,

where S = (E[g>1βo(Ti,Xi)ci(Ti,Xi, Yi(1), Yi(0))],E[g>2βo(Ti,Xi)ci(Ti,Xi, Yi(1), Yi(0))])> with

g1β(Ti,Xi) =
( Ti
πβ(Xi)

− 1− Ti
1− πβ(Xi)

)
h1(Xi), and g2β(Ti,Xi) =

( Ti
πβ(Xi)

− 1
)
h2(Xi). (D.2)

After some tedious algebra, we can show that S = (S>1 ,S
>
2 )>, where

S1 = E
{(π(Xi)(K(Xi) + L(Xi)− πoi µ)

πo2i
+

(1− π(Xi))(K(Xi) + (1− πoi )µ)

(1− πoi )2

)
h1(Xi)

}
,

S2 = E
{(π(Xi)[(K(Xi) + L(Xi))(1− πoi )− πoi µ]

πo2i
+

(1− π(Xi))K(Xi) + (1− πoi )µ
1− πoi

)
h2(Xi)

}
.

This completes the proof of equation (3.6).

Finally, we start to prove part 3. By (3.4), the asymptotic variance of µ̂ denoted by V , can be

written as

V = Σµ + 2H∗>Σµβ + H∗>ΣβH∗. (D.3)

Note that by Lemma B.3, we have Σβ = (G∗>Ω−1G∗)−1. Under this correctly specified propensity

score model, some algebra yields

Ω = E[gβo(Ti,Xi)g
>
βo(Ti,Xi)] =

 E(
h1h>1

πoi (1−πoi )) E(
h1h>2
πoi

)

E(
h2h>1
πoi

) E(
h2h>2 (1−πoi )

πoi
)

 ,

where gβ(Ti,Xi) = (g>1β(Ti,Xi), g
>
2β(Ti,Xi))

> and g1β(Ti,Xi) and g2β(Ti,Xi) are defined in

(D.2). In addition, G∗ = (G∗>1 ,G∗>2 )>, where

G∗1 = −E
( h1(Xi)

πoi (1− πoi )

(∂πoi
∂β

)>)
, G∗2 = −E

(h2(Xi)

πoi

(∂πoi
∂β

)>)
. (D.4)

Since the functions K(·) and L(·) lie in the linear space spanned by the functions M1h1(·) and

M2h2(·) respectively, where M1 ∈ Rq×m1 and M1 ∈ Rq×m2 are the partitions of G∗>W∗ =

(M1,M2). We have K(Xi) = α>1 M1h1(Xi) and L(Xi) = α>2 M2h2(Xi), where α1 and α2 are

q-dimensional vectors of constants. Thus

H∗ = −E
{K(Xi) + L(Xi)(1− πoi )

πoi (1− πoi )
∂πoi
∂β

}
= −E

{α>1 M1h1(Xi) +α>2 M2h2(Xi)(1− πoi )
πoi (1− πoi )

∂πoi
∂β

}
.
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Comparing to the expression of G∗ in (D.4), we can rewrite H∗ as

H∗ = G∗>

 M>
1 α1

M>
2 α2

 .

Following the similar derivations, it is seen that

Σµβ = −(G∗>Ω−1G∗)−1G∗>Ω−1

 E{α
>
1 M1h1(Xi)+α

>
2 M2h2(Xi)(1−πoi )

πoi (1−πoi ) h1(Xi)}

E{α
>
1 M1h1(Xi)+α

>
2 M2h2(Xi)(1−πoi )
πoi

h2(Xi)}

 ,

which is equivalent to

Σµβ = −(G∗>Ω−1G∗)−1G∗>

 M>
1 α1

M>
2 α2

 .

Hence,

H∗>Σµβ = −(α>1 M1,α
>
2 M2)G∗(G∗>Ω−1G∗)−1G∗>

 M>
1 α1

M>
2 α2

 = −H∗>ΣβH∗.

Together with (D.3), we have

V = Σµ − (α>1 M1,α
>
2 M2)G∗(G∗>Ω−1G∗)−1G∗>

 M>
1 α1

M>
2 α2

 .

This completes of the proof.

D.3 Proof of Corollary 3.1

Proof of Corollary 3.1. By Theorem 3.2, it suffices to show that

(ᾱ>1 M̄1, ᾱ
>
2 M̄2)Ḡ∗C̄Ḡ∗>

 M̄>
1 ᾱ1

M̄>
2 ᾱ2

 ≤ (α>1 M1,α
>
2 M2)G∗CG∗>

 M>
1 α1

M>
2 α2

 , (D.5)

where C = (G∗>Ω−1G∗)−1 and ᾱ1 and M̄1 among others are the corresponding quantities with

h̄1(X) and h̄2(X). Assume that h̄1(X) ∈ Rm1+a1 and h̄2(X) ∈ Rm2+a2 . Since K(Xi) =

α>1 M1h1(Xi) and L(Xi) = α>2 M2h2(Xi), we find that (ᾱ>1 M̄1, ᾱ
>
2 M̄2) = (α>1 M1, 0,α

>
2 M2, 0),

which is a vector in Rm+a with a = a1 + a2. Because some components of (ᾱ>1 M̄1, ᾱ
>
2 M̄2) are 0,
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by the matrix algebra, (D.5) holds if C− C̄ is positive semidefinite. Without loss of generality, we

rearrange orders and write the (m+ a)× q matrix Ḡ∗ and the (m+ a)× (m+ a) matrix Ω̄∗ as

Ḡ∗ =
( G∗

A

)
, and Ω̄ =

( Ω Ω1

Ω1 Ω2

)
.

For simplicity, we use the following notation: two matrices satisfy O1 ≥ O2 if O1 −O2 is positive

semidefinite. To show C ≥ C̄, we have the following derivation

Ḡ∗>Ω̄−1Ḡ∗ = (G∗>,A>)
( Ω Ω1

Ω1 Ω2

)−1( G∗

A

)

≥ (G∗>,A>)
( Ω−1 0

0 0

)( G∗

A

)
= G∗>Ω−1G∗.

This completes the proof of (D.5), and therefore the corollary holds.

D.4 Proof of Corollary 3.2

Proof of Corollary 3.2. The proof of the double robustness property mainly follows from Theorem

3.1. In this case, we only need to verify that span{h1(·)} = span{M1h1(·)} and span{h2(·)} =

span{M2h2(·)}, where M1 ∈ Rq×m1 and M1 ∈ Rq×m2 are the partitions of G∗>W∗ = (M1,M2).

Apparently, we have span{M1h1(·)} ⊆ span{h1(·)}, since the former can always be written as a

linear combination of h1(·). To show span{h1(·)} ⊆ span{M1h1(·)}, note that them1×m1 principal

submatrix M11 of M1 is invertible. Thus, span{h1(·)} = span{M11h1(·)} ⊆ span{M1h1(·)}. This

is because the m1 dimensional functions M11h1(·) are identical to the first m1 coordinates of

M1h1(·). This completes the proof of double robustness property. The efficiency property follows

from Theorem 3.2. We do not replicate the details.

E Regularity Conditions in Section 4

Assumption E.1. The following regularity conditions are assumed.

1. The minimizer βo = argminβ∈Θ ‖E(ḡβ(T ,X))‖22 is unique.

2. βo ∈ int(Θ), where Θ is a compact set.
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3. There exist constants 0 < c0 < 1/2, c1 > 0 and c2 > 0 such that c0 ≤ J(v) ≤ 1 − c0

and 0 < c1 ≤ ∂J(v)/∂v ≤ c2, for any v = β>B(x) with β ∈ int(Θ). There exists a small

neighborhood of v∗ = β∗>B(x), say B such that for any v ∈ B it holds that |∂2J(v)/∂v2| ≤ c3

for some constant c3 > 0.

