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but reduces electoral competition
Christopher T. Kennya,1 ID , Cory McCartanb,1 ID , Tyler Simkoa,1 ID , Shiro Kuriwakic ID , and Kosuke Imaia,b,2 ID

Edited by Morris Fiorina, Stanford University, Stanford, CA; received October 10, 2022; accepted April 6, 2023

Congressional district lines in many US states are drawn by partisan actors, raising
concerns about gerrymandering. To separate the partisan effects of redistricting from
the effects of other factors including geography and redistricting rules, we compare
possible party compositions of the US House under the enacted plan to those under
a set of alternative simulated plans that serve as a nonpartisan baseline. We find that
partisan gerrymandering is widespread in the 2020 redistricting cycle, but most of the
electoral bias it creates cancels at the national level, giving Republicans two additional
seats on average. Geography and redistricting rules separately contribute a moderate
pro-Republican bias. Finally, we find that partisan gerrymandering reduces electoral
competition and makes the partisan composition of the US House less responsive to
shifts in the national vote.

Monte Carlo simulation | redistricting | representation | congressional elections

A party that draws its own districts is likely to engage in partisan gerrymandering—
the drawing of district lines by a partisan actor to eliminate districts favorable to the
opposing party and insulating their own incumbents from tough elections. Based on the
2020 decennial Census, every US state has recently redrawn their congressional districts
lines, which shape the control of the House of Representatives for the next decade.
Scholars debate the extent to which parties have gerrymandered district lines to their
advantage (1–3) and whether courts and reforms, which move map-drawing powers
from legislatures to commissions, can prevent such gerrymandering (4–7).

Unfortunately, neither identifying gerrymanders nor quantifying their biases in
electoral outcomes is straightforward. Americans are geographically sorted and segregated
along both partisan and racial lines (8–13). Congressional elections, however, occur in
winner-take-all, single-member districts. When this sorting is combined with districts,
Democratic votes turn into seats less efficiently than Republican votes (3, 14). As such,
comparing a party’s share of seats to its vote share within a state cannot establish whether
a districting plan, rather than political geography, systematically advantages one party
over the other.

Comparing districting plans across states or time periods is equally fraught. The
geographic clustering of voters differs both across states and over time. Cross-state
comparisons further mask differences in the rules for drawing districts. For example,
some state laws limit the set of possible plans to those which preserve counties, encourage
partisan competition, or are more geographically compact. Federal laws, such as the
Voting Rights Act of 1965 (VRA), also constrain the set of possible plans that a state
may enact without facing litigation.

We quantify the partisan effects of redistricting separately from other sources of bias
such as political geography and redistricting rules. We achieve this by comparing potential
electoral outcomes under enacted district plans to those under a set of alternative plans
that are created by simulation. Simulation techniques have recently been adopted widely
by scholars, courts, and redistricting practitioners [e.g., (15–17), Rucho v. Common Cause
(2019), Harper v. Hall (2022), or League of Women Voters of Ohio v. Ohio Redistricting
Commission (2022)]. These simulations are drawn using the same geographic units and
state-specific redistricting requirements as the enacted plan. Therefore, any differences in
the partisan outcomes between the enacted plan and the simulated, nonpartisan baseline
demonstrate the partisan effects of redistricting.*

As explained in SI Appendix, we improve methodologically upon a simulation
approach used by other scholars to study redistricting at a national scale (1). Specifically,

*As noted at the beginning of this section, we call a redistricting plan a partisan gerrymander if partisan actors draw district
boundaries to create an electoral advantage for their own party. According to this definition, plans drawn by nonpartisan
actors may have partisan effects but are not a partisan gerrymander. Moreover, in litigation, demonstrating both partisan
effects (consequences) and partisan intent may be needed to establish that a particular plan is a gerrymander. We do not
study the partisan intent of map drawers.
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we use simulation methods that are designed to produce a
representative sample from the relevant universe of plans (18, 19).
We also differ from ref. 20 in that we use the complete set of
simulated plans from ref. 21 to study state-by-state and district-
by-district partisan effects.

We find that the new 2022 congressional map is biased in favor
of the Republican party, but this bias is similar in magnitude
to the expected structural and geographic bias predicted by
the simulated plans. To win a majority in the US House of
Representatives under the enacted plan, Democrats need more
than 51.1% of the national two-party popular vote, just 0.14
percentage points more than under the nonpartisan baseline.
While both parties engage in partisan gerrymandering in many
states, the resulting bias mostly cancels at the national level, giving
Republicans two additional seats. The remaining Republican
advantage may be explained in part by other features like the
geographic distribution of voters (3, 14) and redistricting rules.

