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ABSTRACT
Inverse probability of treatment weighting (IPTW) is a popular method for estimating the average treatment
effect (ATE). However, empirical studies show that the IPTW estimators can be sensitive to the misspec-
ification of the propensity score model. To address this problem, researchers have proposed to estimate
propensity score by directly optimizing the balance of pretreatment covariates. While these methods
appear to empirically perform well, little is known about how the choice of balancing conditions affects
their theoretical properties. To fill this gap, we first characterize the asymptotic bias and efficiency of the
IPTW estimator based on the covariate balancing propensity score (CBPS) methodology under local model
misspecification. Based on this analysis, we show how to optimally choose the covariate balancing functions
and propose an optimal CBPS-based IPTW estimator. This estimator is doubly robust; it is consistent for
the ATE if either the propensity score model or the outcome model is correct. In addition, the proposed
estimator is locally semiparametric efficient when both models are correctly specified. To further relax
the parametric assumptions, we extend our method by using a sieve estimation approach. We show that
the resulting estimator is globally efficient under a set of much weaker assumptions and has a smaller
asymptotic bias than the existing estimators. Finally, we evaluate the finite sample performance of the
proposed estimators via simulation and empirical studies. An open-source software package is available
for implementing the proposed methods.
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1. Introduction
Suppose that we have a random sample of n units from a popu-
lation of interest. For each unit i, we observe (Ti, Yi, Xi), where
Xi ∈ R

d is a d-dimensional vector of pretreatment covariates,
Ti is a binary treatment variable, and Yi is an outcome variable.
In particular, Ti takes 1 if unit i receives the treatment and is
equal to 0 if unit i belongs to the control group. The observed
outcome can be written as Yi = Yi(1)Ti + Yi(0)(1 − Ti),
where Yi(1) and Yi(0) are the potential outcomes under the
treatment and control conditions, respectively. This notation
implicitly requires the stable unit treatment value assumption
(Rubin 1990). In addition, throughout this article, we assume
the strong ignorability of the treatment assignment (Rosenbaum
and Rubin 1983),

{Yi(1), Yi(0)} ⊥⊥ Ti | Xi and 0 < P(Ti = 1 | Xi) < 1.
(1.1)

Next, we assume that the conditional mean functions of
potential outcomes exist and denote them by,

E(Yi(0) | Xi) = K(Xi) and
E(Yi(1) | Xi) = K(Xi) + L(Xi), (1.2)

for some functions K(·) and L(·), which represent the
conditional mean of the potential outcome under the control
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condition and the conditional average treatment effect, respec-
tively. Under this setting, we are interested in estimating the
average treatment effect (ATE),

μ = E(Yi(1) − Yi(0)) = E(L(Xi)). (1.3)

The propensity score is defined as the conditional probability
of treatment assignment (Rosenbaum and Rubin 1983),

π(Xi) = P(Ti = 1 | Xi). (1.4)

In practice, since Xi can be high dimensional, the propensity
score is usually parameterized by a model πβ(Xi) where β is
a q-dimensional vector of parameters. A popular choice is the
logistic regression model, that is, πβ(Xi) = exp(X�

i β)/{1 +
exp(X�

i β)}. Once the parameter β is estimated (for example, by
the maximum likelihood estimator β̂), the Horvitz-Thompson
estimator (Horvitz and Thompson 1952), which is based on the
inverse probability of treatment weighting (IPTW), can be used
to obtain an estimate of the ATE,

μ̂β̂ = 1
n

n∑
i=1

(
TiYi

πβ̂(Xi)
− (1 − Ti)Yi

1 − πβ̂(Xi)

)
. (1.5)

However, it has been shown that the IPTW estimator with
the known propensity score does not attain the semiparametric
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efficiency bound (Hahn 1998). A variety of efficient ATE esti-
mators have been proposed (see, e.g., Robins, Rotnitzky, and
Zhao 1994; Bang and Robins 2005; Tan 2006; Qin and Zhang
2007; Robins et al. 2007; Cao, Tsiatis, and Davidian 2009; Tan
2010; van der Laan 2010; Rotnitzky et al. 2012; Han and Wang
2013; Vermeulen and Vansteelandt 2015, among many oth-
ers). Despite the popularity of these methods, researchers have
found that in practice the estimators can be sensitive to the
misspecification of the propensity score model and the outcome
model (e.g., Kang and Schafer 2007). To overcome this problem,
several researchers have recently considered the estimation of
the propensity score by optimizing covariate balance rather than
maximizing the accuracy of predicting treatment assignment
(e.g., Hainmueller 2012; Graham, Pinto, and Egel 2012; Imai
and Ratkovic 2014; Chan, Yam, and Zhang 2016; Zubizarreta
2015; Zhao and Percival 2017; Zhao 2019). Recently, Ai, et al.
(2021) proposed a weighted estimation framework by maximiz-
ing the entropy. In this article, we focus on the Covariate Balanc-
ing Propensity Score (CBPS) methodology (Imai and Ratkovic
2014). In spite of its simplicity, several scholars independently
found that the CBPS performs well in practice (e.g., Wyss et al.
2014; Frölich, Huber, and Wiesenfarth 2015). The method can
also be extended for the analysis of longitudinal data (Imai
and Ratkovic 2015), general treatment regimes (Fong, Hazlett,
and Imai 2018a) and high-dimensional propensity score (Ning,
Peng, and Imai 2018). In this article, we conduct a theoretical
investigation of the CBPS. Given the similarity between the
CBPS and some other methods, our theoretical analysis may
also provide new insights for understanding other covariate
balancing methods.

The CBPS method estimates the parameters of the propensity
score model, β , by solving the following m-dimensional estimat-
ing equation,

ḡβ(T, X) = 1
n

n∑
i=1

gβ(Ti, Xi) = 0 where

gβ(Ti, Xi) =
(

Ti
πβ(Xi)

− 1 − Ti
1 − πβ(Xi)

)
f(Xi), (1.6)

for some covariate balancing function f(·) : Rd → R
m when the

number of equations m is equal to the number of parameters q.
Imai and Ratkovic (2014) point out that the common practice
of fitting a logistic model is equivalent to balancing the score
function with f(Xi) = π

′
β(Xi) = ∂πβ(Xi)/∂β . They find that

choosing f(Xi) = Xi, which balances the first moment between
the treatment and control groups, significantly reduces the bias
of the estimated ATE. Some researchers also include higher
moments and/or interactions, e.g., f(Xi) = (Xi X2

i ), in their
applications. This guarantees that the treatment and control
groups have an identical sample mean of f(Xi) after weighting
by the estimated propensity score.

When m > q, then β̂ can be estimated by optimizing
the covariate balance by the generalized method of moments
(GMM) method (Hansen 1982):

β̂ = argmin
β∈�

ḡβ(T, X)� Ŵ ḡβ(T, X), (1.7)

where � is the parameter space for β in R
q and Ŵ is an

(m × m) positive definite weighting matrix, which we assume

in this article does not depend on β . Alternatively, the empirical
likelihood method can be used (Owen 2001). Once the estimate
of β is obtained, we can estimate the ATE using the IPTW
estimator in (1.5).

The main idea of the CBPS and other related methods is to
directly optimize the balance of covariates between the treat-
ment and control groups so that even when the propensity score
model is misspecified we still obtain a reasonable balance of
the covariates between the treatment and control groups. How-
ever, one open question remains in this literature: How shall
we choose the covariate balancing function f(Xi)? In particu-
lar, if the propensity score model is misspecified, this problem
becomes even more important.

This article makes two main contributions. First, we conduct
a thorough theoretical study of the CBPS-based IPTW esti-
mator with an arbitrary covariate balancing function f(·). We
characterize the asymptotic bias and efficiency of this estimator
under locally misspecified propensity score models. Based on
these findings, we show how to optimally choose the covariate
balancing function f(Xi) for the CBPS methodology (Section 2).

However, the optimal choice of f(Xi) requires some initial
estimators for the unknown propensity score model and the out-
come models. This limits the application of the CBPS method
with the optimal f(Xi) in practice. Our second contribution
is to overcome this problem by developing an optimal CBPS
method that does not require an initial estimator. We show
that the IPTW estimator based on the optimal CBPS (oCBPS)
method retains the double robustness property. The proposed
estimator is semiparametrically efficient when both the propen-
sity score and outcome models are correctly specified. More
importantly, we show that the rate of convergence of the pro-
posed oCBPS estimator is faster than the augmented inverse
probability weighted (AIPW) estimator (Robins, Rotnitzky, and
Zhao 1994) under locally misspecified models (Section 3).

