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ABSTRACT
Algorithmic recommendations and decisions have become ubiquitous in today’s society. Many of these
data-driven policies, especially in the realm of public policy, are based on known, deterministic rules to
ensure their transparency and interpretability. We examine a particular case of algorithmic pre-trial risk
assessments in the US criminal justice system, which provide deterministic classification scores and recom-
mendations to help judges make release decisions. Our goal is to analyze data from a unique field experiment
on an algorithmic pre-trial risk assessment to investigate whether the scores and recommendations can be
improved. Unfortunately, prior methods for policy learning are not applicable because they require existing
policies to be stochastic. We develop a maximin robust optimization approach that partially identifies
the expected utility of a policy, and then finds a policy that maximizes the worst-case expected utility.
The resulting policy has a statistical safety property, limiting the probability of producing a worse policy
than the existing one, under structural assumptions about the outcomes. Our analysis of data from the
field experiment shows that we can safely improve certain components of the risk assessment instrument
by classifying arrestees as lower risk under a wide range of utility specifications, though the analysis is
not informative about several components of the instrument. Supplementary materials for this article are
available online, including a standardized description of the materials available for reproducing the work.
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1. Introduction

Algorithmic recommendations and decisions are ubiquitous in
our daily lives. Many algorithmic policies are used for con-
sequential decisions in high stakes settings such as criminal
justice, social policy, and medical care. One common feature
of such policies is that they are based on known, deterministic
rules. This is often because transparency and interpretability are
required to ensure accountability especially when algorithms are
used for public policy-making.

In this article, we focus on a particular case: pre-trial risk
assessment instruments (PRAI) in the American criminal justice
system. The goal of a PRAI is to aid judges in deciding which
arrestees should be released pending the disposition of any
criminal charges. We consider a particular PRAI used in Dane
County, Wisconsin, which includes the state capital, Madison
(Section 2). This PRAI assigns scores to arrestees according
to the risk that they are predicted to engage in undesirable
behavior. It then aggregates these scores using a deterministic
function and provides an overall release recommendation to the
judge.

We analyze data from a unique field experiment on the PRAI
(Greiner et al. 2020; Imai et al. 2023). Our goal is to learn new
algorithmic scoring and recommendation rules that can lead
to better overall outcomes while retaining the transparency of
the existing instrument. Importantly, we focus on changing the
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algorithmic policies, which we can intervene on, rather than
judge’s decisions, which we cannot.

The large amounts of data collected after implementing deter-
ministic policies such as PRAIs provide an opportunity to learn
new policies that improve on the status quo. Unfortunately, prior
approaches to policy learning are not applicable because they
require existing policies to be stochastic, typically relying on
inverse probability weighting (Section 3).

To address this challenge (Section 4), we partially identify the
expected utility of a policy by calculating all potential values
consistent with the observed data. This makes choosing an
“optimal” policy ambiguous: a policy can perform well under
some outcome models that are consistent with the data and
poorly in others. We use the maximin criterion that finds a policy
that maximizes the worst-case performance relative to the status
quo. The resulting policy has a statistical safety property that
limits the probability of yielding a worse outcome than the status
quo policy, under the structural assumptions made about the
outcomes. However, this safety property comes at the cost of
potentially choosing a sub-optimal policy, though it is no worse
than the status quo. We formally characterize the gap between
this safe policy and the infeasible oracle policy.

We use this approach to explore whether the data from
our field experiment support alterations to the existing PRAI
(Section 5). We explore the three risk measures based on the
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predicted likelihood that an arrestee, upon release, will (i) fail
to appear in court (FTA), (ii) engage in new criminal activity
(NCA), or (iii) engage in new violent criminal activity (NVCA).
We also inspect the algorithm that recommends to the judge
the level of cash bail and pre-trial supervision and monitoring
conditions to impose.

We find that under several specifications of the utility func-
tion, it can be possible to improve safely upon the existing NVCA
scoring rule by classifying arrestees as lower risk. However if
the policy maker is primarily focused on avoiding NVCAs,
the resulting safe policy falls back on the existing scoring rule.
Our approach has limitations. Conducting our analysis requires
several nontrivial choices that may be challenging in practice.
In addition, our analysis does not provide meaningful insights
about components of the instrument other than the NVCA
scoring rule. This arises from identifiability issues caused by the
structure of the underlying rules, as well as a high degree of
statistical uncertainty due to small sample sizes for rare com-
binations of risk factors. We discuss these and other limitations
in Section 6.

2. Pre-Trial Risk Assessment

We now briefly describe the particular PRAI, called the Public
Safety Assessment (PSA), used in Dane County, Wisconsin. The
PSA is an algorithmic recommendation designed to help judges
make their pre-trial release decisions. We will also describe
an original randomized experiment we conducted to evaluate
the impact of the PSA on judges’ decisions. In Section 5, we
analyze this experimental dataset and consider how to improve
outcomes by modifying certain aspects of the PSA system. Inter-
ested readers should consult Greiner et al. (2020) and Imai et al.
(2023) for further details of the PSA and experiment; the study
dataset has been made publicly available.

2.1. The PSA-DMF System

The goal of the PSA is to help judges decide, at first appearance
hearings, whether to allow an arrestee’s release without bail or
release them only if the arrestee posts bail/bond (or meets other
conditions). Because arrestees are presumed to be innocent,
judges must avoid unnecessary incarceration. The PSA has sev-
eral outputs. First, it returns three classification scores based
on the predicted risk that each arrestee will engage in an FTA,
NCA, or NVCA. Law requires judges to balance between these
risks and the cost of incarceration. These three PSA scores are
then combined via the so-called “Decision Making Framework”
(DMF) into two overall recommendations: (i) whether to require
a signature bond (i.e., release on their own recognizance) or
some level of cash bail for release, and (ii) what, if any, moni-
toring conditions to place on release. Given the complexity of
the system, our empirical analysis will focus on the question of
how to improve each component separately (see Section 5).

FTA, NCA, and NVCA risk scores. These scores are deter-
ministic functions of eight risk factors. The only demographic
factor is the arrestee’s age, and neither gender nor race is used.
The other risk factors include the current offense and pending

charges as well as measures of criminal history based on prior
convictions and prior FTAs. These scores are constructed by
assigning an integer-valued weight to each present risk factor,
adding them together, and thresholding this value into a num-
ber of bins. For the sake of transparency, the foundation that
funded the PSA’s creation made these weights and thresholds
publicly available (see https://advancingpretrial.org/psa/factors;
Appendix Table G.1 summarizes the weights).

The FTA score has six levels and is based on four risk factors.
The values range from 0 to 7, and the final score is thresholded
into values between 1 (lowest risk) and 6 (highest risk) by assign-
ing {0 → 1, 1 → 2, 2 → 3, (3, 4) → 4, (5, 6) → 5, 7 → 6}.
The NCA score also has six levels, but is based on six risk factors
and has a maximum value of 13 before being collapsed into six
levels by assigning {0 → 1, (1, 2) → 2, (3, 4) → 3, (5, 6) →
4, (7, 8) → 5), (9, 10, 11, 12, 13) → 6}. Finally, the NVCA score
is a binary flag based on five risk factors: if the sum of the weights
is greater than or equal to 4, the PSA flags the arrestee as being
at elevated risk of an NVCA. Otherwise, the NVCA score is 0,
and the arrestee is not flagged as being at elevated risk.

Recommendations via the DMF. Next, the DMF transforms
these three PSA risk scores into a recommendation regarding
cash bail and one regarding additional monitoring conditions.
For cases where the current charge is one of several serious vio-
lent offenses, the defendant was extradited, or the NVCA score
is 1, the DMF automatically recommends cash bail with maxi-
mum supervision and monitoring conditions. For the remaining
cases, the FTA and NCA risk scores are combined into one of 7
overall risk levels. If the FTA and NCA scores are both less than
5, and so the risk level is 3 or lower, then the recommendation is
to only require a signature bond. Otherwise the recommenda-
tion is to require cash bail (limited to “modest” at levels 4–5 and
“moderate” at level 6). Figure 1 visualizes the cash bail portion of
the DMF. The risk levels similarly encode a recommendation for
an increasing amount of pre-trial supervision and monitoring
conditions, ranging from none (level 1) to maximum supervi-
sion with biweekly phone and face-to-face contacts (level 7).
Appendix Figure G.10 shows these conditions along with the
cash bail recommendations.

