
RESEARCH METHODS

Addressing census data problems in race imputation via
fully Bayesian Improved Surname Geocoding and name
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Prediction of individuals’ race and ethnicity plays an important role in studies of racial disparity. Bayesian Im-
proved SurnameGeocoding (BISG), which relies on detailed census information, has emerged as a leadingmeth-
odology for this prediction task. Unfortunately, BISG suffers from two data problems. First, the census often
contains zero counts for minority groups in the locations where members of those groups reside. Second,
many surnames—especially those of minorities—are missing from the census data. We introduce a fully Baye-
sian BISG (fBISG) methodology that accounts for census measurement error by extending the naïve Bayesian
inference of the BISG methodology. We also use additional data on last, first, and middle names taken from the
voter files of six Southern states where self-reported race is available. Our empirical validation shows that the
fBISGmethodology and name supplements substantially improve the accuracy of race imputation, especially for
racial minorities.
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INTRODUCTION
Social scientists and public health researchers often must predict in-
dividual race and ethnicity when assessing disparities in policy and
health outcomes. Bayesian Improved Surname Geocoding (BISG),
which uses Bayes’ rule to combine information from the census
surname list with the geocoding of individual residence, has
emerged as a leading methodology for this prediction task (1–4).
Recent applications of the BISG methodology include studies on
racial disparity in police violence (5), eviction (6), suicide (7), and
turnout (8).

Here, we address two census data problems that hinder accurate
prediction of individual race and ethnicity when using the BISG.
First, the decennial census often contains zero counts for minority
groups in the census blocks where some members of those groups
reside. This may happen for several reasons. Some individuals may
have moved after the decennial census. There may also be under-
counts. Another possibility is that the census may inject measure-
ment error for privacy protection [see (9) and references therein].

Second, the decennial census surname files only include the
racial composition of surnames that occur 100 or more times in
the population. According to the Census Bureau, these names
account for about 90% of people with surnames recorded in the
2010 Census (10). This means that no racial breakdown statistic is
available for the remaining 10%. This lack of information may dis-
proportionately affect minority groups if their surnames are less fre-
quently occurring than those of the majority group.

Using the data from six Southern states in which individual self-
reported race of registered voters is available for validation, we show
how these problems can result in a deterioration of predictive
quality for the standard BISG approach. To address the census

zero count problem, we introduce a fully Bayesian generalization
of the BISG approach (fBISG). The proposed fBISG models the ob-
served census counts using a measurement error model so that zero
counts for minority groups do not necessarily imply nonexistence
of their members. The model is fitted via a collapsed Gibbs sampler
and can incorporate additional names and covariates such as the
standard BISG.

To address the problem of missing surnames, we supplement the
census surname list with the lists of additional surnames, middle
names, and first names from these voter files. This allows us to
markedly reduce the proportion of missing surnames and further
improve the race prediction. The proposed methodology, including
the additional name lists, is publicly available as part of the open-
source software package wru: Who Are You? Bayesian Prediction of
Racial Category Using Surname and Geolocation (11). A complete
description of the proposed methodology is given in Materials and
Methods below.

Our empirical validation study demonstrates that these proposed
solutions yield substantial improvements in classification accuracy
without reducing a high degree of calibration—particularly among
racial minorities. Specifically, a model that incorporates all our pro-
posed improvements increases classification accuracy by an average
of about 14% among all five major racial groups (vis-à-vis the stan-
dard BISG), with improvements as high as 26% among Asian voters.
Moreover, these gains in classification accuracy do not come at the
expense of the calibration of predicted probabilities across racial
groups (i.e., the extent to which predicted probabilities match ob-
served sample proportions of cases), which is already high for pre-
dictions made by the standard BISG methodology for white and
Black voters.

Last, we conclude with a brief discussion about the applicability
of our proposed modeling approach to various domains.
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RESULTS
The census data problems in race imputation
In this subsection, we first briefly review the standard BISG meth-
odology. We then describe the census data problems and quantify
the degree to which they negatively affect the predictive perfor-
mance of BISG.
BISG: A review
The goal of BISG is to predict the race of individual i, defined as Ri ∈
ℛ where ∣ℛ ∣ = J is the total number of (mutually exclusive) racial
categories. Here, we will have J = 5, with the categories ℛ =
{“White,” “Black,” “Hispanic,” “Asian,” “Other”}.

Suppose that we observe the individual’s surname Si ∈ S = {1,2,
…, K} and geolocation Gi ∈ G = {1,2, …, L} where the latter is typ-
ically recorded as a census geographical unit (e.g., census block), in
which his or her residence is located. The BISG methodology is an
application of naïve Bayes prediction, where the key assumption is
given by the following conditional independence relation between
geolocation and surname, given race.

Assumption 1. (Independence between Surname and Geoloca-
tion within Racial Group).