To relax the parametric assumptions on the propensity score
model and the outcome model, we further extend the proposed
oCBPS method to the nonparametric settings, by using a sieve
estimation approach (Newey 1997; Chen 2007). In Section 4,
we establish the semiparametric efficiency result for the IPTW
estimator under the nonparametric setting. Compared to the
existing nonparametric propensity score methods (e.g., Hirano,
Imbens, and Ridder 2003; Chan, Yam, and Zhang 2016), our
theoretical results require weaker smoothness assumptions. For
instance, the theories in Hirano, Imbens, and Ridder (2003),
Imbens, Newey, and Ridder (2007), and Chan, Yam, and Zhang
(2016) require s/d > 7, s/d > 9 and s/d > 13, respectively,
where s is the smoothness parameter of the corresponding
function class and d = dim(Xi). In comparison, we only require
s/d > 3/4, which is significantly weaker than the existing
conditions. To prove this result, we exploit the matrix Bernstein’s
concentration inequalities (Tropp 2015) and a Bernstein-type
concentration inequality for U-statistics (Arcones 1995). More-
over, we show that our estimator has smaller asymptotic bias
than the usual nonparametric method (e.g., Hirano, Imbens,
and Ridder 2003). Therefore, the asymptotic normality result
is expected to be more accurate in practice (Section 4). The
proof of the theoretical results are deferred to the supplementary
material.
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An open-source R software package CBPS is available for
implementing the proposed estimators (Fong, Ratkovic, and
Imai 2018b). In Section 5, we conduct simulation studies to
evaluate the performance of the proposed methodology and
show that the oCBPS methodology indeed performs better than
the standard CBPS methodology in a variety of settings. Finally,
we conduct an empirical study using a canonical application
in labor economics. We show that the oCBPS method is able
to yield estimates closer to the experimental benchmark when
compared to the standard CBPS method.

2. CBPS Under Locally Misspecified Propensity Score
Models

Our theoretical investigation starts by examining the conse-
quences of model misspecification for the CBPS-based IPTW
estimator. While researchers can avoid gross model misspec-
ification through careful model fitting, in practice it is often
difficult to nail down the exact specification. The prominent
simulation study of Kang and Schafer (2007), for example, is
designed to illustrate this phenomenon. We therefore consider
the consequences of local misspecification of propensity score
model in the general framework of Copas and Eguchi (2005).
In particular, we assume that the true propensity score π(Xi) is
related to the working model πβ(Xi) through the exponential
tilt for some β∗,

π(Xi) = πβ∗(Xi) exp(ξ u(Xi; β∗)), (2.1)

where u(Xi; β∗) is a function determining the direction of mis-
specification and ξ ∈ R represents the magnitude of misspec-
ification. We assume ξ = o(1) as n → ∞ so that the true
propensity score π(Xi) is in a local neighborhood of the working
model πβ∗(Xi).

Intuitively, we can interpret πβ∗(Xi) as an approximation
of the true propensity score π(Xi). The main advantage of
this exponential tilt approach is that π(X) is always nonneg-
ative. Although it does not guarantee π(X) ≤ 1, with ξ =
o(1) and Assumption B.1 in the supplementary material (i.e.,
|u(X; β∗)| ≤ C almost surely for some constant C > 0), we can
show that π(X) ≤ 1 holds with probability tending to 1. Finally,
we note that under suitable regularity conditions, Model (2.1)
can be approximated by π(X) = πβ∗(X)+ ξ ū(X; β∗)+Op(ξ 2),
for some ū(X; β∗). This provides an asymptotically equivalent
specification of the locally misspecified model. To keep our
presentation focused, in this section we assume Model (2.1)
holds.

In the following, we will establish the asymptotic normality of
the CBPS-based IPTW estimator in (1.5) under this local model
misspecification framework.

To derive the asymptotic bias and variance, let us define some
necessary quantities,

B =
{
E

[u(Xi; β∗){K(Xi) + L(Xi)(1 − πβ∗(Xi))}
1 − πβ∗(Xi)

]
+H∗

y(H∗�
f W∗H∗

f )
−1H∗�

f W∗
E

(
u(Xi; β∗)f(Xi)

1 − πβ∗(Xi)

)}
,(2.2)

where K(Xi) and L(Xi) are defined in (1.2), W∗ is the limiting
value of Ŵ in (1.7), and

H∗
y = −E

(K(Xi) + (1 − πβ∗(Xi))L(Xi)

πβ∗(Xi)(1 − πβ∗(Xi))
· ∂πβ∗(Xi)

∂β

)
,

H∗
f = −E

(
f(Xi)

πβ∗(Xi)(1 − πβ∗(Xi))

(
∂πβ∗(Xi)

∂β

)�)
.

Furthermore, denote μβ∗(Ti, Yi, Xi) = TiYi
πβ∗ (Xi)

− (1−Ti)Yi
1−πβ∗ (Xi)

,

H̄∗ = (1, H∗�
y ) and � =

(
�μ ��

μβ

�μβ �β

)
, (2.3)

where

�μ = var
(
μβ∗(Ti, Yi, Xi)

)
= E

(
Yi(1)2

πβ∗(Xi)
+ Yi(0)2

1 − π∗
β(Xi)

− (E(Yi(1)) − E(Yi(0)))2
)

,

�β = (H∗�
f W∗H∗

f )
−1H∗�

f W∗var(gβ∗(Ti, Xi))W∗

H∗
f (H∗�

f W∗H∗
f )

−1,
�μβ = −(H∗�

f W∗H∗
f )

−1H∗�
f W∗cov(μβ∗(Ti, Yi, Xi),

gβ∗(Ti, Xi)),

in which gβ∗(Ti, Xi) is defined in (1.6). Under the model in
Equation (1.2), we have

var(gβ∗(Ti, Xi)) = E

(
f(Xi)f(Xi)�

πβ∗(Xi)(1 − πβ∗(Xi))

)
,

cov(μβ∗(Ti, Yi, Xi), gβ∗(Ti, Xi))

= E

[ {K(Xi) + (1 − πβ∗(Xi))L(Xi)}f(Xi)

πβ∗(Xi)(1 − πβ∗(Xi))

]
.

The following theorem establishes the asymptotic normality of
the CBPS-based IPTW estimator under the local misspecifica-
tion of the propensity score model.

Theorem 2.1 (Asymptotic Distribution under Local Misspecifi-
cation of the Propensity Score Model). If the propensity score
model is locally misspecified as in (2.1) with ξ = n−1/2 and
Assumption B.1 in the supplementary material holds, the esti-
mator μ̂β̂ in (1.5), where β̂ is obtained by GMM (1.7), has the
following asymptotic distribution

√
n(μ̂β̂ − μ)

d−→ N(B, H̄∗�
�H̄∗

), (2.4)

where B is the asymptotic bias given in Equation (2.2) and the
asymptotic variance H̄∗�

�H̄∗ is obtained from (2.3).

The theorem shows that the first order asymptotic bias of μ̂β̂

is given by B under local model misspecification. In particular,
this bias term implicitly depends on the covariate balancing
function f(·). Thus, we consider how to choose f(·) such that
the first order bias |B| is minimized. While at the first glance
the expression of B appears to be mathematically intractable, the
next corollary shows that any f(X) satisfying (2.5) can eliminate
the first order bias, B = 0.
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Corollary 2.1. Suppose that the covariate balancing function
f(X) satisfies the following condition: there exits some α ∈ R

m

such that

α�f(Xi) = πβ∗(Xi)E(Yi(0) | Xi)+ (1−πβ∗(Xi))E(Yi(1) | Xi).
(2.5)

In addition, assume that the dimension of f(Xi) is equal to
the number of parameters, that is, m = q. Then, under the
conditions in Theorem 2.1, the asymptotic bias of the IPTW
estimator μ̂β̂ is 0, i.e., B = 0.

Intuitively, the above result can be viewed as a “local” version
of robustness of IPTW with respect to the misspecification of
the propensity score model. The form of f(Xi) in (2.5) implies
that when balancing covariates, for any given unit we should
give a greater weight to the determinants of the mean potential
outcome that is less likely to be realized. For example, if a unit is
less likely to be treated, then it is more important to balance the
covariates that influence the mean potential outcome under the
treatment condition. In the following, we focus on the asymp-
totic variance of μ̂β̂ in Theorem 2.1. Interestingly, we can show
that the same choice of f(Xi) in (2.5) minimizes the asymptotic
variance.

Corollary 2.2. Under the same conditions in Corollary 2.1,
the asymptotic variance of μ̂β̂ is minimized by any covariate
balancing function f(Xi) which satisfies (2.5). In this case, the
CBPS-based IPTW estimator μ̂β̂ attains the semiparametric
asymptotic variance bound in Theorem 1 of Hahn (1998), that
is,

Vopt = E

[
var(Yi(1) | Xi)

π(Xi)
+ var(Yi(0) | Xi)

1 − π(Xi)
+ {L(Xi) − μ}2

]
.

(2.6)

Based on Theorem 2.1, we can define the asymptotic mean
squared error (AMSE) of μ̂β̂ as AMSE = B2 + H̄∗�

�H̄∗.
Corollaries 2.1 and 2.2 together imply that μ̂β̂ with f(X) satisfy-
ing (2.5) attains the minimum AMSE over all possible covariate
balancing estimators. Thus, we refer to (2.5) as the optimality
condition for the covariate balancing function. We note that
there may exist many choices of f(X) which satisfy (2.5). For
instance, we can choose f1(X) = πβ∗(Xi)E(Yi(0) | Xi) + (1 −
πβ∗(Xi))E(Yi(1) | Xi) and f2, ..., fm in an arbitrary way, as long
as the estimating equation ḡβ(T, X) = 0 is not degenerate.
In this case, to implement f1(X), we need to further estimate
β∗ by some initial estimator, for example, the maximum like-
lihood estimator, and estimate the conditional mean E(Yi(0) |
Xi) and E(Yi(1) | Xi) by some parametric/nonparametric
models. While Corollaries 2.1 and 2.2 hold with this choice
of f(X), the empirical performance of the resulting estimator
μ̂β̂ is often unstable due to the estimation error of the initial
estimators. To overcome this problem, we will next construct
the optimal CBPS estimator that does not require any initial
estimator.