2.2. The Experimental Data

We analyze the data from a randomized controlled trial con-
ducted in Dane County, Wisconsin. In this experiment, the
PSA was computed for each first appearance hearing that a
single judge oversaw during the study period. Across cases, we
randomized whether the PSA was made available in its entirety
to the judge. If a case is assigned to the treatment group, the judge
received the three PSA scores, the DMF recommendations, and
all of the risk factors that were used to construct them on a
single sheet of paper. For the control group, the judge did not
receive the PSA scores and DMF recommendations. Since the
risk factors that go into the PSA were made available in other
case files, the judge could, in principle, reconstruct the PSA
output with enough time.

For each case, we observe the three scores (FTA, NCA, and
NVCA) and the DMF recommendation, the underlying risk

https://advancingpretrial.org/psa/factors/
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Figure 1. Decision Making Framework (DMF) matrix for cases where the current
charge is not a serious violent offense, the NVCA flag is not triggered, and the
defendant was not extradited. If the FTA score and the NCA score are both less
than 5, then the recommendation is to only require a signature bond. Otherwise the
recommendation is to require some amount of cash bail. The dashed line indicates
this boundary. Unshaded areas indicate impossible combinations of FTA and NCA
scores.

factors used to construct the scores, the binary decision by the
judge (signature bond or cash bail), and three binary outcomes
(FTA, NCA, and NVCA). We focus on first arrest cases in order
to avoid spillover effects between cases. All told, there are 1,891
cases, 948 of which the judge was given access to the PSA.

Our goal is to improve the PSA recommendation system
while taking into account the judicial decisions that partly result
from the algorithmic recommendations; see Appendix D for
further discussion on incorporating judicial decisions into the
analysis. Crucially, each component of the PSA is determinis-
tic and no aspect of it was randomized as part of the study.
Therefore, there is a lack of overlap: the probability that any case
would have had a different algorithmic recommendation than it
actually received is exactly zero. This makes existing approaches
to policy learning inapplicable because they rely on the inverse of
this probability. Instead, learning a new recommendation policy
in the absence of overlap requires extrapolation. Below, we will
develop a methodological framework that provides a statistical
property that the new, learned rules perform at least as well as
the original recommendation.

3. Policy Learning with Observational Data

3.1. Notation and Setup

Suppose that we have a representative sample of n units indepen-
dently drawn from a population P . For each unit i = 1, . . . , n,
we observe a set of covariates Xi ∈ X ⊆ R

p (e.g., the risk
factors from Appendix Table G.1) and a binary outcome Yi ∈
{0, 1}. In our analysis presented in Section 5, we alternately
consider the outcome Yi = 1 as the absence of an FTA, NCA,
or NVCA. We consider a set of K possible actions, denoted by
A = {0, 1, 2, . . . , K − 1} that can be taken for each unit.

The actions correspond to the PSA recommendation: there
are K = 6 possible actions when we consider the FTA and
NCA risk scores, K = 2 for the NVCA flag, K = 7 for the
overall DMF bail and monitoring recommendation, and K = 2
for the signature bond versus cash bail recommendation. In our
experimental evaluation, we have access to the algorithm that
generated the observed actions. Formally, we encode this as a
known baseline deterministic policy π̃ : X → A that generates
the observed actions Ai = π̃(Xi). Throughout this article, we
will also refer to the baseline policy as π̃(x, a) ≡ 1{π̃(x) = a},
the indicator of whether the baseline policy yields action a given
the covariates x.

We consider the effects of the algorithmic recommendation
on the outcome, and assume that the algorithmic action Ai
may affect its own unit’s outcome Yi but has no impact on the
outcomes of other units (no interference between units; Rubin
1980). Then, we can write the potential outcome under each
action Ai = a as Yi(a) where a ∈ A and the observed outcome
as Yi = Yi(Ai) = Yi(π̃(Xi)) (Neyman 1923). This setup
focuses on the impacts of the algorithmic recommendation
whose provision was randomized in our experimental evalua-
tion. We marginalize over the potential human judicial decisions
that may be influenced by the algorithmic recommendation
(see Appendix D for further formalization). Finally, our setting
implies that ({Yi(a)}a∈A, Xi) are independent and identically
distributed, so we sometimes drop the i subscript.

3.2. Optimal Policy Learning

Our primary goal is to find a new deterministic policy π : X →
A, that has a high expected utility. We will again use the notation
π(x, a) ≡ 1{π(x) = a} for the policy being equal to action a
given the covariates x. Let u(y, a) denote the utility for outcome
y under action a. Because the outcomes are binary, we can write
this utility function as:1

Y(a)u(1, a) + {1 − Y(a)}u(0, a)

= {u(1, a) − u(0, a)}Y(a) + u(0, a).

The two key components of this utility function are (i) the
utility change between the two outcomes for action a, u(a) ≡
u(1, a) − u(0, a), which we assume is nonnegative without loss
of generality, and (ii) the utility for an outcome of zero with
an action a, c(a) ≡ u(0, a). We will refer to the latter term as
the “cost” because it denotes the utility under action a when
the outcome event does not happen; c(a) = 0 corresponds to
the action having no cost. We define the utility using both the
outcome y and the action a to capture the fact that some actions
are costly. For example, in Section 5, we will place a cost on
triggering the NVCA flag, recommending cash bail, or assigning
a high NCA, FTA, or overall risk score. We note, however, that
our approach is agnostic to the particular choice of the utility
function.

While this utility only takes into account the policy action
and the outcome, policy makers may also be concerned about

1While we focus here on binary potential outcomes, this form of the utility
function shows that we can extend our results to the case with continuous
outcomes with utility functions that are linear in the (possibly transformed)
outcomes.
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the costs of subsequent human decisions that are possibly
affected by algorithmic recommendations or actions. In
Appendix D, we show how to incorporate such factors into the
utility function.

The value of policy π is the expected utility under policy π

in the population,

V(π , m∗) = E

[∑
a∈A

π(X, a){u(a)Y(a) + c(a)}
]

= E

[∑
a∈A

π(X, a){u(a)m∗(a, X) + c(a)}
]

,

(1)

where we have used the law of iterated expectations, with the
first expection over X and Y(a), and the second expectation over
X, to show the dependence on the true conditional expected
potential outcome function m∗(a, x) ≡ E[Y(a) | X = x].
We explicitly denote the value under different potential models
for our development below; in cases where it is not ambiguous,
we omit the m∗ argument to indicate the value under the true
conditional expected potential outcome function.

Ideally, we would like to find a policy π that has the high-
est value within a policy class �. We can write a population
optimal policy as one that maximizes the value, that is, π∗ ∈
argmaxπ∈�V(π). The policy class � is an important object both
in the theoretical analysis and in applications. In Section 5, we
discuss the substantive choice of policy class when applied to a
PRAI.

To find an optimal policy, we need to point-identify the value
V(π , m∗) for all candidate policies π ∈ �. Existing methods rely
on an overlap assumption for identification. In our context, this
would require that each case has a nonzero probability of being
assigned algorithmic action A = a, that is P(A = a | X) > 0
for all a ∈ A. If the baseline policy were stochastic, satisfying
the overlap assumption, we could directly use inverse probability
weighting, model-based weighting, or a doubly robust approach
to learn an optimal policy from data (e.g., Dudik, Langford, and
Li 2011; Qian and Murphy 2011; Zhao et al. 2012; Kitagawa and
Tetenov 2018; Athey and Wager 2021). In our application and
many other settings, however, the baseline policy π̃ is a deter-
ministic function of covariates, implying a lack of overlap. Thus,
we cannot point-identify the value V(π , m∗) for all policies π ∈
� and hence cannot use existing approaches. In Appendix E, we
provide further discussion about this identification issue.