Gi ?? Si j Ri

Under Assumption 1, the BISG prediction of an individual’s race
is given by

PðRi j Si;GiÞ/ PðSi j Ri;GiÞPðRi j GiÞ ¼ PðSi j RiÞPðRi j GiÞ ð1Þ

One may also use the following equivalent formula obtained via
another application of Bayes’ rule

PðRi j Si;GiÞ/ PðRi j SiÞPðGi j RiÞ

In practice, the decennial census surname files are used to
compute P(Si ∣ Ri), whereas for P(Ri ∣ Gi), it is common to use the
Census Bureau’s cross-tabulations of racial category by geographic
location (e.g., census blocks). Although we do not address the po-
tential violation of Assumption 1 in this paper, it is important to
acknowledge its limitations. The assumption is violated if, for
example, among Asian Americans, various ethnic groups
(Chinese, Indians, Japanese, Korean, Vietnamese, etc.) have distinct
surnames and tend to live in different areas. A similar problem
might also arise among Hispanic Americans. The surname
“Santos,” for instance, may be common among Hispanics in some
areas, but it may also be a common last name among Brazilian

Americans (who are classified as non-Hispanic whites according
to the census) in other areas. We now turn to two census data prob-
lems that negatively affect the predictive performance of BISG.
Consequences of zero census counts
The decennial census is intended to provide a full accounting of
where each resident of the United States lives as of April 1 on the
census year. Reported census distributions are considered reason-
ably reliable as of this date, although still imperfect [see, e.g., (9)].
Over time, however, this accuracy degrades even further, as individ-
uals move within the nation’s borders at significant rates (12). At
fine levels of resolution, such as census blocks, this means that
the racial distributions may not fully capture the diversity of resi-
dents within a short time after the census is conducted. Among
rapidly growingminority groups, such as Asian Americans andHis-
panic Americans, errors may be particularly large.

Prior studies have shown that the use of the census block level
data, rather than the data at a higher level of geographical aggrega-
tion, tends to yield more accurate BISG predictions of individual
race and ethnicity [e.g., (4)]. This, however, can result in a greater
chance of measurement error. In particular, when census counts are
used to obtain the prior distribution P(Ri ∣ Gi) at the census block
level, some blocks may record zero individuals of certain ethnic and
racial categories. In these cases, P(Ri ∣ Gi) would be set to zero,
making the posterior probability of belonging to these groups auto-
matically zero for all individuals who reside in these blocks. For
example, someone with the last name “Gutiérrez”—a distinctively
Hispanic last name—living in a neighborhood where the census
failed to count anyone of Hispanic descent would have a zero pos-
terior probability of being classified as such according to the stan-
dard BISG methodology.

Thus, the predictive accuracy of the BISG methodology can
suffer markedly when probabilities are zeroed-out a priori. To
quantify this error, we consider the voter files of six Southern
states—Alabama, Florida, Georgia, Louisiana, North Carolina,
and South Carolina—sourced between October 2020 and February
2021 (before the release of 2020 census data). The voter files were
provided by L2 Inc., a leading national nonpartisan firm and the
oldest organization in the United States that supplies voter data
and related technology to candidates, political parties, pollsters,
and consultants for use in campaigns. These files tally all registered
voters (approximately 37.8 million voters) in the states as of the pro-
duction date, geocoding the census blocks of their home addresses.
About 91% of these voters provided self-reported race data.

Table 1 shows the counts of voters (in millions) by self-reported
race, further divided by whether the 2010 Census indicates that
exactly zero members of the individual’s racial group live within
their home census block. Because of internal mobility and other
forms of measurement error, just shy of 1 million voters (2.8%)
live in a census block where the 2010 Census tallies indicate that
no members of the individual’s racial group reside. Notably, these
errors are not shared evenly across races. While fewer than 1% of
white voters live in a census block in which the census data say
no white individuals reside, a full fifth of Asian voters live in
census blocks in which the 2010 Census says there are no Asian res-
idents. Even these aggregates mask substantial heterogeneity by
state. In South Carolina, for example, 19% of Hispanic voters and
31% of Asian voters reside in zero-Hispanic and zero-Asian blocks,
according to the 2010 Census.

Table 1. Count of individuals of each race (in millions) by 2010 Census
racial counts in the individual’s home census block. The top row gives
the count of individuals for whom the 2010 Census states that there are
zero members of that racial group living within the individual’s home
block; the bottom row gives the count for whom the census states that
there is at least one member of that racial group in the block. Data are
sourced from voter files from AL, FL, GA, LA, NC, and SC, and racial data are
self-reported on the file.

Census tally White Black Hispanic Asian Other

Zero counts 0.12
(1%)

0.32
(4%)

0.16
(5%)

0.13
(20%)

0.22
(30%)

Nonzero
counts

22.13
(99%)

7.55
(96%)

2.84
(95%)

0.51
(80%)

0.51
(70%)
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This mismatch presents a significant challenge for the BISG
methodology. A naïve application of BISG would yield a prediction
of 0% for the true racial group of all individuals in the first row of
Table 1—comprising a relatively large proportion of all minority
voters in the South—simply as a mechanical result the census re-
porting no members of these racial groups living in the correspond-
ing geographies.