3. The Optimal CBPS Methodology

Recall that the optimal covariate balancing function f(X) is
given by (2.5). Plugging f(X) into the estimating function

gβ(Ti, Xi) in (1.6), we obtain that

α�gβ∗ (Ti, Xi) =
(

Ti
πβ∗ (Xi)

− 1 − Ti
1 − πβ∗ (Xi)

)
×

[
πβ∗ (Xi)K(Xi) + (1 − πβ∗ (Xi))(K(Xi) + L(Xi))

]
=

(
Ti

πβ∗ (Xi)
− 1 − Ti

1 − πβ∗ (Xi)

)
K(Xi)

+
(

Ti
πβ∗ (Xi)

− 1

)
L(Xi). (3.1)

In other words, the optimality condition (2.5) holds if and only
if some linear combination of estimating function gβ(Ti, Xi)
satisfies (3.1). Motivated by this observation, we construct the
following set of estimating functions,

ḡβ(T, X) =
(

ḡ1β(T, X)

ḡ2β(T, X)

)
, (3.2)

where ḡ1β(T, X) = n−1 ∑n
i=1 g1β(Ti, Xi) and ḡ2β(T, X) =

n−1 ∑n
i=1 g2β(Ti, Xi) with

g1β(Ti, Xi) =
(

Ti
πβ(Xi)

− 1 − Ti
1 − πβ(Xi)

)
h1(Xi),

g2β(Ti, Xi) =
(

Ti
πβ(Xi)

− 1
)

h2(Xi), (3.3)

for some pre-specified functions h1(·) : Rd → R
m1 and h2(·) :

R
d → R

m2 with m1 + m2 = m. It is easy to see that if the
functions K(·) and L(·) lie in the linear space spanned by the
functions h1(·) and h2(·) respectively, then there exists a vector
α ∈ R

m such that (3.1) holds for (g1β(Ti, Xi), g2β(Ti, Xi)),
further implying that the optimality condition (2.5) is met.

As discussed in Section 2, the choice of the optimal covariate
balancing function is not unique. Unlike the one mentioned
after Corollary 2.2, the estimating function in (3.2) does not
require any initial estimators for β or the conditional mean
models, and is more convenient for implementation. Given the
estimating functions in (3.2), we can estimate β by the GMM
estimator β̂ in (1.7). We call this method as the optimal CBPS
method (oCBPS). Similarly, the ATE is estimated by the IPTW
estimator μ̂β̂ in (1.5). The implementation of the proposed
oCBPS method (e.g., the choice of h1(·) and h2(·)) will be
discussed in later sections.

It is worthwhile to note that ḡβ(T, X) has the following
interpretation. The first set of functions ḡ1β(T, X) is the same
as the existing covariate balancing moment function in (1.6),
which balances the covariates h1(Xi) between the treatment and
control groups. However, unlike the original CBPS method, we
introduce another set of functions ḡ2β(T, X) which matches
the weighted covariates h2(Xi) in the treatment group to the
unweighted covariates h2(Xi) in the control group, because
ḡ2β(T, X) = 0 can be rewritten as∑

Ti=1

1 − πβ(Xi)

πβ(Xi)
h2(Xi) =

∑
Ti=0

h2(Xi).

As seen in the derivation of (3.1), the auxiliary estimating
function ḡ2β(T, X) is required in order to satisfy the optimality
condition.
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3.1. Theoretical Properties

We now derive the theoretical properties of the IPTW estimator
(1.5) based on the proposed oCBPS method. In particular, we
will show that the proposed estimator is doubly robust and
locally efficient. The following set of assumptions are imposed
for the establishment of double robustness.

Assumption 3.1. The following regularity conditions are
assumed.

1. There exists a positive definite matrix W∗ such that Ŵ
p−→

W∗.
2. For any h1(·) and h2(·) in (3.3), the minimizer βo =

argminβ∈�E(ḡβ(T, X))�W∗
E(ḡβ(T, X)) is unique.

3. βo ∈ int(�), where � is a compact set.
4. πβ(X) is continuous in β .
5. There exists a constant 0 < c0 < 1/2 such that with

probability tending to one, c0 ≤ πβ(X) ≤ 1 − c0, for any
β ∈ int(�).

6. E|Y(1)|2 < ∞ and E|Y(0)|2 < ∞.
7. For any h1(·) and h2(·) in (3.3) and W∗ in part 1, G∗ :=

E(∂g(βo)/∂β) exists where g(β) = (g1β(T, X)�, g2β

(T, X)�)� and there is a q-dimensional function C(X) and a
small constant r > 0 such that supβ∈Br(β

o) |∂πβ(X)/∂βk| ≤
Ck(X) for 1 ≤ k ≤ q, and E(|h1j(X)|Ck(X)) < ∞ for
1 ≤ j ≤ m1, 1 ≤ k ≤ q and E(|h2j(X)|Ck(X)) < ∞ for
1 ≤ j ≤ m2, 1 ≤ k ≤ q, where Br(β

o) is a ball in R
q with

radius r and center βo.

Conditions 1–4 of Assumption 3.1 are the standard condi-
tions for consistency of the GMM estimator (Newey and McFad-
den 1994). We allow the propensity score model to be misspeci-
fied: we use the notation βo in Condition 2 to distinguish it from
β∗ used in the previous section. Condition 5 is the positivity
assumption commonly used in the causal inference literature
(Robins, Rotnitzky, and Zhao 1994, 1995). Conditions 6 and 7
are technical conditions that enable us to apply the dominated
convergence theorem. Note that, supβ∈Br(β

o) |∂πβ(X)/∂βk| ≤
Ck(X) in Condition 7 is a local condition because it only requires
the existence of an envelop function Ck(X) around a small
neighborhood of βo.

We now establish the double robustness of the proposed
estimator under Assumption 3.1.

Theorem 3.1 (Double Robustness). Under Assumption 3.1, the
proposed oCBPS-based IPTW estimator μ̂β̂ is doubly robust.

That is, μ̂β̂

p−→ μ if at least one of the following two conditions
holds:

1. The propensity score model is correctly specified, that is,
P(Ti = 1 | Xi) = πβo(Xi);

2. The functions h1(·) and h2(·) in (3.3) and W∗ in Assump-
tion 3.1 satisfy the following condition. There exist some
vectors α1, α2 ∈ R

q such that K(Xi) = α�
1 M1h1(Xi) and

L(Xi) = α�
2 M2h2(Xi), where M1 ∈ R

q×m1 and M2 ∈ R
q×m2

are the partitions of G∗�W∗ = (M1, M2).

Next, we establish the asymptotic normality of the proposed
estimator if either the propensity score model (Condition 1

in Theorem 3.1) or the outcome model is correctly specified
(Condition 2 in Theorem 3.1) . For this result, we require an
additional set of regularity conditions.

Assumption 3.2. The following regularity conditions are
assumed.

1. For any h1(·) and h2(·) in (3.3) and W∗ in Assumption 3.1,
G∗�W∗G∗ and � = E(gβo(Ti, Xi)gβo(Ti, Xi)�) are nonsin-
gular.

2. The function Ck(X) defined in Condition 7 of Assump-
tion 3.1 satisfies E(|Y(0)|Ck(X)) < ∞ and E(|Y(1)|Ck(X))

< ∞ for 1 ≤ k ≤ q.

Condition 1 of Assumption 3.2 ensures the non-singularity
of the asymptotic variance matrix and Condition 2 is a mild
technical condition required for the dominated convergence
theorem.

Theorem 3.2 (Asymptotic Normality). Suppose that Assump-
tions 3.1 and 3.2 hold.

1. If Condition 1 of Theorem 3.1 holds, then the proposed
oCBPS-based IPTW estimator μ̂β̂ has the following asymp-
totic distribution:

√
n(μ̂β̂ − μ)

d−→ N
(

0, H̄∗��H̄∗) , (3.4)

where H̄∗ = (1, H∗�)�, �β = (G∗�W∗G∗)−1G∗�
W∗�W∗G∗(G∗�W∗G∗)−1 and

H∗ = −E

(K(Xi) + (1 − πβo(Xi))L(Xi)

πβo(Xi)(1 − πβo(Xi))
· ∂πβo(Xi)

∂β

)
,

� =
(

�μ ��
μβ

�μβ �β

)
, with

�μ = E

( Y2
i (1)

πβo(Xi)
+ Y2

i (0)

1 − πβo(Xi)

)
− μ2. (3.5)

In addition, �μβ is given by

�μβ = −(G∗�W∗G∗)−1G∗�W∗
{
E

(
K(Xi) + (1 − πo

i )L(Xi)

(1 − πo
i )πo

i
h�

1 (Xi)

)
,

E

(
K(Xi) + (1 − πo

i )L(Xi)

πo
i

h�
2 (Xi)

)}�
.

