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A Notation

Table A.1: Notation.

Paths W t Treatments over the time periods 1, . . . , t

wt Realized treatment assignments for time periods 1, . . . , t

Yt Collection of all potential outcomes for time periods 1, . . . , t

Y t Observed outcomes for time periods 1, . . . , t

Intervention M The number of time periods over which we intervene

h Poisson point process intensity defining the stochastic intervention

Estimands Nt, N
Expected number of outcome-active locations during time period t

for an intervention over M time periods, and their average over time

τMt , τM
Expected change in the number of outcome-active locations

comparing two interventions for time period t and their average

over time

Estimators ŶM
t

Estimated continuous surface the integral of which is used for

calculating N̂t

N̂t, N̂

Estimated expected number of points during time period t for an

intervention taking place over the preceding M time periods, and

their average over time

τ̂Mt , τ̂M
Estimated expected change in the number of outcome-active

locations for time period t comparing two interventions, and their

average over time

Arguments B
The set over which the number of outcome-active locations are

counted

B Theoretical Proofs

B.1 Regularity conditions

For ε > 0, we use Nε(A) to denote the ε−neighborhood of a set A: Nε(A) = {ω ∈ Ω : there exists a ∈
A with dist(ω, a) < ε}. Also, we use ∂B to denote the boundary of B, formally defined as the set of

points for which an open ball of any size centered at them includes points both in and outside B, i.e.,

∂B = {s ∈ Ω such that, for every ε > 0, there exist s1, s2 ∈ Nε(s) for which s1 ∈ B and s2 6∈ B}.
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Regularity conditions for asymptotic results when using the true or estimated propensity score
The following assumption includes regularity conditions which are used to show asymptotic normality

of the estimator based on the true or estimated propensity score:

Assumption A.1. The following three conditions hold.

(a) There exists δY > 0 such that |SYt(wt)| < δY for all t ∈ T and wt ∈ WT .

(b) Let vt = Var
[∏t

j=t−M+1
fh (Wj)

ej(Wj)
NB(Yt) | H

∗
t−M

]
for t ≥ M . Then, there exists v ∈ R+ such that

(T −M + 1)−1
∑T

t=M vt
p→ v as T →∞.

(c) There exists δB > 0 and Q∗ ∈ (1/2, 1) such that

P

(
T∑

t=M

I
(
∃s ∈ SYt ∩NδB(∂B)

)
> T 1−Q∗

)
→ 0, as T →∞.

Assumption A.1(a) states that there is an upper limit on the number of outcome-active locations at any

time period and under any treatment path. In our application, it is reasonable to assume that the number

of insurgent attacks occurring during any day is bounded. In Assumption A.1(b), H
∗
t represents the ex-

panded history preceding Wt+1, including previous treatments, all potential outcomes, and all potential

confounders. Given the assumptions of bounded relative positivity and bounded number of outcome-

active locations, Assumption A.1(b) is a weak condition, as it states that the average of bounded quan-

tities converges. Lastly, Assumption A.1(c) states that the probability that we observe more than T 1−Q∗

time periods with outcome-active locations within a δB−neighborhood of B’s boundary goes to zero as

the number of observed time periods increases. Since the size of the boundary’s neighborhood can be

arbitrarily small, this assumption is also reasonable. Informally, Assumption A.1(c) would be violated

in our study if insurgent attacks occurred at the boundary of region B more often than during
√
T time

periods. As long as the regions B are decided upon substantive interest, we would expect this assump-

tion to be satisfied. Alternatively, regions B can be defined by avoiding setting the region’s boundary at

observed outcome-active locations.

Regularity conditions for asymptotic results when using the estimated propensity score Next,

we formalize the regularity conditions on the propensity score model. These conditions are used for

establishing the asymptotic normality of the estimator based on the estimated propensity score.

Assumption A.2. Assume that the parametric form of the propensity score indexed by γ, f(Wt =

wt | H t−1;γ), is correctly specified and differentiable with respect to γ, and let ψ
(
wt, ht−1;γ

)
=

∂
∂γ

log f(Wt = wt | H t−1 = ht−1;γ) be twice continuously differentiable score functions. Let γ0 de-

note the true values of the parameters, where γ0 is in an open subset of the Euclidean space. Denote
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Ft = H
∗
t−M+1 = {W t−M+1,YT ,X T}, as in the proof of Theorem 1. We assume that the following

conditions hold:

1. (a) Eγ0
[
‖ψ
(
Wt, H t−1;γ0

)
‖2
]
<∞,

(b) There exists a positive definite matrix Vps such that

1

T

T∑
t=1

Eγ0

(
ψ
(
Wt, H t−1;γ0

)
ψ
(
Wt, H t−1;γ0

)> | Ft−1

)
p→ Vps

(c)
1

T

T∑
t=1

Eθ0

[
‖ψ
(
Wt, H t−1;γ0

)
‖2I
(
‖ψ
(
Wt, H t−1;γ0

)
‖ > ε

√
T
)
| Ft−1

]
p→ 0, for all ε > 0,

2. For all k, j, if we denote the kth element of the ψ
(
wt, ht−1;γ

)
vector by ψk

(
wt, ht−1;γ

)
and

Pkjt = ∂
∂γj
ψk
(
Wt, H t−1;γ

)∣∣
γ0

, then Eγ0 [|Pkjt|] < ∞ and there exists 0 < rkj ≤ 2 such that
T∑
t=1

1

trkj
Eγ0 (|Pkjt − Eθ0(Pkjt | Ft−1)|rkj | Ft−1)

p→ 0

3. There exists an integrable function
••

ψ(wt, ht−1) such that
••

ψ(wt, ht−1) dominates the second partial

derivatives of ψ
(
wt, ht−1;γ

)
in a neighborhood of γ0 for all (wt, ht−1).

Assumption A.3. Suppose that ψ
(
wt, ht−1;γ

)
are the score functions of a propensity score model that

satisfies Assumption A.2 with true parameters γ0, and

s(ht−1, wt, yt;γ) =

[
t∏

j=t−M+1

fh(wj)

ej(wj;γ)

]
NB(yt)−NBt(F

M
h ).

Then, the following conditions hold.

1. There exists u ∈ RK such that

1

T −M + 1

T∑
t=M

Eθ0
[
s(H t−1,Wt, Yt;γ0)ψ

(
Wt, H t−1;γ0

)
| Ft−1

] p→ u,

2. If Pjt =
∂

∂γj
s(H t−1,Wt, Yt;γ)

∣∣∣
γ0

, where γj is the jth entry of γ, then there exists rj ∈ (0, 2] such

that
T∑
t=1

1

trj
Eγ0 (|Pjt − Eγ0(Pjt | Ft−1)|rj | Ft−1)

p→ 0.
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Remark A.1. Given the previous assumptions, Assumption A.3 is quite weak. We look at the two parts

separately:

1. For the kth entry, we can write:

1

T −M + 1

T∑
t=M

∣∣Eθ0[s(H t−1,Wt, Yt;γ0)ψk
(
Wt, H t−1;γ0

)
| Ft−1

]∣∣ ≤
≤ 1

T −M + 1

T∑
t=M

√
Eθ0
[
s(H t−1,Wt, Yt;γ0)2 | Ft−1

] √
Eθ0
[
ψk
(
Wt, H t−1;γ0

)2 | Ft−1

]
(Cauchy-Schwarz)

≤ 1

2(T −M + 1)

T∑
t=M

(
Eθ0
[
s(H t−1,Wt, Yt;γ0)2 | Ft−1

]
+ Eθ0

[
ψk
(
Wt, H t−1;γ0

)2 | Ft−1

])
(2ab ≤ a2 + b2)

p→ 1

2
(v + [Vps]kk) .

The proof that the first part converges to v will be shown in Equation (A.5), and the second part is

based on Assumption A.2, where [Vps]kk denotes the kth diagonal entry of Vps. Since the expression

is already bounded at the limit, the assumption that it converges is reasonable. Furthermore, we

have that |uk| ≤ 1
2
(v + [Vps]kk), where uk is the kth entry of u.

2. This assumption limits how much the derivative of s(ht−1, wt, yt;γ) can vary around its conditional

expectation. As we will see in Lemma A.2, this derivative can be re-written as a sum that involves

three terms: the number of outcome active locations, the inverse probability ratios, and the score

functions. The first two of these terms are bounded, and Assumption A.2 already controls how

variable the score functions can be. Thus, this assumption is also reasonable.

B.2 Proofs: The propensity score as a balancing score

Proof of Proposition 1. Note that f(Wt = w | et(w), H t−1) = f(Wt = w | H t−1) = et(w) since et(w)

is a function of H t−1. Therefore, it suffices to show that f(Wt = w | et(w)) = et(w):

f(Wt = w | et(w)) = E[f(Wt = w | H t−1) | et(w)] = E[et(w) | et(w)] = et(w). (A.1)

Proof of Proposition 2.

f
(
Wt = w |W t−1,YT ,X T

)
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= f
(
Wt = w | H t−1,W t−1,YT ,X T

)
(Since H t−1 ⊂ {W t−1,YT ,X T})

= f
(
Wt = w | H t−1

)
(From Assumption 1)

= et(w)

= f(Wt = w | et(w)) (From (A.1))

B.3 Proofs: Asymptotic normality based on the true propensity score

Proof of Theorem 1. Note that the collection of variables temporally precedent to treatment at time

period t is the expanded history H
∗
t−1, defined in Assumption A.1. The expanded history H

∗
t−1 is a

filtration generated by the collection of potential confounders X T , the collection of potential outcomes

YT , and the previous treatments, and satisfies H
∗
t−1 ⊂ H

∗
t .

Let errt = N̂Bt(Fh) − NBt(Fh) be the estimation error for time period t and lag M . We will

decompose errt in two components, one corresponding to the error due to the treatment assignment

(A1t), and the other corresponding to the error due to spatial smoothing (A2t). Since the bandwidth

parameter of the kernel depends on T , we write KbT instead of Kb. Specifically,

errt =

[
t∏

j=t−M+1

fh(Wj)

ej(Wj)

]∫
B

∑
s∈SYt

KbT (ω, s)dω −NBt(F
M
h )

=

[
t∏

j=t−M+1

fh(Wj)

ej(Wj)

]
NB(Yt)−NBt(F

M
h )︸ ︷︷ ︸

A1t

+

[
t∏

j=t−M+1

fh(Wj)

ej(Wj)

][∫
B

∑
s∈SYt

KbT (ω, s)dω −NB(Yt)

]
︸ ︷︷ ︸

A2t

.

(A.2)

We show that

1.
√
T
(

1
T−M+1

∑T
t=M A1t

)
is asymptotically normal, and

2.
√
T
(

1
T−M+1

∑T
t=M A2t

)
converges to zero in probability.

Asymptotic normality of the first error.

We use the central limit theorem for martingale difference series (Theorem 4.16 of van der Vaart (2010))

to establish the asymptotic normality of (T −M + 1)−1
∑T

t=M A1t.

Claim. A1t is a martingale difference series with respect to the filtration Ft = H
∗
t−M+1.
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To prove this, we show that E(|A1t|) <∞ and E(A1t | Ft−1) = E(A1t | H
∗
t−M) = 0. For the first part,

Assumptions 2 and Assumption A.1(a) imply that A1t is bounded and hence E[|A1t|] <∞:

|A1t| ≤

∣∣∣∣∣
t∏

j=t−M+1

fh(Wj)

ej(Wj)
NB(Yt)

∣∣∣∣∣+
∣∣∣NBt(F

M
h )
∣∣∣ ≤ δMW δY + δY (A.3)

For the second part, it suffices to show

E

{[
t∏

j=t−M+1

fh(Wj)

ej(Wj)

]
NB(Yt)

∣∣∣ H∗t−M
}

= NBt(F
M
h ),

where the expectation is taken with respect to the assignment of treatmentsW(t−M+1):t.

E

{[
t∏

j=t−M+1

fh(Wj)

ej(Wj)

]
NB(Yt)

∣∣∣ H∗t−M
}

=

∫ [ t∏
j=t−M+1

fh(wj)

ej(wj)

]
NB

(
Yt
(
W t−M , wt−M+1, . . . , wt︸ ︷︷ ︸

w(t−M+1):t

))
×

f(wt−M+1 | H
∗
t−M)f(wt−M+2 | H

∗
t−M ,Wt−M+1) · · · ×

f(wt | H
∗
t−M ,W(t−M+1):(t−1)) dw(t−M+1):t

=

∫ [ t∏
j=t−M+1

fh(wj)

ej(wj)

]
NB

(
Yt
(
W t−M , wt−M+1, . . . , wt

))
×

f(wt−M+1 | H
∗
t−M)f(wt−M+2 | H

∗
t−M+1) · · · f(wt | H

∗
t−1) dw(t−M+1):t

(because H
∗
t′+1 = H

∗
t′ ∪ {Wt′+1})

=

∫
NB

(
Yt
(
W t−M , wt−M+1, . . . , wt

)) [ t∏
j=t−M+1

fh(wj)

]
dw(t−M+1):t (By Assumption 1)

= NBt(F
M
h ). (A.4)

This proves that A1t is a martingale difference series with respect to filtration Ft−1.

Claim. (T −M + 1)−1
∑T

t=M E{A2
1tI(|A1t| > ε

√
T −M + 1) | Ft−1}

p→ 0 for every ε > 0.

Let ε > 0. Note that A1t is bounded by δY (δMW + 1) (see Equation (A.3)). Choose T0 as

T0 = argmin
t∈N+

{ε
√
t−M + 1 > δY (δMW + 1)}

= argmin
t∈N+

{
t > M − 1 +

[δY (δMW + 1)

ε

]2}
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=

⌈
M − 1 +

[δY (δMW + 1)

ε

]2
⌉
.

Then, for T > T0, we have that ε
√
T −M + 1 > ε

√
T0 −M + 1 > δY (δMW + 1) which leads to

I(|A1t| > ε
√
T +M + 1) = 0 and E(A2

1tI(|A1t| > ε
√
T −M + 1) | Ft−1) = 0. This proves the claim.

We now combine the above claims to establish the asymptotic normality of the first error. Since A1t

has mean zero, E(A2
1t | Ft−1) = Var(A1t | Ft−1), and since NBt(Fh) is fixed,

Var(A1t | Ft−1) = Var

(
t∏

j=t−M+1

fh(Wj)

ej(Wj)
NB(Yt) | H

∗
t−M

)

which yields
1

T −M + 1

T∑
t=M

E(A2
1t | Ft−1)

p→ v, (A.5)

from Assumption A.1(b). Combining these results, using that
√
T/
√
T −M + 1 → 1 and Theorem

4.16 of van der Vaart (2010), we have the desired result,

√
T

(
1

T −M + 1

T∑
t=M

A1t

)
d→ N(0, v).

Convergence to zero of the second error.

The second error compares the integral of the kernel-smoothed outcome surface over the region of inter-

est B with the actual number of points within the set B. We show that as T goes to infinity, and since the

bandwidth of the kernel converges to 0, the error due to kernel smoothing also goes to zero. Specifically,

we will show that
√
T

(
1

T −M + 1

T∑
t=M

A2t

)
p→ 0.

Let ct =
∏t

j=t−M+1 fh(Wj)/ej(Wj), and write

∣∣∣∣∣ 1

T −M + 1

T∑
t=M

A2t

∣∣∣∣∣ =

∣∣∣∣∣∣ 1

T −M + 1

T∑
t=M

ct

∫
B

∑
s∈SYt

KbT (ω; s)dω −NB(Yt)

∣∣∣∣∣∣ .
Then, ∫

B

∑
s∈SYt

KbT (ω; s)dω −NB(Yt)

8



=
∑

s∈SYt∩B

∫
B

KbT (ω; s)dω +
∑

s∈SYt∩Bc

∫
B

KbT (ω; s)dω −NB(Yt)

=
∑

s∈SYt∩B

[
1−

∫
Bc

KbT (ω; s)dω
]

+
∑

s∈SYt∩Bc

∫
B

KbT (ω; s)dω −NB(Yt)

=
∑

s∈SYt∩Bc

∫
B

KbT (ω; s)dω −
∑

s∈SYt∩B

∫
Bc

KbT (ω; s)dω.