Our state-by-state analysis shows that Republicans made large
gains in states like Texas, Florida, and Ohio by packing urban
Democrats. In contrast, Democrats made many smaller gains in
states like Illinois, North Carolina, Pennsylvania, and Michigan.†
As a result of state-level gerrymanders by both parties, the overall
competitiveness and responsiveness of the House are lower than
our nonpartisan baseline. An additional percentage point increase
in either party’s national popular vote would net that party only
7.8 more seats, on average, versus 9.2 under the nonpartisan
baseline.

Partisan Gerrymandering Is Widespread, but
Bias Mostly Cancels at the National Level

For each state, we use an election model (detailed inMaterials and
Methods and SI Appendix), building on data from refs. 22–24, to
compute the range of House seats the two parties are expected
to win under each of the simulated, nonpartisan plans from
ref. 21.‡ These simulated plans incorporate each state’s specific
requirements for map drawing, along with federal requirements,
to ensure that the sample of simulated plans is representative of
the space of legal plans (19, 21).

We then compare, for each state, the predicted electoral
outcomes based on simulated districts with those under the
enacted plan. The resulting differences in electoral outcomes
can be interpreted as evidence of partisan effect (beyond political
geography and redistricting rules) because the simulated plans are
generated under constraints which correspond to the redistricting
requirements of each state. This comparison to a complete,
national set of 2020 nonpartisan baseline plans from ref. 21
differentiates our findings from existing estimates of national
biases in House elections (20, 25, 26) (see SI Appendix, section
I for detailed comparison with existing simulation studies). To
be clear, while we can estimate differences in partisan outcomes,
we cannot necessarily identify the intent of map drawers, which
may include goals beyond packing opposite party voters, such

†As described in more detail below and in Materials and Methods, our simulations
incorporate federal and state-specific requirements for map drawing (21). For example,
these requirements include particular goals (such as Colorado, which requires map
drawers to maximize the number of politically competitive districts) and particular
measures (such as Iowa, which has legal requirements on how to measure compactness)
when specified. Michigan requires partisan fairness as part of redistricting rules. We
did not directly incorporate this criterion for two reasons. First, it is not clear which
partisan fairness metric should be used. Second, the nonpartisan nature of our simulated
redistricting plans can be considered accounting for partisan fairness at least to some
extent.
‡These estimates are designed for cross-state comparability and do not align exactly with
the corresponding estimates included in ref. 21, which incorporates state offices.

as protecting particular incumbents or suppressing the power of
minority voters.

Furthermore, if a state’s redistricting rules themselves impart
a partisan bias, our analysis would not detect that bias, as the
current legal requirements are used to construct the baseline.
Similarly, compliance with the VRA can have impacts on
individual states’ partisan compositions (15). As such, our
estimates are best interpreted as a measure of partisan bias given
current political geography and state’s redistricting rules, either
of which could change in the future.

Our simulation methodology, however, can examine the
potential partisan impact of these redistricting rules. In SI
Appendix, section J, we illustrate this point by removing some
redistricting rules and examining how doing so can alter our
empirical findings.

Fig. 1 shows clear evidence of widespread partisan gerryman-
dering. Bars to the right of the vertical line indicate a Republican
bias of the enacted plan, while bars to the left of the vertical line
indicate a Democratic bias. Whether the thin line crosses the
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Fig. 1. Estimated state and national level partisan bias. Estimates show the
expected Republican seats under each nonpartisan baseline plan subtracted
from the expected Republican seats under the enacted plan. Bars to the
right indicate that the enacted plan gives more seats to Republicans, while to
the left indicates more seats for Democrats. The vertical black line indicates
no partisan bias. The thick and thin bars show 66% and 95% intervals of
the simulated plans, respectively, after averaging over uncertainty in future
electoral swings at the national and district level. The point indicates the
median. States are colored by the actors who controlled the map drawing in
each enacted plan, and are ordered vertically from the largest Democratic-
favoring state to the largest Republican-favoring state. The number of seats
in each state is shown in parentheses. In SI Appendix, section E, we rescale
the effects as a share of the state’s seats and as z-scores.
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zero line represents a statistical test with the null hypothesis of no
difference at the 5% level. In 20 of the 44 states that redistricted,
the interval excludes zero. The intervals are not symmetric, as
they are a function of each state’s political geography, which
motivates the use of sampled plans to construct the distributions.
We color each state by which party or institution drew that
state’s enacted plan and order the results vertically from the most
Democratic-favoring state to the most Republican-favoring state.