2. If Condition 2 of Theorem 3.1 holds, then the proposed
oCBPS-based IPTW estimator μ̂β̂ has the following asymp-
totic distribution:

√
n(μ̂β̂ − μ)

d−→ N
(

0, H̃∗��̃H̃∗) , (3.6)

where H̃∗ = (1, Ȟ∗�)�,

Ȟ∗ = −E

[{
π(Xi)(K(Xi) + L(Xi))

πβo (Xi)2 + (1 − π(Xi))K(Xi)
(1 − πβo (Xi))2

}
∂πβo (Xi)

∂βo

]
,

�̃ =
(

�̃μ �̃
�
μβ

�̃μβ �β

)
with

�̃μ = E

(
π(Xi)Y2

i (1)

πβo (Xi)2 + (1 − π(Xi))Y2
i (0)

(1 − πβo (Xi))2

)
− μ2.
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In addition, �̃μβ is given by

�̃μβ = −(G∗�W∗G∗)−1G∗�W∗S,

where S = (S�
1 , S�

2 )� and

S1 = E

[{
π(Xi)(K(Xi)+L(Xi)−πβo (Xi)μ)

πβo (Xi)2

+ (1−π(Xi))(K(Xi)+(1−πβo (Xi))μ)

(1−πβo (Xi))2

}
h1(Xi)

]
,

S2 = E

[{
π(Xi)[(K(Xi)+L(Xi))(1−πβo (Xi))−πβo (Xi)μ]

πβo (Xi)2

+ (1−π(Xi))K(Xi)+(1−πβo (Xi))μ
1−πβo (Xi)

}
h2(Xi)

]
.

3. If both Conditions 1 and 2 of Theorem 3.1 hold and W∗ =
�−1, then the proposed oCBPS-based IPTW estimator μ̂β̂

has the following asymptotic distribution:
√

n(μ̂β̂ − μ)
d−→ N(0, V),

where

V = �μ − (α�
1 M1, α�

2 M2)G∗(G∗��−1G∗)−1

G∗�
(

M�
1 α1

M�
2 α2

)
(3.7)

and �μ is defined in (3.5).

The asymptotic variance V in (3.7) contains two terms. The
first term �μ represents the variance of each summand in the
estimator defined in equation (1.5) with β̂ replaced by βo.
The second term can be interpreted as the effect of estimating
β via covariate balance conditions. Since this second term is
nonnegative, the proposed estimator is more efficient than the
standard IPTW estimator with the true propensity score model,
that is, V ≤ �μ. In particular, Henmi and Eguchi (2004)
offered a theoretical analysis of such efficiency gain due to the
estimation of nuisance parameters under a general estimating
equation framework.

Since the choice of h1(·) and h2(·) can be arbitrary, it might
be tempting to incorporate more covariate balancing conditions
into h1(·) and h2(·). However, the following corollary shows that
under Conditions 1 and 2 of Theorem 3.1 one cannot improve
the efficiency of the proposed estimator by increasing the num-
ber of functions h1(·) and h2(·) or equivalently, the dimen-
sionality of covariate balance conditions, that is, ḡ1β(T, X) and
ḡ2β(T, X).

Corollary 3.1. Define h̄1(X) = (h�
1 (X), a�

1 (X))� and h̄2(X) =
(h�

2 (X), a�
2 (X))�, where a1(·) and a2(·) are some additional

covariate balancing functions. Similarly, let ḡ1(X) and ḡ2(X)

denote the corresponding estimating equations defined by
h̄1(X) and h̄2(X). The resulting oCBPS-based IPTW estimator
is denoted by μ̄β̂ where β̂ is in (1.7) and its asymptotic variance
is denoted by V̄ . Under Conditions 1 and 2 of Theorem 3.1, we
have V ≤ V̄ , where V is defined in (3.7).

The above corollary shows a potential tradeoff between
robustness and efficiency when choosing h1(·) and h2(·). Recall
that Condition 2 of Theorem 3.1 implies K(Xi) = α�

1 M1h1(Xi)
and L(Xi) = α�

2 M2h2(Xi). Therefore, we can make the
proposed estimator more robust by incorporating more basis

functions into h1(·) and h2(·), such that this condition is more
likely to hold. However, Corollary 3.1 shows that doing so may
inflate the variance of the proposed estimator.

In the following, we focus on the efficiency of the estimator.
Using the notations in this section, we can rewrite the semipara-
metric asymptotic variance bound Vopt in (2.6) as

Vopt = �μ − (α�
1 M1, α�

2 M2)�

(
M�

1 α1
M�

2 α2

)
. (3.8)

Comparing this expression with (3.7), we see that the proposed
estimator is semiparametrically efficient if G∗ is a square matrix
(i.e., m = q) and invertible. This important result is summarized
as the following corollary.

Corollary 3.2. Assume m = q and G∗ is invertible. Under
Assumption 3.1, the proposed estimator μ̂β̂ in (1.5) is doubly

robust in the sense that μ̂β̂

p−→ μ if either of the following
conditions holds:

1. The propensity score model is correctly specified. That is
P(Ti = 1 | Xi) = πβo(Xi).

2. There exist some vectors α1, α2 ∈ R
q such that K(Xi) =

α�
1 h1(Xi) and L(Xi) = α�

2 h2(Xi).

In addition, under Assumption 3.2, if both conditions hold, then
the proposed estimator has the asymptotic variance given in
(3.8). Thus, our estimator is a locally semiparametric efficient
estimator in the sense of Robins, Rotnitzky, and Zhao (1994).

Unlike Theorem 3.1, Case 2 of the above corollary does not
involve the matrices M1 and M2. As a result, h1(·) and h2(·) can
be interpreted as the basis of K(·) and L(·), respectively.

The corollary shows that the proposed oCBPS method has
two advantages over the original CBPS method (Imai and
Ratkovic 2014) with balancing first and second moments of Xi
and/or the score function of the propensity score model. First,
the proposed estimator μ̂β̂ is robust to model misspecification,
whereas the original CBPS estimator does not have that
property. Second, the proposed oCBPS estimator can be more
efficient than the original CBPS estimator.

Recall that as shown by Hahn (1998), the semiparametric
variance bound Vopt is derived in a semiparametric setting
without imposing specific parametric models for the propensity
score or outcome variables. Corollary 3.2 shows that our estima-
tor attains this bound if both conditions hold. Since h1(·) and
h2(·) can be interpreted as the basis of K(·) and L(·), we can
improve the robustness of the estimator without sacrificing the
efficiency by increasing the number of functions h1(·) and h2(·).
Meanwhile, this also makes the propensity score model more
flexible, since we need to increase the number of parameters β

to match m = q as required in Corollary 3.2. This observation
further motivates us to consider a sieve estimation approach to
improve the oCBPS method, as shown in Section 4.

Remark 3.1 (Implementation of the oCBPS method). Based on
Corollary 3.2, h1(·) serves as the basis functions for the baseline
conditional mean function K(·), while h2(·) represents the basis
functions for the conditional average treatment effect function
L(·). Thus, in practice, researchers can choose a set of basis
functions for the baseline conditional mean function and the
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conditional average treatment effect function when determining
the specification for h1(·) and h2(·). Once these functions are
selected, they can over-parameterize the propensity score model
by including some higher order terms or interactions such that
m = q holds. The resulting oCBPS-based IPTW estimator
may reduce bias under model misspecification and attain high
efficiency.

Remark 3.2. We also extend the oCBPS method to the estima-
tion of the average treatment effect for the treated (ATT). Given
the space limitation, we defer the details to the supplementary
material.

3.2. Comparison With Related Estimators

Next, we compare the proposed estimator with some related
estimators from the literature. We begin with the following stan-
dard AIPW estimator of Robins, Rotnitzky, and Zhao (1994),

μ̂AIPW
β ,α,γ = 1

n

n∑
i=1

{
TiYi

πβ(Xi)
− (1 − Ti)Yi

1 − πβ(Xi)
− (Ti − πβ(Xi))(

K(Xi, α) + L(Xi, γ )

πβ(Xi)
+ K(Xi, α)

1 − πβ(Xi)

)}
,

where K(Xi, α) and L(Xi, γ ) are the conditional mean models
indexed by finite dimensional parameters α and γ . Assume the
linear outcome models: K(Xi, α) = αTh1(Xi) and L(Xi, γ ) =
γ Th2(Xi). It is interesting to note that our IPTW estimator μ̂β̂

in Corollary 3.2 can be rewritten as the AIPW estimator μ̂AIPW
β̂ ,α,γ

(for any α and γ ), since we have,

1
n

n∑
i=1

(Ti−πβ̂(Xi))

(
K(Xi, α) + L(Xi, γ )

πβ̂(Xi)
+ K(Xi, α)

1 − πβ̂(Xi)

)
= 0,

by the definition of the covariate balancing estimating equations
in (3.2).

It is well known that the AIPW estimator is consistent pro-
vided that either the propensity score model or the outcome
model is correctly specified. Since both the AIPW estimator
and our estimator are doubly robust and locally efficient, in
the following we conduct a theoretical investigation of these
two estimators under the scenario that both propensity score
and outcome models are misspecified. Indeed, this scenario
corresponds to the simulation settings used in the influential
study of Kang and Schafer (2007).