4. E|Y (1)|2 <∞ and E|Y (0)|2 <∞.

5. Let G∗ := E[B(Xi)h(Xi)
>∆i(ψ

∗(Xi))], where ∆i(ψ(Xi)) = diag(ξi(ψ(Xi))1m1 , φi(ψ(Xi))1m2)

is a κ× κ diagonal matrix with

ξi(ψ(Xi)) = −
( Ti
J2(ψ(Xi))

+
1− Ti

(1− J(ψ(Xi)))2

)∂J(ψ(Xi))

∂ψ
,

φi(ψ(Xi)) = − Ti
J2(ψ(Xi))

∂J(ψ(Xi))

∂ψ
.

Here, 1m1 is a vector of 1’s with length m1. Assume that there exists a constant C1 > 0, such

that λmin(G∗>G∗) ≥ C1, where λmin(·) denotes the minimum eigenvalue of a matrix.

6. For some constant C, it holds ‖E[h(Xi)h(Xi)
>]‖2 ≤ C and ‖E[B(Xi)B(Xi)

>]‖2 ≤ C, where

‖A‖2 denotes the spectral norm of the matrix A. In addition, supx∈X ‖h(x)‖2 ≤ Cκ1/2, and

supx∈X ‖B(x)‖2 ≤ Cκ1/2.

7. Let m∗(·) ∈M and K(·), L(·) ∈ H, whereM andH are two sets of smooth functions. Assume

that logN[ ](ε,M, L2(P )) ≤ C(1/ε)1/k1 and logN[ ](ε,H, L2(P )) ≤ C(1/ε)1/k2 , where C is a

positive constant and k1, k2 > 1/2. Here, N[ ](ε,M, L2(P )) denotes the minimum number of

ε-brackets needed to cover M; see Definition 2.1.6 of van der Vaart and Wellner (1996).

Note that the first five conditions are similar to Assumptions 3.1 and 3.2. In particular, Condi-

tion 5 is the natural extension of Condition 1 of Assumption 3.2, when the dimension of the matrix

G∗ grows with the sample size n. Condition 6 is a mild technical condition on the basis functions

h(x) and B(x), which is implied by Assumption 2 of Newey (1997). In particular, this condition

is satisfied by many bases such as the regression spline, trigonometric polynomial, wavelet bases;

see Newey (1997); Horowitz et al. (2004); Chen (2007); Belloni et al. (2015). Finally, Condition 7

is a technical condition on the complexity of the function classesM and H. Specifically, it requires

that the bracketing number N[ ](ε, ·, L2(P )) ofM and H cannot increase too fast as ε approaches to

0. This condition holds for many commonly used function classes. For instance, if M corresponds
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to the Hölder class with smoothness parameter s defined on a bounded convex subset of Rd, then

logN[ ](ε,M, L2(P )) ≤ C(1/ε)d/s by Corollary 2.6.2 of van der Vaart and Wellner (1996). Hence,

this condition simply requires s/d > 1/2. Given Assumption E.1, the following theorem establishes

the asymptotic normality and semiparametric efficiency of the estimator µ̃
β̃

.

F Proof of Results in Section 4

For notational simplicity, we denote π∗(x) = J(m∗(x)), J∗(x) = J(β∗>B(x)), and J̃(x) =

J(β̃>B(x)). Define Qn(β) = ‖ḡβ(T ,X)‖22 and Q(β) = ‖Egβ(Ti,Xi)‖22. In the following proof, we

use C,C ′ and C ′′ to denote generic positive constants, whose values may change from line to line.

In this section, denote K = κ and ψ(X) = m(X).

Lemma F.1 (Bernstein’s inequality for U -statistics (Arcones, 1995)). Given i.i.d. random variables

Z1, . . . Zn taking values in a measurable space (S,B) and a symmetric and measurable kernel func-

tion h : Sm → R, we define the U -statistics with kernel h as U :=
(
n
m

)−1∑
i1<...<im

h(Zi1 , . . . , Zim).

Suppose that Eh(Zi1 , . . . , Zim) = 0, E
{
E[h(Zi1 , . . . , Zim) | Zi1 ]

}2
= σ2 and ‖h‖∞ ≤ b. There exists

a constant K(m) > 0 depending on m such that

P(|U | > t) ≤ 4 exp
{
− nt2/[2m2σ2 +K(m)bt]

}
, ∀t > 0.

Lemma F.2. Under the conditions in Theorem 4.1, it holds that

sup
β∈Θ

∣∣∣Qn(β)−Q(β)
∣∣∣ = Op

(√K2 logK

n

)
.

Proof of Lemma F.2. Let ξ(β) = (ξ1(β), ..., ξn(β))> and φ(β) = (φ1(β), ..., φn(β))>, where

ξi(β) =
Ti

J(β>B(Xi))
− 1− Ti

1− J(β>B(Xi))
, φi(β) =

Ti
J(β>B(Xi))

− 1.

Then we have

Qn(β) = n−2
n∑
i=1

n∑
j=1

[
ξi(β)ξj(β)h1(Xi)

>h1(Xj) + φi(β)φj(β)h2(Xi)
>h2(Xj)

]
= n−2

∑
1≤i 6=j≤n

[
ξi(β)ξj(β)h1(Xi)

>h1(Xj) + φi(β)φj(β)h2(Xi)
>h2(Xj)

]
+An(β),

where An(β) = n−2
∑n

i=1

[
ξi(β)2‖h1(Xi)‖22 + φi(β)2‖h2(Xi)‖22

]
. Since there exists a constant

c0 > 0 such that c0 ≤ |J(β>B(x))| ≤ 1 − c0 for any β ∈ Θ and Ti ∈ {0, 1}, it implies that
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supβ∈Θ max1≤i≤n |ξi(β)| ≤ C and supβ∈Θ max1≤i≤n |φi(β)| ≤ C for some constant C > 0. Then

we can show that

E
(

sup
β∈Θ
|An(β)|

)
≤ C

n
E(‖h(Xi)‖22) = O(K/n).

By the Markov inequality, we have supβ∈Θ |An(β)| = Op(K/n) = op(1). Following the similar

arguments, it can be easily shown that supβ∈Θ |Q(β)|/n = O(K/n). Thus, it holds that

sup
β∈Θ
|Qn(β)−Q(β)| = sup

β∈Θ

∣∣∣ 2

n(n− 1)

∑
1≤i<j≤n

uij(β)
∣∣∣+Op(K/n), (F.1)

where uij(β) = u1ij(β) + u2ij(β) is a kernel function of a U-statistic with

u1ij(β) = ξi(β)ξj(β)h1(Xi)
>h1(Xj)− E[ξi(β)ξj(β)h1(Xi)

>h1(Xj)],

u2ij(β) = φi(β)φj(β)h2(Xi)
>h2(Xj)− E[φi(β)φj(β)h2(Xi)

>h2(Xj)].

Since Θ is a compact set in RK , by the covering number theory, there exists a constant C such that

M = (C/r)K balls with the radius r can cover Θ. Namely, Θ ⊆ ∪1≤m≤MΘm, where Θm = {β ∈

RK : ‖β − βm‖2 ≤ r} for some β1, ...,βM . Thus, for any given ε > 0,

P
(

sup
β∈Θ

∣∣∣ 2

n(n− 1)

∑
1≤i<j≤n

u1ij(β)
∣∣∣ > ε

)
≤

M∑
m=1

P
(

sup
β∈Θm

∣∣∣ 2

n(n− 1)

∑
1≤i<j≤n

u1ij(β)
∣∣∣ > ε

)

≤
M∑
m=1

[
P
(∣∣∣ 2

n(n− 1)

∑
1≤i<j≤n

u1ij(βm)
∣∣∣ > ε/2

)
+ P

(
sup
β∈Θm

2

n(n− 1)

∑
1≤i<j≤n

∣∣∣u1ij(β)− u1ij(βm)
∣∣∣ > ε/2

)]
. (F.2)

By the Cauchy-Schwarz inequality, |h1(Xi)
>h1(Xj)| ≤ ‖h1(Xi)‖2‖h1(Xj)‖2 ≤ CK, and thus

|u1ij(βm)| ≤ CK. In addition, for any β,

E
{
ξi(β)h1(Xi)

>E[ξj(β)h1(Xj)]− E[ξi(β)ξj(β)h1(Xi)
>h1(Xj)]

}2

≤ E
{
ξi(β)h1(Xi)

>E[ξj(β)h1(Xj)]
}2 ≤ ‖Eξ2

i (β)h1(Xi)h1(Xi)
>‖2 · ‖Eξj(β)h1(Xj)‖22 ≤ CK,

for some constant C > 0. Here, in the last step we use that fact that

‖Eξj(β)h1(Xj)‖22 ≤ E‖ξj(β)h1(Xj)‖22 ≤ C · E‖h1(Xj)‖22 ≤ CK,
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and ‖Eξ2
i (β)h1(Xi)h1(Xi)

>‖2 is bounded because ‖Eh1(Xj)h1(Xj)
>‖2 is bounded by assumption.

