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Legislative redistricting is a critical element of representative democracy. A number of political scientists Received October 2018

have used simulation methods to sample redistricting plans under various constraints to assess theirimpact Revised December 2019

on partisanship and other aspects of representation. However, while many optimization algorithms have

been proposed, surprisingly few simulation methods exist in the published scholarship. Furthermore, the G . .
- o) vt X - . errymandering; Graph cuts;

standard algorithm has no theoretical justification, scales poorly, and is unable to incorporate fundamental Metropolis—Hastings

constraints required by redistricting processes in the real world. To fill this gap, we formulate redistricting algorithm; Parallel

as a graph-cut problem and for the first time in the literature propose a new automated redistricting tempering; Simulated

simulator based on Markov chain Monte Carlo. The proposed algorithm can incorporate contiguity and tempering; Swendsen-Wang

equal population constraints at the same time. We apply simulated and parallel tempering to improve the algorithm

mixing of the resulting Markov chain. Through a small-scale validation study, we show that the proposed

algorithm can approximate a target distribution more accurately than the standard algorithm. We also apply

the proposed methodology to data from Pennsylvania to demonstrate the applicability of our algorithm

to real-world redistricting problems. The open-source software package is available so that researchers

and practitioners can implement the proposed methodology. Supplementary materials for this article are

available online.
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1. Introduction redistricting. Weaver and Hess (1963) and Nagel (1965)
were among the earliest attempts to develop automated redis-
tricting algorithms. Since then, a large number of methods have
been developed to find an optimal redistricting plan for a given
set of criteria (e.g., Bozkaya, Erkut, and Laporte 2003; Chou and
Li2006; Fryer and Holden 2011; Liu, Tam Cho, and Wang 2016;

Legislative redistricting is a critical element of representative
democracy. Scholars have found that redistricting influences
turnout and representation (e.g., Ansolabehere, Snyder, and
Stewart 2000; McCarty, Poole, and Rosenthal 2009). Unfortu-

nately, redistricting is also potentially subject to partisan gerry- . o o are 500 6). These optimization methods may serve
mandering. After the controversial 2003 redistricting in Texas, & o610 01c Wwhen drawing district boundaries (see Altman,

for example, Republicans won 21 congressional seats in the 1. o019 204 McDonald 2005. for an overview)
2004 election (Democrats won 11) whereas they had only 15 i '

seats in 2002. Moreover, the United States Supreme Court has
recently ruled in Rucho v. Common Cause that federal courts

cannot address partisan gerrymandering, essentially leaving gerrymandering and better understand the causes and conse-
state legislatures, state courts, and Congress to resolve the issue. quences of redistricting (e.g., Cirincione, Darling, and O’Rourke
Scholars have proposed numerous remedies for partisan gerry- 2000; McCarty, Poole, and Rosenthal 2009; Chen and Rod-
mandering, including geographical compactness and partisan  den 2013). Because redistricting in any given state depends
symmetry requirements (e.g., Grofman and King 2007; Fryer critically on its geographical features including the residen-
and Holden 2011). tial patterns of voters, it is essential to identify the distri-

The development of automated redistricting algorithms,  bution of possible redistricting maps under the basic condi-
which is the goal of this article, began in the 1960s. Vickrey  tions of contiguity and equal population. In a majority of the
(1961) argued that such an “automatic and impersonal proce- .S, states, for example, state legislators control the redistrict-
dure” can eliminate gerrymandering (p. 110). After Bakerv. Carr  ing process and approve redistricting plans through standard
(1962) where the Supreme Court ruled that federal courts may  statutory means. Therefore, an important question is how to
review the constitutionality of state legislative apportionment,  effectively constrain these politicians through means such as
citizens, policy makers, and scholars became interested in  compactness requirements (e.g., Niemi et al. 1990), and prevent

However, the main interest of scholars has been to charac-
terize the population distribution of possible redistricting plans
under various criteria so that they can detect instances of
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the manipulation of redistricting for partisan ends. Simulation
methods allow scholars to answer these questions by approxi-
mating distributions of possible electoral outcomes under vari-
ous constraints.

Yet, until recently, surprisingly few simulation algorithms
have existed in the published scholarship. In fact, most of these
existing studies use essentially the same Monte Carlo simulation
algorithm where a geographical unit is randomly selected as a
“seed” for each district and then neighboring units are added to
contiguously grow this district until it reaches the prespecified
population threshold (e.g., Cirincione, Darling, and O’Rourke
2000; Chen and Rodden 2013). Unfortunately, no theoretical
justification is given for these simulation algorithms, and hence
they are unlikely to yield a representative sample of redistricting
plans for a target population. In addition, although a commonly
used algorithm of this type (Cirincione, Darling, and O’Rourke
2000) is implemented by Altman and McDonald (2011) in their
open-source software, the algorithm scales poorly.

To fulfill this methodological gap, in Section 2, we propose
a new automated redistricting simulator using Markov chain
Monte Carlo (MCMC). We first formulate the task of drawing
district boundaries as the problem of graph-cuts, that is, parti-
tioning a graph into several connected subgraphs. We then adapt
and modify the Swendsen-Wang algorithm to sample from arbi-
trary distributions over a fixed number of contiguous districts
(Swendsen and Wang 1987; Barbu and Zhu 2005). We then show
how this algorithm can be applied to sample redistricting plans
that incorporate the equal population constraint commonly
imposed by law. Finally, we apply simulated and parallel temper-
ing to improve the mixing of the resulting Markov chain (Mari-
nari and Parisi 1992; Geyer and Thompson 1995).] We pro-
vide an open-source R software package redist, which is freely
available on the Comprehensive R Archive Network (CRAN;
https://CRAN.R-project.org/package=redist) so that researchers
and practitioners can implement the proposed methodology
(Fifield, Tarr, and Imai 2015).

Unlike the aforementioned standard simulation algorithms,
the proposed algorithms are designed to yield a representative
sample of redistricting plans under contiguity and equal popu-
lation constraints. Since the first version of this article was made
available in 2014 (Fifield et al. 2014), MCMC algorithms have
become a commonly used method for simulating redistricting
plans (e.g., Mattingly and Vaughn 2014; Chikina, Frieze, and
Pegden 2017; Herschlag, Ravier, and Mattingly 2017; DeFord,
Duchin, and Solomon 2019). Our algorithms are similar to
the algorithm independently proposed at about the same time
by Mattingly and Vaughn (2014). While the latter algorithm
samples redistricting plans by swapping single precincts at each
iteration, our algorithms allow multiple, larger collections of
precincts to be swapped, improving the mixing of the Markov
chain. We also offer theoretical and empirical analyses of our
algorithms in an effort to better understand their properties and
performance.