To make the comparison mathematically tractable, we focus
on the case that both of these two models are locally misspec-
ified. Similar to Section 2, we assume that the true treatment
assignment satisfies, π(Xi) = πβ∗(Xi) exp(ξ u(Xi; β∗)) in (2.1),
while the true regression functions K(Xi) and L(Xi) in (1.2)
satisfy

K(Xi) = α∗�h1(Xi)+ δr1(Xi), L(Xi) = γ ∗�h2(Xi)+ δr2(Xi),
(3.9)

where α∗ and γ ∗ can be viewed as the approximate true values of
α and γ , the functions r1(Xi) and r2(Xi) determine the direction
of misspecification, and δ ∈ R represents the magnitude of
misspecification.

Assume further that the models are locally misspecified, that
is, ξ , δ = o(1). Under regularity conditions similar to Section 2,
we can show that the proposed estimator satisfies,

μ̂β̂ − μ = 1
n

n∑
i=1

[
Ti

π(Xi)
{Yi(1) − K(Xi) − L(Xi)}

− 1 − Ti
1 − π(Xi)

{Yi(0) − K(Xi)} + L(Xi) − μ

]
+ Op(ξ

2δ + δn−1/2 + ξn−1/2), (3.10)

whereas the AIPW estimator satisfies,

μ̂AIPW
β̃ ,̃α ,̃γ − μ = 1

n

n∑
i=1

[
Ti

π(Xi)
{Yi(1) − K(Xi) − L(Xi)}

− 1 − Ti
1 − π(Xi)

{Yi(0) − K(Xi)} + L(Xi) − μ

]
+ Op(ξδ + δn−1/2 + ξn−1/2), (3.11)

where β̃ , α̃ and γ̃ are the corresponding maximum likelihood
and least-square estimators. The derivation of (3.10) and (3.11)
is shown in the supplementary material.

The leading terms in the asymptotic expansions of μ̂β̂ − μ

and μ̂AIPW
β̃ ,̃α ,̃γ −μ are identical and are known as the efficient influ-

ence function for μ. However, the remainder terms in (3.10)
and (3.11) may have different order. Consider the following
two scenarios. First, if ξδ � n−1/2, then we have μ̂β̂ − μ =
Op(ξ 2δ+n−1/2) and μ̂AIPW

β̃ ,̃α ,̃γ −μ = Op(ξδ). Thus, the proposed
estimator μ̂β̂ converges in probability to the ATE at a faster
rate than μ̂AIPW

β̃ ,̃α ,̃γ . Second, if ξδ = o(n−1/2), the two estimators

have the same limiting distribution, that is,
√

n(μ̂ − μ)
d−→

N(0, Vopt), where μ̂ can be either μ̂β̂ or μ̂AIPW
β̃ ,̃α ,̃γ . However, the

rates of convergence of the Gaussian approximation determined
by the remainder terms in (3.10) and (3.11) are different. For
instance, assume that ξ = δ = n−(1/4+ε) for some small
positive ε < 1/4. We observe that the remainder term in (3.10)
is of order Op(n−(3/4+ε)) and is smaller in magnitude than the
corresponding term in (3.11), which is of order Op(n−(1/2+2ε)).
As a result, the proposed estimator converges in distribution
to N(0, Vopt) at a faster rate than the AIPW estimator. The
above analysis justifies the theoretical advantage of the proposed
oCBPS estimator over the standard AIPW estimator.

Furthermore, the proposed estimator is related to the class
of bias-reduced doubly robust estimators (Vermeulen and
Vansteelandt 2015), see also Robins et al. (2007). To see this, we
consider the derivative of μ̂AIPW

β ,α,γ with respect to the nuisance
parameters α, γ . In particular, under the linear outcome
models, it is easily shown that ∂μ̂AIPW

β ,α,γ /∂α = ḡ1β(T, X) and
∂μ̂AIPW

β ,α,γ /∂γ = ḡ2β(T, X), where ḡ1β(T, X) and ḡ2β(T, X) are
our covariate balancing functions in (3.2). This provides an
alternative justification for the proposed method: the oCBPS
estimator β̂ , which satisfies ḡ2β(T, X) = 0 and ḡ1β(T, X) = 0,
removes the local effect of the estimated nuisance parameters,
that is, ∂μ̂AIPW

β̂ ,α,γ /∂α = 0 and ∂μ̂AIPW
β̂ ,α,γ /∂γ = 0. This property

would not hold if we replace β̂ by the maximum likelihood
estimator or other convenient estimators of β . Vermeulen and
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Vansteelandt (2015) defined the class of bias-reduced doubly
robust estimator as μ̂AIPW

β̄ ,ᾱ,γ̄ , where (β̄ , ᾱ, γ̄ ) are the estimators
corresponding to the estimating equations ∂μ̂AIPW

β ,α,γ /∂α =
0, ∂μ̂AIPW

β ,α,γ /∂γ = 0, ∂μ̂AIPW
β ,α,γ /∂β = 0. The first two sets of

estimating equations are identical to the covariate balancing
estimating equations in (3.2), whereas the last set of estimating
equations ∂μ̂AIPW

β ,α,γ /∂β = 0 (leading to the estimators ᾱ, γ̄ ) is
unnecessary in our setting because μ̂β̂ = μ̂AIPW

β̂ ,α,γ does not rely
on how α and γ are estimated. As expected, all the theoretical
properties of the bias-reduced doubly robust estimator in
Section 3 of Vermeulen and Vansteelandt (2015) hold for our
estimator.

Recently, a variety of empirical likelihood based estimators
are proposed to match the moment of covariates in treatment
and control groups (e.g., Tan 2006, 2010; Hainmueller 2012;
Graham, Pinto, and Egel 2012; Han and Wang 2013; Chan,
Yam, and Zhang 2016; Zubizarreta 2015; Zhao and Percival
2017). Usually, these methods aim to estimate E(Yi(1)) and
E(Yi(0)) (or E(Yi(1) | Ti = 0) and E(Yi(0) | Ti = 1))
separately and combine then to estimate the ATE. Our approach
directly estimates the propensity score and ATE by jointly solv-
ing the potentially over-identified estimating functions (3.2). In
addition, our asymptotic results and the discussion rely on the
GMM theory for over-identified estimating functions which is
different from these methods. Another recent article by Zhao
(2019) studied the robustness of a general class of loss function
based covariate balancing methods. When the goal is to estimate
the ATE, his score function reduces to our first set of estimating
functions ḡ1β(T, X) in (3.2). In this case, his estimator is robust
to the misspecification of the propensity score model under the
constant treatment effect model, that is, L(X) = τ ∗ for some
constant τ ∗. In comparison, our methodology and theoretical
results cover a broader case that allows for heterogeneous treat-
ment effects.

4. Nonparametric oCBPS Methodology

In this section, we extend our theoretical results of the oCBPS
methodology to nonparametric estimation. As seen in Corol-
lary 3.2, the proposed estimator is efficient if both the propensity
score P(Ti = 1 | Xi) and the conditional mean functions K(·)
and L(·) are correctly specified. To avoid model misspecifica-
tion, we can choose a large number of basis functions h1(·) and
h2(·), such that the conditional mean functions K(·) and L(·)
satisfy the condition 2 in Corollary 3.2.

However, the parametric assumption for the propensity score
model P(Ti = 1 | Xi) = πβo(Xi) imposed in Corollary 3.2 may
be too restrictive. Once the propensity score model is misspec-
ified, the proposed oCBPS-based IPTW estimator μ̂β̂ is ineffi-
cient and could even become inconsistent. To relax the strong
parametric assumptions imposed in the previous sections, we
propose a flexible nonparametric approach for modeling the
propensity score and the conditional mean functions. The main
advantage of this nonparametric approach is that, the resulting
oCBPS-based IPTW estimator is semiparametrically efficient
under a much broader class of propensity score models and the
conditional mean models than those of Corollary 3.2.

Specifically, we assume P(Ti = 1 | Xi) = J(ψ∗(Xi)), where
J(·) is a known monotonic link function (e.g., J(·) = exp(·)/(1+
exp(·))), and ψ∗(·) is an unknown smooth function. One prac-
tical way to estimate ψ∗(·) is to approximate it by the linear
combination of κ basis functions, where κ is allowed to grow
with n. This approach is known as the sieve estimation (Andrews
1991; Newey 1997). In detail, let B(x) = {b1(x), ..., bκ (x)}
denote a collection of κ basis functions, whose mathematical
requirement is given in Assumption E.1 in the supplementary
material. Intuitively, we would like to approximate ψ∗(x) by
β∗�B(x), for some coefficient β∗ ∈ R

κ .
To estimate β∗, similar to the parametric case, we define

ḡβ(T, X) = ∑n
i=1 gβ(Ti, Xi)/n, where gβ(Ti, Xi) = (g�

1β

(Ti, Xi), g�
2β(Ti, Xi))� with,

g1β(Ti, Xi) =
(

Ti

J(β�B(Xi))
− 1 − Ti

1 − J(β�B(Xi))

)
h1(Xi),

g2β(Ti, Xi) =
(

Ti

J(β�B(Xi))
− 1

)
h2(Xi).