This shows that the error from smoothing the outcome surface at time t comes from (1) the kernel weight

from points outside of B that falls within B, and (2) the kernel weight from points inside B that falls

outside B. Using this, we write:∣∣∣∣∣ 1

T −M + 1

T∑
t=M

A2t

∣∣∣∣∣ =∣∣∣∣∣∣ 1

T −M + 1

T∑
t=M

ct

[ ∑
s∈SYt∩Bc

∫
B

KbT (ω; s)dω −
∑

s∈SYt∩B

∫
Bc

KbT (ω; s)dω

]∣∣∣∣∣∣ .
Take ε > 0, and Q ∈ (1/2, Q∗) where Q∗ is the one in Assumption A.1(c). Then, we will show that

P (TQ{| 1
T−M+1

∑T
t=M A2t|} > ε)→ 0 as T →∞, which implies that the second error converges to zero

faster than
√
T (since Q > 1/2).

P

(
TQ

{∣∣∣∣∣ 1

T −M + 1

T∑
t=M

A2t

∣∣∣∣∣
}
> ε

)

= P

(∣∣∣∣∣ 1

T −M + 1

T∑
t=M

ct

[ ∑
s∈SYt∩Bc

∫
B
KbT (ω; s)dω −

∑
s∈SYt∩B

∫
Bc

KbT (ω; s)dω

]∣∣∣∣∣ > ε

TQ

)

≤ P

(
1

T −M + 1

T∑
t=M

ct
∑

s∈SYt∩Bc

∫
B
KbT (ω; s)dω >

ε

2TQ

)
+

P

(
1

T −M + 1

T∑
t=M

ct
∑

s∈SYt∩B

∫
Bc

KbT (ω; s)dω >
ε

2TQ

)
,

where the last equation holds because |A − B| > ε implies that at least one of |A|, |B| > ε/2. Also, since all

quantities are positive, we can drop the absolute value. Then, since ct ≤ δMW from Assumption 2,

P

(
TQ

{∣∣∣∣∣ 1

T −M + 1

T∑
t=M

A2t

∣∣∣∣∣
}
> ε

)

≤ P

(
1

T −M + 1

T∑
t=M

∑
s∈SYt∩Bc

∫
B
KbT (ω; s)dω >

ε

2TQδMW

)
+

9



Figure A.1: Kernel-smoothed outcome surface, and points sinYt , s
out
Yt

as the points closest to the boundary
of B that lie within and outside B respectively. The amount of kernel weight falling within B from
points outside of B is necessarily less or equal to the kernel weight from soutYt

(shaded), and similarly for
sinYt .

P

(
1

T −M + 1

T∑
t=M

∑
s∈SYt∩B

∫
Bc

KbT (ω; s)dω >
ε

2TQδMW

)
.

Use soutYt
to denote the point in SYt that lies outside B and is the closest to B: soutYt = {s ∈ SYt ∩ Bc :

dist(s, B) = min
s′∈SYt∩Bc

dist(s′, B)}. Similarly, sinYt is the point in SYt ∩ B that is closest to Bc. These

points are shown graphically in Figure A.1. Because there are at most δY outcome-active locations, from

the definition of sinYt , s
out
Yt

, and because kernels are defined to be decreasing in distance, we have that

P

(
TQ

{∣∣∣∣∣ 1

T −M + 1

T∑
t=M

A2t

∣∣∣∣∣
}
> ε

)

≤ P

(
1

T −M + 1

T∑
t=M

∫
B

KbT (ω; soutYt )dω >
ε

2TQδMW δY

)

+ P

(
1

T −M + 1

T∑
t=M

∫
Bc

KbT (ω; sinYt)dω >
ε

2TQδMW δY

)

= P

(
T∑

t=M

∫
B

KbT (ω; soutYt )dω >
ε(T −M + 1)

2TQδMW δY

)
︸ ︷︷ ︸

B1

+ P

(
T∑

t=M

∫
Bc

KbT (ω; sinYt)dω >
ε(T −M + 1)

2TQδMW δY

)
︸ ︷︷ ︸

B2

.
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We show that B1, B2 converge to zero separately. Take B1:

B1 = P

(
T∑

t=M

∫
B
KbT (ω; s

out
Yt )dω >

ε(T −M + 1)

2TQδMW δY

∣∣∣∣∣
T∑

t=M

I(soutYt ∈ NδB (∂B)) > T 1−Q∗
)

× P

(
T∑

t=M

I(soutYt ∈ NδB (∂B)) > T 1−Q∗
)

+ P

(
T∑

t=M

∫
B
KbT (ω; s

out
Yt )dω >

ε(T −M + 1)

2TQδMW δY

∣∣∣∣∣
T∑

t=M

I(soutYt ∈ NδB (∂B)) ≤ T 1−Q∗
)

× P

(
T∑

t=M

I(soutYt ∈ NδB (∂B)) ≤ T 1−Q∗
)

From Assumption (c) we have that

P

(
T∑

t=M

I(soutYt ∈ NδB(∂B)) > T 1−Q∗
)

≤ P

(
T∑

t=M

I
(
∃s ∈ SYt ∩NδB(∂B)

)
> T 1−Q∗

)
→ 0,

and limT→∞B1 is equal to

lim
T→∞

P

(
T∑

t=M

∫
B

KbT (ω; soutYt )dω >
ε(T −M + 1)

2TQδMW δY

∣∣∣∣∣
T∑

t=M

I(soutYt ∈ NδB(∂B)) ≤ T 1−Q∗
)
.

Studying the latter quantity, we have that

P

(
T∑

t=M

∫
B

KbT (ω; soutYt )dω >
ε(T −M + 1)

2TQδMW δY

∣∣∣∣∣
T∑

t=M

I(soutYt ∈ NδB(∂B)) ≤ T 1−Q∗
)

≤ P

(
T∑

t=M
soutYt
6∈NδB (∂B)

∫
B

KbT (ω; soutYt )dω >
ε(T −M + 1)

2TQδMW δY
− T 1−Q∗

)

≤ P

(
T∑

t=M
soutYt
6∈NδB (∂B)

∫
ω:‖ω‖>δB

KbT (ω;0)dω >
ε(T −M + 1)

2TQδMW δY
− T 1−Q∗

)

≤ P

(
(T −M + 1)

∫
ω:‖ω‖>δB

KbT (ω;0)dω >
ε(T −M + 1)

2TQδMW δY
− T 1−Q∗

)

= I

(
(T −M + 1)

∫
ω:‖ω‖>δB

KbT (ω;0)dω >
ε(T −M + 1)

2TQδMW δY
− T 1−Q∗

)
(A.6)
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where the first inequality follows from the fact that at most T 1−Q∗ time periods had soutYt
within δB of

set’s B boundary, and
∫
B
KbT (ω; soutYt

) ≤ 1 for those time periods. The second inequality follows from

the fact that during the remaining time periods soutYt
was further than δB from B and

∫
B
KbT (ω; soutYt

) ≤∫
ω:‖ω−soutYt

‖>δB
KbT (ω; soutYt

) =
∫
ω:‖ω‖>δB

KbT (ω;0). The third inequality follows from not excluding the

time periods with soutYt
∈ NδB(∂B). Finally, the last equality holds because there is no uncertainty in the

statement so the probability turns to an indicator.

Since bT → 0 as T → 0, there exists T1 ∈ N such that bT < δB and
∫
ω:‖ω‖>δB

KbT (ω;0)dω = 0 for

all T ≥ T1. Also, since ε(T−M+1)

2TQδMW δY
− T 1−Q∗ →∞, there exists T2 ∈ N such that ε(T−M+1)

2TQδMW δY
− T 1−Q∗ > 1

for all T ≥ T2. Then, for all T ≥ T0 = max{T1, T2} we have that the quantity in Equation (A.6) is equal

to 0, showing that limT→∞B1 = 0. Similarly, we can show that limT→∞B2 = 0.

Combining all of these results we have that

P

(
TQ

{∣∣∣∣∣ 1

T −M + 1

T∑
t=M

A2t

∣∣∣∣∣
}
> ε

)
→ 0,

as T →∞, establishing that the second error converges to zero faster than 1/
√
T .

Proof of Lemma 1. Define Ψt =
[
N̂Bt(F

M
h )
]2 − v∗t . Then, Ψt is a martingale difference series with

respect to Ft = H t−M+1 since the following two hold: (1) E(|Ψt|) < ∞ since Ψt is bounded, and

(2) E(Ψt | Ft−1) = E
{[
N̂Bt(F

M
h )
]2 | H∗t−M}− v∗t = 0. Also, since N̂Bt(F

M
h ) is bounded we have that∑∞

t=M t−2E
(
Ψ2
t

)
<∞. From Theorem 1 in Csörgö (1968) we have that

1

T −M + 1

T∑
t=M

Ψt =
1

T −M + 1

T∑
t=M

[
N̂Bt(F

M
h )
]2 − 1

T −M + 1

T∑
t=M

v∗t
p→ 0.

We use the results above to acquire asymptotic normality of the estimator for the causal effect,

τ̂B(FM
h1
, FM

h2
):

Theorem A.1. Suppose that Assumptions 1 and 2 as well as the regularity conditions (Assumption A.1)

hold. If the bandwidth bT → 0, then we have that

√
T (τ̂B(FM

h1
, FM

h2
)− τB(FM

h1
, FM

h2
))

d→ N(0, η),

as T → ∞, for some η > 0. Finally, an upper bound of the asymptotic variance η can be consistently

estimated by
1

T −M + 1

T∑
t=M

[
τ̂Bt(F

M
h1
, FM

h2
)
]2 p→ η∗ ≥ η.

12



Proof. In order to prove the asymptotic normality of τ̂B(FM
h1
, FM

h2
) we will rely on results in the proof of

Theorem 1 above. Take

τ̂Bt(F
M
h1 , F

M
h2 )− τBt(F

M
h1 , F

M
h2 ) ={

t∏
j=t−M+1

fh2(Wj)

ej(Wj)
−

t∏
j=t−M+1

fh1(Wj)

ej(Wj)

}∫
B

∑
s∈SYt

KbT (ω, s)dω − τBt(F
M
h1 , F

M
h2 ) ={

t∏
j=t−M+1

fh2(Wj)

ej(Wj)
−

t∏
j=t−M+1

fh1(Wj)

ej(Wj)

}
NB(Yt)− τBt(FMh1 , F

M
h2 )︸ ︷︷ ︸

C1t

+

[
t∏

j=t−M+1

fh2(Wj)

ej(Wj)

][∫
B

∑
s∈SYt

KbT (ω, s)dω −NB(Yt)

]
︸ ︷︷ ︸

C2
2t

−

[
t∏

j=t−M+1

fh1(Wj)

ej(Wj)

][∫
B

∑
s∈SYt

KbT (ω, s)dω −NB(Yt)

]
︸ ︷︷ ︸

C1
2t

Following steps identical to showing
√
T
[
(T−M+1)−1

∑T
t=M A2t

]
p→ 0 in the proof of Theorem 1, we

can equivalently show that
√
T
[
(T−M+1)−1

∑T
t=M C1

2t

]
p→ 0 and

√
T
[
(T−M+1)−1

∑T
t=M C2

2t

]
p→ 0.

Therefore, all we need to show is that
√
T
[
(T −M + 1)−1

∑T
t=M C1t

]
d→ N(0, η). We will do so by

showing again that C1t is a martingale difference series with respect to the filtration Ft−1:

1. Since E(|A1t|) <∞, from the triangular inequality we straightforwardly have that E(|C1t|) <∞.

2. Since E(A1t|Ft−1) = 0, we also have that E(C1t|Ft−1) = 0, from linearity of expectation.

Then, using the triangular inequality and Equation (A.3), we have that C1t is bounded by 2δY (δMW + 1).

Then, for ε > 0, choosing T0 = argmin
t∈N+

{ε
√
t−M + 1 > 2δY (δMW + 1)} satisfies that, for T > T0,

E(C2
1tI(|C1t| > ε

√
T −M + 1)|Ft−1) = 0. Combining these results, we have that

√
T
[
τ̂Bt(F

M
h1
, FM

h2
)−

τBt(F
M
h1
, FM

h2
)
]
→ N(0, η).

To show (T −M + 1)−1
∑T

t=M

{[
τ̂Bt(F

M
h1
, FM

h2
)
]2 −E{[τBt(FM

h1
, FM

h2
)
]2|H∗t−M}} p→ 0, the proof

follows exactly the same way as the proof of Lemma 1 and is omitted here.

B.4 Proofs: Asymptotic normality based on the estimated propensity score

We will prove the asymptotic normality of the proposed estimators when the propensity score is esti-

mated using a correctly specified parametric model. We extend Theorem 4.16 of van der Vaart (2010) to
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multivariate martingale difference series. To our knowledge, this result is new even though the related

results exist in the continuous time setting (Küchler et al., 1999; Crimaldi and Pratelli, 2005). Under

some additional assumptions on the martingale series, we show that the solution to the empirical esti-

mating equation is also asymptotically normal. This result will be crucial in establishing the asymptotic

normality of the maximum likelihood estimator for the propensity score model parameters. Finally, we

combine these results and apply them to our specific context.

Theorem A.2 (Central limit theorem for multivariate martingale difference series). LetXt = (X1t, X2t, . . . , XKt)
>

be a multivariate martingale difference series with respect to the filtration Ft in that E[Xt | Ft−1] = 0

and E[‖Xt‖] < ∞, where ‖Xt‖ =
√
X>t Xt =

√∑K
k=1 X

2
kt. Suppose that the following conditions

hold.

1. There exists positive definite matrix V ∈ RK×K such that
1

T

T∑
t=1

E
(
XtX

>
t | Ft−1

)
p→ V ,

2.
1

T

T∑
t=1

E
[
‖Xt‖2I

(
‖Xt‖ > ε

√
T
)
| Ft−1

]
p→ 0, for all ε > 0.

Then, we have,
1√
T

T∑
t=1

Xt
d→ N(0, V ).

Proof. We will use the Cramer-Wold device. We show that for every α = (α1, α2, . . . , αK) ∈ RK , it

holds that α>
1√
T

T∑
t=1

Xt
d→ α>N(0, V ). If this is true, it is implied that

1√
T

T∑
t=1

Xt
d→ N(0, V ).

Clearly, if α is the zero-vector, the result is trivial. So we focus on vectors α such that ‖α‖ 6= 0.

Define Yt = α>Xt. First we show that Yt is a martingale difference series with respect to Ft:

E(|Yt|) ≤
K∑
k=1

|αk|E(|Xkt|) ≤
K∑
k=1

|αk|E(‖Xt‖) <∞, and

E(Yt | Ft−1) =
K∑
k=1

αkE(Xkt | Ft−1) = 0,

since Xt is a martingale difference series with respect to Ft. So Yt is also a martingale difference series

with respect to Ft. Next we will show that the conditions of Theorem 4.16 of van der Vaart (2010) hold
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for Yt. For Condition 2 we will use the fact that αα> is a rank 1 symmetric matrix of dimension K with

only non-zero eigenvalue equal to ‖α‖2, and for that reason X>t αα
>Xt = ‖α‖2X>t Xt = ‖α‖2‖Xt‖2.

Condition 1
1

T

T∑
t=1

E
(
Y 2
t | Ft−1

)
=

1

T

T∑
t=1

E
(
α>XtX

>
t α | Ft−1

)
= α>

1

T

T∑
t=1

E
(
XtX

>
t | Ft−1

)
α

p→ α>V α

(from the first assumption of Theorem A.2)

Condition 2 E
[
Y 2
t I
(
|Yt| > ε

√
n
)
| Ft−1

]
=

= E
[
X>t αα

>Xt I
(
X>t αα

>Xt > ε2n
)
| Ft−1

]
= E

[
‖α‖2‖Xt‖2 I

(
‖α‖2‖Xt‖2 > ε2n

)
| Ft−1

]
= ‖α‖2E

[
‖Xt‖2 I

(
‖Xt‖ >

ε

‖α‖
√
n

)
| Ft−1

]
p→ 0

(From the second condition of the Theorem for ε′ = ε/‖α‖)

Using Theorem 4.16 from van der Vaart (2010):

α>
1√
T

T∑
t=1

Xt =
√
T

1

T

T∑
t=1

Yt
d→ N(0, α>V α)

d
= α>N(0, V ).