Across all states, Fig. 1 shows that partisan effects are expected
to contribute to 8.6 Republican seats and 6.2 Democratic seats
over a nonpartisan baseline. This nets out to a Republican
advantage worth around 2.3 congressional seats. Thus, the
partisan bias created by widespread gerrymandering mostly
cancels at the national level, while leaving Republicans slightly
advantaged. This pattern of cancellation amounting to a net
Republican advantage is also found in an analysis of the 2010
redistricting cycle (1).

SI Appendix presents the same partisan effects as the share of
each state’s seats (as well as z-scores, in SI Appendix, Fig. S4) and
in terms of the efficiency gap (SI Appendix, Fig. S5). These results
are consistent with our findings in Fig. 1, showing that the states
with the largest partisan biases tend to be those where a single
party controls the redistricting process.

Pro-Republican bias is found primarily in the states where the
Republican party controls the redistricting process. For example,
compared to the average of the simulated maps, the plan that the
Texas legislature enacted is expected to net two additional seats for
Republicans. Florida exhibits a similar but slightly smaller bias,
leading to a just under a two-seat advantage in most samples.
Ohio, South Carolina, Utah, Tennessee, Iowa, Kansas, and
Louisiana also show smaller but statistically significant differences
from the samples in favor of Republicans.

The maps drawn by Democratic state legislatures tend to
show evidence of pro-Democratic bias. These include Illinois,
corresponding to slightly less than two seats, followed by
Maryland, Oregon, New Mexico, and Nevada.

Although a majority of biased maps are drawn by state
legislatures, some maps drawn by courts and commissions also
exhibit statistically significant partisan effects (e.g., Pennsylvania,
North Carolina, and Michigan for pro-Democratic maps, and
Iowa for pro-Republican maps). We do not treat these maps as
partisan gerrymanders because they are drawn by nonpartisan
actors. That said, commission-drawn maps are not free of bias,
as shown by pro-Democratic bias in Michigan and the pro-
Republican biases found for Iowa. It is also an open question
whether courts should be considered partisan actors in states
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Fig. 2. Cartogram of new congressional districts, each shaded by the difference between the probability of a party representing the district under the enacted
plan and the voter-weighted average of the probability of a party representing the voters in that district under a nonpartisan baseline. See SI Appendix, section
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such as North Carolina, where justices are elected in partisan
elections.

Geographic Patterns of Partisan
Gerrymandering

How do states produce these partisan biases? Our national-level
results, demonstrating a slight bias in favor of the Republican
party, align with those of existing estimates from refs. 20, 25, and
26.§ Our simulation approach, creating a set of counterfactual
2020 maps, allows us to further investigate the source of these
biases at the state and district levels. Fig. 2 disaggregates the
estimates in Fig. 1 to the district level, showing the partisan bias
of districts in each state.

The map is colored by the difference in the probability of
being won by Republican and Democratic candidates between
the enacted map and the simulated plans. Light colors indicate
that the election outcome under the enacted plan is expected to
be similar to the outcomes in the same geographic area across the
nonpartisan baseline plans, while darker colors indicate larger
differences. Districts in red indicate that an enacted district
advantages Republicans compared to the simulated plans, while
blue districts indicate a Democratic advantage. As explained in
SI Appendix, section G, this map builds upon recent work that
focuses on precinct-level quantities, such as partisan dislocation
(27), and is closely related to a general framework to evaluate
districting plans at the individual voter level (28).

We see that enacted plans in some states have only small
differences from the simulated plans. For example, Massachusetts
and West Virginia each have only muted shades of red and blue—
they have only small differences in each district. But, other states
have more substantial differences. In North Carolina, where the
state supreme court drew the map, its pro-Democratic bias stems
in part from the drawing of districts 12 and 14 in the Charlotte
area. The enacted plan splits Charlotte through the middle,
which creates two Democratic districts when combined with
the suburbs. In contrast, the simulated alternative plans typically
draw a full district within Charlotte’s enclosing county.