In Section 3, we conduct a small-scale validation study where
all possible redistricting plans under various constraints can
be enumerated in a reasonable amount of time. We show that
the proposed algorithms successfully approximate the target

'The application of simulated tempering is presented in Appendix S4.

population distribution while the standard algorithm fails even
in this small-scale problem. We then apply our algorithms to a
large redistricting problem using data from Pennsylvania. We
find that small changes to the adopted redistricting plan can
nearly eliminate the partisan bias. Finally, Section 4 discusses
remaining challenges and open problems for the development
of automated redistricting simulation algorithms.

2. The Proposed Methodology

In this section, we describe the proposed methodology. We
begin by formulating redistricting as a graph-cut problem and
propose an MCMC algorithm to sample redistricting plans from
arbitrary distributions over the set of n contiguous districts.
Next, we show how our algorithm can be used to sample plans
that have an equal population constraint, which is the most basic
requirement imposed in real-world redistricting problems. We
then discuss how to apply parallel tempering to our MCMC
algorithm to improve the mixing of the Markov chain. Finally,
a brief discussion comparing our algorithm with the existing
redistricting algorithms is also given.

2.1. Redistricting as a Graph-Cut Problem

Consider a redistricting problem where a state consisting of
m geographical units (e.g., census blocks or voting precincts)
must be divided into n contiguous districts. We formulate this
redistricting problem as that of graph-cuts, where a graph is
partitioned into a set of connected subgraphs (Altman 1997;
Mebhrotra, Johnson, and Nemhauser 1998). Figure 1 illustrates
the basic idea through two small examples used in our val-
idation study (see Section 3.1). In each plot, a state is rep-
resented by a graph where nodes are geographical units and
edges between two nodes imply their contiguity. Thus, redis-
tricting a state into n districts is equivalent to removing
some edges of a graph (light gray) and forming n connected
subgraphs.

Formally, let G = (V,E) represent an undirected graph
where V = {1,2,...,m} is the set of nodes (i.e., geographical
units of redistricting) to be partitioned, and E is the set of
undirected edges connecting neighboring nodes. This means
that if two units i and j are contiguous, there is an edge between
their corresponding nodes on the graph, i ~ j € E. We partition
the set of nodes V into n “districts” w = {V1, V5,..., V,,} where
each district V; is a nonempty subset of V. Such a partition 7
generates a subgraph G(w) = (V,E(7)) € G where an edge
i ~ j € E(m) if and only if nodes i and j belong to the same
district of the partition Vy, that is,

E(r) ={i~jeE:3Vyemst.ije Ve (1)

Because districts are formed by removing edges from E (ie.,
“cutting” them) to obtain E(r), redistricting can be thought
of as a graph cut problem. Finally, since each resulting district
must be contiguous, we require each district of the partition to
be connected. In this article, we call a partition comprised of n
connected districts valid and denote the set of all valid partitions
by Q2(G, n).


https://CRAN.R-project.org/package=redist
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Figure 1. Redistricting as a graph-cut problem. A state is represented by a graph where nodes are geographical units and edges between two nodes imply their contiguity.
Under this setting, redistricting is equivalent to removing or cutting some edges (light gray) to form connected subgraphs, which correspond to districts. Different districts
are represented by different colors. Two illustrative examples, used in our validation study in Section 3.1, are given here.

2.2, The Basic Algorithm for Sampling Contiguous
Districts Without Constraints

The goal of this article is to develop an algorithm that uni-
formly samples valid redistricting plans with the equal pop-
ulation constraint. We achieve this in several steps. We first
describe the basic algorithm that samples from an arbitrary
distribution f over the set of valid partitions, (G, n) (Algo-
rithm 1 in Sections 2.2 and 2.3). We then show how to mod-
ify this basic algorithm to incorporate the equal population
constraint, which is the most basic requirement imposed in
real-world redistricting problems (Algorithms 1.1 and 1.2 in
Section 2.4). Finally, we apply parallel tempering to improve
the mixing of the proposed MCMC algorithm (Algorithm 2 in
Section 2.5).

Our basic MCMC algorithm is designed to obtain a
dependent but representative sample from any distribution
over valid redistricting plans. In particular, we modify the
SWC-1 algorithm of Barbu and Zhu (2005), which uses a
Metropolis-Hastings step (Metropolis et al. 1953; Hastings
1970) to extend the Swendsen-Wang algorithm (Swendsen
and Wang 1987) to arbitrary distributions over graph parti-
tions. In contrast to our method, graph partitions sampled
from the original SWC-1 algorithm are not restricted to be
contiguous. Our basic algorithm begins with a valid par-
tition 7y (e.g., an actual redistricting plan adopted by the
state) and transitions from a valid partition m; to another
valid partition m;1; at each iteration t + 1. We begin
by describing the basic algorithm for sampling contiguous
districts.

Figure 2 illustrates one iteration of Algorithm 1 using the
50 precinct example with three districts given in the right
panel of Figure 1. Our algorithm begins by randomly “turn-
ing on” edges in E(m;) where each edge is turned on with
probability g. In the left upper plot of Figure 2, the edges that
are turned on are indicated with darker gray. Next, we iden-
tify components that are connected through these “turned-on”
edges and are on the boundaries of districts in m;. Each such
connected component is indicated by a dotted polygon in the
right upper plot. Third, among these, a subset of nonadjacent

connected components are randomly selected as shown in the
left lower plot (two in this case). These connected components
are reassigned to adjacent districts to create a candidate par-
tition after verifying that this reassignment does not shatter
any district so that the number of districts remain unchanged.
Finally, we accept or reject the candidate partition according
to a probability that depends on, among other things, “turned-
on” edges, and “turned-off” edges from each of the selected
connected components that are connected to adjacent districts
and are highlighted in the left lower plot. Section 2.3 provides
a detailed explanation about how this acceptance probability is
computed.
We now formally describe the basic algorithm.

Algorithm 1 (Sampling contiguous redistricting plans). We
initialize the algorithm by obtaining a valid partition 7y =
{Vlw), VZ(O), ces V,(,O’}, where each district Véo) is contiguous,
that is, connected in the graph, and then repeat the following
steps at each iteration t + 1,

Step 1 (“Turn on” edges): Starting from =n; =
{V(t), Vz(t), ces V,(,t)} with graph G(7r;) = (V, E(7y)), form
the edge set E,, () S E(m;), where each edge e € E(my)
is independently added to E,,(7;) with probability q. Let
CP denote the set of connected components formed by
Eon(my).

Step 2 (Gather connected components along boundaries):

(a) Identify all nodes which lie along a district boundary by
comparing E(7r;) with E.

(b) Gather boundary connected components by perform-
ing a breadth-first search over all boundary nodes. Let
B(CP, ;) denote this set.

