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Section S1 establishes the equivalence relationship between the regression-based inference and

randomization-based inference.

Section S2 compares the two-stage randomized design with the completely randomized and cluster

randomized designs.

Section S3 provides proofs of the theorems.

Section S4 provides more computation details.

Section S5 presents the simulation studies.

S1 Connections to linear regression

In this section, we establish direct connections between the proposed estimators and the least squares

estimators, which is popular among applied researchers. Basse and Feller (2018) study the relation-

ships between the ordinary least squares and randomization-based estimators for the direct and

spillover effects under a particular two-stage randomized experiment. Here, we extend these previ-

ous results to a general setting with m treatment assignment mechanisms.

We consider the following linear model for the outcome,

Yij =
m∑
a=1

{β1aZij1(Aj = a) + β0a(1− Zij)1(Aj = a)}+ εij , (S1)

where εij is the error term. Unlike the two-step procedure in Basse and Feller (2018), we fit the

weighted least squares regression with the following inverse probability weights,

wij =
1

JAj

· 1

njZij

. (S2)



Let β̂ = (β̂11, β̂01, . . . , β̂1m, β̂0m)> be the weighted least squares estimators of the coefficients in

the models of equation (S1), respectively. For the variance estimator, we need additional notation.

Let Xj = (X1j , . . . , Xnjj)
> be the design matrix of cluster j for the model given in (S1) with

Xij = (Zij1(Aj = 1), (1 − Zij)1(Aj = 1), . . . , Zij1(Aj = m), (1 − Zij)1(Aj = m))>. Let X =

(X>1 , . . . ,X
>
J )> be the entire design matrix, Wj = diag(w1j , . . . , wnjj) be the weight matrix for

cluster j, and W = diag(W1, . . . ,WJ) be the entire weight matrix. We use ε̂j = (ε̂1j , . . . , ε̂njj) to

denote the residual vector for cluster j obtained from the weighted least squares fit of the model

given in equation (S1), and ε̂ = (ε̂>1 , . . . , ε̂
>
J )> to represent the residual vector for the entire sample.

We consider the cluster-robust generalization of HC2 covariance matrix (Bell and McCaffrey,

2002),

v̂arclusterhc2 (β̂) = (X>WX)−1

∑
j

X>j Wj(Inj −Pj)
−1/2ε̂j ε̂

>
j (Inj −Pj)

−1/2WjXj

 (X>WX)−1,

where Inj is the nj × nj identity matrix and Pj is the following cluster leverage matrix,

Pj = W
1/2
j Xj(X

>WX)−1X>j W
1/2
j .

The next theorem establishes the equivalence relationship between the regression-based inference

and randomization-based inference.

Theorem S1 (Equivalent Weighted Least Squares Estimators) The weighted least squares

estimators based on the model of equation (S1) are equivalent to the randomization-based estimators

of the average potential outcomes, i.e., β̂ = Ŷ . The cluster-robust generalization of HC2 covariance

matrix is equivalent to the randomization-based covariance matrix estimator, i.e., v̂arclusterhc2 (β̂) =

D̂/J .

Proof is given in Section S3.9.

S2 Theoretical Comparison of Three Randomized Experiments

Although the two-stage randomized design allows for the detection of spillover effects, this may

come at the cost of statistical efficiency for detecting the average treatment effect if it turns out that
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spillover effects do not exist. In this section, we conduct a theoretical comparison of the two-stage

randomized design with the completely randomized design and cluster randomized design in the

absence of interference between units. The latter two are the most popular experimental designs

and are limiting designs of the two-stage randomized designs. That is, we compute the relative

efficiency loss due to the use of the two-stage randomized design when there is no spillover effect.

Formally, when there is no interference between units, we can write Yij(z, a) = Yij(z), Y j(z, a) =

Y j(z), and Y (z, a) = Y (z). As a result, both the direct and marginal direct effects reduce to the

standard average treatment effect. To unify the notation in the three types of experiments, we

define the unit-level average treatment effect as, ATEij = Yij(1) − Yij(0), the cluster-level average

treatment effect as, ATEj =
∑nj

i=1{Yij(1)− Yij(0)}/nj , and the population-level average treatment

effect as ATE =
∑J

i=1ATEj/J . As noted above, our comparison of three designs assumes no

interference between units. The reason for this assumption is that the average treatment effect

represents a different causal quantity under the three designs in the presence of interference, making

the efficiency comparison across the designs less meaningful (Karwa and Airoldi, 2018).