Thus, we can apply the Bernstein’s inequality in Lemma F.1 to the U-statistic with kernel function

u1ij(βm),

P
(∣∣∣ 2

n(n− 1)

∑
1≤i<j≤n

u1ij(βm)
∣∣∣ > ε/2

)
≤ 2 exp

(
− Cnε2/[K +Kε]

)
, (F.3)

for some constant C > 0. Since |∂J(v)/∂v| is upper bounded by a constant for any v = β>B(x), it

is easily seen that for any β ∈ Θm, |ξi(β)−ξi(βm)| ≤ C|(β−βm)>B(Xi)| ≤ CrK1/2, where the last

step follows from the Cauchy-Schwarz inequalty. This further implies |ξi(β)ξj(β)−ξi(βm)ξj(βm)| ≤

CrK1/2 for some constant C > 0 by performing a standard perturbation analysis. Thus,

|u1ij(β)− u1ij(βm)| ≤ CrK1/2|h1(Xi)
>h1(Xj)| ≤ CrK3/2,

and note that with r = K−2, then CrK1/2E|h1(Xi)
>h1(Xj)| ≤ ε/4 for n large enough. Thus

P
(

sup
β∈Θm

2

n(n− 1)

∑
1≤i<j≤n

∣∣∣u1ij(β)− u1ij(βm)
∣∣∣ > ε/2

)
≤ P

(2CrK1/2

n(n− 1)

∑
1≤i<j≤n

|h1(Xi)
>h1(Xj)| > ε/2

)
≤ P

(2CrK1/2

n(n− 1)

∑
1≤i<j≤n

[
|h1(Xi)

>h1(Xj)| − E|h1(Xi)
>h1(Xj)|

]
> ε/4

)
≤ 2 exp(−CnKε2), (F.4)

where the last step follows from the Hoeffding inequality for U-statistic. Thus, combining (F.2),

(F.3) and (F.4), we have for some constants C1, C2, C3 > 0, as n goes to infinity,

P
(

sup
β∈Θ

∣∣∣ 2

n(n− 1)

∑
1≤i<j≤n

u1ij(β)
∣∣∣ > ε

)
≤ exp(C1K logK − C2nε

2/[K +Kε]) + exp(C1K logK − C3nε
2K)→ 0,

where we take ε = C
√
K2 logK/n for some constant C sufficiently large. This implies

sup
β∈Θ

∣∣∣ 2

n(n− 1)

∑
1≤i<j≤n

u1ij(β)
∣∣∣ = Op

(√K2 logK

n

)
.

Following the same arguments, we can show that with the same choice of ε,

sup
β∈Θ

∣∣∣ 2

n(n− 1)

∑
1≤i<j≤n

u2ij(β)
∣∣∣ = Op

(√K2 logK

n

)
.

Plugging these results into (F.1), we complete the proof.
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Lemma F.3 (Bernstein’s inequality for random matrices (Tropp, 2015)). Let {Zk} be a sequence

of independent random matrices with dimensions d1 × d2. Assume that EZk = 0 and ‖Zk‖2 ≤ Rn

almost sure. Define

σ2
n = max

{∥∥∥ n∑
k=1

E(ZkZ
>
k )
∥∥∥

2
,
∥∥∥ n∑
k=1

E(Z>k Zk)
∥∥∥

2

}
.

Then, for all t ≥ 0,

P
(∥∥∥ n∑

k=1

Zk

∥∥∥
2
≥ t
)
≤ (d1 + d2) exp

(
− t2/2

σ2
n +Rnt/3

)
.

Lemma F.4. Let H = (h(X1), ...,h(Xn))> and B = (B(X1), ...,B(Xn))> be two n×K matrices.

Under the conditions in Theorem 4.1, then

‖H>H/n− E[h(Xi)h(Xi)
>]‖2 = Op(

√
K logK/n) (F.5)

and

‖B>B/n− E[B(Xi)B(Xi)
>]‖2 = Op(

√
K logK/n). (F.6)

Proof of Lemma F.4. We prove this result by applying Lemma F.3. In particular, to prove (F.5),

we take Zi = n−1[h(Xi)h(Xi)
> − E(h(Xi)h(Xi)

>)]. It is easily seen that

‖Zi‖2 ≤ n−1[tr(h(Xi)h(Xi)
>) + ‖E(h(Xi)h(Xi)

>)‖2] ≤ (CK + C)/n,

where C is some positive constant. Moreover,∥∥∥ n∑
i=1

E(ZiZ
>
i )
∥∥∥

2
≤ n−1

(
‖Eh(Xi)h(Xi)

>h(Xi)h(Xi)
>‖2 + ‖E(h(Xi)h(Xi)

>)‖22
)

≤ n−1(CK · ‖E(h(Xi)h(Xi)
>)‖2 + C2) ≤ n−1(C2K + C2).

Note that
√
K logK/n = o(1). Now, if we take t = C

√
K logK/n in Lemma F.3 for some constant

C sufficiently large, then we have P(‖
∑n

k=1 Zk‖2 ≥ t) ≤ 2K exp(−C ′ logK) for some C ′ > 1. Then,

the right hand side converges to 0, as K → ∞. This completes the proof of (F.5). The proof of

(F.6) follows from the same arguments and is omitted for simplicity.

Lemma F.5. Under the conditions in Theorem 4.1, the following results hold.

1 Let Ū = 1
n

∑n
i=1Ui, Ui = (U>i1 ,U

>
i2)>, with

Ui1 =
( Ti
π∗i
− 1− Ti

1− π∗i

)
h1(Xi), Ui2 =

( Ti
π∗i
− 1
)
h2(Xi).

Then ‖Ū‖2 = Op(K
1/2/n1/2).
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2 Let B(r) = {β ∈ RK : ‖β − β∗‖2 ≤ r}, and r = O(K1/2/n1/2 +K−rb). Then

sup
β∈B(r)

∥∥∥∂ḡβ(T ,X)

∂β
−G∗

∥∥∥
2

= Op

(
K1/2r +

√
K logK

n

)
.

3 Let Ji = J(β>B(Xi)), J̇i = ∂J(v)/∂v|v=β>B(Xi), and

T∗ = E
{[E(Yi(1) |Xi)

π∗i
− E(Yi(0) |Xi)

1− π∗i

]
J̇∗i B(Xi)

}
.

Then

sup
β∈B(r)

∥∥∥ 1

n

n∑
i=1

[TiYi(1)

J2
i

+
(1− Ti)Yi(0)

(1− Ji)2

]
J̇iB(Xi) + G∗>α∗

∥∥∥
2

= Op

(
K1/2r +K−rh

)
.

Proof of Lemma F.5. We start from the proof of the first result. Note that E(Ui) = 0. Then

E‖Ū‖22 = E(U>i Ui)/n and then there exists some constant C > 0,

E‖Ū‖22 = E
[
n−1

K∑
k=1

( Ti
π∗i
− 1− Ti

1− π∗i

)2
hk(Xi)

2I(k ≤ m1) +
( Ti
π∗i
− 1
)2
hk(Xi)

2I(k > m1)
]

≤ C
K∑
k=1

E{hk(Xi)
2}/n = O(K/n).