Step 3 (Select nonadjacent connected components along
boundaries):

(a) Generate R from a distribution with integer support
over the closed interval [1, | B(CP, ;) |].

(b) Initialize Vcp = . Repeat the following procedure
until |Vcp| = R:
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Figure 2. The basic algorithm for sampling contiguous districts without constraints. The plots illustrate the proposed algorithm (Algorithm 1) using the 50 precinct data
given in the right panel of Figure 1. First, in the left upper plot, each edge other than those which are cut in Figure 1 is “turned on” (dark gray) independently with certain
probability. Second, in the right upper plot, connected components on the boundaries are identified (dashed polygons). Third, in the left lower plot, a certain number of
nonadjacent connected components on boundaries are randomly selected (dashed polygons) and the acceptance ratio is calculated by counting certain edges (colored
edges). Finally, in the right lower plot, the proposed swap is accepted according to the Metropolis—Hastings ratio.

(i) Randomly sample C from B(CP,7;) without (b) Suppose C is reassigned to district Vé,t). Update 7’ by
) replgcem.ent, and add it to Vcp. . setting Vét) _ Vét) \ C, V(/t) _ V(/t) UC, and 7/ =
(ii) If Cis adjacent to another element of Vcp, or if the & <0 0 (‘;) e( 5
removal of V¢p results in a noncontiguous district, {Vl Vo s Voo Vs,V }
remove C from V¢p and B(CP, 71;), and return to )
Step (i). Step 5 (Accept or reject the proposal): Generate u ~ U(0, 1).
Set
Step 4 (Propose swaps): Initialize 7’ = 7. For each C € o ,
Vcp, perform the following procedure: Tiat {” ifu < a(’,CP | ), )
7y otherwise,

(a) Suppose Cis currently assigned to district Vét). Propose
to assign C to a different, randomly selected neighbor- where the acceptance probability a (s, CP | 7;) is defined
ing district in 7. in Theorem 1.



Several remarks are in order. First, in Step 1, we choose g to
be relatively small such that it typically yields a large number of
small connected components on boundaries. In the validation
studies, we set g to 0.05, and for the Pennsylvania study, we set
q to 0.04.

Second, in Step 3(a), we choose a distribution such that R <
| B(CP, )| holds for most cases and the acceptance probability is
in an ideal range of 20%-40%. In the applications of this article,
for example, we use the zero-truncated Poisson distribution,
rejecting and resampling values of R which fall outside the
interval [1, |B(CP, )|]. We choose A such that the chance of
rejection is small, with A = 2 in our validation studies in
Section 3.1 and A = 10 in the Pennsylvania study presented in
Section 3.2.

Alternatively, as in Barbu and Zhu (2005), we could fix R
to 1 and use a large value of g. Unfortunately, this strategy,
though sensible in other settings, is not effective in redistricting
with contiguous districts. The reason is that larger connected
components typically include more units from the interior of
each district. This in turn makes it more likely to shatter districts
and often dramatically lowers the acceptance probability, which
leads to slower convergence. Instead, our strategy is to improve
the mixing of the Markov chain through simultaneous swaps of
small connected components.

Third, Step 3(b) checks whether or not swapping connected
components Vcp leads to an invalid redistricting plan, that is, a
district is no longer contiguous. This requirement does not exist
in the original algorithm of Barbu and Zhu (2005). Such “shat-
tering” could occur, for example, if a district contains a narrow
sliver that has width of a single precinct, and one of the precincts
in the middle of the sliver is selected to be swapped. This
check also enforces that Vcp consists of nonadjacent connected
components, and hence V¢p is the unique set of components to
be reassigned in the move 7y — 7’

Finally, the acceptance probability in Step 5 is based on the
following Metropolis criterion,

a(r’,CP | ) = min(l q(r. CP | ) .g(n)>, (3)

’ q(x’,CP | ) g(m)

where q(7/,CP | n) = q(n’ | CP,7)q(CP | ) denotes the
probability that, starting from partition &, connected compo-
nent set CP is formed in Step 1, and 7’ is formed through reas-
signment of elements in CP in Steps 2-4. In addition, g(w)
f (o) is the unnormalized target distribution for sampling. Barbu
and Zhu (2005) computed the acceptance ratio by marginalizing
out CP in the proposal distributions, eliminating dependence on
CP. However as we discuss in Section 2.3, the marginalization
of the proposal distributions is intractable in most redistricting
problems. Thus, we cannot eliminate this dependence on CP,
leading to slower convergence of the Markov chain.

Next, we present the acceptance probability used in Step 5 of
Algorithm 1.

Theorem 1 (The acceptance probability of Algorithm 1). Let
7 and 7’ be a pair of partitions which differ in the district
assignment of V¢p, with |[Vcp| = Rand R < |B(CP, n’)|, and
let g(r) o f(r) be the unnormalized target distribution over
Q(G, n). Then, the acceptance probability for the move 7 — 7’
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through one iteration of Algorithm 1 is

a(r’,CP | )
_ |, P(Vep|x',CPR) FUBCR,m))) (1 - g)/ce"Ver)| g
P(Vep | 7,CP,R) F(B(CP, 7)) (1 — g)/C™Yerl g(m)

4)

where

C(m,Vep) = {i~j€E(m):3CeVepsiticC,j¢Cl
€)
is a Swendsen-Wang cut, denoting the set of edges in E(sr) that
need to be cut to form V¢p, F(-) is the cumulative distribution
function for R whose support is a subset of the set of positive
integers, and P(Vcp | 7, CP,R) is the probability of sampling
Vcp in Step 3(b) of Algorithm 1.

The proof is given in Appendix S1. Note that in the case of
sampling contiguous redistricting plans without constraints, the
target distribution is uniform over all contiguous n-partitions
of the graph, (G, n), and g(7) = g(7') cancels in the ratio of
Equation (4).

Finally, the following theorem shows that under a set of
assumptions, the unique stationary distribution of Algorithm 1
is g(r), whose support is restricted to (G, n).

Theorem 2 (Unique stationary distribution of Algorithm 1).
Suppose that the following two conditions hold:

1. (Irreducibility) For all pairs 7, 7" € (G, n), partition 7 can
transition to partition 7z’ through a finite number of iterations
of Algorithm 1.

2. (Aperiodicity) There exists a pair of partitions 7, 7" and set of
connected components CP such that0 < a(z’,CP | 7) < 1.

Then, the unique stationary distribution of the Markov chain
given by Algorithm 1is f (7).

The proof is given in Appendix S2. We remark that although
it is difficult to provide a formal argument, our experience
suggests that Conditions 1 and 2 may hold for real-world redis-
tricting data unless additional constraints are imposed (see
Section 2.4 for a discussion of how we modify the algorithm
to incorporate the equal population constraint). For the small-
scale validation example we have examined, in which the com-
plete enumeration of valid partitions is possible, we were able
to verify that the two conditions are satisfied. In addition, for
all the empirical examples we have analyzed including the New
Hampshire and Pennsylvania data, we have found at least one
set of initial and candidate partitions such that 0 < «(r/, CP |
CP) < 1.