Now that a multivariate central limit theorem (CLT) for martingale difference series is established,

we prove the next result which will be crucial in obtaining the asymptotic normality of estimators for the

propensity score parameters. To our knowledge, this result is also new in martingale theory, but a related

result in the iid setting is given as Theorem 5.21 of Van der Vaart (1998).

Theorem A.3 (Asymptotic normality of the solution to the estimating equation). Let θ → s(x, θ) =

(s1(x, θ), s2(θ), . . . , sK(x, θ))> ∈ RK be twice continuously differentiable with respect to θ = (θ1, θ2, . . . , θK)> ∈
Θ, open subset of RK . Suppose that the following conditions hold.

1. s(Xt, θ0) satisfies the conditions of Theorem A.2 under θ0, in that there exists filtration Ft such

that

(a) Eθ0 [s(Xt, θ0) | Ft−1] = 0 and Eθ0 [‖s(Xt, θ0)‖] < ∞ (and therefore it is a martingale

difference series),

(b) ∃ V ∈ RK×K positive definite such that
1

T

T∑
t=1

Eθ0

(
s(Xt, θ0)s(Xt, θ0)> | Ft−1

)
p→ V , and

15



(c)
1

T

T∑
t=1

Eθ0

[
‖s(Xt, θ0)‖2I

(
‖s(Xt, θ0)‖ > ε

√
T
)
| Ft−1

]
p→ 0, for all ε > 0,

2.
1

T

T∑
t=1

Eθ0

(
∂

∂θT
s(Xt, θ)

∣∣∣
θ0
| Ft−1

)
p→ Vd, for Vd ∈ RK×K invertible,

3. for all k, j, if we denote Pkjt =
∂

∂θj
sk(Xt, θ)

∣∣∣
θ0

, we have that Eθ0 [|Pkjt|] < ∞, and there exists

0 < rkj ≤ 2 such that
T∑
t=1

1

trkj
Eθ0 (|Pkjt − Eθ0 [Pkjt | Ft−1]|rkj | Ft−1)

p→ 0,

4. there exists an integrable function
••

ψ(x) such that
••

ψ(x) dominates the second partial derivatives

of sk(x, θ) in a neighborhood of θ0 for all x, and k = 1, 2, . . . , K.

If ΨT (θ) = 1
T

∑T
t=1 s(Xt, θ), and the solution to ΨT (θ) = 0, θ̂T , is consistent for θ0, then

√
T
(
θ̂T − θ0

)
d→ N

(
0, V −1

d V (V −1
d )>

)
.

Proof. We extend the proof of Theorem 5.41 of Van der Vaart (1998) from the iid to the time series

setting. Since the conditions of Theorem A.2 are satisfied under θ0, we have that

1√
T

T∑
t=1

s(Xt, θ0) =
√
TΨT (θ0)→ N(0, V ).

We will use the Taylor expansion for the vector valued ΨT (θ̂) around θ0 = (θ01, θ02, . . . , θ0K)T . To do

so, we define the matrix
•

ΨT (θ) ∈ RK×K and array
••

ΨT (θ) ∈ RK×K×K of first and second derivatives as

[ •

ΨT (θ)
]
kj

=
∂

∂θj
ΨkT (θ)

∣∣∣
θ

=
1

T

T∑
t=1

∂

∂θj
sk(Xt, θ)

∣∣∣
θ

and

[ ••

ΨT (θ)
]
kji

=
∂2

∂θj∂θi
ΨkT (θ)

∣∣∣
θ

=
1

T

T∑
t=1

∂2

∂θj∂θi
sk(Xt, θ)

∣∣∣
θ
,

for i, j, k = 1, 2, . . . , q, where ΨkT is the kth element of the ΨT vector. Then, we can write the Taylor

expansion as

ΨT (θ̂) = ΨT (θ0) +
•

ΨT (θ0)(θ̂T − θ0) +
••

ΨT (θ∗)(θ̂T − θ0, θ̂T − θ0), (A.7)
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where θ∗ is between θ̂T and θ0, and
••

ΨT (θ∗)(θ̂T − θ0, θ̂T − θ0) is a vector of length K with kth entry

K∑
j,i=1

[ ••

ΨT (θ∗)
]
kji

(θ̂Tj − θ0j)(θ̂T i − θ0i),

and θ̂T i is the ith entry of θ̂. Therefore, we can write
••

ΨT (θ∗)(θ̂T − θ0, θ̂T − θ0) as AT (θ̂T − θ0) where AT
is the K ×K matrix which is the result of multiplying the tensor

••

ΨT (θ∗) with the vector θ̂T − θ0 along

the second mode, and it has (k, i) entry equal to

[AT ]ki =
K∑
j=1

[ ••

ΨT (θ∗)
]
kji

(θ̂Tj − θ0j)

For notational simplicity, we do not include θ∗ and θ̂T − θ0 in the notation of AT . Since θ̂ is the solution

to ΨT (θ) = 0, and based on the above, we can re-write Equation (A.7) as

0 = ΨT (θ0) +
•

ΨT (θ0)(θ̂T − θ0) + AT (θ̂T − θ0)

=⇒ −
√
TΨT (θ0) =

√
T
[ •

ΨT (θ0) + AT

]
(θ̂T − θ0)

=⇒ −
√
TΨT (θ0) =

√
T
[ •

ΨT (θ0)− 1

T

T∑
t=1

Eθ0

(
∂

∂θT
s(Xt, θ)

∣∣∣
θ0
| Ft−1

)
︸ ︷︷ ︸

(∗)

+

+
1

T

T∑
t=1

Eθ0

(
∂

∂θT
s(Xt, θ)

∣∣∣
θ0
| Ft−1

)
+ AT︸︷︷︸

(∗∗)

]
(θ̂T − θ0)

We will show that the under-braced terms (K ×K matrices) are oP (1). For the first term (∗), note that

it involves the average over t of the Pkjt terms defined in Condition 3 of the theorem. Clearly, we have

that Eθ0 [Pkjt − Eθ0 [Pkjt | Ft−1] | Ft−1] = 0, and we also have that

Eθ0 [|Pkjt − Eθ0 [Pkjt | Ft−1] |]

= Eθ0

{∣∣∣∣ ∂∂θj sk(Xt, θ)
∣∣∣
θ0
− Eθ0

[
∂

∂θj
sk(Xt, θ)

∣∣∣
θ0
| Ft−1

]∣∣∣∣}
≤ Eθ0

{∣∣∣∣ ∂∂θj sk(Xt, θ)
∣∣∣
θ0

∣∣∣∣}+ Eθ0

{∣∣∣∣Eθ0 [ ∂

∂θj
sk(Xt, θ)

∣∣∣
θ0
| Ft−1

]∣∣∣∣} (Triangle inequality)

≤ Eθ0
{∣∣∣∣ ∂∂θj sk(Xt, θ)

∣∣∣
θ0

∣∣∣∣}+ Eθ0

{
Eθ0

[∣∣∣∣ ∂∂θj sk(Xt, θ)
∣∣∣
θ0

∣∣∣∣ | Ft−1

]}
(Jensen’s inequality)

= 2Eθ0

{∣∣∣∣ ∂∂θj sk(Xt, θ)
∣∣∣
θ0

∣∣∣∣} <∞ (Condition 3)
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So the assumptions of Chow (1965) (Theorem 5), which is also stated in Stout (1974) (Theorem 3.3.1),

are satisfied and we have that

•

ΨT (θ0)− 1

T

T∑
t=1

Eθ0

(
∂

∂θ>
s(Xt, θ)

∣∣∣
θ0
| Ft−1

)

=
1

T

T∑
t=1

[
∂

∂θ>
Xt,i(θ)

∣∣∣
θ0
− Eθ0

(
∂

∂θ>
s(Xt, θ)

∣∣∣
θ0
| Ft−1

)]
p→ 0.

Then for AT we notice that

∣∣∣∣[ ••

ΨT (θ∗)
]
kji

∣∣∣∣ ≤ 1

T

T∑
t=1

∣∣∣∣ ∂2

∂θj∂θi
sk(Xt, θ)

∣∣∣
θ∗

∣∣∣∣ ≤ 1

T

T∑
t=1

••

ψ(Xt),

where the last inequality holds for large T because θ̂T is consistent for θ0 and the parameter space Θ is an

open subset of Rn which imply that θ̂T is within the neighborhood of θ0 that satisfies Condition 4 of the

theorem with probability that tends to 1, and therefore so will θ∗. Since
••

ψ(x) is integrable, the right hand

side above is bounded with probability 1 from the law of large numbers. Then, using Cauchy-Schwarz on

[AT ]ki and since θ̂T is consistent for θ0, we have that [AT ]ki
p→ 0 for all k, i. Therefore, using Condition

2 of the theorem

−
√
TΨT (θ0) =

√
T [Vd + oP (1)](θ̂T − θ0)

which, since Vd is invertible, implies asymptotically that

√
T
(
θ̂T − θ0

)
d→ N

(
0, V −1

d V (V −1
d )>

)
.

Theorem A.3 will be the basis for showing asymptotic normality of our estimators when the propen-

sity score is estimated using a correctly specified parametric propensity score.

Lemma A.1 (Properties of the time series score functions.). If Assumption 1 holds, and ψ
(
wt, ht−1;γ

)
are score functions that satisfy Assumption A.2, then

1. Eγ0 [ψ
(
Wt, H t−1;γ0

)
| Ft−1] = 0, Eγ0

[
‖ψ
(
Wt, H t−1;γ0

)
‖
]
<∞, and

2. Eγ

(
− ∂

∂γ>
ψ
(
Wt, H t−1;γ

)
| Ft−1

)
= Eγ

(
ψ
(
Wt, H t−1;γ

)
ψ
(
Wt, H t−1;γ

)> | Ft−1

)
which in

turn implies that
1

T

T∑
t=1

Eγ0

(
− ∂

∂γ>
ψ
(
Wt, H t−1;γ

)∣∣∣
γ0
| Ft−1

)
p→ Vps, for Vps positive definite,

symmetric and therefore invertible.
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Proof. First, we show that Eγ0
[
‖ψ
(
Wt, H t−1;γ0

)
‖
]
<∞. From Jensen’s inequality we have that

E2
γ0

[
‖ψ
(
Wt, H t−1;γ0

)
‖
]
≤ Eγ0

[
‖ψ
(
Wt, H t−1;γ0

)
‖2
]
<∞,

so this part is shown. The remaining of the proof follows steps similar to the ones in the iid setting while

conditioning on the corresponding filtration. Since ψ
(
wt, ht−1;γ

)
are the score functions, we have that

ψ
(
wt, ht−1;γ

)
f(Wt = wt | H t−1 = ht−1;γ)

=

[
∂

∂γ
log f(Wt = wt | H t−1 = ht−1;γ)

]
f(Wt = wt | H t−1 = ht−1;γ)

=
∂

∂γ
f(Wt = wt | H t−1 = ht−1;γ).

(A.8)

Then,

Eγ [ψ
(
Wt, H t−1;γ

)
| Ft−1] = Eγ

[
ψ
(
Wt, H t−1;γ

)
| H∗t−M

]
= Eγ

{
Eγ

[
ψ
(
Wt, H t−1;γ

)
| H∗t−1

]
| H∗t−M

}
(Since H

∗
t−1 ⊇ H

∗
t−M )

= Eγ

{[∫
ψ
(
wt, H t−1;γ

)
f(Wt = wt | H

∗
t−1)dwt

]
| H∗t−M

}
= Eγ

{[∫
ψ
(
wt, H t−1;γ

)
f(Wt = wt | H t−1)dwt

]
| H∗t−M

}
(Assumption 1)

= Eγ

{[∫
ψ
(
wt, H t−1;γ

)
f(Wt = wt | H t−1;γ)dwt

]
| H∗t−M

}
= Eγ

{[∫ ∂

∂γ>
f(Wt = wt | H t−1;γ)dwt

]
| H∗t−M

}
(Equation A.8)

= Eγ

{ ∂

∂γ>

[ ∫
f(Wt = wt | H t−1;γ)dwt

]
| H∗t−M

}
= 0,

where reversing the integral and derivative is valid using the Leibniz’s rule which requires mild regularity

conditions (continuity of the propensity score and its partial derivatives with respect to γ). The last

equation is equal to zero since the integral of the propensity score over its support is equal to 1, and the

derivative to 1 is equal to 0.

To show the second part, we differentiate Eγ [ψ
(
Wt, H t−1;γ

)
| Ft−1] = 0 with respect to γ:

0 =
∂

∂γ>
Eγ

[
ψ
(
Wt, H t−1;γ

)
| Ft−1

]
=

∂

∂γ>
Eγ

{
Eγ

[
ψ
(
Wt, H t−1;γ

)
| H∗t−1

]
| H∗t−M

}
=

∂

∂γ>
Eγ

{∫
ψ
(
wt, H t−1;γ

)
f(Wt = wt | H t−1;γ)dwt | H

∗
t−M

}
(Assumption 1)

19



= Eγ

{∫ ∂

∂γ>

[
ψ
(
wt, H t−1;γ

)
f(Wt = wt | H t−1;γ)

]
dwt | H

∗
t−M

}
(Leibniz’s rule)

= Eγ

{∫
ψ
(
wt, H t−1;γ

) ∂

∂γ>

[
f(Wt = wt | H t−1;γ)

]
dwt | H

∗
t−M

}
+ Eγ

{∫ [ ∂

∂γ>
ψ
(
wt, H t−1;γ

)]
f(Wt = wt | H t−1;γ)dwt | H

∗
t−M

}
= Eγ

{∫
ψ
(
wt, H t−1;γ

)
ψ
(
wt, H t−1;γ

)>
f(Wt = wt | H t−1;γ)dwt | H

∗
t−M

}
(Equation (A.8))

+ Eγ

{∫ [ ∂

∂γ>
ψ
(
wt, H t−1;γ

)]
f(Wt = wt | H t−1;γ)dwt | H

∗
t−M

}
= Eγ

{∫
ψ
(
wt, H t−1;γ

)
ψ
(
wt, H t−1;γ

)>
f(Wt = wt | H

∗
t−1;γ)dwt | H

∗
t−M

}
+ Eγ

{∫ [ ∂

∂γ>
ψ
(
wt, H t−1;γ

)]
f(Wt = wt | H

∗
t−1;γ)dwt | H

∗
t−M

}
(Assumption 1)

= Eγ

{
Eγ

[
ψ
(
Wt, H t−1;γ

)
ψ
(
Wt, H t−1;γ

)> | H∗t−1

]
| H∗t−M

}
+ Eγ

{
Eγ

[ ∂

∂γ>
ψ
(
Wt, H t−1;γ

)
| H∗t−1

]
| H∗t−M

}
= Eγ

[
ψ
(
Wt, H t−1;γ

)
ψ
(
Wt, H t−1;γ

)> | H∗t−M]+ Eγ

[ ∂

∂γ>
ψ
(
Wt, H t−1;γ

)
| H∗t−M

]
=⇒ Eγ

[
ψ
(
Wt, H t−1;γ

)
ψ
(
Wt, H t−1;γ

)> | H∗t−M] = Eγ

[
− ∂

∂γ>
ψ
(
Wt, H t−1;γ

)
| H∗t−M

]
.

From Condition 1b of Assumption A.2 we have the last result.

Corollary A.1 (Asymptotic normality of spatio-temporal propensity score parameters). Consider a

propensity score model that satisfies Assumption A.2 and therefore the results of Lemma A.1 hold. Theo-

rem A.3 implies that the MLE of the propensity score parameters are asymptotically normal centered at

the true value and with asymptotic variance V −1
ps , as in the iid setting.

Before we state our main theorem we establish a useful Lemma.