For simplicity, consider the case when the cluster size is equal, i.e., nj = n for all j. Define the

within-cluster variance of Yij(z) and ATEij as,

η2w(z) =

∑J
j=1

∑n
i=1{Yij(z)− Y j(z)}2

nJ − 1
, τ2w =

∑J
j=1

∑n
i=1{ATEij −ATEj}2

nJ − 1
,

the between-cluster variance of Yij(z) and ATEij as,

η2b (z) =

∑J
j=1{Y j(z)− Y (z)}2

J − 1
, τ2b =

∑J
j=1{ATEj −ATE}2

J − 1
,

and the total variance of Yij(z) and ATEij as,

η2(z) =

∑J
j=1

∑n
i=1{Yij(z)− Y (z)}2

nJ − 1
, τ2 =

∑J
j=1

∑n
i=1{ATEij −ATE}2

nJ − 1
.

We can connect these variances by defining the intracluster correlation coefficient with respect to

Yij(z) in cluster j under treatment condition z as,

rj(z) =

∑n
i 6=i′(Yij(z)− Y (z))(Yi′j(z)− Y (z))

(n− 1) ·
∑n

i=1(Yij(z)− Y (z))2
.
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and the intracluster correlation coefficient with respect to ATEij in cluster j as,

r′j =

∑n
i 6=i′(ATEij −ATE)(ATEi′j −ATE)

(n− 1) ·
∑n

i=1(ATEij −ATE)2
.

To further facilitate our theoretical comparison, we make additional approximation assumptions.

First, the intracluster correlation coefficients are approximately the same with respect to Yij(z) and

ATEij across clusters and treatment conditions, i.e., rj(z) ≈ r′j ≈ r. Second, the cluster size is

relatively small compared to the number of clusters nJ − 1 ≈ nJ ≈ n(J − 1). These approximations

help simplify the expressions of the variances as

η2w(z) ≈ (n− 1)(1− r)
n

· η2(z), τ2w ≈
(n− 1)(1− r)

n
· τ2,

η2b (z) ≈
1 + (n− 1)r

n
· η2(z), τ2b ≈

1 + (n− 1)r

n
· τ2. (S3)

We consider three randomized experiments in the population with nJ units. Under the two-stage

randomized design, the treatment is randomized according to Assumptions 1. Under the completely

randomized design, the treatment is randomized across units,

Pr(Z = z) =
1(
nJ∑m

a=1 Janpa

) ,
for all z such that

∑
i,j zij =

∑m
a=1 Janpa. Finally, under the clustered randomized design, the

treatment is randomized across clusters, where all the units in each cluster is assigned to the same

treatment condition, i.e.,

Pr(A = a) =
1(
J∑m

a=1 Japa

) ,
for all z such that

∑J
j=1 aj =

∑m
a=1 Japa. Note that under this setting, the number of treated units

will be the same in the three types of randomized experiments.

We consider the difference in means estimator for estimating ATE,

ÂTE =
1

J

J∑
j=1

{∑n
i=1 YijZij
nj1

−
∑n

i=1 Yij(1− Zij)
nj0

}
. (S4)

The following theorem gives the variances of this estimator under the three experimental designs.
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Theorem S2 (Comparison of Three Experimental Designs) Under the approximation as-

sumptions of equation (S3), the variance of the average treatment effect estimator ÂTE given in

equation (S4) under the two-stage randomized design is

1− r
J2

m∑
a=1

Ja
npa
· η2(1) +

1− r
J2

m∑
a=1

Ja
n(1− pa)

· η2(0)− 1− r
nJ

· τ2, (S5)

the variance of ÂTE under the completely randomized design is

1∑m
a=1 Janpa

· η2(1) +
1∑m

a=1 Jan(1− pa)
· η2(0)− 1

nJ
· τ2, (S6)

the variance of ÂTE under the cluster randomized design is

1 + (n− 1)r∑m
a=1 Janpa

· η2(1) +
1 + (n− 1)r∑m
a=1 Jan(1− pa)