In Texas, the enacted plan strongly favors Republicans, as seen
in Fig. 1. The Texas legislature made two districts in the Houston
area, 22 and 38, far safer for Republicans than expected. This
corresponds to the packing of urban Democratic voters in districts
7, 9, 18, and 29. Some of these districts are overwhelmingly
composed of racial minorities, and the VRA does compel states to
draw such districts in some circumstances. However, the enacted
plan appears to pack these districts with Democratic voters far
beyond what may be needed to ensure that the district usually
elects minority voters’ preferred candidates. Similar approaches in
Austin and Dallas areas cement the net bias toward Republicans.

Partisan Gerrymandering Reduces Electoral
Competition and Responsiveness

We also analyze the impact of partisan effects on each party’s
ability to translate votes into seats under different electoral envi-
ronments. Widespread gerrymandering could limit the electoral
power of voters in many affected districts, even if biases mostly
cancel out between parties at the national level. We first estimate
a baseline partisanship for each precinct by averaging the 2016
and 2020 presidential elections. We then tally the baseline within
each of the enacted and simulated districts to obtain an estimate of

§In a hypothetical tied national election, both refs. 25 and 26 predict Democrats winning
210 seats, with ref. 20 slightly more conservative at 205 seats.

Non-partisan
simulations

Enacted plan

0
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Fig. 3. The histogram shows the distribution of expected district vote shares
under the enacted districts. The overlaid 66% and 95% confidence intervals
show the range of the same quantity under our nonpartisan simulated
baseline.

district-level baseline partisanship. Finally, we use these estimates
to examine electoral competitiveness under the enacted and
simulated plans.

Fig. 3 shows the distribution of district-level partisanship for
the enacted and simulated maps. The enacted plans across all
states create significantly fewer highly competitive seats, where
the baseline vote share is between 47.5% and 52.5%. Only
34 out of 435 districts under the enacted districting plans fall
into this category, compared to 50 in the nonpartisan baseline.
There are fewer seats which lean Republican (52.5–57.5% vote
share) than expected, but more safe Republican seats (62.5–
67.5% vote share) than expected. This reflects the Republican
gerrymandering strategy of shoring up Republican seats to
insulate them from elections which swing toward Democrats.
In contrast, Democrats appear to have fewer moderately safe
seats under the enacted plan than the simulated plans.

We can translate these baseline partisanship estimates into a
national seats–votes curve, which relates the national popular vote
share of each party in House elections to the share of House seats
they win under each redistricting plan (29, 30). Such an analysis
is useful since each future election may be subject to a different
electoral environment (e.g., Republicans are generally expected
to do well in a Democratic president’s midterm election). To do
so, we use the election model detailed in Materials and Methods
to calculate the expected number of seats each party would win
under a range of national popular vote shares.

Fig. 4 presents our estimate of the national seats–votes curve for
each party under the enacted plans with the vote shares ranging
from 45% to 55%. The seats–votes curve under each of the 5,000
simulated nonpartisan plans are shown in light gray. The results
show that in competitive elections, the seats–votes curve indicates
a bias against Democrats. If Democrats win 50% of the popular
vote, we estimate them to win around 210 out of 435 seats. It is
not until the Democratic party wins 51.1% of the vote that they
would receive half of the seats in the House.

This Democratic disadvantage, however, cannot be entirely
attributed to partisan effects of redistricting. Even if states did not
draw a plan with partisan bias, the Democratic party would still
be at a disadvantage. Compared to the range of alternative seats–
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Fig. 4. Seats–votes curves that show how each party can translate a national
popular vote into congressional seats. The curve for Democratic seats and
votes under the enacted plan is solid blue, while the curve for Republicans
are dashed red. Curves representing plans simulated under our nonpartisan
baseline are plotted as thin gray lines. Partisan bias in this figure indicates the
deviation from partisan symmetry evaluated at a vote share of 0.5, following
the definition of ref. 30.

votes curves in gray, we see that if the national environment were
to trend toward a 50% national vote share between parties, the
difference between the national bias and the baseline geographic
and rule-based bias disappears. Earlier work has shown that
the geographic distribution of voters systematically benefits the
Republican party (3, 14). We find that this dynamic is likely to
be still present in 2020 though the bias is due to the combination
of political geography and redistricting rules. On average, under
our nonpartisan baseline plans, Democrats must win 50.9% of
the popular vote in order to win half of the seats—very similar
to the enacted plan.