The impact on BISG prediction is summarized in Table 2, where
we compute misclassification rates for each racial group, by assign-
ing each individual to the group whose predicted probability is the
greatest (i.e., maximum a posteriori) and comparing against their
true, self-reported race. The table reports overall error and false-
positive and false-negative rates by racial group, which can be
quite substantial among minorities. Among Latinos, for instance,
the hard zeros induced by the census counts raise false-negative
rates from 16% to about 20%. In addition, among Asian voters,
the increase is even starker, raising the false-negative rates from
33 to 46%. Overall, and across racial groups, a zero prior probability
caused by zero census counts increases classification errors from
14.5 to 16.9%.

These results suggest that individual race prediction can be im-
proved by addressing the possibility that block-level racial priors
may be inaccurate or out of date, especially if they are equal to
zero. Further evaluation statistics, underscoring the same point,
can be found in table S1.
Consequences of missing race-name data
A second source of error arises from the use of surname data. In
most applications of the BISG methodology, surname racial distri-
butions are drawn from the Census Bureau’s surname list. The 2010
Census surname list, for example, provides the racial distribution of
surnames appearing at least 100 times, which amounts to a total of
about 160,000 names. In the original version of the wru software
package, these data are supplemented with the census’s Spanish
surname list—a list of about 12,000 common Hispanic surnames,
approximately half of which are not in the census surname list.

While these data are quite broad, they do not account for the
possibility of rare surnames. In our sample of Southern states as
of late 2020 and early 2021, we find that about 2 million voters
(5.9%) have surnames that cannot be matched to the census name
dictionary, even after the data are cleaned and stripped of punctu-
ation to improve the chance of a match. The distribution of this mis-
match across racial groups is given in Table 3. Although Asian
voters are particularly unlikely to have their surnames matched
(14%), the same is true for a significant portion of white voters (7%).

In the absence of a surname match, the default behavior of a
common implementation of BISG [viz. the software package wru
(11)] is to use the approximate 2010 national race proportions as
an estimate for P(Ri ∣ Si). This approximation yields a degradation
in predictive performance among these records. As before, we
compute misclassification rates for each racial group. These
results can be found in Table 4. The results are somewhat less
marked in this case, because the default behavior in the absence
of a name match does not automatically yield a misclassification.
Nonetheless, we can see that misclassifications occur for less than
one-sixth of individuals whose names are matched but nearly a
quarter of individuals whose names are unmatched, increasing
the overall error rate. In particular, among white voters, the false-
positive rate is much higher with unmatched surnames than with
matched surnames, whereas the false-negative rate increases for in-
dividuals of the other racial groups. Further evaluation statistics can
be found in table S2. Once again, a data limitation yields a reduction
in the predictive performance of the BISG methodology. Accord-
ingly, better name coverage would improve the quality of our
predictions.

Table 2. Overall classification error rate as well as false-positive (type I
error) and false-negative (type II error) rates for white, Black, Latino,
Asian, and other voters using the standard BISG prediction as
implemented in the wru package. Each voter is classified to the racial
category with the highest predicted probability. We compare rates for
individuals in blocks for whom the census sets a nonzero prior for their true
racial group (“nonzero census blocks”) against individuals in blocks from
who the census sets a zero prior (“zero census blocks”). All individuals are
classified to the wrong racial group in zero census blocks, so false-negative
rates are 100%, while false-positive rates are undefined. NA, not available.

Ethnicity Data Nonzero
census blocks

Zero
census
blocks

Total

Overall
error rate

14.5% 100% 16.9%

White

False
negative

5.6% 100% 6.1%

False
positive

31.4% NA 31.4%

Black

False
negative

33.7% 100% 36.4%

False
positive

3.5% NA 3.5%

Hispanic

False
negative

15.7% 100% 20.3%

False
positive

2.2% NA 2.2%

Asian

False
negative

33.2% 100% 46.6%

False
positive

0.7% NA 0.7%

Other

False
negative

92.7% 100% 94.9%

False
positive

0.3% NA 0.3%

Table 3. Count of individuals (in millions) of each race for whom the
individual’s surname cannot be matched to a name in the census
surname dictionary or Hispanic surname file. Data are sourced from
voter files from AL, FL, GA, LA, NC, and SC, and racial data are self-reported
on the file.

Name
match?

White Black Hispanic Asian Other

No 1.47
(7%)

0.27
(3%)

0.13
(4%)

0.09
(14%)

0.08
(10%)

Yes 20.79
(93%)

7.61
(97%)

2.88
(96%)

0.55
(86%)

0.66
(90%)
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To address these issues, we develop a fully Bayesian version of
BISG (termed "fBISG") to account for the census zero counts
problem while introducing additional name data to address the
missing surname issue. Before describing these proposed solutions
in detail in Materials and Methods below, we first show how our
corrections to the above data quality issues can substantially
improve the prediction accuracy of BISG.

Empirical validation of the proposed solutions
To empirically validate our proposed improvements, we fit both the
standard BISG and our fBISG to the combined voter files from AL,
FL, GA, LA, NC, and SC, from L2 Inc. As discussed in the previous
section, this combined dataset contains information for roughly 38
million voters.
The setup
In our validation, we treat the self-reported race of each record as
unobserved and use other available information for that record to
obtain posterior probability distributions over their race. Specifi-
cally, we use the last, first, and middle names of each voter, as
well as the census block in which their reported home address is
located. We then compare predictions based on these posterior dis-
tributions to the known racial categories of each record to evaluate

the overall quality of our fBISG predictions vis-à-vis those of the
standard BISG methodology.

