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About a half century ago, in 1965, Warner proposed the randomized response method as a survey technique to reduce potential bias
due to nonresponse and social desirability when asking questions about sensitive behaviors and beliefs. This method asks respondents
to use a randomization device, such as a coin flip, whose outcome is unobserved by the interviewer. By introducing random noise, the
method conceals individual responses and protects respondent privacy. While numerous methodological advances have been made, we find
surprisingly few applications of this promising survey technique. In this article, we address this gap by (1) reviewing standard designs
available to applied researchers, (2) developing various multivariate regression techniques for substantive analyses, (3) proposing power
analyses to help improve research designs, (4) presenting new robust designs that are based on less stringent assumptions than those of the
standard designs, and (5) making all described methods available through open-source software. We illustrate some of these methods with
an original survey about militant groups in Nigeria.
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1. INTRODUCTION

About a half century ago, Warner (1965) proposed the ran-
domized response method as a survey technique to reduce poten-
tial bias due to nonresponse and social desirability when asking
questions about sensitive behaviors and beliefs. The method asks
respondents to use a randomization device, such as a coin flip,
whose outcome is unobserved by the interviewer. Depending
on the particular design, the randomization device determines
which question the respondent answers (Warner 1965; Green-
berg, Abul-Ela, and Horvitz 1969; Mangat and Singh 1990;
Mangat 1994), the type of expression the respondent uses to
answer the sensitive question (Kuk 1990), or if the respondent
should give a predetermined response (Boruch 1971; Fox and
Tracy 1986). By introducing random noise, the randomized re-
sponse method conceals individual responses and protects re-
spondent privacy. As a result, respondents may be more inclined
to answer truthfully.

Despite the wide applicability of the randomized response
technique and the methodological advances, we find surpris-
ingly few applications. Indeed, our extensive search yields only
a handful of published studies that use the randomized response
method to answer substantive questions (Madigan et al. 1976;
Chaloupka 1985; Wimbush and Dalton 1997; Donovan, Dwight,
and Hurtz 2003; St John et al. 2012). In contrast, a vast majority
of existing studies apply the randomized response method to
empirically illustrate its methodological properties by including
some substantive examples (e.g., Abernathy, Greenberg, and
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Horvitz 1970; Chi, Chow, and Rider 1972; Goodstadt and Gru-
son 1975; Reinmuth and Geurts 1975; Locander, Sudman, and
Bradburn 1976; Fidler and Kleinknecht 1977; Lamb and Stem
1978; Tezcan and Omran 1981; Tracy and Fox 1981; Edgell,
Himmelfarb, and Duchan 1982; Volicer and Volicer 1982; van
der Heijden and van Gils 1996; van der Heijden et al. 2000; Elf-
fers, Van Der Heijden, and Hezemans 2003; Lensvelt-Mulders,
Hox, and Van Der Heijden 2005a; Lara et al. 2006; Cruyff et al.
2007; Himmelfarb 2008; De Jong, Pieters, and Fox 2010; Gin-
gerich 2010; Krumpal 2012). This finding is consistent with
previous reviews of the literature. Like Umesh and Peterson
(1991), a recent review by Lensvelt-Mulders et al. (2005b) con-
cludes that “there have been very few substantive applications
of RRTs [randomized response techniques] and that most papers
are published to test a variant or illustrate a statistical problem”
(p. 325).

In this article, we fill this gap by providing a suite of method-
ological tools that facilitate the use of randomized response
technique in applied research. We begin by reviewing and com-
paring the standard designs available to researchers (Section 2).
We categorize commonly used designs into four basic groups
and discuss identification and practical issues by using examples
from existing studies. Building on the results in the literature,
we then develop various multivariate regression techniques for
substantive analyses (Section 3). In particular, we show how
to use the randomized response as a predictor as well as the
outcome in regression models. We also propose power analyses
to help improve research designs and discuss the pros and cons
of each design from a practical perspective. Using an original
survey about militant groups in Nigeria, we illustrate some of
these methodologies (Section 4).

The dearth of substantive applications is unfortunate because
there exists empirical evidence that the randomized response
method is an effective technique for studying sensitive topics at
least in some settings (e.g., Tracy and Fox 1981; van der Heij-
den et al. 2000; Lara et al. 2004; Rosenfeld, Imai, and Shapiro
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2015; Stubbe et al. 2014). Some researchers find that not only
does randomized response lead to the lowest response distor-
tion compared to other indirect questioning methods, but also
it is generally well received by both interviewers and respon-
dents (e.g., Locander, Sudman, and Bradburn 1976). While the
validation studies remain quite rare given the difficulty of ob-
taining the ground truth about sensitive behavior and attitudes,
a recent study by Rosenfeld, Imai, and Shapiro (2015) reports
that the randomized response method recovers the truth well
when compared to other methods (but see Kirchner 2015, for
less favorable evidence).

On the other hand, other scholars caution that the random-
ized response procedures may confuse respondents and yield
noncompliance, requiring more experienced interviewers for
successful implementation (e.g., Holbrook and Krosnik 2010;
Coutts et al. 2011; Wolter and Preisendörfer 2013; Höglinger,
Jann, and Diekmann 2014). To address these potential problems,
many researchers explain the goal of randomized response meth-
ods to respondents (e.g., Gingerich 2010). Nevertheless, Coutts
and Jann (2011) found that many respondents do not believe the
randomized response technique protects anonymity even when
they completely understand the instructions.

Thus, to further assuage concerns of respondent noncompli-
ance with randomized response survey instructions, we propose
new robust designs that are based on less stringent assumptions
than those of the standard designs (Section 5). For example,
we propose a design that allows for an unknown degree of
noncompliance to instructions. We then develop the same set
of methodological tools for these modified designs so that re-
searchers can fit multivariate regression models and conduct
power analyses. The new designs should address concerns, ex-
pressed frequently by applied researchers, about the standard
randomized response techniques and hence further widen the
applicability of the methodology.

All methodologies discussed in this article are made available
through open-source software, rr: Statistical Methods
for the Randomized Response Technique (Blair, Zhou,
and Imai 2015b), which is freely available for download at the
Comprehensive R Archive Network (http://cran.r-project.
org/package=rr). Other related software packages for random-
ized response methods include the Stata module rrlogit (Jann
2011), the R packageRRreg (Heck and Moshagen 2014), and the
(MC)SIMEX algorithm in the R package simex (Lederer and
Küchenhoff 2013). Among these packages, RRreg is perhaps
the most comprehensive and hence is similar to our software
though there are some differences (e.g., our estimation strategy
is based on the EM algorithm whereas RRreg uses the standard
optimization routine).

Finally, in this article, we assume simple random sampling
and do not explore various theoretical and practical issues that
may arise when adopting different survey sampling methods.
We also do not consider how randomized response methods
can be used together with direct questioning. Chaudhuri (2011)
explored these and other issues.

2. BASIC DESIGNS WITH KNOWN PROBABILITY

In this section, we summarize the basic designs of the ran-
domized response technique that have been proposed in the

literature. We classify these designs into four types: mirrored
question, forced response, disguised response, and unrelated
question. For each type, we provide a brief explanation, an ex-
ample, and a discussion about identification. All four designs
make two assumptions: (1) the randomization distribution is
known to researchers, and (2) respondents comply with the in-
structions and answer the sensitive question truthfully when
prompted. For some randomized response methods, randomiza-
tion is not explicitly done by the respondent using an instrument
such as coin flip. Instead, they may exploit a random variation
that already exists (e.g., phone number or birthday). We refer to
all of these methods as randomized response techniques.