Recall that h1(X) ∈ R
m1 and h2(X) ∈ R

m2 are interpreted
as the basis functions for K(X) and L(X). Let m1 + m2 = m
and h(X) = (h1(X)�, h2(X)�)�. Here, we assume m = κ ,
so that the number of equations in ḡβ(T, X) is identical
to the dimension of the parameter β . Then define β̃ =
arg minβ∈� ||ḡβ(T, X)||22, where � is the parameter space for β

and ||v||2 represents the L2 norm of the vector v. The resulting
IPTW estimator is,

μ̃β̃ = 1
n

n∑
i=1

(
TiYi

J(β̃�B(Xi))
− (1 − Ti)Yi

1 − J(β̃�B(Xi))

)
.

To establish the large sample properties of μ̃β̃ , we require a
few regularity conditions. Due to the space constraint, we defer
the regularity conditions to the supplementary material. The
following theorem establishes the asymptotic normality and
semiparametric efficiency of the estimator μ̃β̃ .

Theorem 4.1 (Efficiency under nonparametric models). Assume
that Assumption E.1 in the supplementary material holds, and
there exist rb, rh > 1/2, β∗ and α∗ = (α∗�

1 , α∗�
2 )� ∈ R

κ , such
that the propensity score model satisfies

sup
x∈X

|ψ∗(x) − β∗�B(x)| = O(κ−rb), (4.1)

and the outcome models K(·) and L(·) satisfy

sup
x∈X

|K(x) − α∗�
1 h1(x)| = O(κ−rh),

sup
x∈X

|L(x) − α∗�
2 h2(x)| = O(κ−rh). (4.2)

Assume κ = o(n1/3) and n
1

2(rb+rh) = o(κ). Then

n1/2(μ̃β̃ − μ)
d−→ N(0, Vopt),

where Vopt is the asymptotic variance bound in (2.6). Thus, μ̃β̃

is semiparametrically efficient.
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This theorem can be viewed as a nonparametric version of
Corollary 3.2. It shows that one can construct a globally effi-
cient estimator of the treatment effect without imposing strong
parametric assumptions on the propensity score model and the
outcome model. Since the estimator is asymptotically equivalent
to the sample average of the efficient influence function, it is also
adaptive in the sense of Bickel et al. (1998).

In the following, we comment on the technical assumptions
of Theorem 4.1. We assume ψ∗(x) and K(x) (also L(x)) can
be uniformly approximated by the basis functions B(x) and
h1(x) (also h2(x)) in (4.1) and (4.2), respectively. It is well
known that the uniform rate of convergence is related to the
smoothness of the functions ψ∗(x) and K(x) (also L(x)) and the
dimension of X. For instance, if the function class M for ψ∗(x)

and H for K(x) (also L(x)) correspond to the Hölder class with
smoothness parameter s on the domain X = [0, 1]d, under the
assumption that m1 � m2 � κ , (4.1) and (4.2) hold for the
spline basis and wavelet basis with rb = rh = s/d; see Newey
(1997); Chen (2007) for details. In the same setting, Hirano,
Imbens, and Ridder (2003) considered a nonparametric IPTW
estimator, which is globally efficient under the condition s/d >

7. Imbens, Newey, and Ridder (2007) established the asymptotic
equivalence between a regression based estimator and Hirano,
Imbens, and Ridder (2003) estimator under s/d > 9. Recently,
Chan, Yam, and Zhang (2016) proposed a sieve based cali-
bration estimator under the condition s/d > 13. Compared
to these existing results, our theorem needs a much weaker
condition, that is, s/d > 3/4. We refer to the supplementary
material for further technical discussion of our nonparametric
estimator.

5. Simulation and Empirical Studies

5.1. Simulation Studies

In this section, we conduct a set of simulation studies to examine
the performance of the proposed methodology. We consider the
following linear model for the potential outcomes,

Yi(1) = 200 + 27.4Xi1 + 13.7Xi2 + 13.7Xi3 + 13.7Xi4 + εi,
Yi(0) = 200 + 13.7Xi2 + 13.7Xi3 + 13.7Xi4 + εi.

where εi ∼ N(0, 1), independent of Xi, and consider the
following true propensity score model

P(Ti = 1 | Xi = xi)

= exp(−β1xi1 + 0.5xi2 − 0.25xi3 − 0.1xi4)

1 + exp(−β1xi1 + 0.5xi2 − 0.25xi3 − 0.1xi4)
, (5.1)

where β1 varies from 0 to 1. When implementing the proposed
methodology, we set h1(xi) = (1, xi2, xi3, xi4) and h2(xi) =
xi1 so that the number of equations is equal to the number of
parameters to be estimated. Covariate Xi1 is generated inde-
pendently from N(3, 2) and Xi2, Xi3, and Xi4 are generated
from N(0, 1). Each set of results is based on 500 Monte Carlo
simulations.

We examine the performance of the IPTW estimator when
the propensity score model is fitted using maximum likelihood
(GLM), the standard CBPS with balancing the first moment
(CBPS), and the proposed optimal CBPS (oCBPS) as well as the

case where the true propensity score (True), that is, β = β∗, is
used for the IPTW estimator. In addition, we include the IPTW
estimator when the propensity score model is estimated by
logistic series (Hirano, Imbens, and Ridder 2003). Since a fully
nonparametric logistic series approach is impractical to imple-
ment due to the curse of dimensionality, instead we consider a
generalized additive model (GAM) and apply the logistic series
approach to each of the covariate separately. Finally, we also
include the targeted maximum likelihood estimator, a doubly
robust estimator (DR, Benkeser et al. 2017), using the R package
drtmle.

In the first set of simulations, we use the correctly speci-
fied propensity score and outcome models. Table 1 shows the
standard deviation, bias, root mean square error (RMSE), and
the coverage probability of the constructed 95% confidence
intervals of these estimators when the sample size is n = 300
and n = 1000. The confidence intervals are constructed using
estimates of the asymptotic variances of the estimators. The
exact formulas can be found in the supplementary material. We
find that CBPS and oCBPS substantially outperform True, GLM,
and GAM in terms of efficiency, and in most cases outperform
DR as well. In addition, oCBPS is more efficient than CBPS in all
the cases as well. The efficiency improvement is consistent with
Corollary 3.2. The coverage probabilities of True, GLM, CBPS
and oCBPS are close to the nominal level. However, GAM yields
much lower coverage probability, partly because the estimates of
the propensity score from logistic series are unstable. The pat-
tern becomes more evident as β1 increases, corresponding to the
setting that the propensity score can be close to 0 or 1. Similarly,
the coverage probability of DR also deteriorates as β1 increases.

We further evaluate our method by considering different
cases of misspecification for the outcome and propensity score
models. We begin with the case where the outcome model is
linear like before but the propensity score is misspecified. While
we use the model given in Equation (5.1) when estimating the
propensity score, the actual treatment is generated according to
the following different model,

P(Ti = 1 | X = xi)

= exp(−β1x∗
i1 + 0.5x∗

i2 − 0.25x∗
i3 − 0.1x∗

i4)

1 + exp(−β1x∗
i1 + 0.5x∗

i2 − 0.25x∗
i3 − 0.1x∗

i4)
,

with x∗
i1 = exp(xi1/3), x∗

i2 = xi2/{1 + exp(xi1)} + 10, x∗
i3 =

xi1xi3/25 + 0.6, and x∗
i4 = xi1 + xi4 + 20 where β1 again

varies from 0 to 1. In other words, the model misspecifica-
tion is introduced using nonlinear transformations. Table 2
shows the results for this case. As expected from the double
robustness property shown in Theorem 3.1, we find that the
bias for the oCBPS becomes significantly smaller than all the
other estimators. The oCBPS also dominates the other estima-
tors in terms of efficiency and maintains the desired coverage
probability.

We also consider the case when the propensity score is locally
misspecified with Equation (2.1). In the case, we use (5.1) as
the working model πβ(Xi), set ξ = n−1/2 as in Theorem 2.1
and choose the function u(Xi; β) = X2

i1 as the direction of
misspecification. We compute the true propensity score from
the model (2.1) and use it to generate the treatment variables.
We note that sometimes the true propensity score may exceed
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Table 1. The bias, standard deviation, root mean squared error (RMSE), and the coverage probability of the constructed 95% C.I. of the IPTW estimator with known
propensity score (True), the IPTW estimator when the propensity score is fitted using the maximum likelihood (GLM), the IPTW estimator when the propensity score is
fitted using the generalized additive model (GAM), the targeted maximum likelihood estimator (DR), the standard CBPS estimator balancing the first moment (CBPS), and
the proposed optimal CBPS estimator (oCBPS) under the scenario that both the outcome model and the propensity score model are correctly specified.

n = 300 n = 1000

β1 0 0.33 0.67 1 0 0.33 0.67 1

Bias True −0.43 −0.01 1.15 −5.19 0.00 0.09 −2.43 9.99
GLM −0.18 −0.86 0.15 −4.32 −0.04 0.02 0.32 11.15
GAM −0.74 −4.60 −15.55 −35.38 −0.19 −1.16 −2.85 −6.86
DR 0.08 −1.04 −3.41 −8.32 0.18 −0.56 −2.14 −4.50
CBPS −0.05 −0.09 0.54 −0.27 0.04 0.04 0.20 0.45
oCBPS −0.04 0.03 0.07 0.06 0.04 0.06 0.16 0.08

True 29.52 39.46 72.56 138.33 15.73 22.36 38.18 88.33
GLM 4.45 12.31 63.35 144.25 2.21 5.49 22.93 114.45