4. Safe Policy Learning through Extrapolation

To deal with the lack of overlap brought on by the deterministic
policy, we propose to first partially identify the conditional
expectation, and then use robust optimization to find the best
policy under the worst-case model. We will develop our opti-
mal safe policy approach in two parts. First, we show how to
construct a safe policy if we had access to an infinite number
of samples, that is, in the population. We then discuss how to
construct policies empirically from data, and establish finite-
sample statistical properties of the policies. Finally, we show
how to incorporate the experimental control units to weaken the
assumptions of our general approach and discuss the practical
implementation of the procedure for our analysis.

4.1. Partially Identifying the Value of a Policy

To understand how the lack of overlap affects our ability to find a
new policy, we will separate the value of a policy into identifiable
and unidentifiable components. We will then consider scenarios
where it is possible to at least partially identify the latter term.
To do so, we write the value V(π , m∗) in terms of the observed
outcome Y when our policy π agrees with the baseline policy
π̃ , and the unidentifiable full model m∗(a, x) when π disagrees
with π̃ :

V(π , m∗) = E

[ ∑
a∈A

π(X, a)
{

u(a)
[
π̃(X, a)Y

+ {1 − π̃(X, a)} m∗(a, X)
] + c(a)

}]
.

(2)

Without further assumptions, we cannot point-identify the
value of the conditional expectation when a is different from
the baseline policy and so we cannot identify V(π , m∗) for an
arbitrary policy π . If we place restrictions on m∗(a, x), however,
we can partially identify a range of potential values for a given
policy π (Manski 2005). Specifically, we encode the conditional
expectation as a function m : A × X → [0, 1], and restrict it
to be in a particular model class F . We then combine this with
the fact that we have identified some function values, that is,
the conditional expectation of the observed outcome under the
baseline policy m̃(x) ≡ m∗(π̃(x), x) = E[Y | X = x], to form a
restricted model class:

M = {f ∈ F | f (a, x) = m̃(x) ∀x ∈ X , a = π̃(x)}. (3)

This restricted model class combines the structural informa-
tion from the underlying classF (i.e., f ∈ F) with the observable
implications from the data (i.e., f (π̃(x), x) = m̃(x)). With this
setup, a policy π can be associated with a range of possible
values {V(π , m) | m ∈ M}, one for each observationally
indistinguishable model. We discuss particular choices of the
model class F in our study (see Section 5), deferring compu-
tation to construct the associated restricted model class M to
Appendix C.

4.2. Criteria for Decision-Making Under Ambiguity

The lack of identifiability leads to an ambiguity in choosing an
“optimal” policy: a policy could have a high value under one
model and a low value under another, and no amount of data can
help to adjudicate between the two scenarios. However, the value
of the baseline policy π̃ is point-identified using the observed
policy values and outcomes:

V(π̃) = E

[∑
a∈A

π̃(X, a){u(a)Y + c(a)}
]

.

The baseline policy π̃ is also already implemented, so a natural
requirement of a new policy is that it performs at least as well as
the baseline.

To construct such a policy, we take a maximin approach
by finding a policy that maximizes the improvement over the
baseline in the worst case:

π inf ∈ argmax
π∈�

min
m∈M

{V(π , m) − V(π̃)} . (4)
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Because the value of the baseline is point-identified, this
is equivalent to finding a policy that maximizes the worst-
case value across the set of potential models M, that is,
argmax

π∈�

min
m∈MV(π , m).

Such maximin criteria have been widely used for policy
learning in various contexts with partial identification (e.g.,
Kallus and Zhou 2021; Pu and Zhang 2021). Other applications
include decision problems with ambiguity more broadly, such
as robust statistical learning and robust optimization (e.g.,
Bertsimas, Brown, and Caramanis 2011; Duchi and Namkoong
2021). In addition, Gilboa and Schmeidler (1989) show that
the maximin expected utility criterion is equivalent to having
a preference relation among policies that satisfies a notion
of uncertainty aversion (in addition to other more standard
properties).

A benefit of choosing the maximin criterion is that so long
as the policy class � includes the baseline policy π̃ , and the
underlying model lies in the restricted model class M, the
maximin optimal policy π inf will be at least as good as the
baseline. We formalize this as the following proposition.

Proposition 1 (Population safety). Let π inf be a solution to (4). If
m∗ ∈ M, and π̃ ∈ �, then V(π̃ , m∗) ≤ V(π inf , m∗).

We call this a “safety” property because the baseline policy
acts as a fallback option. If deviating from the baseline policy
can lead to a worse expected utility, a maximin policy will stick
to the baseline. In this way, the new policy will change the
baseline only when there is sufficient evidence for improvement.
We stress that this safety property only holds if the structural
assumptions about the true model m∗ are correct, that is, m∗ ∈
M. Furthermore, this notion of safety is from the point of view
of the policy maker that sets the utility function: it says nothing
about the expected utility for other stakeholders with different
utility functions.

Furthermore, this safety property comes at a cost: maximin
policies can be conservative and sub-optimal relative to the
(infeasible) oracle policy, π∗ ∈ argmaxπ∈� V(π , m∗) (e.g.,
Manski 2005; Cui 2021). Because the maximin criterion limits
the downside risks of deviating from the baseline policy, it can
miss situations where such deviations could lead to large utility
gains. We bound this sub-optimality at the population level
in Appendix Theorem A.1 and for policies learned empirically
from finite samples in Theorem 2.

An alternative criterion that addresses this is the minimax
regret criterion that measures the maximum value difference
between the (infeasible) oracle and the chosen policy (e.g., Man-
ski 2007; Stoye 2012; Song 2014). In addition, maximin policies
can be sensitive to the existence of edge cases. Searching for
the worst case across all possible models ignores the fact that
we may find some models unlikely, even if they are possible. A
Bayesian criterion that explicitly places a prior over models and
computes the posterior expected utility given the observed data
would counteract this (Jia, Ben-Michael, and Imai 2023).

4.3. The Empirical Safe Policy

Next, we show how to learn a policy from the observed data
{Xi, π̃ (Xi), Yi(π̃(Xi))}n

i=1. We begin with a sample analog to the

value function in (2):

V̂(π , m) = 1
n

n∑
i=1

∑
a∈A

π(Xi, a){u(a)[π̃(Xi, a)Yi + {1−π̃(Xi, a)}

× m(a, Xi)] + c(a)}.
(5)

With this, we could find the worst-case sample value across all
models in the restricted model class M from (3). Unfortunately,
since we do not have the true conditional expectation m̃(x), we
cannot compute the true restricted model class. One potential
approach is to obtain an estimator of the conditional expecta-
tion function, ˆ̃m(x), and use the estimates in place of the true
values. However, this fails to take into account the estimation
uncertainty, and could lead to a policy that improperly deviates
from the baseline due to noise, especially when the convergence
rate of the estimated model ˆ̃m(x) is slow.

Instead, we construct a larger, empirical model class
M̂n(α), based on the observed data, that contains the true
restricted model class with a probability at least 1 − α, that
is, P

(
M ⊆ M̂n(α)

) ≥ 1 − α. Then, we construct our
empirical policies by first finding the worst-case in-sample value
improvement, then maximizing this objective across policies π :

π̂ ∈ argmax
π∈�

min
m∈M̂n(α)

{
V̂(π , m) − V̂(π̃)

}
. (6)

We refer to π̂ as the empirical safe policy, as it is the empirical
analog to the π inf . Note that since the empirical restricted model
class is larger than the true restricted model class, a policy
derived from it is more likely to fall back to the status quo rule.