2.1 Mirrored Question Design

We begin with the classic design introduced by Warner
(1965), which we call the mirrored question design (in the liter-
ature, this design is sometimes called “Warner’s method”). The
basic idea is to randomize whether or not a respondent answers
the sensitive item or its inverse. As a recent example, Gingerich
(2010) used this design to measure corruption among public bu-
reaucrats in Bolivia, Brazil, and Chile. The survey interviewed
2859 bureaucrats from 30 different institutions. Each respondent
was provided a spinner and then instructed to whirl the device
without letting the interviewers know the outcome. The actual
instruction is reproduced here:

For each of the following questions, please
spin the arrow until it has made at least one
full rotation. If the arrow lands on region
A for a particular question, respond true or
false in the space indicated only with respect
to statement A. If the arrow lands on region B
for that question, respond true or false in
the space indicated only with respect to
statement B. Do not make any marks to indicate
in which region the arrow fell for each
question. Please remember that if you respond
false to a statement in its negative form that
means that the positive form of the statement
is true.

If the spinner landed on region A, the respondent answers the
following question.

A. I have never used, not even once, the
resources of my institution for the benefit
of a political party.

If the spinner landed on region B, the respondent answers its
inverse.

B. I have used, at least once, the resources
of my institution for the benefit of
a political party.

Another example of this mirrored design is an ecological
study to examine whether members of marine clubs in Australia
collected shells without permits from the protected Great Barrier
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Reef (Chaloupka 1985). Other applications include whether re-
spondents are in favor of capital punishment (Lensvelt-Mulders,
Hox, and Van Der Heijden 2005a) and legalizing marijuana use
(Himmelfarb 2008).

It is straightforward to see that the response probability for
the sensitive question is identified. Let Zi be the latent binary
response to the sensitive question for respondent i (i.e., the
first statement in the aforementioned example). We use p to
denote the probability, determined by a randomization device
such as a spinner, that respondents are supposed to answer the
sensitive question in the original (rather than mirrored) format.
Finally, the observed binary response is denoted by Yi . The key
relationship among these variables is given by the following
equation,

Pr(Yi = 1) = p Pr(Zi = 1) + (1 − p) Pr(Zi = 0). (1)

Solving for Pr(Zi = 1) yields,

Pr(Zi = 1) = 1

2p − 1
{Pr(Yi = 1) + p − 1} . (2)

Thus, so long as p is not equal to 1/2, the response distribution
to the sensitive question is identified.

As an extension of this design, Mangat and Singh (1990) and
Mangat (1994) proposed a two-stage procedure to improve effi-
ciency while preserving the computational ease of the estimator.
It asks respondents who actually possess the sensitive trait to
answer truthfully. Respondents who do not have the sensitive
attribute are instructed to use the randomization device to deter-
mine which of the mirrored questions they must answer. Thus,
all “no” answers are true negatives and only the “yes” answers
are distorted (or vice versa). Under this alternative design, non-
compliance among respondents with the sensitive trait may be
higher because the privacy protection of respondents with the
sensitive attribute is completely dependent on the cooperation
of the other set of respondents who do not possess the trait
(Lensvelt-Mulders et al. 2005b).

2.2 Forced Response Design

We next consider the forced response design, which was first
introduced by Boruch (1971). Here, we describe a simpler ver-
sion of this design as introduced by Fox and Tracy (1986).
Under this design, randomization determines whether a respon-
dent truthfully answers the sensitive question or simply replies
with a forced answer, “yes” or “no.” For example, in a study on
the prevalence of civilian cooperation with militant groups in
southeastern Nigeria, six-sided dice commonly used for games
in the region serve as the randomizing device (Blair 2014). The
survey interviewed 2457 civilians in villages affected by militant
violence. The instructions are reproduced here:

For this question, I want you to answer yes
or no. But I want you to consider the number
of your dice throw. If 1 shows on the dice,
tell me no. If 6 shows, tell me yes. But if
another number, like 2 or 3 or 4 or 5 shows,
tell me your own opinion about the question
that I will ask you after you throw the dice.
[TURN AWAY FROM THE RESPONDENT] Now you
throw the dice so that I cannot see what comes

out. Please do not forget the number that
comes out. [ WAIT TO TURN AROUND UNTIL RES-
PONDENT SAYS YES TO: ] Have you thrown the
dice? Have you picked it up?

Thus, when the respondent rolls a one, they are forced to
respond “no” to the question; when respondents roll a six, they
are forced to respond “yes.” Finally, when respondents roll two,
three, four, or five, they are instructed to truthfully answer the
following sensitive question.

Now, during the height of the conflict in 2007
and 2008, did you know any militants, like a
family member, a friend, or someone you talked
to on a regular basis. Please, before you
answer, take note of the number you rolled on
the dice.

The idea behind the forced response design is straightforward.
Because a certain proportion of respondents are expected to
respond “yes” or “no” regardless of their truthful response to
the sensitive question, the design protects the anonymity of
respondents’ answers. That is, interviewers and researchers can
never tell whether observed responses are in reply to the sensitive
question.

As before, let Zi represent the latent binary response to the
sensitive question for respondent i and Yi represents the ob-
served response (1 for “yes” and 0 for “no”). Suppose further
that we use Ri to represent the latent random variable, taking
one of the three possible values; Ri = 1 (Ri = −1) indicating
that respondent i is forced to answer “yes” (“no”), and Ri = 0
indicating that the respondent is providing a truthful answer Zi .
Then, the forced design implies the following equality,

Pr(Yi = 1) = p1 + (1 − p1 − p0) Pr(Zi = 1), (3)

where p0 = Pr(Ri = −1) and p1 = Pr(Ri = 1). This allows us
to derive the probability that a respondent truthfully answers
“yes” to the sensitive question,

Pr(Zi = 1) = Pr(Yi = 1) − p1

1 − p1 − p0
. (4)

This design is the most popular among applied researchers,
and numerous examples are found in various disciplines and
methodological illustrations. They include a study of xenopho-
bia and anti-Semitism in Germany (Krumpal 2012), fabrication
in job applications (Donovan, Dwight, and Hurtz 2003), em-
ployee theft (Wimbush and Dalton 1997), social security fraud
(van der Heijden and van Gils 1996), sexual behavior and ori-
entation (Fidler and Kleinknecht 1977), vote choice regarding a
Mississippi abortion referendum (Rosenfeld, Imai, and Shapiro
2015), illegal poaching among South African farmers (St John
et al. 2012), use of performance enhancing drugs (Stubbe et al.
2014), and violation of regulatory laws by commercial firms
(Elffers, Van Der Heijden, and Hezemans 2003). Furthermore,
De Jong, Pieters, and Fox (2010) expanded this design to al-
low for ordinal responses (e.g., a Likert scale), which they use
to measure the frequency of respondent consumer use of adult
entertainment.
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2.3 Disguised Response Design

The next design we consider is the disguised response de-
sign, which was originally proposed by Kuk (1990) (in the
literature, this design is sometimes called “Kuk’s design”). This
design was created to address the problem that under the other
randomized response designs some respondents may still feel
uncomfortable providing a particular response (e.g., answering
“yes”) even when interviewers do not know whether they are
answering the sensitive question. For example, Edgell, Him-
melfarb, and Duchan (1982) used the forced response design
to study college students’ experiences with homosexuality. By
fixing the outcome of the randomization device unbeknownst
to the respondents, the researchers found that 25% of the re-
spondents who were forced to reply “yes” by design did not
do so. Considering this unsuccessful application of randomized
response, van der Heijden and van Gils (1996) suggested that a
disguised response design would have been better suited given
respondents had difficulties even giving a false “yes” response.