Std GAM 4.31 14.91 43.08 100.16 2.06 5.22 21.27 51.96
Dev DR 2.39 2.57 4.25 8.06 1.20 1.29 1.76 3.32

CBPS 2.39 2.35 2.66 15.94 1.24 1.26 1.27 1.45
oCBPS 2.26 2.16 2.27 2.39 1.20 1.20 1.18 1.22

RMSE True 29.52 39.46 72.57 138.43 15.73 22.36 38.26 88.89
GLM 4.46 12.34 63.35 144.32 2.21 5.49 22.93 114.99
GAM 4.37 15.60 45.81 106.23 2.07 5.35 21.46 52.41
DR 2.39 2.77 5.45 11.58 1.21 1.41 2.77 5.59
CBPS 2.39 2.35 2.72 15.94 1.24 1.26 1.29 1.52
oCBPS 2.26 2.16 2.27 2.39 1.20 1.20 1.19 1.23

True 0.936 0.938 0.922 0.948 0.962 0.942 0.926 0.948
Coverage GLM 0.946 0.946 0.946 0.946 0.944 0.954 0.954 0.958
Probability GAM 0.704 0.310 0.090 0.028 0.754 0.382 0.108 0.048
(of the DR 0.928 0.876 0.576 0.278 0.960 0.906 0.562 0.268
95% C.I.) CBPS 0.944 0.944 0.944 0.944 0.960 0.958 0.958 0.968

oCBPS 0.950 0.964 0.962 0.982 0.956 0.954 0.962 0.966

NOTE: We vary the value of β1 in the data-generating model (5.1).

Table 2. Correct outcome model with a misspecified propensity score model.

n = 300 n = 1000

β1 0 0.33 0.67 1 0 0.33 0.67 1

Bias True 0.00 2.13 0.08 4.79 −1.28 −0.36 1.83 3.62
GLM 0.41 −6.67 −18.84 −32.15 0.19 −6.33 −19.21 −32.96
GAM 15.61 3.11 −7.16 −20.76 4.07 0.28 −4.98 −14.11
DR −0.29 −0.68 −1.89 −3.60 −0.21 −0.39 −1.23 −2.75
CBPS 0.84 −0.05 −2.06 −2.44 0.06 −0.79 −2.74 −3.28
oCBPS −0.20 −0.02 −0.13 0.07 −0.04 0.03 0.01 −0.05

True 45.43 36.03 39.77 77.26 26.32 19.36 39.15 88.45
GLM 11.23 12.66 15.73 26.82 2.17 5.32 8.61 10.92

Std GAM 19.91 9.40 8.81 16.18 4.29 2.87 4.14 8.52
Dev DR 3.35 2.57 2.52 3.16 1.42 1.27 1.28 1.57

CBPS 3.21 2.74 3.18 3.61 1.25 1.41 1.74 2.04
oCBPS 2.26 2.30 2.28 2.34 1.24 1.26 1.24 1.29

RMSE True 45.43 36.10 39.77 77.40 26.36 19.36 39.20 88.52
GLM 11.24 14.31 24.55 41.86 2.18 8.27 21.05 34.72
GAM 25.30 9.90 11.35 26.32 5.91 2.89 6.47 16.48
DR 3.37 2.65 3.15 4.79 1.44 1.33 1.78 3.16
CBPS 3.32 2.74 3.79 4.36 1.26 1.62 3.24 3.86
oCBPS 2.27 2.30 2.29 2.34 1.24 1.26 1.24 1.29

True 0.952 0.936 0.964 0.972 0.946 0.950 0.960 0.988
Coverage GLM 0.964 0.898 0.740 0.834 0.948 0.714 0.300 0.346
probability GAM 0.236 0.434 0.286 0.066 0.356 0.648 0.178 0.042
(of the DR 0.882 0.904 0.822 0.596 0.908 0.938 0.788 0.392
95% C.I.) CBPS 0.956 0.978 0.924 0.914 0.944 0.928 0.742 0.654

oCBPS 0.946 0.944 0.952 0.944 0.950 0.950 0.954 0.954

1. In this case we simply replace its value with 0.95. The results
are given in Table 3. oCBPS dominates all the other estimators
in terms of bias, standard deviation and root mean square error,
but CBPS and DR are also noticeably better than True, GLM,
and GAM.

We next examine the cases where the outcome model is
misspecified. We do this by generating potential outcomes from

the following quadratic model
E(Yi(1) | Xi = xi) = 200 + 27.4x2

i1 + 13.7x2
i2 + 13.7x2

i3
+13.7x2

i4,
E(Yi(0) | Xi = xi) = 200 + 13.7x2

i2 + 13.7x2
i3 + 13.7x2

i4,
whereas the propensity score model is the same as the one in
(5.1) with β1 varying from 0 to 0.4. Table 4 shows the results
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Table 3. Correctly specified outcome with a locally misspecified propensity score model.

n = 300 n = 1000

β1 0 0.33 0.67 1 0 0.33 0.67 1

Bias True −1.96 0.69 0.80 4.87 0.04 0.87 −0.42 3.07
GLM −16.73 8.43 5.85 19.96 8.55 0.84 4.65 21.07
GAM −8.19 7.68 −4.35 −10.79 4.62 −0.25 −0.63 2.95
DR 0.43 0.34 −0.83 −3.67 0.38 0.08 −1.39 −3.50
CBPS −0.76 −2.15 0.56 1.34 −1.92 −0.34 0.22 0.37
oCBPS −0.41 0.05 0.10 0.06 −0.05 0.02 −0.01 −0.02

True 41.03 33.16 41.86 82.09 20.65 18.39 28.44 59.63
GLM 67.79 9.55 23.67 72.99 9.43 3.23 13.86 81.20

Std GAM 46.08 8.92 21.56 52.34 11.06 2.91 11.78 52.31
Dev DR 3.10 2.51 2.87 5.74 1.37 1.29 1.59 2.60

CBPS 3.26 2.56 2.44 2.77 1.58 1.28 1.33 1.43
oCBPS 2.47 2.24 2.25 2.26 1.29 1.22 1.26 1.29

RMSE True 41.07 33.17 41.87 82.24 20.65 18.41 28.44 59.70
GLM 69.82 12.74 24.39 75.67 12.73 3.34 14.62 83.89
GAM 46.80 11.77 21.99 53.44 11.98 2.92 11.80 52.39
DR 3.13 2.53 2.99 6.81 1.42 1.29 2.11 4.36
CBPS 3.35 3.34 2.51 3.07 2.49 1.32 1.34 1.48
oCBPS 2.50 2.24 2.26 2.27 1.29 1.22 1.26 1.29

True 0.962 0.948 0.962 0.938 0.934 0.946 0.954 0.942
Coverage GLM 0.804 0.788 0.888 0.916 0.652 0.936 0.918 0.910
probability GAM 0.132 0.294 0.238 0.076 0.154 0.612 0.144 0.052
(of the DR 0.856 0.922 0.866 0.556 0.916 0.936 0.736 0.332
95% C.I.) CBPS 0.912 0.914 0.926 0.958 0.752 0.954 0.954 0.952

oCBPS 0.916 0.946 0.936 0.954 0.950 0.948 0.958 0.954

Table 4. Misspecified outcome model with correct propensity score model.

n = 300 n = 1000

β1 0 0.13 0.27 0.4 0 0.13 0.27 0.4

Bias True −4.37 −0.03 −4.24 1.51 0.80 −1.00 2.31 2.67
GLM 0.38 −0.64 −2.67 −1.33 0.11 −0.44 0.05 0.75
GAM −2.03 −5.49 −10.43 −13.66 −0.65 −1.72 −1.95 −3.04
DR −2.77 −5.06 −9.92 −14.36 −2.98 −4.98 −7.43 −10.11
CBPS 0.07 −0.69 −2.59 −3.94 0.05 −0.55 −0.71 −1.63
oCBPS −0.56 −0.97 −3.05 −4.37 −0.03 −0.68 −0.84 −1.70

True 49.87 58.75 74.32 100.35 27.61 33.62 44.75 53.58
GLM 18.12 24.87 34.83 56.17 9.68 12.37 18.45 31.16

Std GAM 17.59 23.19 34.72 49.87 9.07 11.36 16.85 26.50
Dev DR 14.02 14.65 15.58 16.65 7.95 8.26 8.21 8.40

CBPS 15.51 17.60 18.83 20.66 8.74 9.47 10.64 12.05
oCBPS 14.74 16.15 17.13 18.55 8.44 9.03 9.68 10.87

RMSE True 50.06 58.75 74.45 100.36 27.62 33.64 44.81 53.60
GLM 18.13 24.88 34.93 56.18 9.68 12.37 18.45 31.17
GAM 17.71 23.83 36.25 51.71 9.09 11.49 16.96 26.67
DR 14.29 15.50 18.47 21.99 8.49 9.65 11.07 13.15
CBPS 15.51 17.62 19.01 21.03 8.74 9.49 10.66 12.16
oCBPS 14.75 16.18 17.40 19.06 8.44 9.06 9.72 11.00

True 0.948 0.954 0.946 0.920 0.938 0.950 0.910 0.922
Coverage GLM 0.896 0.852 0.870 0.868 0.908 0.862 0.816 0.802
probability GAM 0.912 0.832 0.676 0.476 0.932 0.846 0.690 0.516
(of the DR 0.930 0.910 0.838 0.716 0.924 0.874 0.794 0.688
95% C.I.) CBPS 0.920 0.870 0.790 0.676 0.914 0.862 0.776 0.668

oCBPS 0.950 0.930 0.908 0.904 0.954 0.920 0.902 0.862

when the outcome model is misspecified but the propensity
score model is correct. We find that the magnitude of bias is
similar across all estimators with the exception of GAM and DR,
which seem to have a significantly larger bias. The DR dominates
in terms of standard deviation, but oCBPS closely follows. In
terms of the root mean square error, oCBPS is on par with DR.