2.3. Approximating the Acceptance Probability

The acceptance probability given in Equation (4) of Theorem 1
differs from the ratio derived in Barbu and Zhu (2005) in the two
terms, F(|B(CP, )|) and P(Vcp, | 7, CP, R), which correspond
to the probability of sampling R and V¢p in Step 3, respectively.
Note that the computation of F(|B(CP, )|) is straightforward.
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As mentioned earlier, in our applications, we sample R from the
zero-truncated Poisson distribution truncated from above by
|B(CP, r)|. Hence, the required cumulative distribution func-
tion can be easily computed. The key question is then how to
compute P(Vcp, | w, CP, R).

In the original algorithm of Barbu and Zhu (2005), R is
fixed to 1, and Vp is selected uniformly at random from CP,
soP(Vep,| n’,CP,R)/P(Vcp, | 7, CP,R) = 1. Forredistricting
problems, however, this cancellation does not occur, even when
R = 1, due to the possibility of shattering and the requirement
that components Vcp lie along district boundaries. In addition,
as mentioned earlier, for our applications, setting R = 1 and
using a large value of g lead to a high rate of rejection and
poor mixing. Thus, we let R vary, which further complicates
computation of P(Vcp,| 7, CP,R) due to the nonadjacency
restriction of Vcp. Below, we propose an approximation of
the acceptance probability when the exact computation of this
probability is computationally infeasible.

Recall that in Step 3(b), we iteratively sample without replace-
ment R connected components from the sampling set B(CP, )
to form the set Vcp. During this process, a sampled connected
component whose addition to Vcp would lead to either com-
ponent adjacency or the creation of disconnected districts is
rejected and removed from B(CP, ). Let BL(CP, 7) represent
the collection of nonadjacent connected component sets Vgp C
B(CP, ), with |Vcp| = R, whose removal from the graph
partition = does not result in disconnected districts. Ideally, the
rejection sampling strategy described above would correspond
to uniform sampling from Blg (CP, ), in which case,

1

P(Vep | 7,CP,R) = ————.
|BL(CP, )|

(6)

However, since components in B(CP, 7r) have a differing num-
ber of neighbors, some elements of B; (CP, r) are more likely to
be sampled than others. Consequently, P(Vcp | 7, CP,R) has a
more complicated form that depends on B};(CP, ).

Additionally, identification of B};(CP,n) is computation-
ally intensive even for the case R = 1 because it requires
checking whether each connected component C € B(CP, )
can shatter its district V; this has worst-case complexity
O (|Ve| + |E(Ve)]). The problem quickly becomes intractable
when R > 1, even for small graphs, since we have to check both
connectedness and nonadjacency for a combinatorial number of
subsets of B(CP, 7). We therefore approximate this probability.

Fortunately, in large-scale problems, so long as g and R
are small, the number of connected component sets Vcp that
can shatter a district is likely to be small relative to the total
number of boundary connected component sets. When this is
the case, at most Vcp € B;(CP, ) can be formed by sampling
R nonadjacent components from B(CP, 7). Additionally, small
q and R tend to lead to scenarios where R <« |B(CP,m)|. In
this case, without-replacement sampling can be approximated
by with-replacement sampling since the probability of sampling
the same or a neighboring component in R draws is small.
Therefore, we propose the following approximation,

. R
P(Vcp | m,CP,R) ~ R! <|MC—P,JT)|> ' 7

Substituting the approximation into the acceptance probability
defined in Equation (4), we obtain

a(r’,CP | m)

~ min (1 ( |B(CP, )| >R F(|B(CP,7)]) (1 — q) REoNN
"\IBCCP, 7)) F(B(CP, 7)) (1 — q) ¢V ()
8)
This approximation is valid under the assumption that we
rarely reject samples drawn in Step 3(b) for adjacency or shat-
tering issues. Indeed, in the Pennsylvania study, we find that only
190 out of 30,000 iterations of the algorithm (or <0.1%) rejected
a proposed swap due to it either shattering an existing district or
being adjacent to a swap proposed in the same iteration. Even
for the small-scale validation study, at most 545 out of 10,000
iterations of the algorithm rejected a proposed swap. Finally,
we only need the approximation to work in the ratio P(Vcp, |
7,CP,R)/P(Vcp,| 7’,CP,R) rather than the numerator and
denominator separately.
Nevertheless, we acknowledge that it is difficult to develop
a rigorous theoretical justification for the proposed approxi-
mation. Therefore, in Appendix S8, swe conduct small-scale
validation studies, in which a stronger approximation based
on B;(CP,T[) can be computed, to examine both the accu-
racy of the proposed approximation and the effects of ignoring
adjacency when computing the selection probability P(Vcp |
CP, , R). We find that the stronger approximation nearly per-
fectly samples from the target population (see the first row of
Figure S7), suggesting the effects of component adjacency have a
negligible impact on the ratio of selection probabilities. We also
find that even in small maps, where our weaker approximation is
expected to perform poorly, the proposed approximation is rea-
sonably accurate (see the second row of Figure S7) and becomes
more accurate as the size of redistricting problem increases (see
Figures S7-S9).

[Cx"Vep)|

2.4. Incorporating the Equal Population Constraint

The basic algorithm we have developed so far samples from arbi-
trary distributions over the set of redistricting maps with # con-
tiguous districts. We can incorporate the constraints imposed
in typical redistricting processes through our choice of the
target unnormalized distribution g. Such constraints include
equal population, geographical compactness, and preservation
of communities of interest. Here, we focus on the equal popula-
tion constraint, which is the most basic factor to be considered
for redistricting. While the proposed framework can accom-
modate other constraints as shown in Section 3.2, we leave the
challenge of simultaneously incorporating multiple constraints
to future research.

Let p; denote the population size of node i where the popu-
lation parity for the state is given by p = Y | pi/n. Then, the
equal population constraint is defined as,

ZiEVZ Dpi .
p

where § determines the maximal deviation from the population
parity. For example, § = 0.03 implies that the population of all
districts must be within 3% of the population parity.

max 1| <3, )

1<l<n




How can we uniformly sample redistricting plans that meet
this population constraint using Algorithm 1? The major chal-
lenge we must deal with is that our algorithm generates samples
from the set of contiguous partitions, 2(G, n), while we would
like to generate samples only from the much smaller set of plans
meeting the constraint. One possible strategy for dealing with
this issue, which is often used in the literature, is to sample uni-
formly from (G, n) and discard any candidate partition that
violates Equation (9). In Algorithm 1, for example, after Step 4,
one could check whether the candidate partition 7’ satisfies
the constraint, and if not, go back to Step 3. This procedure is
summarized in the following algorithm, which we henceforth
refer to in the text as the basic algorithm with hard constraint.