As evaluation metrics, we use false-positive and false-negative
error rates based on each model’s predictions. Furthermore, we
also rely on two validation metrics throughout our empirical exer-
cise: the area under the receiver operating characteristic curve
(AUROC) and the calibration of predicted probabilities. Both
offer distinct windows into the quality of a model’s predictions,
and we are interested in improving upon classical BISG on both
fronts simultaneously.

The AUROC measures the probability that a randomly chosen
member of each racial group will have a higher predicted probability
of belonging to that racial group than a randomly chosen nonmem-
ber. Accordingly, the AUROC gives us a sense of the extent to which
predicted probabilities can help us sort cases correctly into instances
and noninstances of the category under consideration, with higher
values thus indicating better accuracy.

While the AUROC is a useful tool for gauging a model’s classi-
fication accuracy, it is less useful for understanding the extent to
which predicted probabilities accurately reflect true relative fre-
quencies. To measure the accuracy of the predicted probabilities,
we compute the observed relative frequency with which records
fall under a given racial category. If this relative frequency
matches the predicted probability assigned to the observations (so
that, for example, 10% of observations with predicted probabilities
of being Hispanic equal to 0.1 are, in fact, Hispanic), then we would
conclude that these probabilities are well calibrated and, thus, that
the model as a whole has good calibration. In practice and because
probabilities are rarely exactly the same for a group of observations,
we assess calibration by considering a small range of values around a
discrete set of target relative frequencies (e.g., values between 0 and
1 by 0.1 increments).

To compute these validation metrics while reducing the risk of
overfitting, we estimate models separately by state. When comput-
ing predictions on a given state, we do not include that state’s voter
file in the compilation of the name-race dictionaries used to form
P(Si ∣ Ri). For instance, in sampling the race probabilities of voters in
North Carolina, we only use the name-given-race distributions
derived from augmenting the original census dictionary with
records from the other five states. This ensures that the name-
given-race distributions are not obtained from the validation
voter file. After we obtain predictions using this leave-one-out strat-
egy, we compute validation metrics using the combined predictions
from all states.

Last, to obtain samples from the fBISG posterior distribution
over races for each voter in our combined voter file, we rely on
the latest version of the wru package in R (11). We initialize the
global counts in the Gibbs updates of Eq. 6 using the predictions
based on the standard BISG methodology and run a single
Markov chain for 1500 iterations, discarding the first 500 samples
as burn-in.We completed all analyses on a laptop computer with an
M1 Max central processing unit and 64 gigabytes of random-access
memory in less than 3 hours of wall time.
Correcting the zero census counts problem
Figure 1 shows, for each racial category, the AUROC based on pos-
terior predictions generated by the standard BISG (blue bars) and
fBISG (red bars) methods. For all but the Other racial category, the
classification performance of the fBISG methodology represents a
substantial improvement over that of the standard BISG (as we

Table 4. Overall classification error rate as well as false-positive (i.e.,
type I) and false-negative (i.e., type II) error rates for white, Black,
Latino, Asian, and other voters using prediction using standard BISG
as implemented in the wru package. Each voter is classified to the racial
category with the highest predicted probability. We compare rates for
individuals whose names are matched to our name dictionary against
thosewhose names are not matched (in which case a national racial prior is
used). Error rates are significantly higher among those whose names are
unmatched.

Ethnicity Error Name
matched to
dictionary

Name
unmatched to
dictionary

Total

Overall
error rate

16.4% 24.7% 16.9%

White

False
negative

6.1% 6.5% 6.1%

False
positive

30.1% 58.8% 31.4%

Black

False
negative

35.5% 63.7% 36.4%

False
positive

3.6% 2.1% 3.5%

Hispanic

False
negative

18.4% 65.4% 20.3%

False
positive

2.1% 4.1% 2.2%

Asian

False
negative

40.3% 84.6% 46.6%

False
positive

0.6% 2.7% 0.7%

Other

False
negative

94.4% 99.3% 94.9%

False
positive

0.3% 0.2% 0.3%
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will discuss below, adding more name information rectifies this
small dip in AUROC performance relative to the standard BISG).
These performance gains are most marked for Hispanic and
Asian racial groups—with the latter yielding an 11% increase
(from 0.82 using the BISG to 0.91 using the fBISG). In general,
the use of fBISG effectively eliminates the performance gap ob-
served betweenmajor racial categories when using BISG, which dis-
proportionately affected members of the Asian category.

The source of these improvements in classification accuracy
varies by racial category, as indicated by changes in false-positive
and false-negative error rates (see columns under “Census last
name” in Table 5). Table 5 also contains two additional columns
under “All names,” which present results based on our second pro-
posed solution to the census data quality issues (we will discuss the
results under those last two columns in the “Correcting the missing
race-name data problem” section). Among white voters, fBISG—
with census last names only—substantially reduces the false-posi-
tive rate from 25 to 18% while keeping the false-negative rate
below 10%. Among Black voters, the improvement comes primarily
from reducing false negatives, bringing type II error down to about
21% from the 27% achieved by BISG.