By the Markov inequality, this implies ‖Ū‖2 = Op(K
1/2/n1/2), which completes the proof of the

first result. In the following, we prove the second result. Denote

ξi(m(Xi)) = −
( Ti
J2(m(Xi))

+
1− Ti

(1− J(m(Xi)))2

)
J̇(m(Xi))

φi(m(Xi)) = − Ti
J2(m(Xi))

J̇(m(Xi)),

and ∆i(m(Xi)) = diag(ξi(m(Xi))1m1 , φi(m(Xi))1m2) is a K ×K diagonal matrix, where 1m1 is a

vector of 1 with length m1. Then, note that

∂ḡβ(T ,X)

∂β
−G∗ =

1

n

n∑
i=1

B(Xi)h(Xi)
>∆i(β

>B(Xi))− E[B(Xi)h(Xi)
>∆i(m

∗(Xi))],

which can be decomposed into the two terms Iβ + II, where

Iβ =
1

n

n∑
i=1

B(Xi)h(Xi)
>[∆i(β

>B(Xi))−∆i(m
∗(Xi))], II =

n∑
i=1

Zi,

Zi = n−1
{
B(Xi)h(Xi)

>∆i(m
∗(Xi))− E[B(Xi)h(Xi)

>∆i(m
∗(Xi))]

}
.
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We first consider the term II. It can be easily verified that ‖∆i(m
∗(Xi))‖2 ≤ C for some constant

C > 0. In addition, ‖B(Xi)h(Xi)
>‖2 ≤ ‖B(Xi)‖2 · ‖h(Xi)‖2 ≤ CK. Thus, ‖Zi‖2 ≤ CK/n.

Following the similar argument in the proof of Lemma F.4,∥∥∥ n∑
i=1

E(ZiZ
>
i )
∥∥∥

2
≤ n−1‖EB(Xi)h(Xi)

>∆i(m
∗(Xi))∆i(m

∗(Xi))h(Xi)B(Xi)
>‖2

+ n−1‖EB(Xi)h(Xi)
>∆i(m

∗(Xi))‖22.

We now consider the last two terms separately. Note that

‖EB(Xi)h(Xi)
>∆i(m

∗(Xi))‖22 = sup
‖u‖2=1,‖v‖2=1

|Eu>B(Xi)h(Xi)
>∆i(m

∗(Xi))v|2

≤ sup
‖u‖2=1

|Eu>B(Xi)B(Xi)
>u| · sup

‖v‖2=1
|Ev>∆i(m

∗(Xi))h(Xi)h(Xi)
>∆i(m

∗(Xi))v|

≤ ‖E(B(Xi)B(Xi)
>)‖2 · C‖E(h(Xi)h(Xi)

>)‖2 ≤ C ′, (F.7)

where C,C ′ are some positive constants. Following the similar arguments to (F.7),

‖EB(Xi)h(Xi)
>∆i(m

∗(Xi))∆i(m
∗(Xi))h(Xi)B(Xi)

>‖2

≤ CK · sup
‖u‖2=1

|Eu>B(Xi)B(Xi)
>u| ≤ CK · ‖EB(Xi)B(Xi)

>‖2 ≤ C ′K,

for some constants C,C ′ > 0. This implies ‖
∑n

i=1 E(ZiZ
>
i )‖2 ≤ CK/n. Thus, Lemma F.3 implies

‖II‖2 = Op(
√
K logK/n). Next, we consider the term Iβ. Following the similar arguments to

(F.7), we can show that

sup
β∈B(r)

‖Iβ‖2 = sup
β∈B(r)

sup
‖u‖2=1,‖v‖2=1

∣∣∣ 1
n

n∑
i=1

u>B(Xi)h(Xi)
>[∆i(β

>B(Xi))−∆i(m
∗(Xi))]v

∣∣∣
≤
∥∥∥ 1

n

n∑
i=1

B(Xi)B(Xi)
>
∥∥∥1/2

2
·
∥∥∥ 1

n

n∑
i=1

h(Xi)h(Xi)
>
∥∥∥1/2

2

· sup
β∈B(r)

max
1≤i≤n

‖∆i(β
>B(Xi))−∆i(m

∗(Xi))‖2

≤ C sup
β∈B(r)

sup
x∈X
|(β∗ − β)>B(x)|+ C sup

x∈X
|m∗(x)− β∗>B(x)|

≤ C ′(K1/2r +K−rb) ≤ C ′′K1/2r,

for some C,C ′, C ′′ > 0, where the second inequality follows from Lemma F.4 and the Lipschitz

property of ξi(·) and φi(·), and the third inequality is due to the Cauchy-Schwarz inequality and
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approximation assumption of the sieve estimator. This completes the proof of the second result.

For the third result, let

ηi(m(Xi)) =
( TiYi(1)

J2(m(Xi))
+

(1− Ti)Yi(0)

(1− J(m(Xi)))2

)
J̇(m(Xi)).

Thus, the following decomposition holds,

1

n

n∑
i=1

ηi(β
>B(Xi))B(Xi) + G∗>α∗ = T1β + T2 + T3,

where

T1β =
1

n

n∑
i=1

[ηi(β
>B(Xi))− ηi(m∗(B(Xi)))]B(Xi)

T2 =
1

n

n∑
i=1

[
ηi(m

∗(B(Xi)))B(Xi)− Eηi(m∗(B(Xi)))B(Xi)
]

T3 = Eηi(m∗(B(Xi)))B(Xi) + G∗>α∗.

Similar to the proof for supβ∈B(r) ‖Iβ‖2 previously, we can easily show that supβ∈B(r) ‖T1β‖2 =

Op(K
1/2r). Again, the key step is to use the results from Lemma F.4. For the second term

T2, we can use the similar arguments in the proof of the first result to show that E‖T2‖22 ≤

CK ·E[ηi(m
∗(B(Xi))

2]/n = O(K/n). The Markov inequality implies ‖T2‖2 = Op(K
1/2/n1/2). For

the third term T3, after some algebra, we can show that

‖T3‖2 ≤ C
(

sup
x∈X
|K(x)−α∗>1 h1(x)|+ sup

x∈X
|L(x)−α∗>2 h2(x)|

)
= Op(K

−rh).

Combining the L2 error bound for T1β, T2 and T3, we obtain the last result. This completes the

whole proof.

Lemma F.6. Under the conditions in Theorem 4.1, it holds that

‖β̃ − β∗‖2 = op(1).

Proof of Lemma F.6. Recall that βo is the minimizer of Q(β). We now decompose Q(β̃)−Q(βo)

as

Q(β̃)−Q(βo) = [Q(β̃)−Qn(β̃)]︸ ︷︷ ︸
I

+ [Qn(β̃)−Qn(βo)]︸ ︷︷ ︸
II

+ [Qn(βo)−Q(βo)]︸ ︷︷ ︸
III

. (F.8)

In the following, we study the terms I, II and III one by one. For the term I, Lemma F.2 implies

|Q(β̃) − Qn(β̃)| ≤ supβ∈Θ

∣∣∣Qn(β) − Q(β)
∣∣∣ = op(1). This shows that |I| = op(1) and the same

55



argument yields |III| = op(1). For the term II, by the definition of β̃, it is easy to see that II ≤ 0.

Thus, combining with (F.8), we have for any constant η > 0 to be chosen later, Q(β̃)−Q(βo) < η

with probability tending to one. For any ε > 0, define Eε = Θ∩{‖β−βo‖2 ≥ ε}. By the uniqueness

of βo, for any β ∈ Eε, we have Q(β) > Q(βo). Since Eε is a compact set, we have infβ∈Eε Q(β) >

Q(βo). This implies that for any ε > 0, there exists η′ > 0 such that Q(β) > Q(βo) + η′ for

any β ∈ Eε. If β̃ ∈ Eε, then Q(βo) + η > Q(β̃) > Q(βo) + η′ with probability tending to one.