Under the disguised response design, “yes” and “no” are
replaced with more innocuous words. This design is best under-
stood with an example. van der Heijden et al. (2000) used the
design to study fraud and malingering by employees regarding
social welfare provisions in the Netherlands (see also Cruyff
et al. 2007). The randomization device consists of two stacks
of cards with both black and red cards. In the right or “yes”
stack the proportion of red cards is p = 0.8 whereas in the left
or “no” stack 1 − p = 0.2. Respondents are asked to draw one
card from each stack. Instead of answering “yes” (“no”) to a
sensitive question, they are instructed to name the color of the
card from the right (left) stack. The original instruction reads as
follows:

I have two stacks of cards and a box behind in
which I place the cards. [GIVE THE BOX TO THE
RESPONDENT AND LOOK AT IT TOGETHER.] In the
box, you find a card on which it is written
what the stack means: the right-hand stack
is the ‘yes’ stack, and the left-hand stack is
the ‘no’ stack. [LET INTERVIEWEE LOOK AND GIVE
DIRECTIONS WITH THE NEXT EXPLANATION.] In the
‘yes’ stack [POINT TO THE RIGHT-HAND STACK]
there are more red cards than in the ‘no’ stack
[POINT TO THE LEFT-HAND STACK, RESPONDENT MAY
CHECK]. If you want, you may shuffle the two
stacks [SEPARATELY]. Now, please take from each
stack an arbitrary card. You may take the card
on top or from within the stack. [TAKE A CARD
FROM EACH STACK] Nobody but you can see the
colors of your cards; when you mention a card
color, we do not know the stack from which you
took the card. Thus, your privacy is guaranteed:
your answer will always remain a secret. [...]
I propose that we now try out a few questions.

Then, respondents answer with “red” or “black” to the set of
questions, which include the following:

At a social services check-up, have you ever
acted as if you were sicker or

less able to work than you actually are?
Have you ever noticed an improvement in the
symptoms causing your disability, for example
in your present job, in volunteer work, or the
chores you do at home, without informing the
Department of Social Services of this change?

The identification strategy for the probability of answering
“yes” to a sensitive question is exactly the same as that for the
mirrored response design. LetZi represent the latent response to
the sensitive question with Zi = 1 (Zi = 0) indicating an affir-
mative (negative) answer. We use p to represent the proportion
of red cards in the right or “yes” stack (1 − p the proportion
of red cards in the left or “no” stack). Finally, let Yi denote the
observed binary response where Yi = 1 (Yi = 0) represents the
reply “red” (“black”). Then, the key relationship between the
probability of observing the answer “red” and the probability
of affirmative response toward the sensitive item is described
by Equation (1), and therefore the latter quantity is given by
Equation (2).

2.4 Unrelated Question Design

The final design we consider is the unrelated question de-
sign, which was developed by Greenberg, Abul-Ela, and Horvitz
(1969) and Greenberg et al. (1971). Under this design, random-
ization determines whether a respondent should answer a sen-
sitive question or an unrelated, nonsensitive question. Unlike
the other designs, this design introduces an unrelated question
to increase respondents’ compliance with survey instruction.
Furthermore, Moors (1971) showed that this design is more ef-
ficient than the mirror question, and it allows for quantitative
responses.

For example, Chi, Chow, and Rider (1972) applied the unre-
lated question design to study the incidence of induced abortions
in Taiwan using pieces from the regionally popular game Go.
The researchers interviewed a random sample of 2497 women
between ages 15 and 49. Census data were used to estimate
the proportion of the unrelated, innocuous question about the
respondent’s year of birth. We reproduce the instructions here:

Here is a bag; in it there are stones from the
game ‘Go,’ some colored black and others white.
Please take one stone out, and see by
yourself what color it is, black or white.
Don’t let me know whether it is black or white,
but be sure you know which it is. If you take
a black one, answer the question: ‘‘Have you
ever had an induced abortion?’’ If you take a
white one, answer the question:
‘‘Were you born in the lunar year of the
horse?’’

Similar studies on abortion rates have been conducted in
North Carolina (Abernathy, Greenberg, and Horvitz 1970),
Mexico (Lara et al. 2004, 2006), and Turkey (Tezcan and Om-
ran 1981). Other applications of the unrelated question include a
criminology study of self-reported arrests in Philadelphia (Tracy
and Fox 1981), a sociological assessment concerning the con-
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cealment of deaths in the household from local authorities in
the Philippines (Madigan et al. 1976), and self-reported failure
of classes by college students (Lamb and Stem 1978).

Let p denote the probability that respondents receive the sen-
sitive question. This probability is assumed to be known. In the
above example, it equals the proportion of black stones in the
bag. We use Zi to denote the binary latent response to the sensi-
tive question with Zi = 1 (Zi = 0) representing the affirmative
(negative) answer. Furthermore, let q represent the probability
of answering “yes” to the unrelated question. It is assumed that
researchers also know this probability: in the aforementioned
example, the census data are used to determine it. Then, if we
useYi to denote the observed binary response, the key estimating
equation is given by,

Pr(Yi = 1) = p Pr(Zi = 1) + (1 − p)q. (5)

This yields the identification of the response distribution to the
sensitive question,

Pr(Zi = 1) = 1

p
{Pr(Yi = 1) − (1 − p)q} .

As variants of this design, Yu, Tian, and Tang (2008) and
Tan, Tian, and Tang (2009) proposed two designs that do not
require a randomizing device: the triangular and crosswise de-
signs. Both designs make use of an unrelated, nonsensitive ques-
tion (e.g., whether the respondent is born between August and
December) that is assumed to be independent of the sensitive
item (e.g., whether the respondent is a drug user). The trian-
gular design asks respondents to mark one of two statements:
(1) neither characteristics are true, or (2) at least one of the
characteristics is true. Relying on the same setup, the crosswise
design asks respondents to choose one of the following state-
ments: (1) both or neither characteristics are true, or (2) one
of the characteristics is true. Gingerich et al. (2014) used the
crosswise design to develop a joint model that combines indi-
rect and direct questioning within the same survey to determine
whether a topic is sufficiently sensitive to justify indirect ques-
tioning. Other works that study these designs include Coutts
et al. (2011), Jann, Jerke, and Krumpal (2011), Höglinger, Jann,
and Diekmann (2014), and Korndörfer, Krumpal, and Schmukle
(2014).

3. STATISTICAL ANALYSIS OF THE BASIC DESIGNS

In this section, we describe how to analyze data from the
randomized response method under the four basic designs re-
viewed in the previous section. We begin by presenting the
likelihood framework for conducting a multivariate regression
analysis, an essential tool for researchers who wish to under-
stand the respondent characteristics that are associated with the
sensitive attitudes and behavior under investigation. Within this
framework, researchers can then generate predicted probabili-
ties for the sensitive item given characteristics. We also show
how to use the sensitive attitude or behavior inferred from the
multivariate regression analysis as a predictor for an outcome re-
gression model. Finally, we demonstrate how to conduct power
analysis for the four basic designs of randomized response
method.

3.1 Multivariate Regression Model

The goal of multivariate regression analysis is to characterize
how a vector of respondent characteristicsXi is associated with
the latent response to the sensitive question Zi . We define this
regression model as

Pr(Zi = 1 | Xi = x) = fβ(x), (6)

where β is a vector of unknown parameters. A popular choice
of the parametric model is the logistic regression, fβ(x) =
exp(x�β)/{1 + exp(x�β)}. Using Equations (1), (3), and (5),
we can construct the likelihood function as

L(β | {Xi, Yi}ni=1) =
N∏
i=1

{cfβ (Xi) + d}Yi {1 − (cfβ (Xi) + d)}1−Yi ,

(7)

where c and d are known constants determined by each of the
four basic designs. For example, under the mirrored question
design, c = 2p − 1 and d = 1 − p, where p is the probabil-
ity of answering the sensitive question in the original format.
Table 1 summarizes the relationship between the model param-
eters (c, d) and the design parameters under each of the four
basic designs.

Our contribution here is to point out that all four designs can
be analyzed under the single likelihood function given in Equa-
tion (7). In the literature, van den Hout, van der Heijden, and
Gilchrist (2007) showed that the same likelihood function ap-
plies to the forced response and mirrored response designs (see
also Scheers and Dayton 1988). van der Heijden and van Gils
(1996) developed a similar likelihood framework for the forced
response and disguised response designs. Additionally, Warner
(1965) considered the linear regression model while Winkler
and Franklin (1979) and O’Hagan (1987) explored its Bayesian
extensions.

Table 1. Correspondence between design and model parameters. The
table shows, for each design of the randomized response method, the

correspondence between design and model parameters.