In turn, while error reduction among Hispanics is small, ac-
counting for the zeroes in the census counts substantially affects
the accuracy of classification among Asian voters. For the latter,
fBISG substantially reduces the false-negative rate (from almost
50% to about 40%) while keeping the false-positive rate effectively
constant. Given the large percentage (20%) of Asian voters living in
a block for which the 2010 Census tallies register zero Asians, the
improvement induced by fBISG is expected. Overall, classification
errors are reduced by about four percentage points—an almost 22%
decrease in classification errors across all racial categories.

Although fBISG substantially improves classification accuracy,
this gain does not come at the cost of the calibration of predicted
probabilities. As we discussed earlier, a model with well-calibrated
predictions generates probabilities that match observed proportions
of cases, so that about x% of observations are predicted to have the
same x% chance of being in a given racial category. On a plot of the
latter against the former, well-calibrated probabilities are thus evi-
denced by a curve that falls close to the 45° line.

Figure 2 shows the benchmark of perfect calibration (black 45°
line), as well as curves that track predicted probabilities versus ob-
served sample proportions of voters in each racial category, for both

BISG (solid blue curve) and fBISG (dashed red curve) methods. The
figure shows that fBISG produces better calibrated predictions (i.e.,
curves that lie closer to the 45° line) than the standard BISG meth-
odology for voters in minority racial categories (especially Hispan-
ics) while maintaining the high calibration levels of BISG among
white and Black voters. In sum, correcting the zero-count measure-
ment error issues can yield substantial improvements in race classi-
fication without reducing a high degree of calibration across all
major racial categories.
Correcting the missing race-name data problem
Addressing name undercoverage issues and adding additional name
information also result in substantial improvements in classifica-
tion. Figure 3 shows the overall improvement in classification accu-
racy that results from using additional name-race data from the L2
voter files, for both BISG (blue bars) and fBISG (red bars). While
using augmented name dictionaries when fitting the BISG model
leaves the zero count issue unaddressed, fBISG models fit with
the new name data address both identified problems simultane-
ously. We fit both models to distinguish gains attained by imple-
menting solutions both separately and in combination. In
addition, while these results aggregate across voter files, recall that
we mitigate overfitting by sampling each state separately, leaving
names from that state out of the augmented dictionaries.
Figure S1 presents the results separately for each state that are
similar to the overall results.

Consistent with prior findings [e.g., (13)], we find that using first
andmiddle name information typically improves the predictive per-
formance of models. Moving from top to bottom, panels in Fig. 3
show the steady improvement in model performance as the predic-
tions rely on an increasing amount of name information (i.e., sur-
names only; surnames and first names; and surnames, first names,
and middle names together). While both BISG and fBISG benefit
from the progressively larger name sets being used in the prediction,
fBISG (red bars) is able to make the most of the additional informa-
tion. This is true even among white voters, for whom classification
accuracy can be improved by asmuch as 4.4% (from and AUROCof
0.91 to 0.95 using fBISG for generating predictions).

Once all of our proposed solutions are implemented, improve-
ments in predictive accuracy over the standard BISG methodology
are substantial. Across major racial categories, the average increase
in AUROC is about 7%, with improvements among Asian voters
being as large as 15%—from 0.82 using the standard, census

Fig. 1. AUROC for race predictions obtained using the standard BISG methodology (blue) and our fBISG methodology (red). All results are based on the 2010
Census surname dictionary. A greater value of AUROC indicates more accurate race classification. For all but the Other category, the fBISG methodology has better
classification performance than the standard BISG methodology, generating the most marked improvements among Asian minorities.
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surname-only BISG to 0.94 using all our proposed solutions. Using
our fully specified model renders classification quality across major
racial categories effectively identical in terms of AUROC, bringing it
over 0.94 for all major racial groups.

These gains in classification accuracy, after implementing all of
our proposed solutions, are mainly due to substantial reductions in
the number of false negatives among all voters—and particularly
among non-white voters—as can be seen by comparing the third
and sixth columns of Table 5. For non-white voters, type II error
is reduced, on average, by about 30% once all our solutions are im-
plemented. These improvements primarily come from correcting
false positives attributed to the white category, where we see a cor-
responding type I error rate reduction of almost 39%. Overall, clas-
sification errors are reduced from 16.7% incorrect classifications to
about 12% incorrect classifications. That is, among registered voters
in the six states for which we have self-reported race data, about 1.7
million more people are correctly classified into their self-reported
racial groups.

Moreover, gains in accuracy from adding information on first
and middle names are not achieved at the expense of calibration,
with calibration curves that are effectively the same across most
rows of Fig. 4 for white and Black voters. While the inclusion of
all names among Hispanic and Asian voters somewhat worsens

model calibration, predictions based on both BISG and fBISG
appear to suffer from this problem.