To construct the empirical model class M̂n(α), we use a
uniform 1 − α confidence band for the conditional expecta-
tion function m̃(x), with lower and upper bounds Ĉα(x) =
[Ĉα�(x), Ĉαu(x)] such that P

(
m̃(x) ∈ Ĉα(x) ∀ x

) ≥ 1−α. With
such a confidence band, we construct the empirical restricted
model class as

M̂n(α) = {f ∈ F | f (π̃(x), x) ∈ Ĉα(x) ∀x ∈ X }.

Throughout, we construct our confidence bands so that the 0%
confidence band corresponds to the point estimate: Ĉα�(x) =
Ĉαu(x) = ˆ̃m(x), and therefore setting α = 1 creates the
restricted model class directly from the point estimates as
described above. In our analysis in Section 5, the covariates
are all discrete. Thus, we first construct a point-wise confidence
interval for each unique data point, and then create a uniform
confidence band by using a Bonferonni correction for the
number of unique data points. We discuss how to construct
the empirical model class and solve this optimization problem
in Section 5.

4.4. Finite Sample Statistical Properties

Compared to the population maximin problem, the empirical
problem has an additional layer of uncertainty due to sampling
error that arises in finite samples. First, we establish a statistical
safety property: if the structural assumptions about the true
model m∗ are correct, the learned policy will perform at least
as well as the baseline policy with probability approximately
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1 − α. We then characterize how conservative the solution is
via the optimality gap, V(π∗) − V(π̂): the policy value differ-
ence between the infeasible oracle that knows the true model,
and our data-driven maximin policy that uses the worst-case
model.

The results below use the population Rademacher complexity
of a function class G:

Rn(G) ≡ E

[
sup
g∈G

∣∣∣∣∣ 1
n

n∑
i=1

εig(Xi)

∣∣∣∣∣
]

where εi is an iid Rademacher random variable, that is, Pr(εi =
1) = Pr(εi = −1) = 1/2, and the expectation is taken over both
εi and Xi (Wainwright 2019, sec. 4). We consider the maximum
Rademacher complexity across the sub-policy classes for actions
a ∈ A: �a ≡ {π(·, a) | π ∈ �}. This measures the ability
of the policy class to overfit. Using this measure, we establish a
statistical safety property.

Theorem 1 (Statistical safety). If the baseline policy π̃ ∈ � and
the true conditional expectation m∗(a, x) ∈ M, for any 0 < δ ≤
e−1, the value of π̂ relative to the baseline π̃ is,

V(π̃) −V(π̂) ≤ 6C(K−1)

[
max

a
Rn(�a) + 2

√
1
n

log
K − 1

δ

]
,

with probability at least 1 − α − δ, where

C = max
y∈{0,1},a∈{0,1} |u(y, a)|.

Like Proposition 1, Theorem 1 is only meaningful if the
assumptions about the true model m∗ are correct. If they are,
Theorem 1 shows that the empirical safe policy will not have a
lower policy value than the baseline, up to standard empirical
process terms: the Rademacher complexity of the policy class �,
and an error term due to sampling variability that decreases at a
rate of n−1/2. The complexity of the policy class �a controls the
chance that the learned policy is worse than the baseline due to
overfitting.

For many standard policy classes, we expect the Rademacher
complexity to decrease to zero as the sample size increases, with
the complexity determining the rate of convergence. For simple
policy classes, the bound will quickly go toward zero for any level
α; complex policy classes will require larger samples to ensure
that the safety property is meaningful, regardless of the level α.
By using the larger model class M̂n(α), the estimation error
for the conditional expectation ˆ̃m(x) − m̃(x) does not directly
enter into the bound.2 However, if we cannot estimate m̃(x)

well, the empirical restricted model class M̂n(α) will be large,
and so the empirical safe policy may collapse to the baseline
policy.

To quantify the optimality gap, we denote ŴM̂n(α)(π
∗(1 −

π̃)) as the width of the empirical model class M̂n(α) in the

2In Appendix A.2, we extend these results to consider the case where 1−α =
0 and we use point estimates rather than confidence bounds. We show that
the bounds have additional terms due to estimation error of the model.

direction that π∗ and π̃ disagree, where

ŴF (g) = sup
f ∈F

1
n

n∑
i=1

∑
a∈A

f (a, Xi)g(a, Xi)

− inf
f ∈F

1
n

n∑
i=1

∑
a∈A

f (a, Xi)g(a, Xi)

is the usual notion of the width of a set, for the set defined by all
possible values of a function f ∈ F at the data points X1, . . . , Xn
for actions a ∈ A, in the direction defined by the vector of all
values of another function g(a, Xi).

Theorem 2 (Optimality gap). Let u(a) = u > 0 for all actions. If
the true conditional expectation m∗ ∈ M, then for any 0 < δ ≤
e−1 the optimality gap is

V(π∗) − V(π̂) ≤ 2CŴM̂n(α)

(
π∗(1 − π̃)

) + 6C(K − 1)

×
[

max
a

Rn(�a) + 2
√

1
n

log
K − 1

δ

]
,

with probability at least 1 − α − δ, where

C = max
y∈{0,1},a∈{0,1} |u(y, a)|.

To simplify the statement, we have assumed that the utility
gain across different actions is constant and, without loss of
generality, positive.

The bound on the empirical optimality gap contains the
width term ŴM̂n(α) (π∗(1 − π̃)), in addition to the standard
empirical process terms found in Theorem 1. If the baseline
policy is the oracle policy, then this width is zero, the bounds
in Theorems 1 and 2 coincide, and the regret of π̂ relative to
the oracle π∗ will converge to zero so long as the complexity of
the policy class goes to zero. Otherwise, the width term does not
necessarily converge to zero: if the baseline and oracle policies
disagree for many cases, the empirical safe policy could perform
substantially worse than the oracle.

This leads to a tradeoff between statistical safety (Theorem 1)
and optimality (Theorem 2). Increasing the confidence level will
yield a greater probability that the learned policy is safe relative
to the baseline, but it will also widen the potential optimality gap
when the baseline and oracle policies disagree. This is similar to
the tradeoff between a low Type I error rate (α low) and high
power (ŴM̂n(α) (π∗(1 − π̃)) low) in hypothesis testing. The
tradeoff extends to the choice of model class as well: statistical
safety requires that the model class contains the true conditional
expectation function, that is, m∗ ∈ M. This is palatable if we
choose a complex model class, but complex model classes may
lead to a greater amount of uncertainty due to severe lack of
identification and/or greater estimation error.

This tradeoff does not exist if the baseline policy is stochastic
and there is overlap between actions. In this case, the conditional
expectation function is non-parametrically identifiable. While
we can still account for statistical uncertainty by constructing the
empirical model class M̂n(α), we stress that our approach is not
appropriate when the baseline policy is stochastic. It only uses a
model for the outcomes and so will rely on stronger assumptions
about the outcome model and be inefficient relative to a doubly
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robust approach that incorporates the action probabilities as
proposed by Athey and Wager (2021).

In practice, we do not know the oracle policy. To oper-
ationalize the bound in Theorem 2, we can further upper
bound the optimality gap by finding the policy that leads to
the worst-case width, were it the oracle policy: Ŝ(F , �; π̃ ) ≡
supπ∈� ŴM̂n(α) (π(1 − π̃)). We refer to this quantity as the
“size” of the empirical restricted model class because it measures
the degree of uncertainty about the true model m∗ in regions of
the covariate space where a policy π ∈ � could deviate from
the baseline.

We use this as a diagnostic measure in Section 5. Note that
the policy class � affects the size. Restricting to policies that
can only disagree with the baseline in only a few cases will lead
to a small size. Conversely, if we attempt to optimize over an
expansive policy class, the size diagnostic can be large. However,
the size term is a loose upper bound: even if the size is large,
the optimality gap may still be small if it happens that the oracle
policy π∗ is similar to the baseline π̃ . Therefore, a large size term
is a warning that there may be insufficient information to learn
an improved policy, but it does not rule it out entirely.