Apparently, this does not holds if we take η < η′. Thus, we have proved that β̃ /∈ Eε, that is

‖β̃ − βo‖2 ≤ ε for any ε > 0. Thus, we have ‖β̃ − βo‖2 = op(1).

Next, we shall show that ‖βo − β∗‖2 = op(1). It is easily seen that these together lead to the

desired consistency result

‖β̃ − β∗‖2 ≤ ‖βo − β∗‖2 + ‖β̃ − βo‖2 = op(1).

To show ‖βo − β∗‖2 = op(1), we use the similar strategy. That is we want to show that for any

constant η > 0, Q(β∗) − Q(βo) < η. In the following, we prove that Q(β∗) = O(K1−2rb). Note

that

Q(β∗) ≤ C2K−2rb

K∑
j=1

E|hj(X)|2 = O(K1−2rb),

where the first inequality follows from the Cauchy-Schwarz inequality and the last step uses the as-

sumption that supx∈X ‖h(x)‖2 = O(K1/2). In addition, it holds that Q(βo) ≤ Q(β∗) = O(K1−2rb).

As K → ∞, it yields Q(β∗) − Q(βo) < η, for any constant η > 0. The same arguments yield

‖βo − β∗‖2 = op(1). This completes the proof of the consistency result.

Lemma F.7. Under the conditions in Theorem 4.1, there exists a global minimizer β̃ (if Qn(β)

has multiple minimizers), such that

‖β̃ − β∗‖2 = Op(K
1/2/n1/2 +K−rb). (F.9)

Proof of Lemma F.7. We first prove that there exists a local minimizer ∆̃ of Qn(β∗ + ∆), such

that ∆̃ ∈ C, where C = {∆ ∈ RK : ‖∆‖2 ≤ r}, and r = C(K1/2/n1/2 +K−rb) for some constant C

large enough. To this end, it suffices to show that

P
{

inf
∆∈∂C

Qn(β∗ + ∆)−Qn(β∗) > 0
}
→ 1, as n→∞, (F.10)
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where ∂C = {∆ ∈ RK : ‖∆‖2 = r}. Applying the mean value theorem to each component of

ḡβ∗+∆(T ,X),

ḡβ∗+∆(T ,X) = ḡβ∗(T ,X) + G̃∆,

where G̃ =
∂ḡβ̄(T ,X)

∂β and for notational simplicity we assume there exists a common β̄ = vβ∗ +

(1 − v)β̃ for some 0 ≤ v ≤ 1 lies between β∗ and β∗ + ∆ (Rigorously speaking, we need different

β̄ for different component of ḡβ∗+∆(T ,X)). Thus, for any ∆ ∈ ∂C,

Qn(β∗ + ∆)−Qn(β∗) = 2ḡβ∗(T ,X)G̃∆ + ∆>(G̃>G̃)∆

≥ −2‖ḡβ∗(T ,X)‖2 · ‖G̃‖2 · ‖∆‖2 + ‖∆‖22 · λmin(G̃>G̃)

≥ −C(K1/2/n1/2 +K−rb) · r + C · r2, (F.11)

for some constant C > 0. In the last step, we first use the results that ‖ḡβ∗(T ,X)‖2 = Op(K
1/2/n1/2+

K−rb), which is derived by combining Lemma F.5 with the arguments similar to (F.14) in the proof

of Lemma F.8. In addition, ‖G̃‖2 ≤ ‖G̃−G∗‖2 +‖G∗‖2 ≤ C, since ‖G∗‖2 is bounded by a constant

and ‖G̃−G∗‖2 = op(1) by Lemma F.5. By the Weyl inequality and Lemma F.5,

λmin(G̃>G̃) ≥ λmin(G∗>G∗)− ‖G̃>G̃−G∗>G∗‖2

≥ C − ‖G̃−G∗‖2 · ‖G̃‖2 − ‖G̃−G∗‖2 · ‖G∗‖2 ≥ C/2,

for n sufficiently large. By (F.11), if r = C(K1/2/n1/2 +K−rb) for some constant C large enough,

the right hand side is positive for n large enough. This establishes (F.10). Next, we show that

β̃ = β∗ + ∆̃ is a global minimizer of Qn(β). This is true because the first order condition implies

(∂ḡ
β̃

(T ,X)

∂β

)
ḡ
β̃

(T ,X) = 0, =⇒ ḡ
β̃

(T ,X) = 0,

provided ∂ḡ
β̃

(T ,X)/∂β is invertible. Following the similar arguments by applying the Weyl in-

equality, ∂ḡ
β̃

(T ,X)/∂β is invertible with probability tending to one. Since ḡ
β̃

(T ,X) = 0, it implies

Qn(β̃) = 0. Noting that Qn(β) ≥ 0 for any β, we obtain that β̃ is indeed a global minimizer of

Qn(β).

Lemma F.8. Under the conditions in Theorem 4.1, β̃ satisfies the following asymptotic expansion

β̃ − β∗ = −G−1Ū + ∆n, (F.12)
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where Ū = 1
n

∑n
i=1Ui, Ui = (U>i1 ,U

>
i2)>, with

Ui1 =

(
Ti
π∗i
− 1− Ti

1− π∗i

)
h1(Xi), Ui2 =

(
Ti
π∗i
− 1

)
h2(Xi),

and

‖∆n‖2 = Op

(
K1/2 ·

(K1/2

n1/2
+

1

Krb

)2
+

√
K logK

n
·
(K1/2

n1/2
+

1

Krb

))
.

Proof of Lemma F.8. Similar to the proof of Lemma F.7, we apply the mean value theorem to each

component of ḡ
β̃

(T ,X),

ḡβ∗(T ,X) +
(∂ḡβ̄(T ,X)

∂β

)
(β̃ − β∗) = 0,

where for notational simplicity we assume there exists a common β̄ = vβ∗ + (1 − v)β̃ for some

0 ≤ v ≤ 1 lies between β∗ and β̃. After rearrangement, we derive

β̃ − β∗ = −G∗−1ḡβ∗(T ,X) +
[
G∗−1 −

(∂ḡβ̄(T ,X)

∂β

)−1]
ḡβ∗(T ,X)

= −G∗−1Ū + ∆n1 + ∆n2 + ∆n3, (F.13)

where

∆n1 = G∗−1[Ū − ḡβ∗(T ,X)], ∆n2 =
[
G∗−1 −

(∂ḡβ̄(T ,X)

∂β

)−1]
Ū

and

∆n3 =
[
G∗−1 −

(∂ḡβ̄(T ,X)

∂β

)−1]
· [ḡβ∗(T ,X)− Ū ].

We first consider ∆n1 in (F.13). Let ξ = (ξ1, ..., ξn)>, where

ξi = Ti

( 1

π∗i
− 1

J∗i

)
− (1− Ti)

( 1

1− π∗i
− 1

1− J∗i

)
, for 1 ≤ i ≤ m1,

and

ξi = Ti

( 1

π∗i
− 1

J∗i

)
, for m1 + 1 ≤ i ≤ K.

Let H = (h(X1), ...,h(Xn))> be a n×K matrix. Then, for some constants C,C ′ > 0,

‖∆n1‖22 = n−2ξ>HG∗−1G∗−1H>ξ ≤ n−2‖ξ‖22 · ‖HG∗−1G∗−1H>‖2

≤ Cn−1‖ξ‖22 · ‖H>H/n‖2 ≤ C ′n−1‖ξ‖22, (F.14)

where the third step follows from the fact that ‖G∗−1‖2 is bounded and the last step follows from

Lemma F.4 and the maximum eigenvalue of E[h(Xi)h(Xi)
>] is bounded. Since |∂J(v)/∂v| is upper
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bounded by a constant for any v ≤ supx∈X |m∗(x)|, then there exist some constants C,C ′ > 0, suc

that for any m1 + 1 ≤ i ≤ K,

|ξi| ≤ C|π∗i − J∗i | ≤ C ′ sup
x∈X
|m∗(x)− β∗>B(x)| ≤ C ′K−rb .