Algorithm 1.1 (Sampling contiguous redistricting plans with
hard constraint). We initialize the algorithm by obtaining a
valid partition my = {V(O), VZ(O) s V,(,O)}, where each district
VZ(O) is contiguous, that is, connected in the graph, and then
repeat the following steps at each iteration t + 1,

Step 1 (Run the basic algorithm): Starting from 7, = {V(t) ,
v, VY with graph G(r;) = (V,E(;)), run the first
four steps of Algorithm 1 to obtain the proposed sample 7.

Step 2 (Reject samples failing to meet constraint): For a spec-
ified population constraint §, reject 7" and return to Step 3 of
Algorithm 1 if

ZieVét) pi

p

-1 > 4,

m
1<l=<n

otherwise continue to Step 3 of Algorithm 1.1.

Step 3 (Accept or reject the proposal): Generate u ~ U(0, 1).

Set
JT/
W41 =
Tt

where the approximated acceptance probability a(z’, CP |
7t) is given by

ifu <a(r’,CP|m),

. (10)
otherwise,

a(r’,CP | ;)

‘ ( (|B<CP, ) )R F(B(CP, m))) (1 — g)/c"Verl )
~~ min | 1, .

[B(CP,7") ) F(B(CP,x")|) (1- q)IC(m,ch)I

There are several potential problems with this approach.
First, the additional rejection sampling done in Step 2 further
complicates exact calculation of the acceptance probability. For
simplicity, we use the same approximation given in Section 2.3,
but this approximation may be poor especially for small values
of the constraint §. Second, there may be a vast majority of plans
proposed through Steps 1-4 do not meet the equal population
constraint. It may become impossible for the Markov chain to
reach from one valid redistricting plan to another, which would
violate the irreducibility assumption in Theorem 2.

Alternatively, researchers could run Algorithm 1 to generate
samples from the uniform distribution and then simply discard
any invalid sampled plans post hoc. Unfortunately, this naive
strategy, which overcomes the theoretical issues of the previous
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algorithm, will also discard many sampled plans and hence
generate vanishingly few valid plans in a reasonable amount of
time.

To overcome the issues with the preceding methods, we mod-
ify Algorithm 1 by first choosing the stationary distribution of
our Markov chain such that redistricting plans likely to meet the
equal population constraint are oversampled. The idea behind
this strategy is to use those invalid partitions that are likely to
be proposed by Algorithm 1 as a way for the Markov chain to
transition between valid partitions. We use the following Gibbs
distribution as our target distribution,

pi
53 | X 21,

Veer |ieVy

(11)

1
—— exp

fm = 25

where B8 > 0 is called the inverse temperature and z(8) is the
normalizing constant. Thus, fg(77) has peaks around plans that
meet the equal population constraint.

To sample from this distribution, we modify the accep-
tance probability in Equation (8) by replacing g(r")/g(r) with
gp()/gp (), where gg is the unnormalized form of the Gibbs
distribution, that is, gg(r) o fg(). Fortunately, once this
ratio is computed for the initial state, we can compute the ratio
for subsequent states by only computing district population
changes due to reassignment of each C € Vcp. Thus, the ratio
computation has O(|Vcp|) complexity, which has a negligible
impact on the speed of the algorithm.

As the final step, we discard invalid sampled plans that do
not satisfy Equation (9) and reweight the remaining sampled
plans by 1/gg (;) to approximate the uniform sampling from the
population of valid redistricting plans meeting the constraint.
If we resample the sampled plans with replacement using this
importance weight, then the procedure is equivalent to the
sampling/importance resampling (SIR) algorithm (Rubin 1987).
The steps described above are summarized in the following
algorithm, which we refer to as the basic algorithm with soft
constraint.

Algorithm 1.2 (Sampling contiguous redistricting plans with soft
constraint). We initialize the algorithm by obtaining a valid
partition mp = {VI(O), VZ(O), ey VV(,O)}, where each district Véo)
is contiguous, that is, connected in the graph, and then perform
the following steps,

Step 1 (Run the basic algorithm with Gibbs distribution):
Generate M samples using Algorithm 1 with edge cut prob-
ability g, Gibbs parameter 8, and approximated acceptance
probability

a(r’,CP | )

. (1 ( |B(CP, )| >R F(|B(CP,7)]) (1 —¢g)

|C(n’,ch)‘ I ()
X min . .
|B(CP,JT/)| F(|B(CP,7T/)|) (1 _q)|c(ﬂ»VCP)| gﬂ(ﬂ)

Step 2 (Reject samples failing to meet constraint): For a spec-

ified population constraint §, identify all samples generated

through Step 1 such that

Lievibi
p

max 1| > 6,

1<l<n
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and discard them.

Step 3 (Resample using SIR): Draw S samples with replace-
ment from the set resulting from Step 2 using sampling
weights 1/gg ().

2.5. Improving the Convergence With Tempering

The fundamental challenge of incorporating the equal pop-
ulation constraint through Algorithm 1.2 is that it becomes
exceedingly difficult for the Markov chain to efficiently traverse
from one valid partition to another. On one hand, if the inverse
temperature parameter § of fg is set too high, the Markov chain
may never visit certain parts of the target distribution. On the
other hand, if the § is set too low, many of the sampled plans will
be invalid. We consider simulated (Marinari and Parisi 1992)
and parallel tempering (Geyer 1991) with Algorithm 1.2 to aid
in eflicient exploration of the sample space without compro-
mising the desired stationary distribution. In the applications of
this article, we opted to use parallel tempering due to its ease of
implementation as well as its robustness to parameter selection.
We discuss the details of parallel tempering below and refer
the reader to Appendix S4 for more information on simulated
tempering (Algorithm S1).

In parallel tempering, r copies of an MCMC algorithm are
run at r different temperatures,” and after a fixed number of
iterations we exchange the corresponding temperatures between
two randomly selected adjacent chains using the Metropolis
criterion. The idea is that chains at higher temperatures better
explore the different parts of the distribution since the low
probability states separating one set of valid partitions from
another set of valid partitions now have a higher probability. The
swapping mechanism allows the chains at lower temperatures to
jump between different parts of the target distribution more eas-
ily without changing the stationary distribution of the Markov
chain.

The nature of parallel tempering suggests that it should be
implemented in a parallel architecture to minimize computation
time. Altekar et al. (2004) described such an implementation
using parallel computing and MPI, which we use as the basis for
implementing our algorithm for uniformly sampling redistrict-
ing plans meeting a specified population constraint. The algo-
rithm, which we henceforth refer to as the parallel tempering
algorithm with soft constraint, is given below.