DISCUSSION
Here, we consider the problem of predicting an individual’s race.
This task is especially relevant to modern research on racial
equity in areas including public health, elections, and finance.
The current state-of-the-art approach is BISG, which uses
surname and geolocation data to generate a probabilistic prediction
for each individual over racial classes. However, as we have shown,
BISG predictions can underperform for minority groups because of
two consistent challenges: inaccurate census counts and name
undercoverage.

To address these challenges, we introduce a fully Bayesian analog
called fBISG that addresses the problem of census zero counts.
Moreover, we augment our name dictionaries, including additional
surnames, as well as first andmiddle names, sourced from voter files
in six Southern states provided by L2 Inc. Together, these method-
ological improvements yield substantial performance gains in pre-
dictive accuracy—as measured by AUROC, as well as false-positive
and false-negative error rates—while simultaneously improving the
calibration of predictions. Moreover, the gains are most pro-
nounced among Hispanics and Asian Americans, drawing their
predictions almost to parity with those for white and Black voters
in terms of accuracy. We believe that these improvements, which we
discuss in detail in Materials and Methods below, will be useful for
practitioners, allowing them to obtain improved individual-level
racial predictions and better characterize disparate racial impacts.

The results discussed herein are implemented in the latest
version of the wru package (11), available for download on the
Comprehensive R Archive Network (CRAN). The name dictionar-
ies are also separately available for download from the Harvard Da-
taverse (14). While the latest software provides the option to use
exclusively the census surname distribution, we believe that using
the augmented dictionaries, and including first and middle
names, will yield superior performance in most use cases. The
merits of using the voter file data—including increased name cov-
erage and the ability to leverage informative names other than sur-
names—are discussed in this manuscript.

The sole potential drawback stems from the possibility of region-
al biases in the estimates of race-name probabilities P(Fi ∣ Ri),
P(Mi ∣ Ri), and P(Si ∣ Ri). Recall that under Assumption 1, we
have Gi ⊥⊥ Si ∣ Ri. To include first and middle names, we are also
implicitly assuming

Gi ?? Fi j Ri and Gi ?? Mi j Ri

That is, race-name probabilities are unchanged depending on
the geography of analysis. These assumptions will not hold
exactly in practice; certain names will be more popular among
members of a given ethnic group in some locales and less popular
among members of the same ethnic group in other locales.

Nonetheless, we have observed meaningful improvements in ag-
gregate performance across the Southern states when using a leave-
one-out approach to building the race-name dictionaries. This is
significant, as there is considerable heterogeneity across the South-
ern states themselves, with Florida having a much larger Hispanic
population than the other states; Georgia and Louisiana having

Table 5. Overall classification error rate as well as false-positive (i.e.,
type I) and false-negative (i.e., type II) error rates for white, Black,
Latino, Asian, and other voters using predictions from standard BISG
and from our proposed fBISG model. Each voter is classified to the racial
category with the highest posterior probability. For all but the Other
category, both types of errors are reduced as we move from standard,
census-dictionary BISG to fBISG using the augmented name dictionary.

Census last name All names

Ethnicity Error BISG fBISG BISG fBISG

Overall
error rate

16.70% 13.15% 13.20% 11.98%

White

False
negative

8.96% 6.59% 8.71% 6.79%

False
positive

25.53% 18.55% 23.00% 15.65%

Black

False
negative

27.48% 20.88% 22.70% 17.77%

False
positive

6.41% 4.28% 8.06% 4.28%

Hispanic

False
negative

19.43% 16.55% 24.06% 11.76%

False
positive

2.22% 2.03% 2.15% 2.11%

Asian

False
negative

49.87% 39.87% 41.44% 30.25%

False
positive

0.44% 0.45% 0.46% 0.49%

Other

False
negative

95.18% 91.55% 95.33% 91.78%

False
positive

0.22% 0.97% 0.18% 0.72%
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disproportionately large Black populations; and Asian residents
concentrated in Florida and Georgia. We anticipate similar perfor-
mance improvements when applying to other regions of the
United States.

MATERIALS AND METHODS
In this section, we describe the proposed solutions to the measure-
ment error problems described above. We begin by introducing a
measurement error model designed to address potential for error

Fig. 2. Calibration curves for race predictions obtained using the standard BISG (blue) and fBISG (red) methods. The curves plot predicted probabilities of being in
each racial category against the observed proportion of cases that actually fall in that category. Thus, curves closer to the 45° line indicate better calibrated predictions.
The results are based on the 2010 Census surname dictionary. The red curve (i.e., the fBISG calibration curve) is either identical to or closer to the 45° than the blue curve
(i.e., the BISG calibration curve), indicating that fBISG’s predictive accuracy is at least on par to that of BISG.

Fig. 3. AUROC for race predictions obtained using the standard BISG (blue) and fBISG (red) methods. The results are based on progressively more name infor-
mation, starting with the L2-augmented surname dictionary (top). As before, higher values indicate better predictive accuracy. Overall, using more name information
uniformly improves the accuracy of models, and using fBISG combined with more name information produces the most accurate models.
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in census tallies. Our model generalizes the naïve Bayes BISGmeth-
odology to a fully Bayesian model. We complete our discussion by
describing our name augmentation strategy, designed to correct for
lack of coverage in commonly used name-by-race dictionaries.