4.5. Learning from Experiments Evaluating a
Deterministic Policy

In our empirical study, the existing PSA-DMF system was com-
pared to not providing algorithmic recommendations. While a
primary goal of this randomized controlled trial was to eval-
uate whether one should adopt the algorithmic policy, we can
leverage the control group data to weaken the restrictions of the
underlying model class M by placing assumptions on treatment
effects rather than the expected potential outcomes.

We consider an expanded set of actions that includes all
actions in A and a “null” action (i.e., do not provide an algorith-
mic recommendation). We denote the null action as a = −1,
with potential outcome Y(−1). Let Zi ∈ {0, 1} be a treatment
assignment indicator where Zi = 0 if no policy is enacted (i.e.,
the null policy), and Zi = 1 if the policy follows the baseline
policy π̃ . Let e(x) = P(Z = 1 | X = x) be the probability of
assigning the treatment condition for an individual with covari-
ates x. This is the propensity score for the treatment assignment
and since this is an experiment, it is known and strictly between
0 and 1. While we consider general propensity scores when
describing the method, in our experiment e(x) = 0.5 for all
cases. This allows us to identify the conditional expectation
function, m∗(−1, x) = E[Y | X = x, Z = 0]. Defining the
true conditional average treatment effect (CATE) of the action a
relative to the null action −1 as τ ∗(a, x) ≡ m∗(a, x)−m∗(−1, x),
we can also identify the CATE under the baseline policy π̃(x),
τ̃ (x) = τ ∗(π̃(x), x).

We now write the value function in terms of the (partially-
identified) CATE and the (point-identified) expected outcome
under the null action. With a constant utility gain u(a) = u, we
can write it as:3

V(π) = E

⎡⎣∑
a∈A

π(X, a){u · τ∗(a, X) + c(a)}
⎤⎦ + u · E[m∗(−1, X)].

3Proposition A.1 in the Appendix shows this result for the general utility case.

Because the baseline term E[m∗(−1, X)] does not depend on π

and is point-identified, we can re-parameterize the model class
to impose restrictions on the treatment effects T = {f (a, x) ≡
m∗(−1, x) + h(a, x) | h ∈ F , h(π̃(x), x) = τ(π̃(x), x)}.
The CATE function is sometimes assumed to be simpler (e.g.,
smoother, sparser, fewer interaction terms) than the conditional
expected potential outcome (see, e.g., Künzel et al. 2019, who
argue that the CATE should be easier to estimate). Therefore,
we may consider a smaller model class for the treatment effects
than for the baseline outcomes, leading to a smaller optimality
gap in Theorem 2. We can also construct the empirical analog by
creating a larger empirical model class T̂n(α) as in Section 4.3.

Finally, following Kitagawa and Tetenov (2018), to account
for potential unequal assignment into treatment, we can solve
the population and empirical robust optimization problems
using the inverse probability weighted outcome 	(Z, X, Y) ≡
Y{Z(1 − 2e(X)) + e(X)}/{e(X)(1 − e(X))}, which equals the
conditional expected potential outcome in expectation, that is,
E[	(Z, X, Y) | Z = z, X = x] = z · m∗(π̃(x), x) + (1 − z) ·
m∗(−1, x).

5. Empirical Analysis of the Pre-Trial Risk Assessment

5.1. Implementation Details

For our empirical analysis, we will represent the empirical
restricted model classes as the set of functions that are upper
and lower bounded point-wise by two bounding functions,
T̂n(α) = {f : A × X → R | B̂α�(a, x) ≤ f (a, x) ≤
B̂αu(a, x)}, where the upper and lower bounds are chosen to
satisfy P

(
T ⊆ T̂n(α)

) ≥ 1 −α. In Appendix C, we show how to
compute these bounds using simultaneous confidence intervals
when the underlying model class is the set of Lipschitz functions
or linear models.

The point-wise bound allows us to solve for the worst-case
empirical value V̂ inf (π) by finding the minimal value for each
action-covariate pair (see Pu and Zhang 2021). Finding the
empirical safe policy by solving (6) is equivalent to solving an
empirical welfare maximization problem using a quasi-outcome
that imputes the counterfactual outcome with the lower bound
when the action disagrees with the baseline policy:

max
π∈�

1
n

n∑
i=1

∑
a∈A

π(Xi, a)
{

u(a)
[
π̃(Xi, a){	(1, Xi, Yi) − 	(0, Xi, Yi)}

+ {1 − π̃(Xi, a)}̂Bα�(a, Xi)
] + c(a)

}
,

(7)

where we have omitted terms that do not depend on π . A similar
implementation strategy is applicable to cases where we model
potential outcomes rather than treatment effects.

5.2. Learning a New NVCA Flag Threshold

We begin our analysis by considering a small change to the
existing system: learning a new threshold for the NVCA flag.
Our goal here is to find the optimal NVCA threshold in the worst
case, where our preferred outcome is no NVCA.

Choosing the policy class. We first formalize our choice of
policy class. Let xnvca ∈ {0, . . . , 6} be the total number of
NVCA points for an arrestee, computed using the point system
in Appendix Table G.1. Recall that the baseline NVCA algorithm
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is to trigger the flag if the number of points is greater than or
equal to 4, that is, π̃(xnvca) = 1{xnvca ≥ 4}. Our policy learning
problem is to choose a policy among the class of threshold
policies, �thresh = {π(x) = 1{xnvca ≥ η} | η ∈ {0, . . . , 7}} . We
will keep the baseline weighting on arrestee risk factors and only
change the threshold η. Since this policy class only has eight
elements, we can compute the empirical maximin policy π̂ by
solving (7) via an exhaustive search.

Choosing the model class. We next choose a model class for
the CATE on no NVCA occurring, τ ∗(a, xnvca). There are many
potential ways to characterize the complexity of functions of one
variable such as τ ∗(a, ·). Here, we characterize it via a Lipschitz
constraint that

∣∣τ(a, xnvca) − τ(a, x′
nvca)

∣∣ ≤ λa|xnvca − x′
nvca| for

any pair of NVCA points xnvca, x′
nvca.

To construct the empirical restricted model class, we set the
level to 1−α = 0.8, allowing some tolerance for statistical uncer-
tainty and construct a simultaneous 80% confidence interval
for the CATE via a Bonferroni correction for the seven unique
values (see Appendix C.2 for details on computing the bounds).
We also restrict the treatment effects to be bounded between −1
and 1, since the outcome is binary.4

For this model class, we need to specify the Lipschitz con-
stants for the CATE when the flag is and is not triggered (λ1
for τ(1, xnvca)) and λ0 for τ(0, xnvca), respectively). We adapt
a suggestion from Imbens and Wager (2019) for model classes
with a bounded second derivative to the Lipschitz case. We
estimate the CATE function by taking the difference in NVCA
rates with and without provision of the PSA at each level of xnvca.
Then, we measure the largest consecutive difference between
CATE estimates (0.016 and 0.433 for a = 0, 1, respectively).
Finally, we set the Lipschitz constants to be a constant multiple
C of this difference yielding λ0 = C×0.016 and λ1 = C×0.433.
Setting C = 1 gives the smallest Lipschitz constants supported
by the data; increasing C will be more conservative.

Choosing the utility function. Recall that in our parameter-
ization we must define the difference in utilities when there
is and is not an NVCA, u(a) = u(1, a) − u(0, a), for both
actions a ∈ {0, 1}. This captures the benefits of avoiding an
NVCA. Countering this benefit is the baseline cost of action
a, c(a) = u(0, a). The marginal monetary cost of triggering
the NVCA flag is zero given the initial fixed cost of collecting
the data for the PSA. However, to the extent that triggering
the NVCA flag increases the likelihood of pre-trial detention,
it will lead to an increase in fiscal costs—for example, housing,
security, and transportation—for the jurisdiction. Furthermore,
there are potential socioeconomic costs to the defendant and
their community that balance against potential benefits from
avoiding more criminal activity.