Lemma A.2. Aassume that Assumption 1 holds. Letψ
(
wt, ht−1;γ

)
be the score functions of a propensity

score model that satisfies Assumption A.2 as in Lemma A.1 and Ft−1 be as above. For

s(H t−1,Wt, Yt;γ) =

[
t∏

j=t−M+1

fh(Wj)

ej(Wj;γ)

]
NB(Yt)−NBt(F

M
h ),

it holds that

1. Eγ0
[
s(H t−1,Wt, Yt;γ0)ψ

(
Wt, H t−1;γ0

)
| Ft−1

]
= −Eγ0

[
∂

∂γ
s(H t−1,Wt, Yt;γ)

∣∣∣
γ0
| Ft−1

]
,
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2.
∂

∂γl
s(ht−1, wt, yt;γ) = −NB(yt)

[
t∏

j=t−M+1

fh(wj)

ej(wj;γ)

]
t∑

j=t−M+1

ψl
(
wj, hj−1;γ

)
, where we use

ψl
(
wj, hj−1;γ

)
to denote the lth element of the ψ

(
wt, ht−1;γ

)
vector, and

3. similarly
∂

∂γm

∂

∂γl
s(ht−1, wt, yt;γ) is equal to

−NB(yt)

[
t∏

j=t−M+1

fh(wj)

ej(wj;γ)

]{[
t∑

j=t−M+1

∂

∂γm
ψl
(
wj, hj−1;γ

)]
−

−

[
t∑

j=t−M+1

ψm
(
wj, hj−1;γ

)] [ t∑
j=t−M+1

ψl
(
wj, hj−1;γ

)]}

Note: s(H t−1,Wt, Yt;γ0) is the term A1t in the proof of Theorem 1.

Proof.

1. We will show it for M = 1, and the proof for M > 1 is similar. For M = 1, Ft−1 = H
∗
t−1 =

{W t−1,YT ,X T}, we consider

Eγ0
[
s(H t−1,Wt, Yt;γ0)ψ

(
Wt, H t−1;γ0

)
| Ft−1

]
=

∫
s(H t−1, wt, Yt;γ0)ψ

(
wt, H t−1;γ0

)
f(Wt = wt | Ft−1;γ0)dwt

=

∫
s(H t−1, wt, Yt;γ0)ψ

(
wt, H t−1;γ0

)
f(Wt = wt | H t−1 = ht−1;γ0)dwt (Assumption 1)

=

∫
s(H t−1, wt, Yt;γ0)

∂

∂γ
f(Wt = wt | H t−1 = ht−1;γ)

∣∣∣
γ0

dwt (Equation (A.8))

=

∫
∂

∂γ

[
s(H t−1, wt, Yt;γ0)f(Wt = wt | H t−1 = ht−1;γ0)

]
dwt−

−
∫

∂

∂γ
s(H t−1, wt, Yt;γ)

∣∣∣
γ0
f(Wt = wt | H t−1 = ht−1;γ0)dwt

=

∫
∂

∂γ

[
s(H t−1, wt, Yt;γ0)f(Wt = wt | Ft−1;γ0)

]
dwt−

−
∫

∂

∂γ
s(H t−1, wt, Yt;γ)

∣∣∣
γ0
f(Wt = wt | Ft−1;γ0)dwt (Assumption 1)

=
∂

∂γ
Eγ
[
s(H t−1,Wt, Yt;γ) | Ft−1

] ∣∣∣
γ0
− Eγ0

[
∂

∂γ
s(H t−1, wt, Yt;γ)

∣∣∣
γ0
| Ft−1

]
= −Eγ0

[
∂

∂γ
s(H t−1, wt, Yt;γ)

∣∣∣
γ0
| Ft−1

]
where the last equation holds from Equation (A.4). This shows that the expectation is 0, so the

derivative is also 0.
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Note that at the second line of the proof, we would also need the distribution of Yt given the

filtration Ft−1 and the treatment at time period t, Wt = wt. However, given both Ft−1 and Wt, the

variable Yt is no longer random, and it is equal to its potential value Yt(W t−1, wt), whereW t−1 is

specified in Ft−1. We refrain from explicitly including this in the proof for simplicity.

2.

∂

∂γl
s(ht−1, wt, yt;γ)

=
∂

∂γl

[
t∏

j=t−M+1

fh(wj)

ej(wj;γ)
NB(yt)

]

= NB(yt)

[
t∏

j=t−M+1

fh(wj)

][
∂

∂γl

1∏t
j=t−M+1 ej(wj;γ)

]

= −NB(yt)

[
t∏

j=t−M+1

fh(wj)

]
∂
∂γl

∏t
j=t−M+1 ej(wj;γ)[∏t

j=t−M+1 ej(wj;γ)
]2

= −NB(yt)

[
t∏

j=t−M+1

fh(wj)

ej(wj;γ)

]
∂
∂γl

∏t
j=t−M+1 ej(wj;γ)∏t

j=t−M+1 ej(wj;γ)

= −NB(yt)

[
t∏

j=t−M+1

fh(wj)

ej(wj;γ)

]
t∑

j=t−M+1

∂
∂γl
ej(wj;γ)

ej(wj;γ)

= −NB(yt)

[
t∏

j=t−M+1

fh(wj)

ej(wj;γ)

]
t∑

j=t−M+1

ψl−1

(
wj, hj−1;γ

)
. (Equation (A.8))

3. Following a similar procedure we have that

∂

∂γm

∂

∂γl
s(ht−1, wt, yt;γ)

= −NB(yt)

{[
∂

∂γm

t∏
j=t−M+1

fh(wj)

ej(wj;γ)

]
t∑

j=t−M+1

ψl
(
wj, hj−1;γ

)
+

[
t∏

j=t−M+1

fh(wj)

ej(wj;γ)

][
∂

∂γm

t∑
j=t−M+1

ψl
(
wj, hj−1;γ

)]}

= −NB(yt)

{
−

[
t∏

j=t−M+1

fh(wj)

ej(wj;γ)

][
t∑

j=t−M+1

ψm
(
wj, hj−1;γ

)] [ t∑
j=t−M+1

ψl
(
wj, hj−1;γ

)]

+

[
t∏

j=t−M+1

fh(wj)

ej(wj;γ)

][
t∑

j=t−M+1

∂

∂γm
ψl
(
wj, hj−1;γ

)]}
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= −NB(yt)

[
t∏

j=t−M+1

fh(wj)

ej(wj;γ)

]{[
t∑

j=t−M+1

∂

∂γm
ψl
(
wj, hj−1;γ

)]

−

[
t∑

j=t−M+1

ψm
(
wj, hj−1;γ

)] [ t∑
j=t−M+1

ψl
(
wj, hj−1;γ

)]}

Corollary A.2. Part 1 of Lemma A.1 holds for any function s(H t−1,Wt, Yt; γ) for which

Eγ
[
s(H t−1,Wt, Yt;γ) | Ft−1

]
= 0.

(The proof is identical, hence it is omitted.)

We remind one last result from real analysis which we will use in our theorem. We state it here

to avoid unnecessarily complicated notation in the proof of the main theorem. The result extends to

multivariate functions.

Remark A.2. For a function f : R→ R differentiable, if |f ′(x)| ≤ α for x ∈ (x0 − ε, x0 + ε) and some

αinR+, then |f(x)| is also bounded on (x0 − ε, x0 + ε).

Proof. The proof is straightforward using Taylor expansion:

f(x) = f(x0) + f ′(x∗)(x− x0)→ |f(x)| ≤ |f(x0)|+ αε.

Now we can prove our theorem on asymptotic normality of the causal estimators using propensity

scores that are estimated based on a correctly specified propensity score model.

Proof of Theorem 2. We will use Theorem A.3 to show asymptotic normality for the causal estimator

based on the estimated propensity score model.

Remember that H t = {W t,Y t,X t+1}. Then {H t−1,Wt, Yt} = H t \ {Xt−1} is the set of ob-

served variables until (and including) the tth outcome. Let µ ∈ R and γ ∈ RK be the parameters of the

propensity score model with score functions ψ
(
wt, ht−1;γ

)
, and define θ> = (µ,γ>). Again based on

Equation (A.2), we will show the asymptotic normality of the estimator that excludes spatial smooth-

ing. We will them prove that the spatial smoothing does not affect estimation asymptotically because it
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converges to zero faster than T−1/2. Focusing on the first part of the error, define the K + 1 vector

s(H t−1,Wt, Yt ; θ) =


[∏t

j=t−M+1
fh (Wj)

ej(Wj ;γ)

]
NB(Yt)−NBt(F

M
h )− µ

ψ
(
Wt, H t−1;γ

)
 =

(
A1t − µ

ψ
(
Wt, H t−1;γ

) ) ,
where A1t is defined in the proof of Theorem 1. We again work with the filtration Ft = H

∗
t−M+1 =

{W t−M+1,YT ,X T}. We will show that the conditions of Theorem A.3 hold.

Condition 1a We wish to show the expectation of s conditional on the filtration is 0. Since we showed

in the proof of Theorem 1 that

E

{[
t∏

j=t−M+1

fh(Wj)

ej(Wj;γ)

]
NB(Yt) | Ft−1

}
= NBt(F

M
h ),

we have θ>0 = (µ0,γ
>
0 ) = (0,γ>0 ), where γ0 represents the true value for the parametric propensity

score. Then, based on Lemma A.1, we have that Eθ0
[
s(H t−1,Wt, Yt ; θ0) | Ft−1

]
= 0. Also, from

Jensen’s inequality we have that

E2
θ0

[
‖s(H t−1,Wt, Yt ; θ0)‖

]
≤ Eθ0

[
‖s(H t−1,Wt, Yt ; θ0)‖2

]
= Eθ0(A

2
1t) + Eθ0

{
‖ψ
(
Wt, H t−1;γ0

)
‖2
}
<∞

where the first term is finite because A1t is bounded as shown in Equation (A.3), and the second term is

finite based on Assumption A.2.

Condition 1b Since all terms are under the θ0-law, we work with µ = µ0 = 0. We have that

Eθ0

(
s(H t−1,Wt, Yt ; θ0)s(H t−1,Wt, Yt ; θ0)> | Ft−1

)
=

[
Eθ0
[
A2

1t | Ft−1

]
Eθ0
[
A1tψ

(
Wt, H t−1;γ0

)> | Ft−1

]
Eθ0
[
A1tψ

(
Wt, H t−1;γ0

)
| Ft−1

]
Eθ0
[
ψ
(
Wt, H t−1;γ0

)
ψ
(
Wt, H t−1;γ0

)> | Ft−1

]
.

]

Equation (A.5) implies that (T −M + 1)−1

T∑
t=M

Eθ0
[
A2

1t | Ft−1

] p→ v. In addition, due to Assumption

A.2(1b), we also know that (T−M+1)−1

T∑
t=M

Eγ0

(
ψ
(
Wt, H t−1;γ0

)
ψ
(
Wt, H t−1;γ0

)> | Ft−1

)
p→ Vps.

Lastly, Assumption A.3 implies that (T −M + 1)−1

T∑
t=M

Eθ0
[
A1tψ

(
Wt, H t−1;γ0

)
| Ft−1

] p→ u. Since

all the entries of the matrix converge, we are left to show that the resulting matrix is positive definite.
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However, since

M =

[
A2

1t A1tψ
(
Wt, H t−1;γ0

)>
A1tψ

(
Wt, H t−1;γ0

)
ψ
(
Wt, H t−1;γ0

)2

]
is positive definite (easy to check by taking vector x ∈ Rk, not all zero, and showing that x>Mx > 0),

we have that [
v u>

u Vps

]
will also be positive definite.

Condition 1c Take ε > 0 and write

1

T −M + 1

T∑
t=M

Eθ0

[
‖s(H t−1,Wt, Yt ; θ0)‖2I

(
‖s(H t−1,Wt, Yt ; θ0)‖ > ε

√
T
)
| Ft−1

]
=

1

T −M + 1

T∑
t=M

Eθ0

[(
A2

1t + ‖ψ
(
Wt, H t−1;γ0

)
‖2
)
I
(
A2

1t + ‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T

)
| Ft−1

]
=

1

T −M + 1

T∑
t=M

Eθ0

[
A2

1t I
(
A2

1t + ‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T

)
| Ft−1

]
+

1

T −M + 1

T∑
t=M

Eθ0

[
‖ψ
(
Wt, H t−1;γ0

)
‖2 I

(
‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T − A2

1t

)
| Ft−1

]
We start with the second term: Since A2

1t cannot exceed (δMW δY + δY )2 based on Equation (A.3), we
have that

1

T −M + 1

T∑
t=M

Eθ0

[
‖ψ
(
Wt, Ht−1;γ0

)
‖2 I

(
‖ψ
(
Wt, Ht−1;γ0

)
‖2 > ε2T −A2

1t

)
| Ft−1

]
≤ 1

T −M + 1

T∑
t=M

Eθ0

[
‖ψ
(
Wt, Ht−1;γ0

)
‖2 I

(
‖ψ
(
Wt, Ht−1;γ0

)
‖ >

√
ε2T − (δMW δY + δY )2

)
| Ft−1

]
p→ 0,

based on Assumption A.2 and since δMW δY + δY is fixed.

For the first term, since I(A2
1t + ‖ψ

(
Wt, H t−1;γ0

)
‖2) > ε2T implies that at least one of A2

1t and

‖ψ
(
Wt, H t−1;γ0

)
‖2 is greater than ε2T/2, we have that

I
(
A2

1t + ‖ψ
(
Wt, H t−1;γ0

)
‖2) > ε2T

)
≤ I
(
A2

1t > ε2T/2
)

+ I
(
‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T/2

)
.

This leads to

Eθ0

[
A2

1t I
(
A2

1t + ‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T

)
| Ft−1

]
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≤ Eθ0

[
A2

1t I
(
A2

1t > ε2T/2
)
| Ft−1

]
+ Eθ0

[
A2

1t I
(
‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T/2

)
| Ft−1

]
.

In the proof of Theorem 1 we have already shown that because A1t is bounded we have that

1

T −M + 1

T∑
t=M

Eθ0

[
A2

1t I
(
|A1t| >

ε√
2

√
T
)
| Ft−1

]
p→ 0,

and we want to show that

1

T −M + 1

T∑
t=M

Eθ0

[
A2

1t I
(
‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T/2

)
| Ft−1

]
p→ 0.

We write

Eθ0

[
A2

1t I
(
‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T/2

)
| Ft−1

]
= Eθ0

[
A2

1t I
(
‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T/2

)
| A2

1t ≤ ‖ψ
(
wt, ht−1;γ

)
‖2,Ft−1

]
×

× P (A2
1t ≤ ‖ψ

(
wt, ht−1;γ

)
‖2 | Ft−1)+

+ Eθ0

[
A2

1t I
(
‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T/2

)
| A2

1t ≥ ‖ψ
(
wt, ht−1;γ

)
‖2,Ft−1

]
×

× P (A2
1t ≥ ‖ψ

(
wt, ht−1;γ

)
‖2 | Ft−1)

≤ Eθ0

[
‖ψ
(
Wt, H t−1;γ0

)
‖2 I

(
‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T/2

)
| A2

1t ≤ ‖ψ
(
wt, ht−1;γ

)
‖2,Ft−1

]
×

× P (A2
1t ≤ ‖ψ

(
wt, ht−1;γ

)
‖2 | Ft−1)+

+ Eθ0

[
A2

1t I
(
‖A2

1t > ε2T/2
)
| A2

1t ≥ ‖ψ
(
wt, ht−1;γ

)
‖2,Ft−1

]
,

where again the average over time of the last term will be converging to zero in probability since A1t is

bounded and using similar arguments. Using the law of total expectation we can write

Eθ0

[
‖ψ
(
Wt, H t−1;γ0

)
‖2 I

(
‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T/2

)
| Ft−1

]
= Eθ0

[
‖ψ
(
Wt, H t−1;γ0

)
‖2 I

(
‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T/2

)
| A2

1t ≤ ‖ψ
(
wt, ht−1;γ

)
‖2,Ft−1

]
×

× P (A2
1t ≤ ‖ψ

(
wt, ht−1;γ

)
‖2 | Ft−1)+

Eθ0

[
‖ψ
(
Wt, H t−1;γ0

)
‖2 I

(
‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T/2

)
| A2

1t ≥ ‖ψ
(
wt, ht−1;γ

)
‖2,Ft−1

]
×

× P (A2
1t ≥ ‖ψ

(
wt, ht−1;γ

)
‖2 | Ft−1)

≥ Eθ0

[
‖ψ
(
Wt, H t−1;γ0

)
‖2 I

(
‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T/2

)
| A2

1t ≤ ‖ψ
(
wt, ht−1;γ

)
‖2,Ft−1

]
×

× P (A2
1t ≤ ‖ψ

(
wt, ht−1;γ

)
‖2 | Ft−1).
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Since all the terms in the expectations are positive and since (from Assumption A.2) we have that

1

T −M + 1

T∑
t=M

Eθ0

[
‖ψ
(
Wt, H t−1;γ0

)
‖2 I

(
‖ψ
(
Wt, H t−1;γ0

)
‖2 > ε2T/2

)
| Ft−1

]
p→ 0

we also have that

1

T −M + 1

T∑
t=M

{
Eθ0

[
‖ψ
(
Wt, Ht−1;γ0

)
‖2 I

(
‖ψ
(
Wt, Ht−1;γ0

)
‖2 > ε2T/2

)
| A2

1t ≤ ‖ψ
(
wt, ht−1;γ

)
‖2,Ft−1

]
×

× P (A2
1t ≤ ‖ψ

(
wt, ht−1;γ

)
‖2 | Ft−1)

}
p→ 0

which completes the proof that Condition 1c holds.