Model
Design Design parameters parameters

Mirrored
question

p: probability of receiving the
sensitive question in its original

c = 2p − 1

format as opposed to its inverse d = 1 − p

Forced
response p: probability of answering truthfully c = p

p1: probability of forced “yes” d = p1

p0: probability of forced “no”
(p0 = 1 − p − p1)

Disguised p: probability of selecting a red card c = 2p − 1
response from the “yes” stack d = 1 − p

Unrelated
question

p: probability of receiving the
sensitive question as opposed to

c = p

d = (1 − p)q
the unrelated question

q: probability of answering “yes” to
the unrelated question (assumed to
be independent of covariates,
otherwise needs to be modeled)

NOTE: The general model, which can be applied to all four designs, is given in the
likelihood function of Equation (7).
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It is important to emphasize that an additional assumption is
made when applying the likelihood function in Equation (7)
to the unrelated question design. Specifically, it is assumed
that the response to the unrelated question q is independent
of the covariates Xi . In the case of the empirical applica-
tion discussed in Section 2.4, whether a respondent is born
in a certain lunar year is assumed to be independent of what-
ever covariates that will be included in the model fβ(x). If
this assumption is relaxed, then the design parameter q must
be modeled as a function of covariates as qγ (Xi) where γ
is a vector of unknown parameters. This in turn implies that
the model parameter d needs to be a function of Xi . The
likelihood function for the unrelated question design, then,
becomes

L(β, γ | {Xi, Yi}ni=1) =
N∏
i=1

{pfβ (Xi) + (1 − p)qγ (Xi)}Yi

× [
1 − {pfβ (Xi) + (1 − p)qγ (Xi)}

]1−Yi
.

(8)

To avoid this unnecessary modeling assumption about responses
to the unrelated question, researchers should choose an unre-
lated question whose responses are known to be independent of
respondent characteristics.

One approach, which guarantees that the required inde-
pendence assumption is met, is to employ a two-stage ran-
domization process. For instance, in addition to the first ran-
domization device, which determines whether the respon-
dent answers the sensitive question or the unrelated ques-
tion (e.g., drawing from the bag of black-and-white stones
in Chi, Chow, and Rider (1972)), respondents are instructed
to flip a coin. Upon selecting a white stone, the respon-
dent is prompted to answer the following unrelated question,
“Did you flip heads?” While this process waives the need
to model q, it also adds a layer of complexity to the design
procedure.

3.2 Estimation

van den Hout, van der Heijden, and Gilchrist (2007) focused
on the generalized linear model framework and used iteratively
reweighted least squares. For example, if we assume the logistic
regression for fβ(Xi), we have

μi ≡ cfβ (Xi) + d and g(μi) = log
μi − d

c + d − μi
= βXi,

where g(·) is a monotonic and differentiable link function with
its domain equal to (d, c + d). Then, the standard generalized
linear model (GLM) routine can be used to obtain the maximum
likelihood estimate of β.

As an alternative and more generally applicable estimation
method, we develop the expectation-maximization (EM) al-
gorithm below to maximize the likelihood function in Equa-
tion (7) (Dempster, Laird, and Rubin 1977). The advantage
of the proposed algorithm is that it only requires the estima-
tion routine for the underlying model fβ(Xi) and hence is ap-
plicable to a wide range of models beyond the GLMs. While
we develop a separate EM algorithm for each design, they all

maximize the same observed-data likelihood function given in
Equation (7).

3.2.1 Mirrored Question Design. We first develop the EM
algorithm under the mirrored question design. Let the latent
indicator variable Ti = 1 (Ti = 0) denote the scenario where
respondent i answers the sensitive question in the original (mir-
rored) format. Under this design, the complete-data likelihood
function is given as follows:

Lcom(β | {Yi, Ti, Xi}ni=1) =
N∏
i=1

fβ(Xi)
TiYi+(1−Ti )(1−Yi )

×{1 − fβ(Xi)}Ti (1−Yi )+(1−Ti )Yi .

The E-step consists of calculating the following conditional
expectations:

E(Ti | Xi = x, Yi = y)

= pfβ(x)y(1 − fβ(x))1−y

pfβ (x)y(1 − fβ(x))1−y + (1 − p)fβ(x)1−y(1 − fβ(x))y
.

Then, the M-step maximizes the following objective function
with respect to β,

n∑
i=1

{1 − Yi − (1 − 2Yi)wT (Xi, Yi)} log fβ(Xi)

+{Yi + (1 − 2Yi)wT (Xi, Yi)} log(1 − fβ(Xi)),

where wT (Xi, Yi) = E(Ti | Xi, Yi). Given the starting values
for β, the algorithm proceeds by alternating the E-step (using
the values of β from the previous iteration) and the M-step.
In particular, the M-step can be implemented via a weighted
regression fitting routine for fβ(x).

Finally, we can use the following equation to calculate the
posterior prediction of latent responses to the sensitive question
for each respondent in the sample, that is,

Pr(Zi = 1 | Xi = x, Yi = y)

= py(1 − p)1−yfβ(x)

py(1 − p)1−yfβ(x) + p1−y(1 − p)y(1 − fβ(x))
. (9)

3.2.2 Forced Response Design. Next we consider the
forced response design. Let Ri denote the latent randomization
variable whereRi = 1 (Ri = −1) indicates that respondents are
forced to answer “yes” (“no”) and Ri = 0 implies that the re-
spondent answers the sensitive question truthfully. Then, the
complete-data likelihood function is given by

Lcom(β | {Xi, Yi, Ri}ni=1)

∝
n∏
i=1

{fβ(Xi)
Yi (1 − fβ(Xi))

1−Yi }1{Ri=0}, (10)

where Yi = Zi when Ri = 0 and the likelihood function is con-
stant in β when Ri �= 0.

The E-step is given by the following conditional expectations:

E(1{Ri = 0} | Xi = x, Yi = y) = pfβ (x)y(1 − fβ (x))1−y

pfβ (x)y(1 − fβ (x))1−y + p
y

1p
1−y
0

.

Then, the objective function for the M-step is
n∑
i=1

wR(Xi, Yi){Yi log fβ(Xi) + (1 − Yi) log(1 − fβ(Xi))},
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where wR(Xi, Yi) = E(1{Ri = 0} | Xi, Yi). The algorithm iter-
ates between the E and M steps where the latter is carried out
by fitting the weighted regression model.

Finally, we use the following conditional expectation to calcu-
late the posterior prediction of responses to the sensitive question
for each respondent in the sample:

Pr(Zi = 1 | Xi = x, Yi = y) = (p + p1)yp1−y
0 fβ (x)

pfβ (x)y(1 − fβ (x))1−y + p
y

1p
1−y
0

.

(11)

3.2.3 Disguised Response Design. For the disguised re-
sponse design, the latent response to the sensitive item, Zi ,
determines whether a respondent draws a card from the “yes”
stack (Zi = 1) or “no” stack (Zi = 0). In each stack, the prob-
ability of drawing a “red” card (Yi = 1) is determined by p and
1 − p for the “yes” and “no” stacks, respectively. Thus, the
complete-data likelihood function is given by

Lcom(β | {Xi, Yi, Zi}ni=1} =
n∏
i=1

{fβ(Xi)p
Yi (1 − p)1−Yi }Zi

× {(1 − fβ(Xi))p
1−Yi (1 − p)Yi }1−Zi .