Finally, when both the outcome and propensity score models
are misspecified, we observe that DR and oCBPS dominate all

other estimators with respect to all three criteria. In particular,
oCBPS performs much better than CBPS in all scenarios. The
results are organized in Table 5.

In summary, the proposed oCBPS method outperforms the
CBPS method with respect to root mean square error (RMSE)
under all five scenarios we examined. In addition, the oCBPS
method often yields better or at least comparable results relative
to all the other estimators.
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Table 5. Misspecified outcome with misspecified propensity score models.

n = 300 n = 1000

β1 0 0.13 0.27 0.4 0 0.13 0.27 0.4

Bias True 0.54 −1.74 1.71 −3.56 −2.66 −2.52 −2.06 −0.36
GLM 2.94 −1.70 −8.47 −20.25 −0.18 −2.07 −8.89 −18.79
GAM 20.74 12.05 3.42 −8.06 4.95 2.35 −1.03 −5.01
DR 9.16 6.66 4.52 0.46 6.55 4.91 2.80 0.36
CBPS 9.57 4.10 0.37 −7.62 0.46 −0.81 −4.94 −11.18
oCBPS 2.51 −0.24 −1.62 −4.82 0.04 −0.61 −2.29 −4.54

True 59.12 55.64 54.16 58.35 34.79 31.31 28.41 31.62
GLM 25.00 19.44 22.49 26.01 9.67 9.79 11.17 12.44

Std GAM 30.85 23.01 19.46 21.72 10.23 9.53 9.19 9.25
Dev DR 15.18 15.14 13.71 13.60 7.86 7.85 7.69 7.70

CBPS 26.74 18.65 19.74 18.92 9.16 9.11 9.36 9.63
oCBPS 16.28 15.38 15.08 14.42 8.93 8.60 8.32 8.27

RMSE True 59.12 55.66 54.19 58.45 34.89 31.42 28.48 31.62
GLM 25.18 19.51 24.03 32.96 9.67 10.00 14.28 22.53
GAM 37.17 25.97 19.76 23.17 11.37 9.81 9.25 10.52
DR 17.73 16.54 14.43 13.60 10.24 9.26 8.19 7.71
CBPS 28.40 19.10 19.75 20.40 9.17 9.15 10.59 14.76
oCBPS 16.47 15.38 15.17 15.20 8.93 8.62 8.63 9.43

True 0.952 0.940 0.936 0.952 0.936 0.940 0.952 0.916
Coverage GLM 0.854 0.902 0.866 0.788 0.890 0.878 0.772 0.540
probability GAM 0.714 0.810 0.860 0.832 0.868 0.902 0.916 0.834
(of the DR 0.878 0.920 0.934 0.946 0.876 0.906 0.936 0.946
95% C.I.) CBPS 0.866 0.892 0.890 0.866 0.894 0.888 0.852 0.670

oCBPS 0.940 0.964 0.926 0.934 0.944 0.942 0.926 0.894

5.2. An Empirical Application

We next apply the oCBPS methodology to a well-known study
where the experimental benchmark estimate is available. Specif-
ically, LaLonde (1986) conducted a study, in which after the
randomized evaluation study was implemented, the experimen-
tal control group is replaced with a set of untreated individuals
taken from the Panel Study of Income Dynamics. This created
an artificial observational study with 297 treated observations
and 2490 control observations. Ever since the original study, this
dataset has been used for evaluating whether a new statistical
methodology can recover the experimental benchmark estimate
(see, e.g., Dehejia and Wahba 1999; Smith and Todd 2005). In
the original CBPS article, Imai and Ratkovic (2014) use this
dataset to show that the propensity score matching estimator
based on the CBPS method outperforms the matching estimator
based on the standard logistic regression. In the following,
we evaluate whether the proposed oCBPS method can further
improve the CBPS methodology.

We begin by replicating the original results of Imai and
Ratkovic (2014) and then compare those results with those of
the proposed oCBPS methodology. To do this, we focus on
the estimation of the average treatment effect for the treated
(ATT). The response of interest is earnings in 1978 and the
treatment variable is whether or not the individual participates
the job training program. The original randomized experiment
yields the ATT estimate $886, which is used as a benchmark
for the later comparison. Imai and Ratkovic (2014) consider
the propensity score estimation based on the standard logistic
regression (GLM), the just-identified CBPS with moment bal-
ance condition only (CBPS1) and the over-identified CBPS with
score equation and moment balance condition (CBPS2). Based
on each set of these estimated propensity scores, we estimate
the ATT using the 1-to-1 nearest neighbor matching with

replacement. The estimates of standard errors are based on the
results in Abadie and Imbens (2006). We then add the estimated
propensity score based on the proposed oCBPS methodology.
Since the quantity of interest is the ATT, we use a slightly
modified oCBPS estimator described in the supplementary
material.

We follow the propensity score model specifications exam-
ined in Imai and Ratkovic (2014). The covariates we adjust
include age, education, race (white, black, or Hispanic), mar-
riage status, high school degree, earnings in 1974 and earnings
in 1975 as pretreatment variables. We consider three differ-
ent specification of balance conditions: the first moment of
covariates (Linear), the first and second moment of covariates
(Quadratic), and the Quadratic specification with some interac-
tions selected by Smith and Todd (2005). We compare the per-
formance of each methodology across these three specifications.

The results are shown in Table 6. We find that although the
standard error is relatively large as in any evaluation study based
on the LaLonde data, the proposed oCBPS method yields much
smaller bias than GLM and CBPS1 under all three specifications.
The oCBPS also improves the CBPS2 under the linear and
Smith and Todd’s specifications of covariates. We note that the

Table 6. The bias and standard errors (shown in parentheses) of estimates of the
average treatment effect for the treated in the LaLonde’s Study.

GLM CBPS1 CBPS2 oCBPS

Linear −1190.92 −462.7 −702.33 −306.01
(1437.02) (1295.19) (1240.79) (1662.02)

Quadratic −1808.16 −646.54 207.13 −370.03
(1382.38) (1284.13) (1567.33) (1773.03)

Smith & Todd −1620.49 −1154.07 −462.24 −383.12
(1424.57) (1711.66) (1404.15) (1748.87)

NOTE: We use the benchmark $886 as the true value.
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standard error of the oCBPS method appears to be larger than
the competing methods. This may be due to the fact that the
uncertainty of the estimated propensity score is ignored when
we calculate the standard error of the matching estimators (i.e.,
GLM, CBPS1, and CBPS2). In summary, consistent with the
theoretical results, the proposed oCBPS method yields more
accurate estimates of ATT than the original CBPS estimator
or the standard logistic regression. Finally, it is important to
note that these results are only suggestive since we do not know
whether the assumptions of propensity score methods hold in
this study.

6. Conclusion

This article presents a theoretical investigation of the covariate
balancing propensity score methodology that others have found
work well in practice (e.g., Wyss et al. 2014; Frölich, Huber, and
Wiesenfarth 2015). We derive the optimal choice of the covariate
balancing function so that the resulting IPTW estimator is first
order unbiased under local misspecification of the propensity
score model. Furthermore, it turns out that the CBPS-based
IPTW estimator with the same covariate balancing function
attains the semiparametric efficiency bound.

Given these theoretical insights, we propose an optimal CBPS
methodology by carefully choosing the covariate balancing
estimating functions. We prove that the proposed oCBPS-
based IPTW estimator is doubly robust and locally efficient.
More importantly, we show that the rate of convergence of the
proposed estimator is faster than the standard AIPW estimator
under locally misspecified models. To relax the parametric
assumptions and improve the double robustness property,
we further extend the oCBPS method to the nonparametric
setting. We show that the proposed estimator can achieve the
semiparametric efficiency bound without imposing parametric
assumptions on the propensity score and outcome models. The
theoretical results require weaker technical conditions than
existing methods and the estimator has smaller asymptotic bias.
Our simulation and empirical studies confirm the theoretical
results, demonstrating the advantages of the proposed oCBPS
methodology.

In this work, we mainly focus on the theoretical development
of the IPTW estimator with the propensity score estimated by
the optimal CBPS approach. It is a very interesting research
problem to establish the theoretical results for the matching
estimators combined with the optimal CBPS approach or some
variants. While the asymptotic theory (i.e., consistency and
asymptotic normality) for the estimated propensity score via the
optimal CBPS approach can be derived from the current results
(by the Delta method), the full development is beyond the scope
of this work. We leave it for a future study.

Supplementary Material

The supplementary material contains the appendix of this article which
collects the proofs and further technical details.
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