Algorithm 2 (Sampling contiguous plans with parallel tem-
pering and soft constraint). Given r initial valid partitions
néo),nél), . ,Jrérfl), a sequence of r increasing inverse tem-
peratures B0 > g > ... 5 =D — o with @ the
target inverse temperature for inference, a swapping interval T,
and a population constraint 8, the parallel tempering with soft

constraint algorithm performs the following steps,

Step 1 (Generate samples): Generate MT samples by repeat-
ing the following steps M times

2The temperature referenced here is different from the temperature in the
expression for fg. For the sake of simplicity, we absorb the distribution

parameter g into the sequence of tempering parameters ,3(0) ..... ﬂ(’*1 ).

(a) (Run the basic algorithm with Gibbs distribution): For
each chaini € {0,1,...,r — 1}, using the current parti-
tion nt(l) and the corresponding inverse temperature ),
obtain a valid partition ”t(—QT by running T iterations of
Algorithm 1 with the following approximate acceptance
probability,

. R
|B(CP, n§‘>)|)

a(z’,CP | nt(i)) A~ min [ 1,
|B(CP, 7r")|

|C(".Vep)|

F(B(CP, ")) (1 — q) g0 ()

() ’ )
FUBCP, 7)) (1 — )< Ver | g5t (1)
(12)

This step is executed concurrently for each chain.

(b) (Propose a temperature exchange between two chains):
Randomly select two adjacent chains j and k and
exchange information about the temperatures 80, g%
and the unnormalized likelihoods of the current parti-

tions 8p0) (”t(QT) »8pM (Trt(fT) using MPI

(c) (Accept or reject the temperature exchange): Exchange
temperatures (ie, 9 = B®) with probability
y (ﬂ(f) = ,B(k)) where

k )
Ep (” t(+)T) 8ph (” ng)

) k
&p0) (77 t(—,i-T) 8pk) (77 t(+)T>

% (,B(j) = ,B(k)):min 1,

13)
All previously generated samples are assumed to have
been generated at the current temperature of the chain

Step 2 (Reject samples failing to meet constraint): Taking
the samples generated under temperature 8, identify all
samples such that

Zl‘EVZ pi _
p

max 1] > 4,

1<l<n

and discard them.

Step 3 (Resample using SIR): Draw S samples with replace-
ment from the set resulting from Step 2 using sampling
weights 1/gg0) (7).

The mixing performance of Algorithm 2 may be affected
by the choice of the temperature sequence 8", the swapping
interval T, and the number of chains r. While much work has
been done on the choice of temperatures (e.g., Earl and Deem
2005), no sequence has been shown to be best. However, in
general, sequences with geometric spacing have been shown
to produce reasonable results (see, e.g., Kone and Kofke 2005;
Atchadé, Roberts, and Rosenthal 2011). For this reason, we use

the sequence /S(i) = (ﬂ(o))lfﬁ ,i € {0,1,...,r — 1} for our
implementation, which we find works well in our applications.
The swapping interval should be set high enough to allow for
chains to adequately explore the local state space around the
modes of the target distribution, but not so high that these
regions are oversampled. We use a value of T = 100 for our
algorithm, which we found to work well in our applications. For



the number of chains used, if  is too small, then swaps between
chains are unlikely and mixing is still poor. If r is too large, too
many swaps are required before cooler chains have access to
states generated from the hot chains.

2.6. Comparison With Existing Algorithms

A number of researchers use Monte Carlo simulation algorithms
to sample possible redistricting plans under various criteria to
detect instances of gerrymandering and understand the causes
and consequences of redistricting (e.g., Engstrom and Wild-
gen 1977; O’Loughlin 1982; Cirincione, Darling, and O’'Rourke
2000; McCarty, Poole, and Rosenthal 2009; Chen and Rod-
den 2013). Most of these studies use a similar Monte Carlo
simulation algorithm where a geographical unit is randomly
selected as a “seed” for each district and then neighboring units
are added to contiguously grow this district until it reaches
the prespecified population threshold. A representative of such
algorithms, proposed by Cirincione, Darling, and O’Rourke
(2000) and implemented by Altman and McDonald (2011) in
their open-source BARD package, is given here.

Algorithm 3 (The standard redistricting simulator (Cirincione,
Darling, and O’Rourke 2000)). For each district, we repeat the
following steps.

Step 1: From the set of unassigned units, randomly select the
seed unit of the district.

Step 2: Identify all unassigned units adjacent to the district.

Step 3: Randomly select one of the adjacent units and add it
to the district.

Step 4: Repeat Steps 2 and 3 until the district reaches the
predetermined population threshold.

Additional criteria can be incorporated by modifying Step 3
to select certain units. For example, to improve the compactness
of the resulting districts, one may choose an adjacent unassigned
unit that falls entirely within the minimum bounding rectangle
of the emerging district. Alternatively, an adjacent unassigned
unit that is the closest to emerging district can be selected (Chen
and Rodden 2013).

Nevertheless, the major problem of these simulation algo-
rithms is their adhoc nature. For example, as the documenta-
tion of BARD package warns, the creation of earlier districts
may make it impossible to yield contiguous districts. These
algorithms also rely on rejection sampling to incorporate con-
straints, which is an inefficient strategy since many of the sam-
ples created are discarded. More importantly, the algorithms
come with no theoretical result and are not even designed to
uniformly sample redistricting plans. In contrast, the proposed
algorithms described in Sections 2.2-2.5 are built upon the well-
known theories and strategies about the MCMC methods. Fur-
thermore, although our algorithm also uses rejection sampling
to incorporate constraints, the rejected samples are still used
to assist in finding valid partitions, which is a more efficient
strategy. The disadvantage of our algorithms, however, is that
they yield a dependent sample and hence their performance
will hinge upon the degree of mixing. Thus, we now turn to
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the assessment of the empirical performance of the proposed
algorithms.

3. Empirical Studies

In this section, we assess the performance of the proposed
MCMC algorithms (Algorithms 1, 1.1, 1.2, and 2) in two ways.
First, we conduct a small-scale validation study where, due to
the size of the tested maps, all valid redistricting plans can be
enumerated. We show that the proposed MCMC algorithms
can approximate the target distribution more accurately than
the standard algorithm (Algorithm 3). The proposed basic algo-
rithms (Algorithms 1.1 and 1.2) also scales much better than
the standard algorithm. Second, we apply the proposed parallel
tempering algorithm (Algorithm 2) to actual redistricting data
from Pennsylvania. We demonstrate that small changes to the
actual redistricting map can nearly eliminate partisan bias.