Then, the E-step of the EM algorithm is given by

E(Zi | Xi = x, Yi = y)

= fβ(Xi)py(1 − p)1−y

fβ(Xi)py(1 − p)1−y + (1 − fβ(Xi))(1 − p)yp1−y ,

which also gives the posterior prediction of response to the
sensitive question. Finally, the objective function for the M-step
is given by

n∑
i=1

wZ(Xi, Yi) log fβ(Xi) + (1 − wZ(Xi, Yi)) log(1 − fβ(Xi)),

where wZ(Xi, Yi) = E(Zi | Xi, Yi).
3.2.4 Unrelated Question Design. Finally, we develop an

EM algorithm for the unrelated question design. Bourke and
Moran (1988) proposed the EM algorithm for estimating the
population proportion of affirmatively answering the sensitive
question. Here, we generalize their algorithm for multivariate
regression analysis. Let Si denote the latent binary variable,
which indicates whether respondent i answers the sensitive item
(Si = 1) or the unrelated question (Si = 0). Then, the complete-
data likelihood function is given by

Lcom(β, γ | {Xi, Yi, Si}ni=1) =
n∏
i=1

{fβ (Xi)
Yi (1 − fβ (Xi))

1−Yi }Si

×{qγ (Xi)
Yi (1 − qγ (Xi))

1−Yi }1−Si .

The E-step is given by the following conditional expectations:

E(Si | Xi = x, Yi = y)

= pfβ(x)y(1 − fβ(x))1−y

pfβ(x)y(1 − fβ(x))1−y + (1 − p)qγ (x)y(1 − qγ (x))1−y .

Given this E-step, the M-step maximizes the following objective
function:

n∑
i=1

wS(Xi, Yi){Yi log fβ (Xi) + (1 − Yi) log(1 − fβ (Xi))}

+(1 − wS(Xi, Yi)){Yi log qγ (Xi) + (1 − Yi) log(1 − qγ (Xi))},
where wS(Xi, Yi) = E(Si | Xi = x, Yi = y). This step is done
by fitting the weighted regression models for fβ(Xi) and qγ (Xi),
separately.

Finally, under the unrelated question design, the posterior
prediction of responses to the sensitive question cannot be cal-
culated unless one models the association between responses
to the sensitive question and those to the unrelated question,
conditional on the respondent characteristics Xi . On the other
hand, if we assume the conditional independence between them
given Xi , then the posterior probability is given by

Pr(Zi = 1 | Xi = x, Yi = y)

= {py + (1 − p)qγ (x)y(1 − qγ (x))1−y}fβ(x)

pfβ (x)y(1 − fβ(x))1−y + (1 − p)qγ (x)y(1 − qγ (x))1−y .

3.3 Using Randomized Response as a Predictor

In many cases, researchers wish to use randomized response
as a predictor in an outcome regression. Imai, Park, and Greene
(2015) developed such a method for the item count technique
(or list experiment). Here, we apply the same modeling strategy
to the randomized response methods. To illustrate, we consider
the forced response design although the same idea can be ap-
plied to the other designs. Let Vi represent the outcome variable
of interest, and suppose that researchers are interested in fit-
ting the following outcome regression model, gθ (Vi | Xi, Zi),
where θ is comprised of the parameters of the outcome model.
For example, if the outcome model is the normal linear re-
gression, we have gθ (Vi | Xi, Zi) = N (α + γ�Xi + δZi, σ

2),
where θ = (α, γ, δ, σ 2), Zi is the latent randomized response
variable, and the coefficient of interest is δ.

Since Zi is not directly observed, we develop an EM algo-
rithm to fit this model. We begin by assuming that Vi and Yi are
conditionally independent givenXi . This assumption can be re-
laxed by modeling their joint distribution, but here we maintain
this assumption for the sake of simplicity. Then, the (observed-
data) likelihood function for the combined model is given by

L(θ, β | {Vi,Xi, Yi}ni=1) =
N∏
i=1

{
fβ (Xi)gθ (Vi | Xi, 1)(1 − p0)Yi p1−Yi

0

+(1 − fβ (Xi))gθ (Vi | Xi, 0)pYi1 (1 − p1)1−Yi
}
. (12)

With Ri denoting the latent randomization variable indicat-
ing whether respondents answer the sensitive question, the
complete-data likelihood function is given as

Lcom(θ, β | {Vi,Xi, Ri, Yi}ni=1) ∝
N∏
i=1

[{gθ (Vi | Xi, 1)fβ (Xi)}Yi

× {gθ (Vi | Xi, 0)(1 − fβ (Xi))}1−Yi ]1{Ri=0}
,

where Yi = Zi when Ri = 0, and the likelihood function is
constant in β whenRi �= 0. The E-step is given by the following
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conditional expectation:

E(1{Ri = 0} | Xi = x, Yi = y, Vi = v)

= pgθ (v | x, y)fβ (x)y(1 − fβ(x))1−y

pgθ (v | x, y)fβ (x)y(1 − fβ(x))1−y + p
y

1p
1−y
0 {gθ (v | x, 1)fβ (x) + gθ (v | x, 0)(1 − fβ(x))}.

Finally, the M-step maximizes the following complete-data log-
likelihood function:

n∑
i=1

wR(Xi, Yi, Vi) · [Yi{log fβ(Xi) + log gθ (Vi | Xi, 1)}

+(1 − Yi){log(1 − fβ(Xi)) + log gθ (Vi | Xi, 0)}],

where wR(Xi, Yi, Vi) = E(1{Ri = 0} | Xi, Yi, Vi).
3.4 Power Analysis

When choosing among the aforementioned four basic designs
and determining the model parameters under each design, one
important consideration is statistical efficiency. Here, we show
how to conduct power analysis under each design. The litera-
ture appears to contain surprisingly few results about efficiency
and power analysis. The only relevant work we find is Lakshmi
and Raghavarao (1992) who derived a power function to test
the probability of respondent noncompliance under a mirrored
question design. While others compare efficiency across various
designs (Moors 1971; Pollock and Bek 1976; Scheers and Day-
ton 1988; Umesh and Peterson 1991; Lensvelt-Mulders et al.
2005b), they fall short of providing a unified framework for
conducting power analysis to help applied researchers design
randomized response surveys. Our analysis fills this important
gap in the literature.

Without loss of generality, we consider the likelihood func-
tion in Equation (7) with no covariates, that is, f = fβ(1) =
exp(β)/{1 + exp(β)}. Again, this f is the probability of pos-
sessing the sensitive trait. The unified model introduced in Sec-
tion 3.1 makes this analysis straightforward. To begin, we derive
the Fisher information with respect to f under this unified model,

I(c, d, f ) = E

[(
∂

∂f
logL

(
f | {Yi}ni=1

))2
]

= c2

(cf + d){1 − (cf + d)} . (13)

In addition, the standard error of f̂ is given by

σ (c, d, f, n) = 1

c
√
n

√
(cf + d){1 − (cf + d)}, (14)

where n is the sample size. For each design, we can rewrite
both the Fisher information and standard error as the function
of design parameters using the relationships between the model
and design parameters given in Table 1.

Finally, we derive power functions under all designs. The
power function determines the probability that a test procedure
will reject a null hypothesis H0 : f = f0 at significance level α
when the true value of f is equal to f ∗. We first derive an ap-
proximate power function for a one-sided hypothesis test where

the null hypothesis isH0 : f = f0 and the alternative hypothesis
is either H1 : f > f0 or H1 : f < f0,

ψ(c, d, n, f0, f
∗, α) = 1 −


[
f0 − f ∗ +
−1(1 − α)σ (c, d, f0, n)

σ (c, d, f ∗, n)

]
,

(15)

where
(·) is the cumulative distribution function of the standard
normal distribution. Similarly, the power function for a two-
sided hypothesis test where the alternative hypothesis is H1 :
f �= f0 is given by

ψ(c, d, f0, f
∗, n, α)

= 1 −


[
f0 − f ∗ +
−1(1 − α/2)σ (c, d, f0, n)

σ (c, d, f ∗, n)

]

+

[
f0 − f ∗ −
−1(1 − α/2)σ (c, d, f0, n)

σ (c, d, f ∗, n)

]
. (16)

Several notable findings follow from these results. First, for
a fixed sample size, significance level, and functional form,
the power for any two designs that have identical values of
c and d will also be identical. This means that the mirrored
question and disguised response designs with shared design
parameter p will have the same statistical power. In addition, for
the forced response and unrelated question designs, the power
will be identical when they share the same design parameter p
and the forced response parameter p1 is equal to (1 − p) · q for
the unrelated question design.