Condition 2 We denote θ> = (θ1, θ2, . . . , θK+1) = (µ,γ>) and use sk(H t−1,Wt, Yt ; θ) to denote the

kth entry of the s(H t−1,Wt, Yt ; θ) vector. We note that

∂

∂θT
s(H t−1,Wt, Yt ; θ) =

[
−1 ∂

∂γT
s1(H t−1,Wt, Yt ; θ)

0 ∂
∂γT
ψ
(
Wt, H t−1;γ

) ]

Lemma A.1 implies that (T−M+1)−1
∑T

t=M Eγ0

[
∂

∂γT
ψ
(
Wt, H t−1;γ

)∣∣∣
γ0
| Ft−1

]
→ −Vps (invertible).

Assumption A.3 and Lemma A.2 imply that

(T −M + 1)−1

T∑
t=M

Eθ0

(
∂

∂γT
s1(H t−1,Wt, Yt ; θ)

∣∣∣
θ0
| Ft−1

)

= −(T −M + 1)−1

T∑
t=M

Eθ0
[
s1(H t−1,Wt, Yt ; θ0)ψ

(
Wt, H t−1;γ0

)
| Ft−1

]
p→ −uT .

Putting these together we have that

(T −M + 1)−1

T∑
t=M

Eθ0

[
∂

∂θT
s(H t−1,Wt, Yt ; θ)

∣∣∣
θ0
| Ft−1

]
p→

[
−1 −u
0 −Vps

]
.

Since Vps is invertible and the first row is the only one to have a non-zero first element we have that this

limit matrix is invertible.
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Condition 3 We want to show that for all k, j = 1, 2, . . . , K + 1, if we use Pkjt to denote

Pkjt =
∂

∂θj
sk(H t−1,Wt, Yt ; θ)

∣∣∣
θ0
,

then Eθ0|Pkjt| <∞, and there exists 0 < rkj ≤ 2 such that

T∑
t=M

1

trkj
Eθ0
[
|Pkjt − Eθ0 (Pkjt | Ft−1)|rkj | Ft−1

] p→ 0.

For k, j ≥ 2, this is given by Condition 2 of Assumption A.2. For j = 1 and k ≥ 2, we have that

∂

∂θ1

sk(H t−1,Wt, Yt ; θ) = 0,

so the result holds for any rk1. Similarly, for k = j = 1, we have that

∂

∂θ1

s1(H t−1,Wt, Yt ; θ) = −1,

so the result holds for a value r11 ∈ (1, 2]. Therefore, it is left to show that it holds for k = 1 and j ≥ 2.

For k = 1 and j ≥ 2, the condition that there exists 0 < r1j ≤ 2 such that

T∑
t=M

1

tr1j
Eθ0
[
|P1jt − Eθ0 (P1jt | Ft−1)|r1j | Ft−1

] p→ 0

is given by Assumption A.3. So we are left to show that E(|P1jt|) <∞. Lemma A.2 implies that

P1jt =
∂

∂γj−1

s1(H t−1,Wt, Yt ; θ)
∣∣∣
θ0

= −NB(Yt)

[
t∏

t′=t−M+1

fh(Wt′)

et′(Wt′ ;γ0)

]
t∑

t′=t−M+1

ψj−1

(
Wt′ , H t′−1;γ0

)
=⇒ |P1jt| ≤ δY δ

M
W

t∑
t′=t−M+1

∣∣∣ψj−1

(
Wt′ , H t′−1;γ0

)∣∣∣
=⇒ Eθ0 |P1jt| ≤ δY δ

M
W

t∑
t′=t−M+1

Eγ0

∣∣∣ψj−1

(
Wt′ , H t′−1;γ0

)∣∣∣.
Since

E2
γ0

∣∣∣ψj−1

(
Wt′ , H t′−1;γ0

)∣∣∣ ≤ Eγ0

[
ψj−1

(
Wt′ , H t′−1;γ0

)2
]

(Jensen’s inequality)
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≤ Eγ0
[
‖ψj−1

(
Wt′ , H t′−1;γ0

)
‖2
]
<∞, (Assumption A.2)

we have that E|P1jt| <∞.

Condition 4 We want to show that there exists integrable function
••

ψ(x) which dominates the second

partial derivatives of s(ht−1, wt, yt ; θ) in a neighborhood of θ0 for all (wt, ht−1, yt). We consider

derivatives of s(ht−1, wt, yt ; θ) with respect to θm, θl. For k,m, l ≥ 2,

∂

θm

∂

θl
sk(ht−1, wt, yt ; θ) =

∂

γm−1

∂

γl−1

ψk−1

(
wt, ht−1;γ

)
where ψk−1

(
Wt, H t−1;γ

)
is the k − 1 entry of the ψ

(
Wt, H t−1;γ

)
vector. From Condition 3 of As-

sumption A.2, we know that the above is dominated by an integrable function. For k ≥ 2 and if l = 1 or

m = 1 we have that the second partial derivative is equal to 0, since

∂

∂θ1

sk(ht−1, wt, yt ; θ) =
∂

∂µ
ψk−1

(
wt, ht−1;γ

)
= 0.

So for k ≥ 2, all second partial derivatives are dominated by the function in Condition 3 of Assumption

A.2. Then, for k = 1, if at least one of l = 1 or m = 1 we have that the second partial derivative is also

zero, since
∂

∂θ1

s1(ht−1, wt, yt ; θ) =
∂

∂µ
s1(ht−1, wt, yt ; θ) = −1.

So we need to show it only for k = 1, and l,m ≥ 2. From Lemma A.2 we have that

∂2

∂θm∂θl
s1(ht−1, wt, yt ; θ)

= −NB(yt)

[
t∏

j=t−M+1

fh(wj)

ej(wj;γ)

]{[
t∑

j=t−M+1

∂

∂γm−1

ψl−1

(
wj, hj−1;γ

)]

−

[
t∑

j=t−M+1

ψm−1

(
wj, hj−1;γ

)] [ t∑
j=t−M+1

ψl−1

(
wj, hj−1;γ

)]}

Because of Assumption A.1(a) and Assumption 2 we have that

|NB(yt)| ≤ δY and 0 ≤
t∏

j=t−M+1

fh(wj)

ej(wj;γ)
≤ δMW ,
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which implies that

∣∣∣∣ ∂2

∂θm∂θl
s1(ht−1, wt, yt ; θ)

∣∣∣∣ ≤ δY δ
M
W

∣∣∣∣∣
t∑

j=t−M+1

∂

∂γm−1

ψl−1

(
wj, hj−1;γ

)∣∣∣∣∣+
+ δY δ

M
W

∣∣∣∣∣
t∑

j,j′=t−M+1

ψm−1

(
wj, hj−1;γ

)
ψl−1

(
wj′ , hj′−1;γ

)∣∣∣∣∣
≤

t∑
j=t−M+1

δY δ
M
W

∣∣∣∣ ∂

∂γm−1

ψl−1

(
wj, hj−1;γ

)∣∣∣∣+
+

t∑
j,j′=t−M+1

δY δ
M
W

∣∣ψm−1

(
wj, hj−1;γ

)
ψl−1

(
wj′ , hj′−1;γ

)∣∣
We work first with the first term. Since the summation is over M terms with M finite, we only need

to study the quantity in the absolute value. We know from Assumption A.2 that the second partial

derivatives of ψ
(
wt, ht−1;γ

)
are dominated by

••

ψ(wt, ht−1) in a neighborhood of γ0. Assume that this

neighborhood is the ε−ball around γ0 (this always exists since a neighborhood is an open set around γ0).

Then, from Remark A.2 we know that∣∣∣∣ ∂

∂γm−1

ψl−1

(
wj, hj−1;γ

)∣∣∣∣ ≤ ∣∣∣∣ ∂

∂γm−1

ψl−1

(
wj, hj−1;γ

)∣∣∣
γ0

∣∣∣∣+ ε K
••

ψ(wt, ht−1),

where the K appears because we consider all K second partial derivatives which are all bounded by
••

ψ.

From Assumption A.2(2), we have that the quantity on the right has finite expectation and is fixed in γ.

Therefore, it is an integrable function that dominates the first partial derivatives of ψ
(
wt, ht−1;γ

)
in a

neighborhood of γ0 for all l,m. Denote the maximum of these functions over l,m by
••

ψ1(wt, ht−1).

We now turn our attention to the second term. Since (using again Remark A.2)

∣∣ψm−1

(
wj, hj−1;γ

)∣∣ ≤ ∣∣ψm−1

(
wj, hj−1;γ0

)∣∣+ ε K
••

ψ1(wt, ht−1),

andEγ0
[∣∣ψm−1

(
wj, hj−1;γ0

)∣∣] <∞ from Assumption A.2, we have that this quantity is also dominated

by an integrable function that is constant in γ. Denote the maximum of these functions over m as
••

ψ2(wt, ht−1).

Putting these together we have that∣∣∣∣ ∂2

∂θm∂θl
s1(ht−1, wt, yt ; θ)

∣∣∣∣ ≤MδY δ
M
W

••

ψ1(wt, ht−1) +M2δY δ
M
W

[ ••

ψ2(wt, ht−1)
]2

,

where the right hand side is integrable. By defining taking the maximum of the quantity on the right
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hand side and
••

ψ(wt, ht−1) for each (wt, ht−1) we have that the condition holds using this new integrable

function.

Consistency of the solution The last condition of Theorem A.3 that we need to show is that the so-

lution to
∑T

t=M s(H t−1,Wt, Yt ; θ) = 0 is consistent for θ0. Since the estimator of the propensity

score parameters based on the score functions are consistent, we only need to show that the solution to∑T
t=M s1(H t−1,Wt, Yt ; θ) = 0 is consistent for µ0 = 0.

Since the estimator based on the true propensity score was shown to be consistent in Theorem 1, the

propensity score estimators γ̂ are consistent for γ, s1(H t−1,Wt, Yt ; θ) is a continuous function of the

propensity score which is itself continuous in γ, using Slutsky’s theorem we have that the solution to∑T
t=M s1(H t−1,Wt, Yt ; θ) = 0 using the estimated propensity score parameters is also consistent.

Asymptotic normality of the estimator without spatial smoothing Since the conditions of Theo-

rem A.3 are satisfied, we have that the solution θ̂T to
∑T

t=M s(H t−1,Wt, Yt ; θ) = 0 are asymptotically

normal with √
T
(
θ̂T − θ0

)
d→ N (0, Vθ) ,

where Vθ = A−1B (A−1)
T for

A =

[
−1 −uT

0K −Vps

]
and B =

[
v uT

u Vps

]
. (A.9)

As a result, focusing on the first entry of θ̂ and since µ0 = 0, we have that

√
T
{

(T −M + 1)−1

T∑
t=M

[
t∏

j=t−M+1

fh(Wj)

ej(Wj;γ)

]
NB(Yt)︸ ︷︷ ︸

estimator without spatial smoothing

−NB(FM
h )
}
→ N (0, ve) ,

where ve = [Vθ]11 is the (1, 1) entry of Vθ.

Asymptotic normality of the estimator with spatial smoothing To prove the asymptotic normality

of the estimator with spatial smoothing (our proposed estimator in Equation (8)), we again decompose

the estimation error in two components like in Equation (A.2) for the proof of Theorem 1. We write

errt =

[
t∏

j=t−M+1

fh(Wj)

ej(Wj;γ)

]
NB(Yt)−NBt(F

M
h )︸ ︷︷ ︸

A1t
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+

[
t∏

j=t−M+1

fh(Wj)

ej(Wj;γ)

][∫
B

∑
s∈SYt

KbT (ω, s)dω −NB(Yt)

]
︸ ︷︷ ︸

A2t

,

where we use the parametric propensity score. We showed the asymptotic normality based on A1t, so

we are left to show that
√
T
(

(T −M + 1)−1
∑T

t=M A2t

)
p→ 0. In the proof of Theorem 1 we already

showed that the above result holds. The proof there can be directly used here also if the known propensity

score is used (instead of the estimated one). By re-defining the terms ct defined there to use the estimated

propensity score as

ct =
t∏

j=t−M+1

fh(Wj)

ej(Wj;γ)
,

it suffices to show that ct is bounded, and the steps of the proof with the known propensity score will

follow identically. But since the propensity score et(w;γ) is continuous in γ (since it is differentiable),

the function 1/x is continuous for x > 0, and fh(wj)/ej(wj;γ0) ≤ δW then ct will be bounded in a

neighborhood of γ0. And since γ̂
p→ γ0, γ̂ will be in the neighborhood of γ0 with probability 1 as T

increases, so ct will be bounded.

Putting these results together we have asymptotic normality of the spatially smoothed estimator and

√
T
(
N̂B(FM

h )−NB(FM
h )
)

d→ N (0, ve) .

Proof of Theorem 3. The asymptotic variance ve corresponds to the (1, 1) entry of the matrixA−1B(A−1)>,

where A,B are defined in Equation (A.9).

A−1B(A−1)> =

[
1 uT

0K Vps

]−1 [
v u>

u Vps

]
[

1 u>

0K Vps

]−1

>

=

[
1 −u>V −1

ps

0K V −1
ps

][
v u>

u Vps

][
1 0K

−V −1
ps u V −1

ps

]

=

[
v − u>V −1

ps u 0>K

. . . . . .

][
1 . . .

−V −1
ps u . . .

]

=

[
v − u>V −1

ps u . . .

. . . . . .

]

so ve = v − u>V −1
ps u, and since Vps is positive definite and therefore V −1

ps is positive definite we have

that u>V −1
ps u ≥ 0 and ve ≤ v.
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B.5 Asymptotics for an increasing number of independent regions

All the asymptotic results that have been discussed up to now correspond to the scenario where 1 region

is observed repeatedly over time, and the asymptotic properties are derived when the number of time

periods T increases to infinity. However, there might also be interest in situations where the number of

time periods is fixed, but there exist an increasing number of independent-acting regions.

Here we consider this related but separate scenario. We start by defining relevant estimands in this

setting, ensuring that these new estimands are as closely comparable to the estimands in the manuscript.

We propose similar estimators, and derive the asymptotic properties of the new estimators when the

number of regions R goes to infinity.