Accounting for the measurement error in census counts
We use a fully Bayesian modeling strategy to account for potential
measurement error that arises when quantifying the racial distribu-
tion within each geography. We begin by modeling the observed
census counts as a draw from a multinomial distribution with the
true, but unknown, race proportions in geolocation g, denoted by ζg
= (ζ1g, ζ2g, …, ζJg)

Ng ≏
indep:

MultinomðNg ; zgÞ ð2Þ

where Ng = (N1g, N2g, …, NJg) is the J-dimensional vector of census
counts for individuals who belong to different racial groups and live
in geolocation g and Ng = ∑r ∈ ℛNrg is the observed total census
population count in geolocation g.

Next, we place the following conjugate prior distribution over
the unknown race distribution for the geolocation g

zg ≏
indep:

DirichletðaÞ ð3Þ

where α = (α1, α2, …, αJ) is the J-dimensional vector of prior hyper-
parameters. In our implementation, we define a uniform prior
distribution with α = 1. As it will become clear in Eq. 6 below,
this value of α offers enough smoothing over observed zero

counts, while injecting a negligible amount of information into
the posterior relative to information that comes from the census
and the voter file. Furthermore, this prior information does not
give preeminence to any particular racial or ethnic group over
any another.

We call this measurement error model the fBISG. Letting
P(Si ∣ Ri = r) = πr, the full posterior distribution of the fBISG is
given by

PðfRig
n
i¼1; fzggg[G

j S;G; fprgr[R;aÞ

/
Yn

i¼1

Y

r[R

Y

g[G

Y

s[S
p 1fSi¼sg

sr

 !

z 1fGi¼gg
rg

( )1fRi¼rg

�
Y

r[R

Y

g[G

z
Nrgþar � 1
rg

¼
Y

s[S

Y

r[R

pmsr
sr �

Y

r[R

Y

g[G

z
nrgþNrgþar � 1
rg

ð4Þ

where nrg ¼
Pn

i¼1 1fRi ¼ r;Gi ¼ gg is the number of individuals
on the voter file who belong to race r and live in geographical
unit g, and nrg ¼

Pn
i¼1 1fRi ¼ r;Gi ¼ gg is the number of individ-

uals in the voter file who belong to race r and have surname s. The
last line of Eq. 4 implies that the posterior distribution over races in
fBISG is, once again, a function of two terms: the probability of ob-
serving a surname s for a given race r (i.e., πsr) and the (unknown)
true racial composition of geolocation g (i.e., ζrg). As we will detail
below, treating this racial composition as unknown and giving it a
prior distribution are what allows us to overcome the zero-count

Fig. 4. Calibration curves for race predictions obtained using BISG (blue) and fBISG (red), using progressively more name information from dictionaries aug-
mented with L2 data (from top to bottom rows). The curves plot predicted probabilities of being in each racial category against the observed proportion of cases that
actually fall in that category, for each model. As before, curves closer to the 45° line indicate better calibrated predictions.
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issues that affect BISG, while correctly incorporating information
from both the census (viz., the counts Nrg) and the voter file
under study (viz., the counts nrg) into the prediction problem.

To simplify computation, we integrate out ζg, obtaining the fol-
lowing marginalized posterior distribution

PðfRig
n
i¼1 j fprgr[R; S;G;aÞ

/
Y

r[R

Y

s[S
pmsr

sr

Y

g[G

G nrg þ Nrg þ ar
� �

8
<

:

9
=

;
ð5Þ

To sample from this joint posterior distribution, we construct a
Gibbs sampler. Using the fact that Γ(x + y) = xyΓ(x) for y ∈ {0,1}, we
can derive the following conditional posterior distribution for Ri
given the race of the other individuals

Pr ðRi ¼ r j R� i; Si ¼ s;Gi ¼ g; G� i;aÞ/ psrðn� i
rg þ Nrg þ arÞ

ð6Þ

This posterior probability summarizes all the estimation uncer-
tainty about predicting individual race. Note that
n� i

rg ¼
P

i0=i 1fRi0 ¼ r;Gi0 ¼ gg is the only parameter that needs
to be updated throughout the sampling process. In particular, we
do not need to store the posterior draws of individual race. After
the correspondingMarkov chain has converged to its stationary dis-
tribution, if one wishes to impute each individual’s race, then this
posterior prediction for Ri can be obtained by iteratively sampling
from the full set of conditional distributions in Eq. 6.

Note that the conditional posterior in Eq. 6 factorizes over loca-
tions g, which allows us to fit the model separately across any level of
geographic aggregation defined on G. While the size of each voter
file in our sample did not require parallelization to make computa-
tion feasible, factorization over g allows researchers to parallelize
their analyses to fit our model efficiently on much larger data files.