Now we can compare the power across designs and for dif-
ferent parameter values within each design. Figure 1 displays a
comparison for four designs with several realistic design param-
eter values for each design. There are three notable implications
of these comparisons. First, the mirrored and disguised designs
have the least power when p is close to one half (note the design
cannot be used with p = 0.5). For a sample size of 500 and a
proportion of “yes” responses to the sensitive item of 0.1, for
example, power reaches the typical threshold of 0.8 only when
p ≤ 0.25 or p ≥ 0.75 (see top left plot, Figure 1).

Second, higher values of p for both the forced response and
unrelated question designs yield higher power to detect the sen-
sitive responses. This makes sense: the higher the value of p,
the less noise unrelated to the sensitive item responses that is
introduced. For example, with a sample size of 1000 and a pro-
portion of “yes” responses to the sensitive item of 0.1, power
only reaches the threshold of 0.8 when p ≥ 0.4.

Third, given a choice of p, it is optimal to either choose small
(large) values or large (small) values of p1 (p0). That is, the
further p1 and p0 are from 0.5 in either direction, the higher
the power. Figure A.1 in the Appendix displays the power for
the forced design with varying values of p1. For any value
of p, the higher the p1 the lower the power until 0.5, when the
relationship reverses. These findings also yield design advice for
the unrelated question design. Since p1 = (1 − p) · q, we also
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know that values of (1 − p) · q closer to 0 and 1 are preferred to
values closer to 0.5. For example, for a study with a sample size
of 2500, a proportion of “yes” responses to the sensitive item of
0.1, and p set to 0.2, power only reaches the standard threshold
of 0.8 when p1 < 0.2 or when p1 = 0.8 (see bottom left plot,
Figure A.1 in the Appendix).

3.5 Comparison of the Basic Designs

We now compare the four basic designs of randomized re-
sponse technique from the point of view of applied researchers.
This is summarized in Table 2. While both the mirrored ques-
tion and forced response designs are the simplest to implement
and understand, they have shortcomings. The mirrored question
design may suffer from low respondent confidence because both
question options—the sensitive item and its complement—are
sensitive in nature. Thus, the respondent must understand how
the method works, whereas a greater degree of random noise
is introduced in the other designs. Confidence may be similarly

reduced in the forced response design because although random
noise is introduced by the design, the respondent must still re-
spond “yes” in some circumstances, which may still be sensitive
depending on the context.

Statistical power provides another metric for choosing be-
tween the designs. However, when the design parameters are
unconstrained, no design dominates any other in terms of statis-
tical power. There are some values of p, for example, that make
the forced response design preferable to the mirrored design and
other values of p for which the reverse is true. Typically, practical
considerations such as the limited availability or suitability of
certain randomization devices places constraints on the feasible
values of the design parameters. In such cases, the power com-
parisons such as Figures 1 and A.1 provided in the Appendix
may yield preferable designs. For example, if the researcher
can only use values of p below 0.25, the mirrored question
design and the disguised response design dominate the forced
response design with p1 = 0.1 or p1 = 0.5 and the unrelated
question design with (1 − p) · q = 0.1 or (1 − p) · q = 0.5.

Figure 1. Comparison of power across the four standard designs. First, the power for the forced response and unrelated question design with
p1 = (1 − p) · q = 0.1 is displayed (dashed lines). Second, the power for these designs with p1 = (1 − p) · q = 0.5 is displayed (dotted lines).
Third, the power for the mirrored question and disguised response designs is displayed (solid lines).
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Table 2. Comparison of four basic randomized response designs

Design Randomization determines Pros Cons

Mirrored question Whether answers sensitive item (“I
have the sensitive trait”) or its
inverse (“I do not have the
sensitive trait”)

Simple implementation Low respondent confidence in the answer
being hidden

Forced response Whether answers sensitive item or
with forced “yes” or “no”

Simple implementation Respondents with forced “yes” may fail
to say “yes” due to concern that their
response might be interpreted as an
affirmative admission to the sensitive
item

Disguised
response

Order of red and black cards in two
decks of cards. Respondent states
the color chosen from the right
deck for “yes” to the sensitive
item and the color chosen from
the left deck for “no”

Best for items where
even saying “yes” out
loud is sensitive

Complicated randomization device
requires in-person implementation

Unrelated
question

Whether answers sensitive item or
unrelated, nonsensitive item

High respondent
confidence in the
answer being hidden

The response to the unrelated question
must be either independent of
respondent characteristics or modeled

There are also randomization devices that may remove these
constraints, such as the use of spinners described in Gingerich
(2010).

Ultimately, the choice of the design can be determined by an
assessment of the practical constraints in the research context
and by careful pilot testing of one or more designs. Pilot testing
may help researchers identify the nature of the sensitivity, and,
for example, point them to the disguised response design be-
cause respondents are unwilling to answer “yes” even with the
protections of the mirrored question or forced response design.
In addition, the researcher can learn how sensitive the question is
for respondents and use this to determine how much protection
is needed through the choice of p, for example.

4. EMPIRICAL ILLUSTRATION WITH THE FORCED
RESPONSE DESIGN

For empirical illustration, we apply some of the method-
ologies proposed above to an original survey we conducted in
Nigeria in 2013. A goal of the survey is to estimate the propor-
tion of the population who knew or came into regular contact
with armed groups. Disclosing social connections with mem-
bers of armed groups was tremendously sensitive because it
could have put the respondent or the former armed group mem-
ber in danger. When asked such a sensitive question directly,
the respondent would likely refuse to answer or lie and respond
that they had no social connection regardless of their truthful
experience. All of the analyses in this section are carried out
with our accompanying open-source software package rr.

4.1 Design

To address these concerns of nonresponse and social desir-
ability bias, we used the forced response design of the ran-
domized response method. This technique allowed us to protect
the anonymity of each individual-level response about whether
respondents held social connections to armed groups. Respon-
dents would thus be more willing to respond honestly to the

question. A survey was administered to a random sample of
2457 respondents from 204 communities that are representative
of communities affected by armed militancy from 2007 to 2008.

The sensitive question, whose question wording appears in
Section 2.2, asked respondents about direct social connections
to armed groups. The forced response design was used with a
six-sided dice with a dice roll of 2, 3, 4, or 5 corresponding
to a truthful response (p = 2/3), a 6 corresponding to a forced
“yes” (p1 = 1/6), and a 1 to a forced “no” (p0 = 1/6).

4.2 Power Analysis

With funds for approximately 2500 respondents, we exam-
ined the power of the design to detect a proportion of affirmative
responses ranging from 0% to 15%. Using the expression given
in Equation (15), we examined the power under a range of other
proportions, depicted in Figure 2. For example, the power of the
test to detect a proportion of 10%, our prior expectation, is ap-
proximately 1. Based on this analysis, we concluded that there
would be sufficient power based on our chosen sample size.

4.3 Multivariate Analysis

We begin by estimating the proportion of respondents who
answer “yes” to the sensitive question. Based on the observed
responses and the design probabilities, we use Equation (4)
to calculate the posterior estimate of the proportion of those
who had social connections with a militant. We estimate this
proportion to be 26% of respondents with a 95% confidence
interval of 23% to 29%.

In addition to estimating the proportion of respondents who
hold direct social connections with members of armed groups,
it is useful to examine which types of civilians are connected
to the groups. To do this, we conduct the multivariate regres-
sion analysis described in Section 3.1. In particular, we predict
whether respondents hold social connections with armed groups
as a function of the assets owned by the respondent (an index of
nine assets including radio, T.V., motorbike, car, mobile phone,
refrigerator, goat, chicken, and cow), marital status (1 = mar-
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Figure 2. Statistical power analysis for the Nigeria Survey Data.
The plot displays the power function for detecting varying proportions
answering the sensitive item in the affirmative (the horizontal axis)
based on different sample sizes, 250 (lightest line) to 2500 (darkest
line).

ried or divorced, 0 = single), age and age squared, education
level (from 1 = no schooling to 10 = post-graduate education),
and gender (male or female). We use the logistic regression for
fβ(x) with these covariates as linear predictors.