B.5.1 Estimands for independently-acting regions For this scenario, we decompose the treatments,

potential outcomes, outcomes, and history over all the regions to region-specific components and write

wt = (w1t, w2t, . . . , wRt), wt = (w1t,w2t, . . . ,wRt), Yt(wt) = (Y1t(wt), Y2t(wt), . . . , YRt(wt)), Yt =

(Y1t, Y2t, . . . , YRt), and H t = (H1t, H2t, . . . , HRt), where Hrt = {W rt,Y rt,Xr(t+1)}. We make the

following assumption that describes that the regions do not interfere spatially, and that treatment assign-

ment is local within regions:

Assumption A.4 (Independently acting spatial regions). We assume the following:

1. For wt,w
′
t such that wrt = w′rt, we have that Yrt(wt) = Yrt(w

′
t) (and a similar assumption for

the time-varying covariates), and

2. the treatment assignment of region r at time t does not depend on unobserved potential outcomes

or potential time varying covariates, nor on any information from other regions, denoted asWrt ⊥
⊥ H t−1,YT ,X T | Hr(t−1).

This assumption allows us to denote potential outcomes using their region-specific treatments only, and

write Yt(wt) = (Y1t(w1t), Y2t(w2t), . . . , YRt(wRt)). It also allows us to think of the R regions as com-

pletely separately acting regions, as outcomes, covariates and treatments of one region do not depend on

any information of any other region. Based on this assumption, we can use YrT to denote the collection

of potential outcomes for region r over all time periods and for any regional treatment path (and similarly

for covariates).

For the purpose of this section only, we also assume the temporal carryover effect is limited to up to

some lag MY . Specifically, we assume that the outcome at time t can only depend on treatments during

the preceding MY time periods, formalized as

Assumption A.5 (Limited temporal carryover effect). There exists positive integer MY such that for

wrt,w
′
rt for which wrτ = w′rτ for all τ = t−MY + 1, . . . , t− 1, t, it holds that Yrt(wrt) = Yrt(w

′
rt).
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We start by defining region and time specific estimands that are as closely related to the estimands

defined in Section 3. We again focus on point pattern treatments and outcomes and on estimands that

represent the number of outcome active locations in each region. For simplicity we focus on the scenario

where the temporal carryover lag MY and the intervention length M are both equal to 1, but we note that

the results would also follow in all scenarios where M ≥MY .

Let Fh be a stochastic treatment assignment that is constant across regions. The stochastic inter-

vention can depend on baseline covariates of the regions, but we refrain for explicitly denoting that for

simplicity. We define the expected number of outcome active locations at region r at time t as

Nrt(Fh) =

∫
wrt

Nr

(
Yrt(W r(t−1), wrt)

)
dFh(wrt) =

∫
wrt

Nr

(
Yrt(wrt)

)
dFh(wrt),

where we define the estimand as in the first equation to be more closely related to the estimands in §3,

and the second equation holds because of Assumption A.5 for MY = 1. We specify region-specific

estimands, averaged over time, as

Nr(Fh) =
1

T

T∑
t=1

Nrt(Fh),

and estimands averaged over region and time as

N(Fh) =
1

R

R∑
r=1

Nr(Fh) =
1

R

R∑
r=1

1

T

T∑
t=1

Nrt(Fh).

B.5.2 Estimators for independently-acting regions Like in Section 4, assume that Fh admits density

fh . Based on Assumption A.4, we can separate the treatment assignment over all regions to the treatment

assignment of each region separately, as

et(wt) =
R∏
r=1

ert(wrt)

where ert(wrt) = f(Wrt = wrt | Hr(t−1)) is the region-specific propensity score. We propose corre-

sponding region and time-specific estimator

N̂rt(Fh) =
fh(Wrt)

ert(Wrt)
Nr(Yrt),
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where we use Nr(Yrt) to denote the number of outcome active locations in the observed outcome for

region r at time t. We also propose the corresponding estimators averaged over time and over regions as

N̂r(Fh) =
1

T

T∑
t=1

N̂rt(Fh) and N̂(Fh) =
1

R

T∑
r=1

N̂r(Fh).

B.5.3 Consistency and asymptotic normality for independent-acting regions We will show the

consistency and asymptotic normality of these estimators when the propensity score is known for an

increasing number of independently acting regions. The proof here follows closely the proof in Pa-

padogeorgou et al. (2019) for weighting estimators under a known propensity score and for stochastic

interventions. We do not show the asymptotic properties of an estimator based on a correctly spec-

ified parametric propensity score, since, once the baseline conditions for the known propensity score

are established, the proof for the estimated propensity score would resemble the corresponding proof in

Papadogeorgou et al. (2019).

To establish the asymptotic properties for an increasing number of regions, we first assume that our

observed regions are a random sample from some super-population of regions. Let (YrT ,X rT ,W rT )

be a draw from a super-population distribution F sp. We assume that Assumption A.4 holds over F sp

and we make the following super-population positivity assumption for the independent regions (which

resembles the one in Assumption 2):

Assumption A.6 (Positivity of treatment assignment in the super-population). There exists δW such that

ert(wrt) > δW · fh(wrt) for all treatment point patterns wrt.

We also assume that there is a bounded number of outcome active locations within each region, similarly

to Assumption A.1(a), but region-specific:

Assumption A.7. There exists δY > 0 such that Nr(Yrt(wrt)) < δY with probability 1 over F sp, where

wrt is any possible treatment path.

Theorem A.4. If Assumptions A.4, A.5 and A.6 hold, then, for R → ∞, N̂(Fh) is consistent for N(Fh)

and
√
R
(
N̂(Fh)−N(Fh)

)
→ N(0, σ2), for some σ2 > 0, where N(Fh) is the super-population esti-

mand defined as N(Fh) = EF sp
[
Nr(Fh)

]
.

Proof. LetDr = (W T ,Y T ,XT ) denote all observed data for region r, andD = (D1,D2, . . . ,DR). We

define

ψr(Dr;µ) =

(
1

T

T∑
t=1

fh(Wrt)

ert(Wrt)
Nr(Yrt)

)
− µ
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and ΨR(D;µ) =
∑T

r=1 ψr(Dr;µ). Then obviously the estimator µ̂ = N̂(Fh) is the solution to ΨR(D;µ) =

0. Then we calculate the solution to Ψsp(µ) = EF sp(ψr(Dr;µ)) = 0 which is equal to

µ0 = EF sp

[
1

T

T∑
t=1

fh(Wrt)

ert(Wrt)
Nr(Yrt)

]

=
1

T

T∑
t=1

EF sp

[
fh(Wrt)

ert(Wrt)
Nr(Yrt)

]

=
1

T

T∑
t=1

∫
YrT ,X rT

∫
wr1

∫
wr2

· · ·
∫
wrt

fh(wrt)

ert(wrt)
Nr(Yrt(wrt)) dF sp(YrT ,X rT ,wrt)

=
1

T

T∑
t=1

∫
YrT ,X rT

∫
wr1

∫
wr2

· · ·
∫
wr(t−1)[∫

wrt

fh(wrt)

ert(wrt)
Nr(Yrt(wrt))fWrt(wrt |W r(t−1) = wr(t−1),YrT ,X rT ) dwrt

]
dF sp(YrT ,X rT ,wr(t−1))

=
1

T

T∑
t=1

∫
YrT ,X rT

∫
wr1

∫
wr2

· · ·
∫
wr(t−1)

[∫
wrt

fh(wrt)

ert(wrt)
Nr(Yrt(wrt))fWrt(wrt | Hr(t−1)) dwrt

]
dF sp(YrT ,X rT ,wr(t−1)) (From Assumption A.4)

=
1

T

T∑
t=1

∫
YrT ,X rT

∫
wr1

∫
wr2

· · ·
∫
wr(t−1)

[∫
wrt

fh(wrt)Nr(Yrt(wrt)) dwrt

]
dF sp(YrT ,X rT ,wr(t−1))

(From the definition of the region-specific propensity score)

=
1

T

T∑
t=1

EF sp
[
Nrt(Fh)

]
= EF sp

[
Nr(Fh)

]
Consistency We use an alteration of Lemma A in Section 7.2.1 of Serfling (1980). Since ψr(Dr;µ) is

monotone in µ with ∂ψr(Dr;µ)/∂µ = −1 < 0, we have that ΨR(D;µ) and Ψsp(µ) are also monotone

which implies uniqueness of their roots, µ̂ and µ0. From the strong law of large numbers we have that

ΨR(D;µ)
a.s.→ Ψsp(µ), and

|Ψsp(µ̂)−Ψsp(µ0)| = |Ψsp(µ̂)−ΨR(µ̂)| ≤ sup
µ
|Ψsp(µ)−ΨR(µ)| → 0,

which, by the uniqueness of the roots for Ψsp and ΨR implies that N̂(Fh)
as→ N(Fh) and N̂(Fh) is

consistent for N(Fh).
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Asymptotic normality For asymptotic normality we will use Theorem A in Section 7.2.2 of Serfling

(1980). We have already shown that µ0 is an isolated root of Ψsp(µ) = 0 (since it is unique) and that

ψr(Dr;µ) is monotone in µ. We also have that Ψsp(µ) is differentiable in µ with ∂
∂µ

Ψsp(µ) = −1 6= 0.

Lastly we will show that EF sp [ψ2
r(Dr;µ)] is finite in a neighborhood of µ0. To do so, consider µ in an

ε-neighborhood of µ0, µ ∈ (µ0 − ε, µ0 + ε). Then

EF sp
[
ψ2
r(Dr;µ)

]
= EF sp


[

1

T

T∑
t=1

fh(Wrt)

ert(Wrt)
Nr(Yrt)− µ

]2


= EF sp


∣∣∣∣∣ 1

T

T∑
t=1

fh(Wrt)

ert(Wrt)
Nr(Yrt)− µ

∣∣∣∣∣
2


≤ EF sp


[

1

T

T∑
t=1

fh(Wrt)

ert(Wrt)
Nr(Yrt) + |µ|

]2
 (Triangle inequality)

= EF sp


[

1

T

T∑
t=1

fh(Wrt)

ert(Wrt)
Nr(Yrt)

]2
+ 2|µ|EF sp

[
1

T

T∑
t=1

fh(Wrt)

ert(Wrt)
Nr(Yrt)

]
+ µ2

≤ EF sp


[

1

T

T∑
t=1

δW δY

]2
+ 2|µ|EF sp

[
1

T

T∑
t=1

δW δY

]
+ |µ|2

= (δW δY )2 + 2|µ|δW δY + µ2

where we used that all terms in the summation are positive along with Assumptions A.6 and A.7. Since

µ ∈ (µ0 + ε, µ0 + ε) it is bounded, so the expectation above exists.

Then, since all the conditions of the theorem are satisfied we have that

√
R
(
N̂(Fh)−N(Fh)

)
→ N(0, σ2),

where σ2 = EF sp [ψ2
r(Dr;µ0)].

C The Hájek Estimator

The standardization of weights used in the Hájek estimator is known to be effective in the settings where

the weights are extreme. Its sample boundedness property guarantees that the resulting estimate is always

within the range of the observed outcome. In our case, the Hájek estimator replaces the division by

T −M + 1 with that by
∑T

t=M wt where wt is the product of fractions in Equation (6). For example,

N̂B(FM
h )Hájek =

1∑T
t=M wt

T∑
t=M

N̂Bt(F
M
h )
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The new martingale theorem stated in Theorem A.3 can be used in future research to show that the

Hájek estimator is consistent and asymptotically normal, and derive the functional form of its asymptotic

variance. However, for now, we use a heuristic approach to estimating the variance bound of the Hájek

estimator. Since the Hájek estimator simply rescales the corresponding IPW estimator by (T −M +

1)/
∑T

t=M wt, we scale the variance bound derived for the estimator by [(T −M + 1)/(
∑T

t=M wt)]
2.

D Sensitivity analysis

In this section we discuss sensitivity analysis for the IPW estimators. In the main text of the manuscript

we discuss sensitivity analysis for the Hájek estimator, which is admittedly a much harder problem due

to the standardization of weights performed in the Hájek correction.

In this section we discuss sensitivity analysis based on the IPW estimator. We quickly see that

bounding the estimator for different amounts of propensity score misspecification Γ can be directly

achieved by solving a linear program. We can similarly bound the causal effect estimator exactly. In

contrast, in the main text, bounding the value of the Hájek estimator requires additional tools to transform

the problem to a linear program. This transformation forbids us from bounding the effect estimator

exactly and forces us to acquire possibly conservative bounds for the effect estimator (see Theorem 4).

D.1 For the IPW estimator

We focus again on bounding the estimators for intervention over a single time period, though extensions

to multiple time periods are direct, and discussed in more detail for the Hájek estimator in Appendix D.2.

The IPW estimators that use the correct propensity score can be written as:

N̂ρ(Fh) =
1

T

T∑
t=1

ρt wt(Fh) ÑB(Yt), and

τ̂ρ(Fh1 , Fh2) =
1

T

T∑
t=1

ρt wt(Fh2) ÑB(Yt)−
1

T

T∑
t=1

ρt wt(Fh1) ÑB(Yt)

=
1

T

T∑
t=1

ρt
[
wt(Fh2)− wt(Fh1)

]
ÑB(Yt)

where

wt(Fh) =
fh(Wt)

et(Wt)
and ÑB(Yt) =

∫
B

∑
s∈SYt

Kb(‖ω − s‖)dω.

Both of the IPW estimators N̂ρ(Fh) and τ̂ρ(Fh1 , Fh2) are linear in ρ, so finding their maximum/minimum

over ρt ∈ [Γ−1,Γ]T for each t is a linear problem and can be easily solved.
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D.2 For the Hájek estimator

The standardization of the weights in the Hájek estimator implies that maximizing/minimizing the value

of the estimator is no longer linear in ρt. This is evident in the form of the Hájek estimator for the number

of points and the effect in a region, defined respectively as∑T
t=1 ρt wt(Fh) ÑB(Yt)∑T

t=1 ρt wt(Fh)
and

∑T
t=1 ρt wt(Fh2) ÑB(Yt)∑T

t=1 ρt wt(Fh2)
−
∑T

t=1 ρt wt(Fh1) ÑB(Yt)∑T
t=1 ρt wt(Fh1)

where

wt(Fh) =
fh(Wt)

et(Wt)
and ÑB(Yt) =

∫
B

∑
s∈SYt

Kb(‖ω − s‖)dω.

Theorem 4 states that bounding the estimator for the expected number of points N̂ρ(Fh) can be

transformed to a linear problem. However, the standardization of weights in the Hájek estimator and the

fact that our estimator is the difference of two linear fractionals forbids us to see the problem of bounding

the effect estimator τ̂ρ(Fh1 , Fh2) the same way.

Proof of Theorem 4. We view the problem of bounding N̂ρ(Fh2) as a maximization/minimization prob-

lem of a linear fractional with positive denominator. These problems have been previously studied, and it

has been shown that they can be transformed to a linear programming problem using the Charnes-Cooper

transformation (Charnes and Cooper, 1962). The theorem states this transformation in the context of our

estimator.

For the problem of bounding the effect estimator, the objective can be written as,

τ̂ρ(Fh1 , Fh2) =

∑T
t=1 ρt wt(Fh2) ÑB(Yt)∑T

t=1 ρt wt(Fh2)
−
∑T

t=1 ρt wt(Fh1) ÑB(Yt)∑T
t=1 ρt wt(Fh1)

= N̂ρ(Fh2)− N̂ρ(Fh1).

Thus, maximizing τ̂ρ(Fh1 , Fh2) over ρ ∈ [Γ−1,Γ]T is equivalent to maximizing N̂ρ(Fh2)− N̂ρ(Fh1) over

the same region for ρ. Since the space (ρ1,ρ2) ∈ [Γ−1,Γ]2T includes (ρ1,ρ2) where ρ1 = ρ2 as a

subspace, we have that

max
ρ∈[Γ−1,Γ]T

{
N̂ρ(Fh2)− N̂ρ(Fh1)

}
≤ max

(ρ1,ρ2)∈[Γ−1,Γ]2T

{
N̂ρ2(Fh2)− N̂ρ1(Fh1)

}
= max
ρ2∈[Γ−1,Γ]T

{
N̂ρ2(Fh2)

}
− min
ρ1∈[Γ−1,Γ]T

{
N̂ρ1(Fh1)

}
,

where the last equality holds since N̂ρj(Fhj) ≥ 0. Similarly, we can derive the bound for the minimum

of τ̂ρ(Fh1 , Fh2).
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Next, we derive similar conservative bounds for the estimators corresponding to the interventions

over multiple time periods. Recall that the Hájek estimator for the number of events in region B under a

stochastic intervention is given by,

∑T
t=M wt(F

M
h ) ÑB(Yt)∑T

t=M wt(FM
h )

, where wt(F
M
h ) =

t∏
j=t−M+1

fh(Wj)

ej(Wj)
.