Similarly, |ξi| ≤ 2C ′K−rb for any 1 ≤ i ≤ m1. Thus, it yields n−1‖ξ‖22 = Op(K
−2rb). Combining

with (F.14), we conclude that ‖∆n1‖2 = Op(K
−rb).

Next, we consider ∆n2. Since ‖G∗−1‖2 is bounded, we have

‖∆n2‖2 ≤ ‖G∗−1‖2 ·
∥∥∥(∂ḡβ̄(T ,X)

∂β

)−1∥∥∥
2
·
∥∥∥G∗ − ∂ḡβ̄(T ,X)

∂β

∥∥∥
2
· ‖Ū‖2

≤ C
(
‖β̃ − β∗‖2K1/2 +

√
K logK

n

)
·
√
K

n
,

where the last step follows from Lemma F.5.

Finally, we consider ∆n3. By the same arguments in the control of terms ∆n1 and ∆n2, we can

prove that

‖∆n3‖2 ≤
∥∥∥G∗−1 −

(∂ḡβ̄(T ,X)

∂β

)−1∥∥∥
2
· ‖ḡβ∗(T ,X)− Ū‖2

≤ C
(
‖β̃ − β∗‖2K1/2 +

√
K logK

n

)
·K−rb .

Combining the rates of ‖∆n1‖2, ‖∆n2‖2 and ‖∆n3‖2 with (F.13), by Lemma F.5, we obtain

‖β̃ − β∗‖2 ≤ ‖G∗−1ḡβ∗(T ,X)‖2 + ‖∆n1‖2 + ‖∆n2‖2 + ‖∆n3‖2

≤ C
(K1/2

n1/2
+

1

Krb

)
+ C ′

(
‖β̃ − β∗‖2K1/2 +

√
K logK

n

)
·
(K1/2

n1/2
+

1

Krb

)
,

for some constants C,C ′ > 0. Therefore, (F.12) holds with ∆n = ∆n1 + ∆n2 + ∆n3, where

‖∆n‖2 = Op

(
K1/2 ·

(K1/2

n1/2
+

1

Krb

)2
+

√
K logK

n
·
(K1/2

n1/2
+

1

Krb

))
.

This completes the proof.
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Proof of Theorem 4.1. We now consider the following decomposition of µ̃
β̃
− µ,

µ̃
β̃
− µ =

1

n

n∑
i=1

[Ti(Yi(1)−K(Xi)− L(Xi))

J̃i
− (1− Ti)(Yi(0)−K(Xi))

1− J̃i

]
+

1

n

n∑
i=1

(Ti
J̃i
− 1− Ti

1− J̃i

)
K(Xi) +

1

n

n∑
i=1

(Ti
J̃i
− 1
)
L(Xi) +

1

n

n∑
i=1

L(Xi)− µ

=
1

n

n∑
i=1

[Ti(Yi(1)−K(Xi)− L(Xi))

J̃i
− (1− Ti)(Yi(0)−K(Xi))

1− J̃i

]
+

1

n

n∑
i=1

(Ti
J̃i
− 1− Ti

1− J̃i

)
∆K(Xi) +

1

n

n∑
i=1

(Ti
J̃i
− 1
)

∆L(Xi) +
1

n

n∑
i=1

L(Xi)− µ,

where J̃i = J(β̃>B(Xi)), ∆K(Xi) = K(Xi) − α∗>1 h1(Xi) and ∆L(Xi) = L(Xi) − α∗>2 h2(Xi).

Here, the second equality holds by the definition of β̃. Thus, we have

µ̃
β̃
− µ =

1

n

n∑
i=1

Si +R0 +R1 +R2 +R3

where

Si =
Ti
π∗i

[
Yi(1)−K(Xi)− L(Xi)

]
− 1− Ti

1− π∗i

[
Yi(0)−K(Xi)

]
+ L(Xi)− µ,

R0 =
1

n

n∑
i=1

Ti(Yi(1)−K(Xi)− L(Xi))

J̃iπ∗i
(π∗i − J̃i),

R1 =
1

n

n∑
i=1

(1− Ti)(Yi(0)−K(Xi))

(1− J̃i)(1− π∗i )
(π∗i − J̃i),

R2 =
1

n

n∑
i=1

(Ti
J̃i
− 1− Ti

1− J̃i

)
∆K(Xi), R3 =

1

n

n∑
i=1

(Ti
J̃i
− 1
)

∆L(Xi).

In the following, we will show that Rj = op(n
−1/2) for 0 ≤ j ≤ 3. Thus, the asymptotic normality of

n1/2(µ̃
β̃
−µ) follows from the previous decomposition. In addition, Si agrees with the efficient score

function for estimating µ (Hahn, 1998). Thus, the proposed estimator µ̃
β̃

is also semiparametrically

efficient.

Now, we first focus on R0. Consider the following empirical process Gn(f0) = n1/2(Pn −

P)f0(T, Y (1),X), where Pn stands for the empirical measure and P stands for the expectation, and

f0(T, Y (1),X) =
T (Y (1)−K(X)− L(X))

J(m(X))π∗(X)
[π∗(X)− J(m(X))].
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By Lemma F.7, we can easily show that

sup
x∈X
|J(β̃>B(x))− π∗(x)| . sup

x∈X
|β̃>B(x)− β∗>B(x)|

+ sup
x∈X
|m∗(x)− β∗>B(x)| = Op(K/n

1/2 +K1/2−rb) = op(1).

For notational simplicity, we denote ‖f‖∞ = supx∈X |f(x)|. Define the set of functions F = {f0 :

‖m − m∗‖∞ ≤ δ}, where δ = C(K/n1/2 + K1/2−rb) for some constant C > 0. By the strong

ignorability of the treatment assignment, we have that Pf0(T, Y (1),X) = 0. By the Markov

inequality and the maximal inequality in Corollary 19.35 of Van der Vaart (2000),

n1/2R0 ≤ sup
f0∈F

Gn(f0) . E sup
f0∈F

Gn(f0) . J[ ](‖F0‖P,2,F , L2(P )),

where J[ ](‖F0‖P,2,F , L2(P )) is the bracketing integral, and F0 is the envelop function. Since J is

bounded away from 0, we have |f0(T, Y (1),X)| . δ|Y (1)−K(X)−L(X)| := F0. Then ‖F0‖P,2 ≤

δ{E|Y (1)|2}1/2 . δ. Next, we consider N[ ](ε,F , L2(P )). Define F0 = {f0 : ‖m −m∗‖∞ ≤ C} for

some constant C > 0. Thus, it is easily seen that logN[ ](ε,F , L2(P )) . logN[ ](ε,F0δ, L2(P )) =

logN[ ](ε/δ,F0, L2(P )) . logN[ ](ε/δ,M, L2(P )) . (δ/ε)1/k1 , where we use the fact that J is

bounded away from 0 and J is Lipschitz. The last step follows from the assumption on the brack-

eting number of M. Then

J[ ](‖F0‖P,2,F , L2(P )) .
∫ δ

0

√
logN[ ](ε,F , L2(P ))dε .

∫ δ

0
(δ/ε)1/(2k1)dε,

which goes to 0, as δ → 0, because 2k1 > 1 by assumption and thus the integral converges. Thus,

this shows that n1/2R0 = op(1). By the similar argument, we can show that n1/2R1 = op(1).

Next, we consider R2. Define the following empirical process Gn(f2) = n1/2(Pn − P)f2(T,X),

where

f2(T,X) =
T − J(m(X))

J(m(X))(1− J(m(X)))
∆K(X).

By the assumption on the approximation property of the basis functions, we have ‖∆K‖∞ . K−rh .

In addition,

‖J(β̃>B(X))− π∗(X)‖P,2 ≤ ‖J(β̃>B(X))− J(β∗>B(X))‖P,2 + ‖J(β∗>B(X))− π∗(X)‖P,2

. ‖β̃>B(X)− β∗>B(X)‖P,2 + sup
x∈X
|m∗(x)− β∗>B(x)|

= Op(K
1/2/n1/2 +K−rb),
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where the last step follows from Lemma F.7.