To conduct these analyses, we utilize precinct-level shape
files and electoral returns data from the Harvard Election Data
Archive to determine precinct adjacency and voting behavior.
We supplement this data with basic demographic information
from the U.S. Census Bureau P.L. 94-171 summary files, which
are disseminated to the 50 states to obtain population parity in
decennial redistricting.

3.1. A Small-Scale Validation Study

We conduct a validation study based on the 25 precinct set,
which is shown as a graph in Figure 1 (see Fifield, Imai, et al.
2019, for a more comprehensive validation study). We begin
by considering the problem of partitioning this graph into
three contiguous districts. Even for this small-scale study, the
enumeration of all valid partitions is a nontrivial problem (see
Appendix S3, which describes our enumeration algorithm). Of
the roughly 32°/6 =~ 1.41 x 10'! possible partitions, only
117,688 have three contiguous districts, and 3617 have district
populations within 20% of parity.

The results of the proposed algorithms are based on a single
chain of 10,000 draws while those of the standard algorithm
are based on the same number of independent draws. For all
simulations, we set g to 0.05 and A = 2, where A is the mean
of the truncated Poisson distribution. To implement parallel
tempering (Algorithm 2), we specify a sequence of temperatures
{B? }l:&. For the population deviation of 20%, we chose a target
temperature of 87~ = 5.4, and for the population deviation
of 10%, we chose a target temperature of /™1 = 9. In both
cases, we use ,B(O) = 0 and set r = 10.

For both analyses, we conducted an initial grid search over
possible values of 87~V and kept track of the acceptance prob-
ability of the chain and the number of samples that were drawn
within the target level of population parity. We selected a target
temperature such that a sufficient number of plans meet the
population constraint, and that the acceptance probability is
in the recommended 20%-40% range (Geyer and Thompson
1995). As described in Sections 2.4 and 2.5, we use a subset of
draws taken under the target temperature, discard those that fall
outside the population target, and then resample the remaining
draws using the importance weights 1/ggw (7).
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Figure 3. A small-scale validation study with three districts using the Republican Dissimilarity Index. The underlying data are the 25 precinct set shown in the left plot of
Figure 1. We find that the proposed algorithm with a hard constraint (Algorithms 1 and 1.1; solid black lines), which discards invalid plans, approximates the true target
distribution (gray histograms) well when no (left column) or a moderate (middle column) equal population constraint is imposed. However, the algorithm exhibits poor
performance when a stricter equal population constraint (right column) is imposed. The proposed algorithm with a soft constraint (Algorithm 1.2; purple dot-dashed
line), which is based on Gibbs distribution, or parallel tempering (Algorithm 2; blue dot-dashed line) perform well even in this case. In contrast, the standard algorithm
(Algorithm 3; red dashed lines) as implemented in the BARD package fails to approximate the target distribution in all cases and the performance deteriorates as the

constraint becomes stricter.

We investigate the degree to which each algorithm can
approximate the target distribution using the Republican dis-
similarity index, which is a common measure of residential
segregation,

1 o te  |pe —P|

= T o (14)

2 T P1-P

(=1

where ¢ indexes districts in a state, t; is the population of district
£, p¢ is the share of district £ that identifies as Republican, T'is the
total population in the state, and P is the share of Republicans
across all districts. The dissimilarity index represents the pro-
portion of the minority group that would have to be moved to
be randomly distributed across districts within a state (Massey
and Denton 1988). We have examined other statistics and the
results are, as expected, similar to those presented here.

Figure 3 presents the results. The left column shows that
when the equal population constraint is not imposed, the pro-
posed basic algorithm (Algorithm 1; black solid lines) approxi-
mates the target distribution well while the standard algorithm
(Algorithm 3; red dashed lines), as implemented in the BARD
package (Altman and McDonald 2011), fails even in this easiest
case. In the middle and right columns, we impose the equal
population constraint where only up to 20% and 10% deviation
from population parity is allowed, respectively. Not surprisingly,
the standard algorithm (Algorithm 3; red dashed lines) again
completely fails. The proposed algorithm with a hard con-
straint (Algorithm 1.1; black solid line), which simply discards
invalid plans as discussed in Section 2.4, also has difficulty in
approximating the target distribution. However, the proposed
algorithm with a soft constraint (Algorithm 1.2; purple dot-
dashed line), which uses the Gibbs distribution of Equation (11)

as discussed in Section 2.4, performs well in both cases. The
proposed algorithm with parallel tempering (Algorithm 2; blue
dot-dash lines) also performs reasonably well even when a strict
equal population constraint is imposed.

3.2. Pennsylvania: Local Simulations

3.2.1. The Setup
Next, we analyze the 2008 election data from Pennsylvania to
examine how small changes to the actual congressional map
(Figure 4) would affect partisan bias. Pennsylvania represents
a challenging application because its 2008 plan had a total of
19 congressional districts and 9256 precincts. Our experience
suggests that the proposed algorithm cannot reliably approx-
imate the uniform distribution of all valid redistricting plans
under a strong equal population constraint for such a large state.
Thus, we conduct “local simulations,” in which the goal is to
obtain a representative sample of valid redistricting plans within
a prespecified degree of deviation from the 2008 redistrict-
ing plan. This represents a realistic application because many
redistricting cases do not drastically alter the existing plans.
In Appendix S6, we conduct “global simulations,” in which the
target distribution is uniform on all valid redistricting plans
under an equal population constraint, using the data from New
Hampshire with only two districts and 327 precincts.

We use the proposed algorithm with parallel tempering
(Algorithm 2), as described in Section 2.5. To conduct local
simulations, we replace Equation (11) with the following,

1
——exp —1% PRZAONE

«B) & (15)

fo(0) =
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Figure 4. Pennsylvania’s 2008 redistricting plan. Pennsylvania has 9256 precincts that were divided into 19 congressional districts in their 2008 redistricting plan.

where (V) represents the proportion of precincts in district
¢ =1,2,...,19 that are not shared with the corresponding dis-
trict of the 2008 redistricting plan. We then wish to approximate
the population of valid redistricting plans which satisfies the
constraint Zf:l Y (Vy)/19 < § for some §. For example, if we
choose § = 0.05, then we obtain a sample of valid redistricting
plans, 5% of whose precincts are switched from other districts
of the 2008 plan.

Following the recommendations given in the literature
(Kone and Kofke 2005; Atchadé, Roberts, and Rosenthal 2011),
we chose B to be geometrically spaced, that is, B =

(,8(0))1_ﬁ ,i €{0,1,...,r—1}. After a preliminary grid search
over possible values of the target temperature and of R, we set
the target temperature to be 2500, g = 0.04, and A = 10 (where
X is the mean of the truncated Poisson distribution), which led
to a good mixing behavior, reasonable acceptance probabilities,
and provided a sufficient number of valid plans for subsequent
analyses. Since we are only exploring the local neighborhood of
the 2008 plan, we initialize the Markov chain three times from
the 2008 plan, but using different random seeds so that they start
to explore different parts of the target distribution. We run each
of the 10 temperature chains for 120,000 simulations for each
initialization and thin the chain by 12. We then base inference
off of those 10,000 simulations for each of the three initialized
MPI chains.