To represent these costs, we will place zero cost on not trig-
gering the NVCA flag, c(0) = 0, and a cost of 1 on triggering
the flag, c(1) = −1. We then assign an equal utility gain from
avoiding an NVCA, u(1) = u(0) = u (equivalently, the cost

4This is not the tightest possible bound, since the restriction is that 0 ≤
m(−1, x) + τ(a, x) ≤ 1. To incorporate the uncertainty in estimating
m(−1, x) in finite samples we could use analogous techniques to those in
Section 4.3; we leave this to future work.

of an NVCA is −u). This yields a utility function of the form
u(y, a) = u × y − a, where u is the ratio of the cost of an
NVCA to the cost of triggering the flag. Choosing a particular
value of u is outside the scope of this article and indeed would
be inappropriate for us to do: the choice depends on societal
preferences and may need to be arrived at in a collaborative
process between policy-makers in the criminal justice system
and the communities impacted by it. Instead, we examine how
adjusting the ratio u affects the policies we learn.5

Learning a maximin NVCA threshold. Figure 2(a) presents the
empirical restricted model class with a particular multiplicative
constant of C = 3 by showing point estimates and simultaneous
80% confidence intervals for the observable component of the
CATE function τ ∗(π̃(xnvca), xnvca) and the partial identification
set for the unobservable component. There is substantially more
information when extrapolating the CATE for the case that the
NVCA flag is triggered. This is because the point estimates
do not vary much with the NVCA points, leading to a small
Lipschitz constant. On the other hand, when extrapolating in
the other direction, there is a large jump in the point estimates
between xnvca = 5 and xnvca = 6, leading to a large Lipschitz
constant. This means that the empirical restricted model class
puts essentially no restrictions on τ ∗(1, xnvca) for xnvca < 4.

Estimating this policy requires choosing the Lipschitz multi-
plicative factor C ≥ 1. We fit the empirical safe policy across a
range of values to see if the results are stable. Figure 2(b) shows
the learned thresholds as we vary both the relative cost u of an
NVCA in the utility function and the multiplicative factor C.
When the cost of an NVCA is u ≤ 7, the data support increasing
the threshold to at least 6 even in the worst case and even with
C = 10, only triggering the flag for arrestees with the observed
maximum of 6 total NVCA points. The results for larger costs
are more sensitive to the choice of C, and the learned threshold
collapses back to the baseline of 4 for intermediate choices of C.

Raising the threshold to η = 6 is a much more lenient policy
than the status quo, reducing the number of arrestees flagged as
at risk of an NVCA by 95%. We find evidence for such a large
change because there is no meaningful effect of providing the
PSA on the absence of an NVCA, except for those arrestees who
have the maximum of 6 points (Figure 2(a)). One possible reason
for these small effects is that the judge’s behavior is not affected.
This appears to be the case when xnvca ≤ 4: there is little effect on
the judge’s bail decision in these cases. However, for xnvca > 4,
providing the PSA increases cash bail decisions by over 30 pp
(see Appendix G.1 for further discussion). This suggests that
PSA provision is leading to additional bail decisions without a
requisite decrease in NVCAs for xnvca = 5.

Thus, even in the worst case, the threshold could be raised to
η = 6 without an increase in the NVCA rate that outweighs costs
from triggering the flag. As we increase the cost of an NVCA,
however, at some point (e.g., u ≥ 13 for C = 3), the cost
becomes large enough, making the empirical safe policy revert
to the status quo with the threshold at η = 4.

5Note that mathematically one could use a negative cost of triggering the
flag, but this would encourage triggering the flag even if it would not avoid
an NVCA.
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Figure 2. Learning a new NVCA flag threshold. (a) Empirical restricted model class and maximin threshold with a Lipschitz multiplicative factor of C = 3. The points and
thin lines around them are point estimates and a simultaneous 80% confidence interval for the partial CATE function τ(π̃(xnvca), xnvca) when the NVCA flag is not triggered
(π̃(xnvca) = 0, in orange) and is triggered (π̃(xnvca) = 1, in blue). The thick solid lines represent the partial identification set for the unobservable components of the
CATE, τ(1, xnvca) for xnvca < 4 and τ(0, xnvca) for xnvca ≥ 4. The purple dashed line represents the baseline policy of triggering the flag when xnvca ≥ 4, and the pink
dashed line is the empirical safe policy that only triggers the flag when xnvca ≥ 6. (b) Maximin threshold values solving (7) for the NVCA flag threshold rule with a level of
1 − α = 80% as the cost of an NVCA increases from 1 to 20 times of the cost of triggering the NVCA flag, and the multiplicative factor on the estimated Lipschitz constant
varies from 1 to 10.

5.3. Learning New FTA, NCA, and NVCA Risk Scoring Rules

We next turn to constructing new, maximin optimal FTA, NCA,
and NVCA risk scores. For each risk score, we focus on the
absence of the corresponding negative outcome.

Choosing the policy classes. A key consideration is the form of
the policy classes used for each risk score. One possibility is to
allow the policies to be flexible functions of all the information
available in the system. Although the oracle policy may have a
high expected utility in this case, in finite samples a complex
policy can over-fit and reduce the quality of the safety property
in Theorem 1. In addition, the oracle policy may be substantially
different from the baseline policy, leading to a large optimality
gap in Theorem 2. Lastly, in real-world applications, policy
makers might be reluctant to adapt the existing system to an
entirely new policy. For these reasons, we use the same set of
risk factors and focus on changing the weight applied to each
risk factor (see Appendix Table G.1).

For each risk score, we formally describe the status quo rule
as consisting of a vector of integer-valued weights θ̃ on the risk
factors x, and a mapping from the linear combination of the
risk factors θ̃

�x to the K risk levels via thresholds. We consider
the policy class that consists of all possible vectors of integer-
valued weights and all possible thresholds, restricting to inter-
valued weights in order to mimic the structure of the existing
risk scores. For example, recall that the NVCA flag has K = 2
risk levels (a flag for elevated NVCA risk), 7 binary risk factors,
and the baseline policy is π̃(x) = 1

{∑7
j=1 θ̃jxj ≥ 4

}
. We then

write the corresponding NVCA flag policy class as

�nvca =
⎧⎨⎩π(x) = 1

⎧⎨⎩
7∑

j=1
θjxj ≥ η

⎫⎬⎭
∣∣∣∣∣∣ θj ∈ Z, η ≥ 0

⎫⎬⎭ . (8)

This policy class includes the original NVCA flag rule as a
special case. We can construct the policy classes for the FTA
and NCA rules similarly by including multiple thresholds (see
Appendix G.2 for a formal definition). To simplify comparisons
to the status quo and avoid identifiability issues, we will primar-
ily constrain the thresholds η to be equal to the status quo values.
This allows us to understand any differences from the status
quo rule by comparing the learned weight vector to the baseline
weight vector θ̃ . With this policy class, the optimization problem
is a mixed integer program; we solve this with the Gurobi solver.

Choosing the model class. In contrast to changing only the
NVCA threshold above, here the CATE is a function of multiple
binary variables. A natural way to characterize the complexity of
such models is by the number and strength of interaction terms
between the variables. We focus on the two simplest models: an
additive effect model Tadd ≡

{
τ(a, x) = ∑

j τajxj
}

and a sec-

ond order effect model Ttwo ≡
{
τ(a, x) = ∑

j
∑

k<j τajkxjxk
}

.
Because the covariates are discrete, we can write these using lin-
ear models. We again restrict the treatment effects to be bounded
between −1 and 1. These two model classes lead to different
restrictions and ultimately affect what policies we learn from the
experiment (see Appendix C.3 for details). This is partly because
even with infinite data the models may not be identifiable. But
it is also because with finite data there is a different amount of
uncertainty in each model class.