Define the set of functions F = {f2 : ‖m−m∗‖P,2 ≤ δ1, ‖∆‖∞ ≤ δ2}, where δ1 = C(K1/2/n1/2 +

K−rb) and δ2 = CK−rh for some constant C > 0. Thus,

n1/2R2 ≤ sup
f2∈F

Gn(f2) + n1/2 sup
f2∈F

Pf2.

We first consider the second term n1/2 supf2∈F Pf2. Let G1 = {m ∈ M : ‖m −m∗‖P,2 ≤ δ1} and

G2 = {∆ ∈ H − α∗>1 h1 : ‖∆‖∞ ≤ δ2}. By the definition of the propensity score and Cauchy

inequality,

n1/2 sup
f2∈F

Pf2 = n1/2 sup
m∈G1,∆∈G2

E
π∗(X)− J(m(X))

J(m(X))(1− J(m(X)))
∆(X)

. n1/2 sup
m∈G1

‖π∗ − J(m)‖P,2 sup
∆∈G2

‖∆‖P,2

. n1/2δ1δ2 . n1/2(K1/2/n1/2 +K−rb)K−rh = o(1),

where the last step follows from rh > 1/2 and the scaling assumption n1/2 . Krb+rh in this

theorem. Next, we need to control the maximum of the empirical process supf2∈F Gn(f2). Fol-

lowing the similar argument to that for R0, we only need to upper bound the bracketing integral

J[ ](‖F2‖P,2,F , L2(P )). Since J is bounded away from 0 and 1, we can set the envelop func-

tion to be F2 := Cδ2 for some constant C > 0 and thus ‖F2‖P,2 . δ2. Define F0 = {f2 :

‖m−m∗‖P,2 ≤ C, ‖∆‖P,2 ≤ 1} for some constant C > 0, G10 = {m ∈ M+m∗ : ‖m‖P,2 ≤ C} and

G20 = {∆ ∈ H −α∗>1 h1 : ‖∆‖P,2 ≤ 1}. Similarly, we have

logN[ ](ε,F , L2(P )) . logN[ ](ε/δ2,F0, L2(P ))

. logN[ ](ε/δ2,G10, L2(P )) + logN[ ](ε/δ2,G20, L2(P ))

. logN[ ](ε/δ2,M, L2(P )) + logN[ ](ε/δ2,H, L2(P ))

. (δ2/ε)
1/k1 + (δ2/ε)

1/k2 ,

where the second step follows from the boundness assumption on J and its Lipschitz property, the

third step is due to G10 −m∗ ⊂ M and G20 + α∗>1 h1 ⊂ H and the last step is by the bracketing

number condition in our assumption. Since 2k1 > 1 and 2k2 > 1, it is easily seen that the bracketing

integral J[ ](‖F2‖P,2,F , L2(P )) = o(1). This shows that supf2∈F Gn(f2) = op(1). Thus, we conclude

that n1/2R2 = op(1). By the similar argument, we can show that n1/2R3 = op(1). This completes

the whole proof.
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G Discussion on the Results in Section 4

Under the conditions in Theorem 4.1, it is well known that the convergence rate for estimating

K(x) (and also L(x), ψ∗(x)) in the L2(P ) norm (i.e,
∫

(K̂(x)−K(x))2P (dx)) is Op(κ
−2rh +κ/n);

see Newey (1997). Thus, the optimal choice of κ that minimizes the rate is κ � n1/(2rh+1). Assume

that rb = rh. With κ � n1/(2rh+1), the conditions κ = o(n1/3) and n
1

2(rb+rh) = o(κ) always hold

as long as rh > 1. Recall that from the previous discussion rh = s/d, where s is the smoothness

parameter and d is the dimension of X. Thus under very mild conditions s > d, we do not need to

under-smooth the estimator.

Remark G.1. By the proof of Theorem 4.1, we find that when κ = o(n1/(2rb+1)) and κ =

o(n1/(2rh+1)) hold, the asymptotic bias of the estimator µ̃
β̃

is of order Op(K
−(rb+rh)), which is

the product of the approximation errors for ψ∗(x) and K(x) (also L(x)). Thus, to make the bias

of the estimator µ̃
β̃

asymptotically ignorable, we can require either rb or rh sufficiently large (not

necessarily both). This phenomenon can be viewed as the double robustness property in the non-

parametric context, which holds for the kernel based doubly robust estimator (Rothe and Firpo,

2013) and the targeted maximum likelihood estimator (Benkeser et al., 2017). In addition, our es-

timator has smaller asymptotic bias than the usual nonparametric method. For simplicity, assume

rb = rh = r. The asymptotic bias of the IPTW estimator in Hirano et al. (2003) is generally of

order Op(κ
−r), whereas our estimator has a smaller bias of order Op(κ

−2r).

H Estimation of ATT

We consider the estimation of the average treatment effect for the treated (ATT)

τ∗ = E(Yi(1)− Yi(0)|Ti = 1).

Let τ∗1 = E(Yi(1) | Ti = 1) and τ∗0 = E(Yi(0) | Ti = 1). By the law of total probability,

τ∗1 = E(TiYi(1) | Ti = 1) = E(TiYi(1))/P(Ti = 1).

Thus, a simple estimator of τ∗1 is

τ̂1 =

∑n
i=1 TiYi∑n
i=1 Ti

.
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To estimate τ∗0 , we notice that

τ∗0 = E[E(Yi(0) | Ti = 1,Xi) | Ti = 1] = E[E(Yi(0) |Xi) | Ti = 1]

=
E[TiE(Yi(0) |Xi)]

P(Ti = 1)
=

E(π(β∗>Xi)E(Yi(0) |Xi))

P(Ti = 1)

=
1

P(Ti = 1)
E
{
π(β∗>Xi)(1− Ti)Yi(0)

1− π(β∗>Xi)

}
.

Similar to the bias and variance calculation for the ATE, we can estimate β by the solving the

following estimating equations

n−1
n∑
i=1

(
Ti −

(1− Ti)π(β>X)

1− π(β>X)

)
f(X) = 0.

Then, we set π̂i = π(β̂>Xi) and estimate τ0 by

τ̂0 =

∑n
i=1(1− Ti)r̂iYi∑n
i=1(1− Ti)r̂i

,

where r̂i = π̂i/(1− π̂i). The final estimator of the ATT is τ̂ = τ̂1 − τ̂0. Similar to the proof of the

main results on ATE, we can show that when both models are correct, n1/2(τ̂ − τ∗)→d N(0,W ),

where

W = p−2E
[
π∗E(ε21 |X) +

π∗2

1− π∗i
E(ε20 |X) + π∗(L(Xi)− τ∗)2

]
.

Here, ε0 = Y (0)−K(X), ε1 = Y (1)−K(X)− L(X) and p = P(Y = 1)

I Derivation of (3.10) and (3.11)

In this appendix, we only provide a sketch of the proof of (3.10) and (3.11), because the detail is very

similar to the proof of Theorem 2.1. Recall that as in Section 2, βo which satisfies E(ḡβo(T ,X)) = 0

is the limiting value of β̂ as in Lemma B.2. In addition, denote Ko(Xi) = α∗Th1(Xi)+δA1h1(Xi)

and Lo(Xi) = γ∗Th2(Xi) + δA2h2(Xi), where the vectors A1 and A2 are to be determined. We

have the following decomposition

µ̂
β̂
− µ =

1

n

n∑
i=1

[ Ti
πβo(Xi)

{Yi(1)−Ko(Xi)− Lo(Xi)} −
1− Ti

1− πβo(Xi)
{Yi(0)−Ko(Xi)}+ Lo(Xi)− µ

]
+

1

n

n∑
i=1

{ Ti
π
β̂
(Xi)

− Ti
πβo(Xi)

}
{Yi(1)−Ko(Xi)− Lo(Xi)}

− 1

n

n∑
i=1

{ 1− Ti
1− π

β̂
(Xi)

− 1− Ti
1− πβo(Xi)

}
{Yi(0)−Ko(Xi)} := I1 + I2 + I3.
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We first consider I2. The mean value theorem implies

I2 = − 1

n

n∑
i=1

Ti
π2
β̃
(Xi)

∂π
β̃
(Xi)

∂β
{Yi(1)−Ko(Xi)− Lo(Xi)}(β̂ − βo),

where β̃ is an intermediate value between β̂ and βo. Under Assumptions similar to B.1, the

dominated convergence theorem implies

− 1

n

n∑
i=1

Ti
π2
β̃
(Xi)

∂π
β̃
(Xi)

∂β
{Yi(1)−Ko(Xi)− Lo(Xi)} = Op(δ).