The estimated coefficients from this model, along with stan-
dard errors, are reported in Table 3. The results imply that re-
spondents who have more assets in the household—including
radios, televisions, refrigerators—are substantially more likely
to be socially connected to armed groups. Women are substan-
tially less likely to be connected, while age holds a curvilinear
relationship with militant connections. Marital status and edu-
cation levels are not strongly associated with social connections
to armed groups.

We can also compare the predicted probabilities of a “yes”
response to the sensitive item using the fitted model. Based on
this logistic regression model and the individual-level posterior
predicted probability for the forced response design defined in
Equation (11), we estimate that 23% of women shared social
connections with members of armed groups, compared to 29%
of men with the 95% confidence intervals of 20% to 25% and
27% to 31%, respectively.

Table 3. The estimated logistic regression coefficients from the
multivariate regression analysis.

est. s.e.

Asset index 0.079 0.041
Married −0.267 0.255
Age −3.528 2.642
Age, squared 4.099 2.603
Education level −0.007 0.046
Female −0.554 0.162
(Intercept) −0.340 0.509

NOTE: The model predicts whether the respondent answered the “self-contact” (with
militant groups) sensitive item in the affirmative.

Table 4. Multivariate joint model of responses to an outcome
regression (“Joined civic group”) and a randomized response

sensitive item (“Militant connection”).

Joined Militant
civic group connection

est. s.e. est. s.e.

Militant
connection

0.384 0.160

Asset index 0.112 0.023 0.087 0.041
Married 0.329 0.133 −0.313 0.240
Age 9.214 1.582 −2.750 2.477
Age, squared −10.059 1.672 3.417 2.548
Education level 0.086 0.025 −0.014 0.044
Female −0.025 0.088 −0.562 0.163
(Intercept) −2.805 0.311 −0.487 0.469

NOTE: Estimated coefficients from logistic regressions with standard errors are reported
in each case.

4.4 Using Randomized Response as a Predictor

Finally, we examine whether people with social connections
to armed groups are more or less likely to join civic groups
in their communities, such as youth groups, women’s groups,
or community development committees. We accomplish this
by using the methodology proposed in Section 3.3. We jointly
model the probability of answering “yes” to the sensitive item
and the probability of joining a civic group, both using logistic
regression with the same set of predictors. The outcome model
includes the militant contact as the additional key predictor.

The estimated coefficients from this multivariate joint model
are presented, along with standard errors, in Table 4. The first
two columns present the results from the outcome regression
model while the last two columns show those from the submodel
predicting contact with militant groups. The results suggest that
respondents who are socially connected to armed groups are
more likely to later join civic groups. In particular, 57% of
those who are connected to armed groups are predicted to join
a civic group (a 95% confidence interval from 52% to 63%),
compared to 49% of those who are not connected to the groups
(a 95% confidence interval from 46% to 51%). The difference
is estimated to be 9% with a 95% confidence interval of 2.7%
to 15%.

5. MODIFIED DESIGNS WITH UNKNOWN
PROBABILITY

All of the four basic designs explained in Sections 2 and 3
assume that the randomization distribution is known and respon-
dents comply with the instructions. However, such assumptions
may be violated in practice. For example, when surveys are
conducted via phone rather than in person, respondents may not
flip a coin as instructed especially if a coin is not readily avail-
able. As a second consideration, the unrelated question design
requires researchers to know the response distribution to the
unrelated question. But, this information may not be available.

In this section, we introduce the two designs, one new and the
other existing, that allow these probabilities to be estimated (see
also van den Hout and Klugkist 2009, for a model-based, rather
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than design-based, strategy). In particular, we modify the forced
response and unrelated question designs. The disadvantage of
these modified designs, however, is that they require a larger
sample size to maintain the same level of statistical power.

5.1 Designs

We consider the forced response and unrelated question de-
signs with unknown probability. We show that both of these
modified designs are based on the same identification strategy
and hence the identical estimation method is applicable.

5.1.1 Forced Response Design With Noncompliance. Un-
der the standard forced response design, we assume that both
the probability of answering the sensitive question p and that
of a forced “yes” (“no”) p1 (p0) are known. However, respon-
dents may not reply “yes” even when forced to do so (Edgell,
Himmelfarb, and Duchan 1982). The modified forced response
design addresses such noncompliance behavior. The assumption
here is that sensitive questions lead to under-reporting though a
design similar to the one we propose here can also be used to
investigate the instances of over-reporting.

Suppose that we set the probability of a forced “no” to zero.
We first randomly split the sample of respondents into two
groups. In the first group (Gi = 1), respondents are instructed
to flip a coin and answer the sensitive question truthfully if they
get heads (Pr(heads) = p). We assume that this probability p is
known and respondents do provide a truthful answer to the sen-
sitive question. If they get tails, then respondents are instructed
to answer “yes” but we allow for some noncompliance. That is,
the unknown proportion of these respondents may reply “no.”
Let 1 − q denote the probability of such noncompliance (q is
the probability of compliance).

In the second group (Gi = 0), respondents truthfully answer
the sensitive question if they obtain tails whereas they are in-
structed to reply with “yes” if they get heads. As in the case
of the first group, we allow for noncompliance and assume that
some of the respondents who are told to say “yes” may answer
“no” with the same probability 1 − q. This assumption holds be-
cause the two groups are randomly sampled. Then, the resulting
estimating equations are given as follows:

Pr(Yi = 1 | Gi = 1) = p Pr(Zi = 1) + (1 − p)q (17)

Pr(Yi = 1 | Gi = 0) = (1 − p) Pr(Zi = 1) + pq. (18)

Solving for Pr(Zi = 1) yields

Pr(Zi = 1) = 1

2p − 1
{p Pr(Yi = 1 | Gi = 1) − (1 − p)

× Pr(Yi = 1 | Gi = 0)} . (19)

Note that it is possible to use different randomization probabili-
ties for two groups so long as they are known to the researchers.

It is important to note that while this modified design ad-
dresses a particular type of noncompliance, in practice re-
spondents may exhibit other types of noncompliance behav-
ior. This design is a special case of the design proposed by
Clark and Desharnais (1998) who also considered assigning
different probabilities for randomization device across groups.
Below, we contribute to this literature by developing a multivari-
ate regression technique and power analysis for this modified
design.

5.1.2 Unrelated Question Design With Unknown Probability.
Under the standard unrelated question design, we assume that
the response probability to the unrelated question is known.
However, such information may be unreliable or even nonexis-
tent. The motivation of the modified unrelated question design
we consider here is to assume that this response probability is
unknown. Specifically, we first randomly split the respondents
into two groups. In the first group (Gi = 1), the respondents
are instructed to flip a coin and answer the sensitive question if
they get heads (Pr(heads) = p). We assume that this probability
is known. The respondents answer the unrelated question if the
outcome of the coin flip is tails.

In the second group (Gi = 0), we reverse the instructions.
That is, assuming that the coin flip has the same randomization
distribution, if the respondents get heads (tails), they are told
to answer the sensitive (unrelated) question. This modified de-
sign has been used in the literature. The applications include
studies of drug use (Goodstadt and Gruson 1975), shoplifting
(Reinmuth and Geurts 1975), voting (Locander, Sudman, and
Bradburn 1976), and compliance with medication (Volicer and
Volicer 1982).

If we let q represent the probability of answering “yes” to
the unrelated question, the estimating equations are identical to
those of the modified forced response design discussed above
(i.e., Equations (17) and (18)). Thus, the probability of affirma-
tively answering the sensitive question is also the same and is
given in Equation (19).