Importantly, partisan bias in redistricting reduces electoral re-
sponsiveness. Responsiveness describes the rate at which changes
in the vote share result in changes in the seat share. Notice
that the enacted plan’s seats–votes curve has a flatter slope than
the simulated plans. This indicates that the enacted plan is less
responsive to national swings in the vote in competitive elections.

SI Appendix, Fig. S7 shows this responsiveness, measured as
the number of seats gained by Democrats for a one-percentage-
point increase in vote share. For typical vote shares (45–55%), the
enacted plan is around 16% less responsive than a nonpartisan
baseline would predict. That is, each additional percentage point
of the national vote nets 7.8 seats, on average, under the enacted
plan, compared to an expectation of 9.2 seats under the simulated
plans. This is a direct result of the smaller number of competitive
seats in the enacted plan, as documented above.

Discussion

The boundaries of districts in the US Congress are drawn by
individual states, each with different political geography and
redistricting rules. Therefore, traditional approaches that seek
to estimate the partisan effect of redistricting by leveraging
information from other states and/or previous periods can
potentially be misleading. Simulation-based approaches address
this issue, but prior attempts have neither fully accounted for the

state-specific nature of these differences nor taken advantage of
recent advances in redistricting simulation algorithms (1, 14, 31).
Improved data and methods used in our analysis can better
characterize the magnitude of these biases for all fifty states, while
incorporating the state-specific redistricting criteria (21).

We find that congressional districting plans from the 2020
redistricting process exhibit widespread partisan effects—often,
the plans differ from the average sampled plan and in many
cases are statistical outliers, compared to the sampled plans. We
also find that partisan bias created by redistricting largely cancels
out at the national level. However, this does not mean that the
partisan gerrymandering—and the political contestation over
redistricting—was inconsequential. Many states have enacted
districting plans with partisan biases that decrease electoral
competitiveness and responsiveness, limiting the voter’s ability
to hold politicians accountable.

The simulated baseline plans allow us to show that geographic
and institutional features disadvantage Democrats, even absent
partisan gerrymandering. In fact, we show that these structural
factors dominate the overall Democratic disadvantage in the
enacted plans. Finally, our analysis finds partisan effects given
the current geographic and institutional composition of the
House. Map drawers may also gain partisan advantage through
manipulations of the redistricting process itself, as different rules
may have biased partisan implications. These findings illuminate
the inherent difficulty of producing a fair national House map
when it is drawn piecemeal by fifty autonomous political units.
More research is needed to further advance our understanding
of the crucial relationship between votes and seats that structures
US democracy.

Materials and Methods

50STATESIMULATIONS. For our analyses, we rely on 50STATESIMULATIONS, which
contains 5,000 sampled redistricting plans and accompanying precinct-level
election and demographic data for each state (21). These data are publicly
available on the Harvard Dataverse at https://doi.org/10.7910/DVN/SLCD3E.
The source code which generates the sampled plans is available on GitHub
at https://github.com/alarm-redist/fifty-states/. Election data were originally
collected by the Voting and Election Science Team (https://dataverse.harvard.
edu/dataverse/electionscience).

For the 44 states with more than one congressional district, 50STATESIMULATIONS
identifies the state’s legal requirements, incorporates them into mathematical
constraints, and samples plans from a target distribution that corresponds
to those constraints using the open-source software (32). We constrain the
simulated plans to approximate the level of compliance observed in the enacted
plan across a range of criteria, including those that involve a legal determination
such as compliance with the Voting Rights Act. Note that the legality of some of
the enacted plans is still in dispute. Our analysis does not attempt to address
the legal issues raised in these court cases. The simulations further attempt
to match nonpartisan discretionary criteria, such as the number of counties
split, the number of municipalities split, and compactness of districts. The
criteria incorporated, information as to what law or rule sets the requirement,
and interpretation of the requirement for each state are available on the
aforementioned Dataverse site, in each state’s documentation file. For the six
states where there is only one congressional district (Alaska, Delaware, North
Dakota, South Dakota, Vermont, and Wyoming), we supplement this with the
only possible plan, repeated 5,000 times so that these districts are weighted
equally in our analysis.