To diagnose the amount of information available in each
model class, we use the size measure Ŝ(T̂n(α), �; π̃ ). Figure 3
depicts this information by showing how the size of the model
class (vertical axis), changes with the desired confidence level
1 − α (horizontal axis) for each risk score and model class. We
also show the difference in the size for the NVCA rule when
fixing the threshold to the existing value versus including it as
a decision variable.
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Figure 3. The size (as a percentage of its maximum value) of two different model classes with respect to the linear threshold policy class versus the confidence level 1 − α

for the FTA (green), NCA (orange), and NVCA (purple) scoring rules. The dashed purple line shows the size for the NVCA model class when the threshold is included as a
decision variable and learned in addition to the weights.

There is a stark difference in the amount of information
between the different risk scores within the same model class.
Under the additive model for the NVCA rule, the size is zero
when the confidence level is zero, implying that this model
is identifiable. This is due to the structure of the NVCA flag
rule: for any given value of a covariate, it is possible to observe
cases with the flag set to zero or one. When accounting for the
statistical uncertainty, the size increases, but it is substantially
smaller than the size for the FTA and NCA rules, both of which
are near or at the maximum value of 2. Because these risk scores
have six levels, we would need to observe cases with all six levels
for any given value of a covariate in order to identify the additive
model. Overall, there is little information available to support
changing the FTA and NCA scoring rules.

Turning to the second order treatment effect model for the
NVCA score, which makes weaker assumptions, we find that it
is likely too large a class for us to learn a new NVCA rule, with
roughly twice the size as for the additive effect model. This is
because there are several pairs of variables that always trigger
the NVCA flag (e.g., if both the current offense is violent and
the arrestee has 3 or more prior violent convictions). Finally,
we observe that increasing the flexibility of the policy class
by including the threshold as a decision variable rather than
keeping it fixed increases the size because it is a function of both
the model class and the policy class.

These diagnostics point to focusing on the NVCA score with
an additive effect model. There is likely not enough information
to make any changes to the NCA and FTA scores under either
model, and the second order effect model for the NVCA flag
is not well enough identified. However, in Appendix G.1, we
find some evidence for the existence of interactions for the
NVCA score via classical model testing procedures. Therefore,
we caution over-interpreting our results. For completeness, we
show these results in Appendix G and indeed find that the
optimal solution for the worst case is to not deviate from the
status quo rules.

Choosing the utility function. We use the same utility parame-
terization as in Section 5.2. For this value function, the marginal

decrease in the utility from triggering the flag is constant
regardless of the proportion of arrestees that are classified as
an NVCA risk. However, higher levels of pre-trial incarceration
can have additional negative impacts on the community above
and beyond the cost to the individual. In Appendix G.1, we
include an additional penalty to triggering the NVCA flag that
scales with the proportion of arrestees classified as being at risk.

Learning a maximin NVCA flag. Figure 4(a) presents the
changes to the original rule made by the maximin policy that
solves the optimization problem given in (7) under the additive
treatment effect class Tadd. The changes are shown in terms
of the proportion of arrestees flagged for an NVCA risk as
we vary the cost of an NVCA −u and the confidence level
1 − α. Across every confidence level, the maximin policy differs
less and less from the original rule as the cost of an NVCA
increases, moving from never triggering the flag at a 1–1 cost to
eventually collapsing back to the status quo if the cost crosses an
α dependent threshold. For a given cost of an NVCA, policies
at lower confidence levels are more aggressive in deviating from
the original rule, prioritizing a potentially lower regret relative to
the (infeasible) optimal policy at the expense of a higher chance
that the new policy is worse than the original rule.6

Figure 4(b) shows the integer weights on the risk factors for
the maximin policy at the 1 − α = 80% level as the cost of
an NVCA increases. In the limiting setting where an NVCA is
given the same cost as triggering the NVCA flag, the maximin
policy never triggers the flag because it cannot be worth the
cost. Once the cost is at least 14 times the cost of triggering the
flag, the learned policy reduces to the original rule. In light of
the sizes shown in Figure 3, this behavior is primarily due to
increased uncertainty in the effect of triggering the NVCA flag. If
the policy maker were to set the cost of an NVCA above a certain
point, any change in the policy would be too risky to act upon.
For intermediate values, the learned policy places less weight on
the number of prior violent convictions and whether the current

6Except for when the cost of an NVCA is greater than 12 and the confidence
level is 0%, the maximin policies do not trigger the flag when the original
rule does not.
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Figure 4. (a) The percentage point difference in the proportion of arrestees flagged for NVCA risk between the maximin policy and the original NVCA score as the cost of an
NVCA increases from 1 to 15 times of the cost of triggering the NVCA flag and the confidence level varies between 0% and 100%. (b) Change in Maximin NVCA flag weights
θ (in (8)) as the cost of an NVCA increases from 1 to 15 times the cost of triggering the NVCA flag, at a confidence level of 1 − α = 80%.

offense is violent than the original rule. In Appendix G.1, we
consider a more flexible policy class that includes additional risk
factors.

5.4. Learning a New DMF Matrix for Bail Recommendation

Finally, we analyze the overall recommendation given by the
DMF matrix (see Figure 1). This aggregates the FTA and NCA
scores into an overall recommendation on the level of cash bail
and pre-trial supervision and monitoring conditions. Below, we
focus on using the absence of an NVCA as the primary outcome.

Choosing the policy class. We consider constructing a new
DMF matrix based on the FTA and NCA scores, which we
combine into a vector (xfta, xnca) ∈ {1, . . . , 6}2, restricting our
analysis to the 1544 cases that used the DMF matrix rather than
those for whom cash bail was automatically recommended.
We will focus on a policy class that keeps the structure of
the existing rule encoded by the DMF matrix. An important
aspect of the rule is that it is monotonic; the risk level cannot
decrease if either the FTA or NCA score increases. Formally,
we can encode the monotonic policy class as, �mono ≡
{π((xfta, xnca)) ≤ π ((xfta + 1, xnca)) and π ((xfta, xnca)) ≤
π((xfta, xnca + 1))}. Again, this leads to an integer program,
which we solve via the Gurobi solver. We will consider four
variations of the policy: (i) the overall risk level from 1 to 7; (ii)
the quaternary recommendation of a signature bond, modest
cash bail, moderate cash bail, or (full) cash bail; (iii) the ternary
recommendation that combines modest and moderate cash bail;
and (iv) the binary recommendation that collapses together all
cash bail recommendations.

Choosing the model class. We again focus on the class of
additive treatment effect models τadd(a, x) = τfta(a, xfta) +

τnca(a, xnca). We only condition on the FTA and NCA scores
since they are the two components of the DMF decision matrix.
Because xfta and xnca are discrete with six values, we can further
parameterize the additive terms as six-dimensional vectors.
Importantly, this rules out interactions between the FTA and
NCA scores in the effect. In Appendix G.3 we test for the
presence of interactions and do not find evidence against the
null of an additive model.7

Figure 5(a) presents the size of this model class relative to the
monotone policy class for the four types of recommendations as
we vary the confidence level for the three types of DMF recom-
mendations. There is no information to learn reliably a new fine-
grained overall risk score or quaternary bail recommendation.
This is due to the structure of the DMF matrix: some risk levels
are only possible for a single NCA score, and others (such as the
moderate cash bail condition) only for a single combination of
FTA and NCA scores.

Therefore, we focus here on the binary cash bail recommen-
dation, where the size of the model class is large, but smaller than
for the ternary bail recommendation. This is because we can
never observe a case where the DMF recommends a signature
bond with either an FTA score or NCA score above 4, nor can
we observe a case where the DMF recommends cash bail with
either an FTA score below 2 or an NCA score below 3. In the
middle is an intermediate area with FTA scores between 2 and 4
and NCA scores between 3 and 4 where we can fully identify the
effect of assigning cash bail under the additive model. For this
intermediate area, there is a significant amount of uncertainty
due to small sample sizes: there are only three cases where cash
bail is recommended that have an NCA score of 3. Appendix
Figure G.14 visualizes this uncertainty.