5.2 Multivariate Regression Analysis

We first consider an approach that has an important advan-
tage of avoiding the specification of regression function for the
unknown probability q. We base our inference on the following
moment condition derived using the equality given in Equa-
tion (19):

fβ(Xi) = 1

2p − 1
{p Pr(Yi = 1 | Xi,Gi = 1) − (1 − p)

× Pr(Yi = 1 | Xi,Gi = 0)}. (20)

In this framework, the regression function of interest, fβ(Xi),
is obtained as a result of modeling the observed response,
Pr(Yi = 1 | Xi,Gi). An obvious disadvantage of this approach
is that one cannot directly specify the latent response to the sen-
sitive question. Rather, we obtain the model specification as a
byproduct of the model for the observed response. For example,
even if we wish to use the logistic regression for fβ(Xi), it is
not straightforward to obtain a model for the observed response,
which satisfies Equation (20). One exception is the linear prob-
ability model, fβ(Xi) = β�Xi . In this case, we can also use
linear probability models for Pr(Yi = 1 | Xi,Gi) while satisfy-
ing Equation (20). Despite this issue, the proposed approach
avoids modeling the unknown probability q and hence rests on
the less stringent assumptions.

The second approach we consider follows the modeling and
estimation strategy outlined in Sections 3.1 and 3.2 for the stan-
dard designs. Unlike the previous one, this approach requires
researchers to specify a regression model for the unknown prob-
ability q = qγ (Xi) while allowing them to directly model the
latent response to the sensitive question. The inference is based
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on the following likelihood function:

L(β, γ | {Xi, Yi,Gi}ni=1) =
n∏
i=1

{e(Gi)fβ(Xi) + e(1 −Gi)

×qγ (Xi)}Yi [1 − {e(Gi)fβ(Xi) + e(1 −Gi)qγ (Xi)}]1−Yi ,

where e(Gi) = Gip + (1 −Gi)(1 − p).
To maximize this likelihood function, the EM algorithm is

useful. Consider the complete-data likelihood function of the
following form:

Lcom(β, γ | {Xi, Yi,Gi, Si}ni=1) =
n∏
i=1

[
fβ(Xi)

Yi

× {1 − fβ(Xi)}1−Yi ]Si {qγ (Xi)
Yi (1 − qγ (Xi))

1−Yi}1−Si
,

(21)

where Si indicates whether respondent i answers the sensitive
question (Si = 1) or not (Si = 0) under each modified design.
Now, we can derive the E-step as follows:

E(Si | Xi = x, Yi = y,Gi = g)

= e(g)fβ (x)y(1 − fβ (x))1−y

e(g)fβ (x)y(1 − fβ (x))1−y + e(1 − g)qγ (x)y(1 − qγ (x))1−y .

Then, the M-step can be implemented by maximizing the fol-
lowing objective function with respect to β and γ :

n∑
i=1

wS(Xi, Yi,Gi)
{
Yi log fβ(Xi) + (1 − Yi) log(1 − fβ(Xi))

}
+{1 − wS(Xi, Yi,Gi)}

{
Yi log qγ (Xi) + (1 − Yi)

log(1 − qγ (Xi))
}
,

where wS(Xi, Yi,Gi) = E(Si | Xi, Yi,Gi). This optimization
can be easily done by separately fitting two weighted regres-
sions, fβ(Xi) and qγ (Xi).

Although we do not provide details, we can also apply the
modeling strategy similar to the one described in Section 3.3 to
use the latent response to the sensitive question as an explanatory
variable in outcome regression models.

5.3 Power Analysis

To conduct power analysis for these modified designs, we
first derive the analytical expression for the standard error. Akin
to Section 3.4, we have, without loss of generality, f = fβ(1) =
exp(β)/{1 + exp(β)}, which is the probability of possessing the
sensitive trait, and q = qγ (1) = exp(γ )/{1 + exp(γ )}, which is
the probability of possessing the unrelated trait. Given the like-
lihood function in Equation (21), The Fisher information with
respect to f is given by

I(p, q, r, f ) = rp2

{pf + (1 − p)q}{1 − pf − (1 − p)q}
+ (1 − r)(1 − p)2

{(1 − p)f + pq}{1 − (1 − p)f − pq} ,

where r = Pr(Gi = 1) and each term essentially follows the
Fisher information in Equation (13) with c = p and d =
(1 − p)q for Gi = 1, and c = (1 − p) and d = pq for Gi = 0.
Thus, the standard error of f̂ under the modified designs is
σ (p, q, r, f, n) = 1/

√
n I(p, q, r, f ). Using this standard er-

ror expression, the power functions under one- and two-sided

hypothesis tests are identical to those under the basic designs,
given in Equations (15) and (16), respectively.

5.4 Possible Extensions

The idea of randomly splitting the sample into two groups
can be applied in variety of ways to make the standard designs
robust to a certain deviation from the assumptions. We illustrate
this by introducing another modified forced response design.
Under the standard forced response design, the probability of
answering the sensitive question p as well as the probability of
forced “yes” and “no” responses, p0 and p1, respectively, are
assumed to be known. In Section 5.1, we address possible non-
compliance to forced response by allowing some respondents
to answer “no” when they are supposed to say “yes.” Alterna-
tively, we could assume that such noncompliance does not exist
but the coin flip probability p is unknown. For example, if the
survey is conducted over phone, respondents may not have ac-
cess to a coin and hence p may not be equal to the assumed
probability of a coin flip. Under this alternative assumption,
we have q = 1 in Equations (17) and (18). Thus, solving for
Pr(Zi = 1) gives Pr(Zi = 1) = Pr(Yi = 1 | Gi = 0) + Pr(Yi =
1 | Gi = 1) − 1. Given this identification strategy, we can fol-
low the modeling strategies described in Section 5.2 and conduct
a multivariate regression analysis. We can also derive the power
analysis as done in Section 5.3.

6. CONCLUDING REMARKS

Since its inception a half century ago, the literature on the
randomized response technique has focused primarily on theo-
retical improvements, extensions, and variations in procedures
(Chaudhuri 2011). Scholars have assessed the method’s effi-
ciency within various designs (e.g., Moors 1971; Dowling and
Shachtman 1975; Pollock and Bek 1976) and compared them
to estimates from direct questioning (e.g., Lensvelt-Mulders,
Hox, and Van Der Heijden 2005a; Krumpal 2012; Gingerich
et al. 2014; Rosenfeld, Imai, and Shapiro 2015). The design
originally outlined by Warner (1965) has been extended to in-
corporate multiple sensitive traits (Abul-Ela, Greenberg, and
Horvitz 1967; Christofides 2005), multiple sensitive questions
(Raghavarao and Federer 1979; Tamhane 1981), responses on
a Likert scale (Himmelfarb 2008; De Jong, Pieters, and Fox
2010), and quantitative answers (Eichhorn and Hayre 1983; Fox
and Tracy 1984). Recent work has explored flexibility in sam-
pling procedures (Chaudhuri 2001; Chaudhuri and Saha 2005;
Chaudhuri 2011).

While immense methodological progress has been made, the
lack of substantive applications suggests the need for a practical
guide regarding the basic aspects of the randomized response
methodology. In this article, we describe commonly used de-
signs with examples, show how to conduct multivariate regres-
sion analyses under each design with the sensitive item as out-
come or predictor, develop power analyses, and propose new
designs that address certain deviations from standard design
protocols. Finally, we offer open-source software to facilitate
the use of these methods. Taken together, we hope this article
enables the effective use of the randomized response technique
across disciplines as well as further methodological develop-
ment.
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Figure A.1. Comparison of power for the forced response and unrelated question designs. For three typical values of the probability of a
truthful response to the sensitive item (p), power is displayed for across values of the probability of a forced “yes” response (p1) for the forced
response design and, equivalently, the known proportion of “yes” responses to the unknown question multiplied by the probability of answering
the unknown question ((1 − p)q).

APPENDIX: ADDITIONAL POWER ANALYSES

[Received September 2014. Revised April 2015.]
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tionalökonomie und Statistik), 231, 749–760. [1305,1308]

Cruyff, M. J., van den Hout, A., van der Heijden, P. G., and Böckenholt, U.
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