Similar to Lemma B.3, we can show that β̂ − βo = Op(n
−1/2). The Slutsky theorem yields I2 =

Op(δn
−1/2). The same argument implies that I3 = Op(δn

−1/2). Finally, we focus on I1. Note that

I1−
1

n

n∑
i=1

[ Ti
π(Xi)

{Yi(1)−K(Xi)−L(Xi)}−
1− Ti

1− π(Xi)
{Yi(0)−K(Xi)}+L(Xi)−µ

]
=

1

n

n∑
i=1

∆i,

where

∆i =
{ Ti
πβo(Xi)

− Ti
π(Xi)

}
{Yi(1)−Ko(Xi)− Lo(Xi)}

−
{ 1− Ti

1− πβo(Xi)
− 1− Ti

1− π(Xi)

}
{Yi(0)−Ko(Xi)}

− Ti
π(Xi)

{Ko(Xi) + Lo(Xi)−K(Xi)− L(Xi)}

+
1− Ti

1− π(Xi)
{Ko(Xi)−K(Xi)}+ Lo(Xi)− L(Xi).

The central limit theorem implies n1/2( 1
n

∑n
i=1 ∆i − E∆i)/sd(∆i) → N(0, 1). In order to derive

the order of 1
n

∑n
i=1 ∆i, it suffices to compute the E(∆i) and sd(∆i). As in the derivation of (C.1),

after some algebra, we similarly obtain

βo − β∗ = ξT−1M +O(ξ2),

where

M =

 E( 1
1−πβ∗ (Xi)

u∗ih1(Xi))

E(u∗ih2(Xi)


and T = [E( 1

πβ∗ (Xi)(1−πβ∗ (Xi))

∂πβ∗ (Xi)

∂β hT1 (Xi)),E( 1
πβ∗ (Xi)

∂πβ∗ (Xi)

∂β hT2 (Xi))]
T .
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Denote r̃1(Xi) = r1(Xi)−A1h1(Xi) and r̃2(Xi) = r2(Xi)−A2h2(Xi). Note that

E(∆i) = E
{ π(Xi)

πβo(Xi)
δ(r̃1(Xi) + r̃2(Xi))−

1− π(Xi)

1− πβo(Xi)
δr̃1(Xi)− δr̃2(Xi)

}
= E

{
{1 + ξu∗i −

1

πβ∗(Xi)

∂πβ∗(Xi)

∂β
(βo − β∗)}δ(r̃1(Xi) + r̃2(Xi))

− {1−
πβ∗(Xi)

1− πβ∗(Xi)
ξu∗i +

1

1− πβ∗(Xi)

∂πβ∗(Xi)

∂β
(βo − β∗)}δr̃1(Xi)− δr̃2(Xi))

}
+O(ξ2δ)

= ξδE
[
{ 1

1− πβ∗(Xi)
u∗i −

1

(1− πβ∗(Xi))πβ∗(Xi)

∂πβ∗(Xi)

∂β
T−1M}r̃1(Xi)

]
+ ξδE

[
{u∗i −

1

πβ∗(Xi)

∂πβ∗(Xi)

∂β
T−1M}r̃2(Xi)

]
+O(ξ2δ).

Assume that at least one entry of E
[
{ 1

1−πβ∗ (Xi)
u∗i − 1

(1−πβ∗ (Xi))πβ∗ (Xi)

∂πβ∗ (Xi)

∂β T−1M}h1(Xi)
]

is

nonzero. Then, there exists A1 such that

A1E
[
{ 1

1− πβ∗(Xi)
u∗i −

1

(1− πβ∗(Xi))πβ∗(Xi)

∂πβ∗(Xi)

∂β
T−1M}h1(Xi)

]
= E

[
{ 1

1− πβ∗(Xi)
u∗i −

1

(1− πβ∗(Xi))πβ∗(Xi)

∂πβ∗(Xi)

∂β
T−1M}r1(Xi)

]
,

which implies

E
[
{ 1

1− πβ∗(Xi)
u∗i −

1

(1− πβ∗(Xi))πβ∗(Xi)

∂πβ∗(Xi)

∂β
T−1M}r̃1(Xi)

]
= 0.

Similarly, by choosing a proper A2, we have

E
[
{u∗i −

1

πβ∗(Xi)

∂πβ∗(Xi)

∂β
T−1M}r̃2(Xi)

]
= 0.

As a result, we obtain E(∆i) = O(ξ2δ). Finally, after some tedious calculation, we can show that

sd(∆i) = O(ξ+ δ). This implies 1
n

∑n
i=1 ∆i = Op(ξ

2δ+ ξn−1/2 + δn−1/2). This completes the proof

of (3.10). The proof of (3.11) follows from the similar argument and we omit the details.

J Asymptotic Variance Formulas Used for Simulations

In this appendix, we present the asymptotic variance formulas used for constructing the 95%

confidence intervals for calculating the coverage probabilities in the simulations in Section 5.1. In

particular, for a generic estimator µ̂, the 95% confidence interval is (µ̂−1.96∗ σ̂, µ̂+1.96∗ σ̂), where

σ̂2 is the estimate of the asymptotic variance of
√
n(µ̂− µ).
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For the True estimator, the asymptotic variance formula is similar to the one given in Section 2

and is as follows:

Σµ0 = Var
(
µβ0(Ti, Yi,Xi)

)
= E

(
Yi(1)2

πβ0
(Xi)

+ Yi(0)2

1−πβ0
(Xi)
− (E(Yi(1))− E(Yi(0)))2

)
.

For the GLM estimator, the asymptotic variance formula is as follows:

ΣGLM = Σµ0 −H>y I−1Hy

where Σµ0 is defined like before, I is the Fisher Information Matrix, and

Hy = −E
(
K(Xi) + (1− πβ0(Xi))L(Xi)

πβ0(Xi)(1− πβ0(Xi))
·
∂πβ0(Xi)

∂β

)
.

Since the second term is positive definite, ΣGLM < Σµ and thus the variance decreases.

The GAM estimator achieves the semiparametric efficiency bound (Hirano et al., 2003) and so

we can use Vopt given in (2.6) as the asymptotic variance formula. The CBPS estimator has the

following asymptotic variance formula:

ΣCBPS = Σµ0 + H>y (H>f Ω−1Hf )
−1Hy

− 2H>y (H>f Ω−1Hf )
−1H>f Ω−1 Cov(µβ0(Ti, Yi,Xi), gβ0(Ti,Xi))

where Σµ0 and Hy are defined like before, and we have:

Hf = −E

(
f(Xi)

πβ0(Xi)(1− πβ0(Xi))

(
∂πβ0(Xi)

∂β

)>)
Ω = Var(gβ0(Ti,Xi))

gβ0(Ti,Xi) =

(
Ti

πβ0(Xi)
− 1− Ti

1− πβ0(Xi)

)
f(Xi)

µβ0(Ti, Yi,Xi) =
TiYi

πβ0(Xi)
− (1− Ti)Yi

1− πβ0(Xi)
.

The asymptotic variance for the DR estimator is automatically computed in the R package

drtmle and the confidence interval was constructed accordingly.

Finally, we note that when we estimate the asymptotic variances, we simply replace the quan-

tities πβ0 and K(X) and L(X) with their estimates and replace the expectation with the sample

average. To save space, we do not repeat the formulas of the estimated variances.
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