3.2.2. Empirical Findings

We examine how the partisan bias changes as the simulated plan
moves farther from the 2008 plan. Following the literature (see
Grofman and King 2007), we use deviation from partisan sym-
metry as a measure of partisan bias. This measure evaluates the
partisan implications of the counterfactual election outcomes
under hypothetical uniform swings of various degrees across
districts. Specifically, we consider all vote swings where the
statewide 2008 two-party vote shares are between 40% and 60%.
These vote shares are then aggregated according to each redis-
tricting plan, yielding the counterfactual two-party vote shares

Partisan Bias of Simulated Plans
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Figure 5. Local simulations for the 2008 Pennsylvania redistricting plan. The plot
shows that the average partisan bias of the simulated plans decreases nearly to zero
as more precincts are switched out of the original redistricting plan. The solid line
represents the partisan bias of the original plan, while the red dashed line indicates
an unbiased redistricting plan, in which the seats gained from a vote swing of any
value is equal to the number of seats lost in response to a vote swing of equal
magnitude in the opposite direction. The solid red circle represents the minimal-
bias plan when less than 3% of all precincts are swapped.

at the district level and the number of hypothetical Democrat
and Republican winners of the election. The resulting informa-
tion is summarized as the seats-votes curve (Tufte 1973), which
is a nondecreasing step-function f (x) evaluated within the range
of vote shares x from 40% to 60%.

Formally, let f*(x) be a nondecreasing step-function that is
symmetric around the 50%-50% two-party vote share. Then,
the partisan bias is defined as the standardized difference
between the area below f(x) and the area below f*(x),
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1 0.5+n
partisan bias = — / (f(x) — f*(x)) dx
N Jos—ny

1 0.5+n
—/ flo)dx — 1,
0

N Jos—n

where the area under f*(x) is always equal to a uniform vote
swing 1. In our case, 0 < 1 < 0.1. This partisan bias measure is
scaled so that —1 indicates a maximally Republican-biased plan
(where no vote swing of any magnitude favoring Democrats
can ever flip a seat away from Republicans), while 1 indicates
a maximally Democrat-biased plan (where no vote swing of any
magnitude favoring Republicans can ever flip a seat away from
Democrats). A bias measure of 0 represents an unbiased plan,

(16)
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where uniform vote swings result in equal seat gains or losses
for each party.

Figure 5 presents the analysis where the solid black line
indicates the partisan bias and electoral competitiveness of the
2008 plan, and the red dashed line represents an unbiased plan.
The 2008 plan is biased in favor of the Democrats, with a
standardized partisan bias measure of approximately 0.035. We
find that the partisan bias of this plan can be nearly eliminated
by swapping approximately 3% of all precincts in Pennsylvania.

We further explore this finding by closely examining the min-
imally biased plan found by swapping fewer than 3% of precincts
in the local simulations (represented by the red solid circle in
Figure 5). This specific plan was obtained by swapping 277

Congressional District 1

0 Not Swapped
m Swapped Out
= Swapped In

Congressional District 3

Figure 6. Partisan patterns of the swapped and unswapped precincts in Pennsylvania local simulations. The left column plots the distribution of the Democratic
congressional vote-share for the precincts left untouched (black solid line), swapped in (red dot-dashed line), and swapped out (blue dashed line) of a congressional district
to obtain a nearly unbiased plan. The right column shows the geography of the swapped and unswapped precincts in Congressional District 1 (top row) and Congressional
District 3 (bottom row). In both congressional districts, the algorithm swaps out more partisan precincts for more moderate precincts to achieve more symmetric responses

to voter swings.



precincts from the original 2008 map into new districts. Figure 6
plots the distributions of Democratic voteshare in swapped and
unswapped precincts in two congressional districts. District 1
(top row) encompasses Central and South Philadelphia, and
supported President Obama with nearly 90% of its vote. As a
result, Democratic control of the seat is heavily insulated from
partisan swings. The minimally biased plan substitutes out 48
precincts with an average Democratic vote share of 90.5% for
34 new precincts from the surrounding suburbs with an average
Democratic vote share of 84%. While still heavily Democratic,
these changes make the new district more vulnerable to voter
swings in the direction of the Republicans.

The bottom row of Figure 6 conducts the same analysis for
District 3, located in the northwest corner of Pennsylvania. In
2008, this was the only district in Pennsylvania to flip parties—
in the case of this district, from Republicans to Democrats.
In a Democrat-biased redistricting plan, Republican-held seats
should be more vulnerable to swings. Indeed, Democrats flipped
21 seats in the House of Representatives in 2008. To achieve a
more unbiased statewide plan, the proposed algorithm swaps in
more conservative precincts (average Democratic vote share of
38.2%) for moderate precincts (average Democratic vote share
of 43.5%), thereby making it more resilient to such swings.
While the change in total Republican votes (an unbiased plan
would have gained approximately 1000 additional Republican
votes in District 3) would not have been enough to keep the
seat from switching parties, the proposed change would have
increased the bar necessary to flip the seat in Democratic-
leaning uniform swing scenarios.

4. Concluding Remarks

Over the last half century, a number of automated redistricting
algorithms have been proposed in the methodological literature.
Most of these algorithms have been designed to find an opti-
mal redistricting plan given a certain set of criteria. However,
many researchers have been interested in characterizing the
distribution of redistricting plans under various constraints.
Unfortunately, few such simulation algorithms exist and even
the commonly used ones do not have a theoretical justification.

In this article, we propose an automated redistricting simu-
lator using Markov chain Monte Carlo. Unlike the existing stan-
dard algorithm, the proposed algorithms have the theoretical
property to approximate a target distribution. In a small-scale
validation study, we show that the proposed algorithms work
well whereas the standard algorithm fails to obtain a represen-
tative sample. Even in more realistic settings where the compu-
tational challenge is greater, our analyses show the promising
performance of the proposed algorithms. Nevertheless, it is still
unclear whether these algorithms scale to even larger states than
those considered here.

Future research should consider further improvements of
the proposed simulation algorithms, including a strategy to
incorporate multiple constraints and a method to generate over-
dispersed starting values. It is also important to conduct more
validation studies so that we can better understand the condi-
tions under which the proposed methodologies fail. An initial
such validation study shows some promising results regarding
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the empirical performance of the MCMC algorithm proposed
in this article (see Fifield, Imai, et al. 2019).

Supplementary Materials

In the supplementary materials, we provide proofs of the theorems pre-
sented in the article, as well as additional empirical examples.
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