Electoral Modeling. To understand the electoral implications of 2020 redis-
tricting plans in the upcoming decade, our findings rely on a statistical model of
elections. An election model uses observed past election results to quantify the
uncertainty over future election results which take place under a different set of
redistricting plans.
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Our goal is to estimate the partisanship of each district in the enacted plan
and also for alternative districts, with different geographic configurations, in
each of the 5,000 simulated plans. To do this, we use precinct-level election
data and estimate the precinct-level baseline partisanship as an average of the
2016 and 2020 presidential elections. We use previous presidential elections
because the same candidate is on the ballot across the entire nation, unlike for
Senate or House races. This practice is also adopted by many elections analysts
and is used in the Cook Partisan Voting Index.

Specifically, we take the mean of the Democratic two-party vote share in
each precinct across the two elections and separately take a geometric mean
of the turnout across the elections (due to its skewed distribution), to produce
a baseline number of Democratic and Republican votes for each precinct. For
example, the baseline Democratic vote count estimate for precinct j, denoted by
D̂j, can be written as

D̂j =
1
2

(
D16j

D16j + R16j
+

D20j

D20j + R20j

)
×

√
(D16j + R16j)(D20j + R20j),

whereDtj and Rtj are the Democratic and Republican vote counts for the precinct
in year t. A geometric mean for turnout values corresponds to the usual mean for
log-turnout values. In Kentucky, some detailed 2020 election data are missing,
andso,weimputeit fromcounty-levelandpastprecinct-level results,asdescribed
in SI Appendix, section C.

We model the two-party Democratic vote share in each district yit for an
election t as

logit(yit) = αi + βt + εit ,

βt
iid
∼ N (0, σ 2

β), [1]

εit
iid
∼ tν(0, σ 2

ε ),

where αi is district’s baseline partisanship, βt is election-to-election national
swing, and εit is district-election specific error. This is the Stochastic Uniform
Partisan Swing model of ref. 33, but put onto a logit scale.

Estimating this model poses challenges because of data limitations. In
particular, each different simulated plan has its own set of αi which must
be estimated. However, since these plans are hypothetical, we have no data
on elections conducted under these plans. So we fix αi for each district in the
enacted plan and the 5,000 simulated plans by simply aggregating our estimate
of the precinct-level baseline vote counts for the district. Specifically, for a given
plan p, we compute

α̂ip =

∑
j∈Jip

D̂j∑
j∈Jip

D̂j +
∑

j∈Jip
R̂j

,

where Jip indicates the set of precincts that are assigned to district i in a
redistricting plan p.

Additionally, since we use the model to predict future elections, we will
not know βt and εit . Instead, these are drawn from the normal distributions

with the variance of σ 2
β and t-distribution with ν degrees of freedom and

scale σ 2
ε , respectively, under this model. This injects the appropriate amount of

uncertainty about future national and district-specific election swings into our
election predictions, which are then propagated to uncertainty in our topline
estimates that are presented as figures in the main text.

Thus, to create election predictions, it remains to estimate σ 2
β , σ 2

ε , and ν;
once these are estimated along with our baseline estimates α̂i, we can simulate
hypothetical future election outcomes. To estimate σ 2

β , σ 2
ε , and ν, we fit the

model given in Eq. 1 to historical House elections. The data (34) contain almost
all House elections since 1976. We study only the races contested by exactly one
candidate from each party.

In fitting this model, we are constrained by the lack of historical presidential
election data disaggregated to the congressional district level. This means that
we cannot create estimates of α̂i in the manner described above that we use for
our future predictions. Instead, in the historical election model only, we fitαi as
a random effect, which is specific to each district but constant across elections. To
account for redistricting, which changes the districts every decade, we estimate
a separate αi for each district–decade combination (for example, WA–07 from
2012 to 2020 would receive a single random intercept) as a random effect. None
of the αi estimated as part of our historical House election model is used in the
predictions of future elections. The use of random effects here is only to properly
allocate the total variability in election returns to three sources: district-specific,
year-specific, and district-year-specific effects. Only the estimates ofσ 2

β ,σ 2
ε , and

ν are used to produce the results in the main text. This modeling choice, as well
as the overall predictive performance of the model, is investigated further in SI
Appendix, section D.

SI Appendix, section B also provides computational details on how we use
the fitted election model to estimate the average number of seats Democrats
will win under a particular plan.

SI Appendix also provides computational details on how we use the fitted
election model to estimate the average number of seats Democrats will win
under a particular plan.

Data, Materials, and Software Availability. All data and code necessary to
replicate our analyses are available on the Harvard Dataverse at https://doi.org/
10.7910/DVN/JI1U8X (35).
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