So, our sensitivity analysis would search to find the bounds of

N̂ρ(F
M
h ) =

∑T
t=M

(∏t
j=t−M+1 ρj

)
wt(F

M
h ) ÑB(Yt)∑T

t=M

(∏t
j=t−M+1 ρj

)
wt(FM

h )

over ρ ∈ [Γ−1,Γ]. Since each ρt can take a value in [Γ−1,Γ], the sensitivity analysis weights in the

Hájek estimator for multiple time periods,
∏

j=t−M+1 ρj , take a value in [Γ−M ,ΓM ]. Therefore the set

{α ∈ [Γ−M ,ΓM ]} includes all vectors of length T whose tth entry can be written as
∏t

j=t−M+1 ρt for

some vector ρ. Using the argument similar to that of Theorem 4, we have

min
ρ∈[Γ−1,Γ]

{
N̂ρ(F

M
h )
}
≥ min
α∈[Γ−M ,ΓM ]

{∑T
t=M αt wt(F

M
h ) ÑB(Yt)∑T

t=M αt wt(FM
h )

}
,

max
ρ∈[Γ−1,Γ]

{
N̂ρ(F

M
h )
}
≤ max
α∈[Γ−M ,ΓM ]

{∑T
t=M αt wt(F

M
h ) ÑB(Yt)∑T

t=M αt wt(FM
h )

}
.

The quantities on the right can be computed by turning the linear fractional problem to a linear problem

via the Charnes-Cooper transformation. Then, we can use these quantities as the conservative bounds for

the minimum and maximum of our target quantities. Based on these bounds, we can again use Theorem 4

to acquire conservative bounds of the effect of changing the intervention for interventions over multiple

time periods.

E Additional Simulation Results on the Iraq-based scenario

E.1 Asymptotic Variance and Bound, and Estimated Variance Bound

Figure 5 shows the average (over 200 simulated data sets) of the true asymptotic standard deviation

and true bound as well as the estimated standard deviation bound of the IPW estimator for the average

potential outcome using the true propensity score, for interventions taking place over M ∈ {1, 3} time

periods. Figure A.2 is a similar plot for the interventions taking place over M = 1, 3, and 7 (rows) time

periods, and observed time series of length T = 200, 400, 500 (columns). These plots show the median

and interquartile range of the asymptotic standard deviation, true bound, and estimated bound over 200
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simulated data sets.

We begin by focusing on low uncertainty scenarios, corresponding to the interventions taking place

over M = 1 or 3 time periods with the distribution resembling the actual data generating mechanism.

We think that the intervention distribution resembles the data generating mechanism in scenarios where

the intervention intensity is close to 5, which is the average number of treatment-active locations for

the data generating process. In these scenarios, the asymptotic variance bound is distinctly higher than

the true asymptotic variance, indicating that the inference based on the true asymptotic bound would be

conservative. We find that in these low uncertainty scenarios, the estimated bound is close to the true

bound. For that reason, we would expect the confidence intervals for the IPW estimator based on the

estimated bound to have a higher coverage probability than its nominal coverage (see Appendix E.2 for

the coverage results).

In contrast, under high uncertainty scenarios such as the interventions over longer time periods,

e.g., M = 7, the asymptotic standard deviation and theoretical bound are essentially indistinguishable.

However, under these scenarios, the estimate of the theoretical bound tends to be biased downwards,

suggesting that the confidence intervals for the IPW estimator based on the estimated bound would be

anti-conservative. Furthermore, we expect it to take a longer time series in order for the estimated bound

to converge to its theoretical value when the intervention takes place over a longer time period.

E.2 Coverage of the Confidence Intervals for the IPW and Hájek Estimators

IPW estimator. The results in Figure 5 indicate that the coverage of confidence intervals based on the

asymptotic variance bound should be similar to those based on the true variance under high uncertainty

scenarios, while they should be slightly higher under low uncertainty scenarios. Furthermore, confidence

intervals based on the estimated variance bound should yield coverage probability close to (lower than)

the coverage achieved using the theoretical bound under low (high) uncertainty scenarios.

These expectations are indeed reflected in the coverage results shown in Figure A.3. Except when

M = 30, the confidence interval for the IPW estimator based on either the true asymptotic variance or

the true variance bound has a coverage of about 80% or higher. However, when M = 30, the confidence

intervals based on the true asymptotic variance have a coverage below 60% or less, indicating that for

interventions taking place over longer time periods, more data are needed to make use of the asymptotic

approximation. However, these results are based on the true variance and variance bound, and instead

inference would be based on the estimated variance bound. The under-estimation of the variance bound

in high uncertainty scenarios found in Figure A.2 leads to the under-coverage of the confidence intervals

based on the IPW estimator when using the estimated variance bound, especially when the interventions

take place over long time periods.
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Figure A.2: Asymptotic Standard Deviation and Bound, and Estimated Bound. This figure shows the
true asymptotic standard deviation (blue circles), the true asymptotic bound (orange triangles), and the
estimated bound (green rhombuses) of the IPW estimator for the average potential outcome using the true
propensity score, under interventions that take place over M = 1, 3 and 7 time periods (rows), and for
increasing length of the time series (columns). The horizontal axis shows the intensity of the intervention
at each time period. The points show the median value, and the rectangles show the interquartile range
over 200 simulated data sets.
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Figure A.3: Coverage of the IPW Estimator 95% Confidence Intervals. This figure shows the coverage
of 95% confidence intervals for the average potential outcome over B = Ω based on the IPW estimator
using the true variance (blue lines open circles), the true bound (orange lines with triangles), and the
estimated bound (green lines with rhombuses), for interventions taking place over M ∈ {1, 3, 7, 30}
time periods (rows) and increasing length of the observed time series (columns).

Hájek estimator. Motivated by the good performance of the Hájek estimator shown in Figure 4, we

also investigate the coverage probability of the 95% confidence interval as described in Appendix C. The

rows of Figure A.4 show the coverage results for increasingly small regions, whereas the columns show

the results for increasingly long observed time series (T = 200, 400, 500). Different colors correspond

to the coverage results under interventions taking place over M = 1 (black), 3 (green), 7 (red), and 30
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Figure A.4: Coverage of the Hájek Estimator’s 95% Confidence Intervals for the Average Potential
Outcomes under Various Interventions. We vary the intervention intensity h (horizontal axis), and the
length of intervention M = 1, 3, 7, 30 (different lines). Each row represents the coverage for different
regions of interest, i.e., B1 = [0, 1]2, B2 = [0, 0.5]2 and B3 = [0.75, 1]2, whereas each column represents
the length of time series, i.e., T = 200, 400 and 500.

(blue) time periods. We find that the coverage is above 90% for all combinations of T and M for the two

largest regions, even when an intervention takes place over 30 time periods. We find that the coverage is

lower for the smallest region.

E.3 Uncertainty Estimates

Here, we show that the estimated standard deviation for the Hájek estimator outperforms that for the

IPW estimator under many simulation scenarios.

We compute the standard deviation of the estimated average potential outcome across simulated

data sets and compare it with the mean of the standard deviations, each of which is used to create the

confidence intervals. The similarity of these two quantities implies the accuracy of our uncertainty
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Figure A.5: Comparison of the Estimated and True Uncertainty for the Inverse Probability of Treatment and
Hájek Estimators. Each plot presents the ratios between the standard deviation of each estimator and the mean
estimated standard deviation across simulated data sets. A value smaller (greater) than 1 implies overestimation
(underestimation) of uncertainty. The top (bottom) panel presents the results for the IPW (Hájek) estimator with
the varying intensity under the intervention (horizontal axis) and for the whole country B1 (first and forth row) and
two sub-regions, B2 (second and fifth row) and B3 (third and sixth row). We also vary the length of intervention,
M = 1, 3, 7 and 30 time periods (black, green, red, and blue lines, respectively). The columns correspond to
different lengths of the time series T = 200, 400 and 500.
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estimates. Figure A.5 presents the results as the ratio of these two quantities. A value below (above) 1

indicates that the true variability in our point estimates is smaller (greater) than our uncertainty estimate.

While the ratios are always below 1 for the Hájek estimator for the two largest regionsB1 andB2, they

are almost always above 1 for the IPW estimator (top panel). This is consistent with the above results,

showing that we tend to overestimate (underestimate) the uncertainty for the Hájek (IPW) estimator. We

find that the confidence interval for the Hájek estimator tends to be most conservative when M is small

and the region of interest is large. For the IPW estimator, the degree of uncertainty underestimation

decreases as the length of time series T increases but increases as the length of intervention M increases.

In fact, when M = 30, some of the ratios are as large as 20 (hence they are not included in the figure).

The results suggest that in practice the Hájek estimator should be preferred over the IPW estimator

especially for stochastic interventions over a long time period.

E.4 Covariate Balance

We evaluate the balance of covariates based on the estimated propensity score by comparing their p-

values in the propensity score model, and in a model with functional form as in the propensity score

model but weighted by the inverse of the estimated propensity score. The left plot of Figure A.6 shows the

p-value for the previous outcome-active locations, which are one of the time-varying confounders, across

200 simulated data sets. Evidently, the p-values in the unweighted model are close to 0, indicating that

previous outcome-active locations form an important predictor of the treatment assignment. However,

in the weighted model, the p-values of the same confounder are more evenly distributed across the (0, 1)

range, indicating that this confounder is better balanced in the weighted time series.

F Additional simulations on a square geometry

F.1 The Simulation Design

We also consider a time series of point patterns of length T ∈ {200, 400, 500} on the unit square,

Ω = [0, 1]× [0, 1]. For each time series length T , 200 data sets are generated with the following design.

Time-varying and time-invariant confounders. Our simulation study includes two time-invariant and

two time-varying confounders. For the first time-invariant confounder, we construct a hypothetical road

network on Ω using lines and arcs, which is highlighted by bright white lines in Figure A.7a. Then,

we define X1(ω) = 1.2 exp{−2D1(ω)} where D1(ω) is the distance from ω to the closest line. The

second time-invariant covariate is constructed similarly, as X2(ω) = exp{−3D2(ω)} where D2(ω) is

the distance to the closest arc. In addition, the time-varying confounders, X3
t (ω) and X4

t (ω), are defined

based on the exponential decay of distance to the closest point; these points are generated according to a
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Figure A.6: Balance of the Previous Outcome-Active Locations in Treatment Model. Each point shows
the relative magnitude of the p-value for the previous outcome-active locations in the unweighted propen-
sity score model (horizontal axis) over that of the model weighted by the inverse of the estimated propen-
sity score (vertical axis).

non-homogeneous Poisson point processes with the following intensity function

λX
j

t (ω) = exp
{
ρj0 + ρj1X

1(ω)
}
, j = 3, 4,

where ρ3
1 = 1, and ρ4

1 = 1.5. Figure A.7b shows one realization of X3
t (ω).

Spatio-temporal point processes for treatment and outcome variables. We again generate treatment

and outcome point patterns from non-homogeneous Poisson processes that depends on all confounders,

and the previous treatment and outcome realizations. The functional specification of the Poisson process

intensities is the same as in Section 6. The model gives rise to an average of 5 observed treatment-active

locations and 21 observed outcome-active locations within each time period.

Stochastic interventions. We consider interventions of the form FM
h based on a homogeneous Poisson

process with intensity h that is constant over Ω and ranges from 3 to 7. We consider various lengths

of each intervention by setting M ∈ {1, 3, 7, 30}. The second intervention we consider is defined over

the three time periods, i.e., Fh = Fh3 × Fh2 × Fh1 with M = 3. The intervention for the first time

period Fh3 is a homogeneous Poisson process with intensity h3 ranging from 3 to 7, whereas Fh2 = Fh1
is a homogeneous Poisson process with intensity equal to 5 everywhere over Ω. For each stochastic

intervention, we consider the region of interest, denoted by set B, of three different sizes: B = Ω =

[0, 1]× [0, 1], B = [0, 0.5]× [0, 0.5], and B = [0.75, 1]× [0.75, 1].
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Figure A.7: Simulated Confounders. Panel (a) shows one of the two time-invariant confounders rep-
resenting the exponential decay of distance to the road network. Panel (b) shows one realization for
one of the time-varying confounders. Points × are generated from a non-homogeneous Poisson process
depending on the road network in (a). Then, the time-varying confounder is defined as the exponential
decay of distance to the points ×.

Estimand and estimation. Approximating the true values of the estimands and estimation is performed

as described in Section 6. In these simulations, for T = 500 (the longest time series in our simulation

scenario) the spatial smoothing bandwidth is approximately equal to 0.16, smaller than the size of the

smallest B (which is equal to [0.75, 1]2).

Variance and its upper bound. We base calculation of the theoretical variance and the variance bound

on Theorems 1 and A.1, and use Monte Carlo approximations to compute these, as in Section 6. We also

use Lemma 1 We use Lemma 1 to estimate the variance bound.

Covariate balance. As in Section 6, we use weighted regression by the estimated propensity score to

investigate covariate balance.

F.2 Simulation Results

Estimation. Figures A.8 and A.9 present the results. In Figure A.8, the top panel shows how the (true

and estimated) average potential outcomes in the whole region (B = Ω) change as the intensity varies

under the single time period interventions. The bottom panel shows how the true and estimated average

potential outcomes in the sub-region [0.75, 1]2 change under the three time period interventions when the

intensity at three time periods ago ranges from 3 to 7. For both simulation scenarios, we vary the length

of the time series from 200 (left plots) to 500 (right plots).

As expected, the unadjusted estimates (green crosses) are far from the true average potential out-

come (black solid circles) across all simulation scenarios. In contrast, and consistent with the results of
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Figure A.8: Simulation Results for the True and Estimated Average Potential Outcomes. In the top
panel, we present the true and estimated average potential outcomes in the entire region B = Ω under
single-time interventions with the varying intensity (horizontal axis). In the bottom panel, we consider
the average potential outcome in the sub-region B = [0.75, 1]2 for the intervention Fh, with M = 3, the
varying intensity of Fh3 (horizontal axis), and Fh1 , Fh2 intensity set to 5. The black lines with solid circles
represent the truths, while the other dotted or dashed lines represent the estimates; the estimator based on
the true propensity score (purple triangles), the unadjusted estimator (green crosses), the estimator based
on the estimated propensity score (blue x’s), the Hájek estimator based on the estimated propensity score
(orange rhombuses).
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Figure A.9: Simulation Results for the Interventions of Increasing Time Lengths. Rows correspond to
the interventions taking place overM = 3, 7, and 30 time periods. Columns correspond to the increasing
length of the time series from 200 (left plots) to 500 (right plots). The vertical axis shows the change
in the expected number of the outcome active locations over [0.75, 1]2 for a change in the intervention
intensity from 3 under h1 to the value shown in the horizontal axis under h2, for M time periods. The
points in the plot show the median estimate over 200 data sets, and the rectangles show the interquartile
range of estimates. Only the Hájek estimates are shown for M = 30 as the extremely small weights
arising from a large number of time periods make the estimates from the other estimators close to zero.
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Theorems 1 and A.1, the accuracy of the proposed estimator (purple triangles based on the true propen-

sity score, blue x’s based on the estimated propensity score) improves as the number of time periods

increases. We note that the convergence is slower when M = 3 than M = 1.

Figure A.9 shows the performance of the estimators for the interventions over many time periods.

The plots show the estimated change in the number of outcome-active locations over the sub-region B =

[0.75, 1] for a change in the stochastic intervention from 3 per time period to the value on the horizontal

axis. The rows correspond to the interventions overM = 3, 7, and 30 time periods, respectively, whereas

the columns represent the different lengths of time series, i.e., T = 200, 400 and 500. The results are

shown for the IPW estimators based on the true propensity score (purple lines with open triangles) and

the estimated propensity score (blue lines with x’s) as well as the Hájek estimator based on the estimated

propensity score (orange lines with open rhombuses). Only the Hájek estimates are shown for M = 30

as the extremely small weights arising from a large number of time periods make the estimates from the

other estimators essentially equal to zero. The lines and points in the plot show the median estimate and

the rectangles show the interquartile range of estimates across 200 simulated data sets.