7Note that we could also use a Lipschitz restriction as in Section 5.2. This alter-
native assumption may be significantly weaker, though it would require
choosing the Lipschitz constant.
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Figure 5. (a) The size (as a percentage of the maximum value) of the additive model class with respect to the monotone policy class as the confidence level varies for
cash bail recommendation policies, collapsing together successively more gradations on bail. The coarsest policy—Signature Bond versus any Cash Bail—has the most
information available. (b) Maximin monotone cash bail recommendations under an additive model for the treatment effects, as the cost of an NVCA and the confidence
level vary. The dashed black line indicates the original decision boundary between a signature bond (above and to the left) and cash bail (below and to the right). The
original decision boundary is modified only when the cost and confidence are low.

Choosing the utility function. We follow Sections 5.2 and 5.3,
and parameterize the utility as a fixed cost of 1 for recommend-
ing cash bail and varying the cost of an NVCA.

Learning a maximin DMF Matrix. Figure 5(b) shows the
learned policies when varying the cost of an NVCA and different
confidence levels. In the limiting case where the cost of an NVCA
is equal to recommending cash bail, the safe policy recommends
cash bail only for the most extreme cases. In the other limiting
case, where we set the confidence level to 0 and rely on the
point estimates directly rather than accounting for the statistical
uncertainty, increasing the cost of an NVCA leads to more of the
intermediate area with FTA scores between 2 and 4 and NCA
scores between 3 and 4 being assigned cash bail until the cost is
high enough that the entire identified area is assigned cash bail.
However, this does not hold up to even the slightest degree of
statistical uncertainty due to the uncertainty in the treatment
effects. Because the effects of assigning cash bail are both small
and uncertain, the learned policy reduces to the existing DMF
matrix.

6. Discussion

Data-driven algorithmic policies and recommendations have
become an integral part of our society. An important challenge
when learning a new policy is to ensure that it does not perform
worse than the existing one. In settings like ours where decisions
are highly consequential, policy makers should be able to limit
the probability that a new algorithmic recommendation system
achieves a worse outcome than the existing system. This is
particularly essential when it is impossible to randomize the
algorithm output for ethical and logistical reasons. The lack of
identification necessitates extrapolation, making it impossible to
learn a new policy using standard statistical methods.

We address these challenges by partially identifying the value
of potential policies. Since this leads to a decision-making prob-
lem under ambiguity, we use the maximin criterion that selects
the best policy in the worst case. Our methodology has a statis-
tical safety property: if we make correct structural assumptions
about the true model, the resulting policy will not be worse
than the status quo policy with some probability, up to sampling
uncertainty.

Our goal is to understand what changes to the PSA-DMF
recommendation system should be made, if any. We do not find
strong support to change the existing FTA and NCA scores, nor
the overall risk score and bail recommendation. This is due to
a confluence of factors. Foremost is the conservative nature of
the maximin criterion that yields a strong bias toward the status
quo. We emphasize that failing to find strong evidence to change
the status quo policy does not necessarily imply that the status
quo is desirable.

With the conservative criterion, our analysis is not informa-
tive about the FTA and NCA scores and the overall risk level
due to the design of these algorithms. They have many fine
gradations and in some cases only a single unique combination
of inputs can lead to a particular output. This means that there is
little to extrapolate from and the bounds are uninformative, even
with strong structural assumptions. In contrast, our analysis is
not informative about the binary bail recommendation due to
a combination of identifiability issues and limited sample sizes.
With an additive model, we can only identify impacts for cases
with intermediate FTA and NCA scores, but the sample sizes in
this intermediate area are too small to make strong conclusions.

However, the data do support altering the NVCA flag, even
with this conservative criterion, either by raising the threshold
or by putting less weight on violent convictions and offenses.
Both of these would lead to a more lenient rule that flags fewer
arrestees, and the data support these changes even when the
cost of an NVCA is 8–13 times the cost of triggering the flag.
Stevenson and Mayson (2022) present survey evidence showing
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that 50% of individuals rate being a victim of an assault as bad as
between 5 days and 6 months of detention; implying a cost ratio
for one month of detention between 1

6 and 6. Choosing any ratio
within this range would lead to a change to the system, though
since our focus is on triggering the flag, rather than detention, a
larger benchmark may be more appropriate.

Our analysis serves as an initial proof of concept, probing
various elements of the existing risk assessment system. As
such, there are several limitations and various ways that the
analysis has been simplified. In particular, we place costs on
the algorithmic outputs (the PSA recommendations) rather than
on the resulting human decisions (the judge’s bail decision). In
Appendix D, we directly incorporate the costs of the judges’
decisions, but find that this adds too much statistical uncertainty
to improve reliably upon the existing rule.

Another limitation of our analysis in Section 5.3 is that we
separately consider each outcome and its risk score. Since each
risk score can affect each outcome, all pairs of risk scores and
outcomes could be considered. This issue is also present in
our analysis of the DMF matrix (Section 5.4), where we focus
on NVCAs but the bail recommendations can impact all three
outcomes. A fuller analysis may consider all three risk scores and
the bail recommendation simultaneously for all three outcomes,
using a utility function that incorporates all of the outcomes
and includes measures of costs such as economic and social
outcomes. However, such an analysis may not be informative,
given the limitations in the design and the data discussed above.

An important limitation of our methodology is that learning
algorithmic policies requires making many nontrivial choices.
For example, focusing on the simple setting of changing the
NVCA flag threshold in Section 5.2 requires (a) specifying a
model class; (b) specifying a significance level; and (c) choosing
a utility function, among other things. The analyses in Sec-
tions 5.3 and 5.4 include even more involved analytical and
implementation decisions. Therefore, it is important to examine
the sensitivity of empirical results to these choices.

Choosing the model class can be difficult. With randomized
evaluations of the status quo policy, simple treatment effect
structures may be plausible because treatment effects are often
far less heterogeneous than baseline outcomes. We inspected
the sensitivity and stability of the maximin policy to modeling
choices and hyper-parameters, such as the choice of Lipschitz
constant. Formalizing these heuristics is an important direction
for future work.

Another key choice is the policy class to optimize over. We
recommend choosing a policy class that can lead to limited
adjustments to the baseline policy rather than wholesale
changes. While more flexible policy classes could yield better
results, we are unlikely to achieve them, and large changes to
existing systems may not be practically feasible.

Finally, our methodological approach has a wide range of
potential applications. For transparency and interpretability,
many data-driven algorithms in public policy and medicine are
based on known, deterministic rules rather than randomized
rules. Examples include the SNAP eligibility rule, the MELD
score for liver transplantation, and other risk assessment
instruments used across public policy contexts (see Coston
et al. 2020, and references therein). These instances will all have
identifiability issues due to lack of overlap, and our methodology

addresses this challenge by learning a new, safe policy that
improves upon the status quo.

If the algorithm is designed in such a way that there is little to
extrapolate from—as was the case for the FTA and NCA scores—
our approach is unlikely to be informative. Our methodology
may be more effective when the baseline policy includes multiple
inputs, each with a large region where multiple actions are pos-
sible. This can be true when there are group-specific thresholds
for a common risk score or decision variable, for example as with
school enrollment and loan access, and income limits for social
programs (Zhang, Ben-Michael, and Imai 2023). However, dif-
ferent studies may require other implementation details. For
instance, our study only includes discrete covariates; incorpo-
rating continuous covariates will require additional implemen-
tation work. In addition, analyzing continuous outcomes with
nonlinear utility functions, incorporating other criteria such
as fairness measures, or changing the optimality criterion to
minimax regret, would require additional implementation and
analysis.

Supplementary Materials

The supplementary materials include additional empirical and theoretical
results, a simulation study, and proofs of all theoretical results.
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