The comparison of Eq. 6 with Eq. 1 shows how the fBISG ad-
dresses the problems caused by zero census counts. The only differ-
ence between these two formulae is that the race-geolocation
probability Pr (Ri ∣ Gi) in the BISG prediction formula, which
is given by Nrg=

P
r0gNr0g , is replaced with the ratio

ðn� i
rg þ Nrg þ arÞ=

P
r0 ðn

� i
r0g þ Nr0g þ ar0 Þ in the fBISG formula. In

the BISG methodology, if Nrg = 0, then the posterior prediction
for this racial group r in the geolocation g is zero. In contrast, the
fBISG methodology gives nonzero probability of belonging to the
racial group with zero census counts by adding a prior αr and par-
tially pooling other individuals of the same racial group who live in
the same geolocation n� i

rg . Because both of these additional param-
eters are nonzero, the fBISG methodology will not give zero prob-
ability even in the presence of census zero counts. Note that a larger
sample sizewill typically improve the performance of fBISG because
there will be a greater number of individuals who live in the same
geography, thereby increasing n� 1rg andmaking partial poolingmore
effective.

Last, it is straightforward to incorporate additional covariates Xi
such as age and sex into the proposed fBISG methodology. Typical-
ly, researchers use these covariates in the BISG by assuming the fol-
lowing conditional independence relation (4)

fGi; X ig ?? S i j Ri

instead of Assumption 1. Thus, the fBISG methodology can incor-
porate these additional covariates by simply replacing Gi with the
random variable jointly defined by Gi and Xi.

Increasing surname coverage and incorporating first and
middle names
In addition to the surname, we may also have first and middle
names of each individual whose racial group we wish to predict.
Let Fi ∈ ℱ = {1,2, …, KF} and Mi ∈ ℳ = {1,2, …, KM} denote the
first and middle names of individual i, respectively. Using the same
voter file data from L2 Inc., we construct the racial composition of
each first name and that of each middle name. This allows us to
further approximate the joint distributions P(Ri, Fi) and P(Ri, Mi).

In (13), Voicu shows that incorporating the first name can
improve the performance of the BISG. The author makes the as-
sumption, similar to Assumption 1, that the first name is indepen-
dent of geolocation conditional on race. In addition, it is assumed
that the first name is independent of the surname given race. If we
make the same assumption about middle names, then the predic-
tion formula becomes

PðRi j Fi;Mi; Si;GiÞ/ PðFi j RiÞPðMi j RiÞPðSi j RiÞPðRi j GiÞ

Combining this information with our fully Bayesian model for
smoothing over zero census counts results in the following updated
full conditional distribution over individual i’s race

Pr ðRi ¼ r j R� i; Fi ¼ f ;Mi ¼ m; Si ¼ s;Gi ¼ g; G� i;aÞ

/ pFfrp
M
mrp

S
srðn

� i
rg þ Nrg þ arÞ

ð7Þ

where pFfr ¼ PðFi ¼ f j Ri ¼ rÞ, and similarly with pMmr and pSsr .
We demonstrate the empirical benefit of incorporating voter file

surname racial distributions, as well as those of first and middle
names. Note that in the companion paper (15), we also discuss
the relative advantages of using voter file data over the state-of-
the-art data source for the racial distribution of first names, given
by (16). Using the same set of voter files from L2 Inc., we consider
matching individuals to name dictionaries under several schemes.
First, we consider surnames exclusively and compute the propor-
tion of individuals from each racial group who do not have a
surname matched to the census dictionaries (as in Table 3). Next,
we compute the proportion of individuals of each race who do not
have a surnamematched to the census dictionaries, augmented with
data from the L2 voter files themselves. Third, we compute the pro-
portion of individuals of each race who do not have a surname
matched to the augmented surname dictionary or a first name
matched to the separate first name dictionary compiled from the
L2 data. Last, we compute the proportion of individuals of each
race who do not have a name matched to any of the augmented
surname dictionary or to first and middle name dictionaries com-
piled from the L2 data.

Because the voter file data are used both to compile the dictio-
naries and to assess coverage, as before, we iteratively hold out each
of the six states (Alabama, Florida, Georgia, Louisiana, North Ca-
rolina, and South Carolina) and consider coverage using a diction-
ary compiled from the other five states. The results in Fig. 5 show
that dictionary augmentation—and inclusion of additional names
—substantially decreases the proportion of individuals who
cannot be matched to any dictionary. For non-Asian voters, all
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but a negligible fraction of voters can be matched to at least one dic-
tionary once all their names are included. Among Asians, approx-
imately 1% of voters still cannot be matched when using first,
middle, and last names. This, however, represents a marked im-
provement relative to the case of exclusively using surnames and
sourcing data only from the census.

Supplementary Materials
This PDF file includes:
Fig. S1
Tables S1 and S2

View/request a protocol for this paper from Bio-protocol.
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Fig. 5. Percentage of individuals in each racial group who cannot be matched to any name dictionary, under four different matching schemes. The schemes
includematching to census last names only; matching to census and L2 last names; matching last names and first names; andmatching last, first, andmiddle names. Data
are drawn from the voter files of Alabama, Florida, Georgia, Louisiana, North Carolina, and South Carolina.
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