Again, as in the simulations of Section 6, we find that the Hájek estimator performs well across all

simulation scenarios, whereas the IPW estimator tends to suffer from extreme weights.

The variance and its bound. Next, we compare the true theoretical variance, v/T , with the variance

bound v∗/T and its consistent estimator (see Lemma 1). We again focus on the proposed estimators with

the true propensity score. Figure A.10 shows the results of an intervention FM
h for M = 1, 3 and 7, for

regionB = [0, 0.5]2, and observed time series of length T = 200, 400, 500. These plots show the median

and interquartile range of the asymptotic standard deviation, true bound, and estimated bound over 200

simulated data sets.

The conclusions are similar to the main manuscript. As expected, the true variance decreases as the

total number of time periods increases. We start by focusing on low uncertainty scenarios, corresponding

to the interventions taking place overM = 1 or 3 time periods with the distribution resembling the actual

data generating mechanism. We think that the intervention distribution resembles the data generating

mechanism in scenarios where the intervention intensity is close to 5, which is the average number of

treatment-active locations for the data generating process. In these scenarios, the asymptotic variance

bound is distinctly higher than the true asymptotic variance, indicating that the inference based on the true

asymptotic bound would be conservative. We find that in these low uncertainty scenarios, the estimated

bound is close to the true bound. For that reason, we would expect the confidence intervals for the IPW

estimator based on the estimated bound to have a higher coverage probability than its nominal coverage.

In contrast, under high uncertainty scenarios such as the interventions over longer time periods,

e.g., M = 7, the asymptotic standard deviation and theoretical bound are essentially indistinguishable.

However, under these scenarios, the estimate of the theoretical bound tends to be biased downwards,
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Figure A.10: Asymptotic Standard Deviation and Bound, and Estimated Bound. This figure shows the
true asymptotic standard deviation (blue circles), the true asymptotic bound (orange triangles), and the
estimated bound (green rhombuses) of the IPW estimator for the average potential outcome using the true
propensity score, under interventions that take place over M = 1, 3 and 7 time periods (rows), and for
increasing length of the time series (columns). The horizontal axis shows the intensity of the intervention
at each time period. The points show the median value, and the rectangles show the interquartile range
over 200 simulated data sets.
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suggesting that the confidence intervals for the IPW estimator based on the estimated bound would be

anti-conservative. As the length of time series increases, the estimated variance bound more closely

approximates its theoretical value (consistent with Lemma 1), but we expect it to take a longer time

series in order for the estimated bound to converge to its theoretical value when the intervention takes

place over a longer time period.

Coverage. These results on the asymptotic variance and variance bound lead to similar conclusions

with respect to the coverage of 95% confidence intervals of the IPW estimator.

The coverage results are shown in Figure A.11. We find that, except when M = 30, the confidence

interval for the IPW estimator based on either the true asymptotic variance or the true variance bound has

a coverage of about 80% or higher. This implies that the asymptotic normality established in Theorem 1

provides an adequate approximation to the estimator’s sampling distribution for small or moderate values

of M . However, for M = 30, the confidence interval for the IPW estimator is anti-conservative due to

the fact that the weights, which equal the product of ratios across many time periods, become extremely

small. In addition, the underestimation of the variance bound in high uncertainty scenarios found in

Figure A.10 leads to the under-coverage of the confidence intervals based on the IPW estimator and

using the estimated variance bound, especially when the interventions take place over long time periods.

We also investigate the coverage probability of the 95% confidence interval for the Hájek estimator.

The rows of Figure A.12 show the coverage results for increasingly small regions, i.e.,B1 = [0, 1]2, B2 =

[0, 0.5]2, and B3 = [0.75, 1]2, whereas the columns show the results for increasingly long observed time

series (T = 200, 400, 500). Different colors correspond to the coverage results under interventions taking

place over M = 1 (black), 3 (green), 7 (red), and 30 (blue) time periods. We find that the coverage is

above 85% for all cases, even when an intervention takes place over 30 time periods. As expected, the

coverage is higher for smaller values of M , since these correspond to lower-uncertainty situations. We

also find that the coverage is lower for smaller regions.

Comparison of Monte Carlo and estimated variance We find that the confidence interval for the

Hájek estimator has a better coverage probability even for the interventions over long time periods.

Here, we show that the estimated standard deviation for the Hájek estimator outperforms that for the

IPW estimator under many simulation scenarios.

Figure A.13 shows the ratio of the standard deviation of the estimated average potential outcome

across simulated data sets over the mean of the standard deviations. A value below (above) 1 indicates

that the true variability in our point estimates is smaller (greater) than our uncertainty estimate. While

the ratios are always below 1 for the Hájek estimator (bottom panel), they are almost always above 1 for

the IPW estimator (top panel). This shows that we tend to overestimate (underestimate) the uncertainty

for the Hájek (IPW) estimator. Further, we find that the confidence interval for the Hájek estimator tends

to be most conservative when M is small and the region of interest is large. For the IPW estimator, the
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Figure A.11: Coverage of the IPW Estimator 95% Confidence Intervals. This figure shows the coverage
of 95% confidence intervals for the average potential outcome over B = Ω based on the IPW estimator
using the true variance (blue lines open circles), the true bound (orange lines with triangles), and the
estimated bound (green lines with rhombuses), for interventions taking place over M ∈ {1, 3, 7, 30}
time periods (rows) and increasing length of the observed time series (columns).

degree of underestimation decreases as the length of time series T increases but increases as the length

of intervention M increases. In fact, when M = 30, some of the ratios are as large as 20 (hence they are

not included in the figure). The results suggest that in practice the Hájek estimator should be preferred

over the IPW estimator especially for stochastic interventions over a long time period.
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Figure A.12: Coverage of the Hájek Estimator’s 95% Confidence Intervals for the Average Potential
Outcomes under Various Interventions. We vary the intervention intensity h (horizontal axis), and the
length of intervention M = 1, 3, 7, 30 (different lines). Each row represents the coverage for different
regions of interest, i.e., B1 = [0, 1]2, B2 = [0, 0.5]2 and B3 = [0.75, 1]2, whereas each column represents
the length of time series, i.e., T = 200, 400 and 500.

Balance. As in the simulations in the main manuscript, we find that the p-values of one of the con-

founders (Y ∗t−1 in Equation(12)) are substantially greater in the weighted propensity score model than

in the unweighted model, where the weights are given by the inverse of the estimated propensity score

(shown in Figure A.14).

G Additional Empirical Results

G.1 Visualization

As discussed in Section 7.1, we consider a stochastic intervention whose focal point is the center of

Baghdad. The degree of concentration is controlled by the precision parameter α whose greater value,
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Figure A.13: Comparison of the Estimated and True Uncertainty for the Inverse Probability of Treatment and
Hájek Estimators. Each plot presents the ratios between the standard deviation of each estimator and the mean
estimated standard deviation across simulated data sets. A value smaller (greater) than 1 implies overestimation
(underestimation) of uncertainty. The top (bottom) panel presents the results for the IPW (Hájek) estimator with
the varying intensity under the intervention (horizontal axis) and for the whole region B1 (first and forth row) and
two sub-regions, B2 = [0, 0.5]2 (second and fifth row) and B3 = [0.75, 1]2 (third and sixth row). We also vary
the length of intervention, M = 1, 3, 7 and 30 time periods (black, green, red, and blue lines, respectively). The
columns correspond to different lengths of the time series T = 200, 400 and 500.

56



●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

p−value of Yt−1
*  in Wt model

Unweighted model

W
ei

gh
te

d 
m

od
el

Coefficient of Yt−1
*  in weighted Wt model

Coefficient

F
re

qu
en

cy

−4 −2 0 2 4

0
10

20
30

40

Figure A.14: Balance of the Previous Outcome-Active Locations in Treatment Model. In the left plot,
each point shows the relative magnitude of the p-value for the previous outcome-active locations in the
unweighted propensity score model (horizontal axis) over that of the model weighted by the inverse of
the estimated propensity score (vertical axis). The right plot shows the distribution of the estimated
coefficient of the previous outcome-active locations in the weighted propensity score model.

α = 0 α = 1 α = 2 α = 3
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Figure A.15: Visualization of Intensity under Stochastic Interventions whose Focal Point is the Center
of Baghdad. Across plots, we vary the degree to which the airstrikes are concentrated around the focal
point using the precision parameter, while the expected number of airstrikes is held constant at 3 per day.

implying that more airstrikes are occurring near the focal point. We vary the value of α from 0 to 3,

while keeping the expected number of airstrikes constant at 3 per day. Figure A.15 illustrates intensities

for the different values of α. The first plot in the figure does not focus on Baghdad at all, representing the

baseline spatial distribution φ0. As the value of α increases, the spatial distribution of airstrikes becomes

concentrated more towards the center of Baghdad.
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Type (Fh′ , Fh′′) M Outcome Iraq Baghdad Outside Baghdad
3 IED -1.3 (-8.2, 5.7) -0.2 (-2.2, 1.8) -1.1 (-6.2, 4)

SAF -1.9 (-8.9, 5.2) -1.2 (-3.8, 1.4) -0.7 (-5.2, 3.9)
Other Attack -1.8 (-19.9, 16.4) 0.1 (-6.2, 6.5) -1.9 (-13.9, 10)

Increasing the 7 IED 5 (-2.6, 12.7) 1.2 (-0.8, 3.3) 3.8 (-1.9, 9.5)
intensity SAF 10 (1.7, 18.2) 3.1 (0.4, 5.8) 6.9 (1.1, 12.6)

(1, 3) Other Attack 14 (-5.2, 33.3) 5.6 (-0.4, 11.6) 8.4 (-5.1, 21.9)
30 IED 11 (-1.1, 23) 3.2 (-0.1, 6.5) 7.8 (-1.1, 16.6)

SAF 14.8 (2.9, 26.7) 5.9 (1.2, 10.5) 8.9 (1.5, 16.3)
Other Attack 33.1 (3.3, 62.9) 13.6 (2.7, 24.6) 19.5 (0.3, 38.6)

3 IED 2.6 (-7.2, 12.5) 0.6 (-2.4, 3.5) 2.1 (-4.9, 9)
SAF 2.6 (-6.7, 12) 0.9 (-2.2, 4.1) 1.7 (-4.8, 8.1)

Other Attack 7.5 (-16, 31) 3.8 (-4.3, 11.8) 3.7 (-12, 19.4)
Changing the 7 IED 2 (-6.9, 10.8) 1.1 (-1.7, 3.9) 0.9 (-5.2, 7)
focal points SAF 0.2 (-9.7, 10.1) 0.6 (-2.8, 3.9) -0.4 (-7.1, 6.4)

(0, 3) Other Attack 3.5 (-18.8, 25.8) 1.7 (-6, 9.4) 1.8 (-13, 16.7)
30 IED -1.2 (-15.9, 13.4) -0.7 (-4.5, 3.1) -0.5 (-11.6, 10.6)

SAF 5.7 (-10, 21.4) -1.3 (-6.4, 3.8) 7 (-4.1, 18.1)
Other Attack -3.5 (-37.8, 30.7) -6.6 (-17.5, 4.2) 3.1 (-21.1, 27.3)

3 IED -2.3 (-10.1, 5.5) -0.6 (-2.7, 1.5) -1.7 (-7.5, 4.1)
SAF -1 (-9.9, 8) -0.7 (-4.5, 3) -0.2 (-5.5, 5)

Other Attack -3.9 (-23.6, 15.8) -1.2 (-8.2, 5.9) -2.8 (-15.5, 10)
Lagged 7 IED 6.8 (-0.7, 14.3) 2.2 (-0.2, 4.6) 4.6 (-0.6, 9.8)
effects SAF 9.4 (1.6, 17.2) 3.6 (1, 6.2) 5.8 (0.4, 11.2)
(1, 5) Other Attack 20.9 (2.3, 39.4) 8.2 (1.8, 14.6) 12.7 (0.4, 24.9)

30 IED 1.5 (-3.8, 6.8) 0.3 (-1, 1.5) 1.2 (-2.8, 5.3)
SAF 2.8 (-1.8, 7.3) 1.1 (-0.6, 2.8) 1.6 (-1.2, 4.5)

Other Attack 5.8 (-6.2, 17.8) 2.2 (-1.9, 6.4) 3.6 (-4.3, 11.4)

Table A.2: Causal Effect Estimates and 95% Confidence Intervals for Various Stochastic Interventions.
We present the results for three interventions discussed in the main text: increasing the expected number
of airstrikes from 1 to 3 per day for M days, changing the focal points of airstrikes from α = 0 to α = 3
for M days, and the lagged effects of increasing the expected number of airstrikes from 1 to 5 per day
M days ago. The range of M we consider is {3, 7, 30}. The regions of interest are Iraq, Baghdad, and
the area outside Baghdad. The results in bold represent statistically significant estimates.

G.2 Empirical Results

Table A.2 presents the numerical effect estimates and 95% confidence intervals for various interventions,

including those shown in the main text. We also show the effect estimates for the whole Iraq, Baghdad

only, and the area outside Baghdad.

G.3 Single time point adaptive interventions

Adaptive intervention strategies are often of interest in longitudinal settings, where previous outcomes

might drive future treatment assignments. In our setting, these adaptive interventions would correspond

to military strategies that depend on the observed history, such as the locations of previous insurgent at-
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tacks. Although we leave full development of adaptive strategies to future research, we consider adaptive

strategies that take place over a single time period, and then discuss the challenges of further extending

it to the multiple time period interventions.

Here, we design adaptive dosage interventions over a single time period that closely resemble the

observed data in terms of the expected number of airstrikes over time and their location. Using the

observed number of airstrikes over time, we fitted a smooth function of time to obtain an estimate of the

expected number of airstrikes over time, which is denoted by n̂t. We used the estimated expected number

of points to define adaptive interventions under which (1) the spatial distribution under the intervention

is equal to the spatial distribution of airstrikes according to the propensity score, and (2) the expected

number of points under the intervention is set to cn̂t, with c varying from 0.5 to 2 (representing a change

in the number of airstrikes ranging from half to double the observed values). Formally, this intervention

that depend on the observed history is given by:

ht+1(ω;H t) =
c n̂t∫

Ω
hpst+1(s;H t)ds

hpst+1(ω;H t),

where hpst+1(ω;H t) is the estimated propensity score intensity function. This definition of intensity en-

sures that that expected number of airstrikes at time t is equal to cn̂t using the ratio term, and the relative

likelihood of each location ω being treated is as specified in the estimated propensity score. This ap-

proach is related to the incremental propensity score of Kennedy (2019) who considered non-spatial and

non-temporal settings.

Figure A.16 shows the effect estimates for number of IED and SAF attacks in Iraq for these interven-

tions. The result shows that the estimates are too imprecise to lead to a definitive conclusion.

IED SAF

50% 100% 150% 200% 50% 100% 150% 200%

−10

0

10

Intervention target number of points

Figure A.16: Effect estimates for a change in the expected number of airstrikes from 50% n̂t to cn̂t, for
c shown in the x-axis. Left plot shows effect estimates for IEDs and right plot shows effect estimates for
SAF attacks in Iraq.
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Unfortunately, the evaluation of adaptive strategies over multiple time periods rapidly becomes com-

plicated. Specifically, for interventions over multiple time periods that depend on the most recent history,

we would need to have access to intermediate potential outcomes which are unobserved. Therefore, we

would have to model the outcome process in order to predict the counterfactual outcomes that would

then inform the adaptive treatment assignment in the subsequent time periods. One advantage of our

proposed framework is its ability to incorporate unstructured spillover and carryover effects. This is

possible because our framework does not require researchers to model the outcome process. Given this

difficulty, we will leave the complete investigation of adaptive spatio-temporal treatment strategies to

future work.
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