· η2(0)− 1 + (n− 1)r

nJ
· τ2. (S7)

Proof is given in Appendix S3.10. From Theorem S2, the ratio of the coefficients of η2(1) in equa-

tions (S5) and (S6) is

(1− r) ·
m∑
a=1

qapa ·
m∑
a=1

qa
pa
, (S8)

whereas the ratio of the coefficients of η2(1) in equations (S5) and (S7) is

1− r
1 + (n− 1)r

·
m∑
a=1

qapa ·
m∑
a=1

qa
pa
. (S9)

The ratios of the coefficients of other parameters take similar forms. Thus, our discussion focuses

on equations (S8) and (S9).

Equation (S8) implies that the relative efficiency of the two-stage randomized design over the

completely randomized design depends on the intracluster correlation coefficient, and the assign-

ment probabilities at the first and the second stage of randomization. Due to the Cauchy–Schwarz

inequality, equation (S8) is greater than or equal to 1 − r. The value of this quantity increases as

the heterogeneity between pa increases. Therefore, as the difference in treated proportions between

clusters becomes large, the two-stage randomized design becomes less efficient for estimating the

average treatment effect. On the other hand, the ability to detect spillover effects relies on the

heterogeneity of pa. This implies that there is a tradeoff between the efficiency of estimating the
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average treatment effects and the ability to detect spillover effects. This finding is consistent with

that of Baird et al. (2018).

In addition, when the treated proportion is identical across clusters, pa = pa′ for any a, a′, the

two-stage randomized design becomes stratified randomized design. In this case, equation (S8) equals

1 − r, which is less than 1. This is consistent with the classic result that the stratified randomized

design improves efficiency over the completely randomized design.

Lastly, equation (S9) implies that the relative efficiency of the two-stage randomized design with

respect to the clustered randomized design depends additionally on the cluster size. As the cluster

size increases, the two-stage randomized design becomes more efficient than the clustered randomized

design. When cluster size is large, the two-stage randomized design may be preferable because it

allows for the detection of spillover effects while maintaining efficiency in estimating the average

treatment effect.

S3 Proofs of the Theorems

We can write

Ŷ (z, a) =
1

Ja

J∑
j=1

Ŷj(z)1(Aj = a) = µ(z, a) +
J∑
j=1

δj(z, a),

where

µ(z, a) =
1

Ja

J∑
j=1

Y j(z, a)1(Aj = a),

δj(z, a) =
1

Ja

{
Ŷj(z)− Y j(z, a)

}
1(Aj = a).

Let µ = (µ(1, 1), µ(0, 1), . . . , µ(1,m), µ(0,m))> and δj = (δj(1, 1), δj(0, 1), . . . , δj(1,m), δj(0,m))> be

the vectorization of µ(z, a) and δj(z, a), respectively, and δ =
∑J

j=1 δj . We can write

Ŷ = µ+ δ.

Let F0 = σ(A1, . . . , AJ) be the σ-algebra generated by {Aj : j = 1, . . . , J}. Conditioning on F0,

{δj : j = 1, . . . , J} are jointly independent. Therefore, we have E(δ | F0) = E(δj | F0) = 0. From
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the law of total expectation,

E(δ) = E(δj) = 0,

cov(δ) =

J∑
j=1

cov(δj) =

J∑
j=1

Ecov(δj | F0),

cov(µ, δ) = E {cov(µ, δ | F0)}+ cov{E(µ | F0),E(δ | F0)} = 0. (S10)

S3.1 Proof of Theorem 2

We need the following lemma for the proof.

Lemma S1 (Li and Ding (2017), Theorems 3 and 5) In a completely randomized experiment

with N units and Q treatment groups of sizes Nq (q = 1, . . . , Q), let Zi be the treatment indicator

and Yi be the observed outcome for unit i. Let Yi(q) be the length-L vector potential outcome of i

under treatment q, and Sqq′ = (N − 1)−1
∑N

i=1{Yi(q)−Y (q)}{Yi(q′)−Y (q′)} be the finite-population

covariances for q, q′ = 1, . . . , Q. Let τ =
∑Q

q=1GqY (q) be the population average causal effect of

interest, and τ̂ =
∑W

q=1GqŶ (q) be the moment estimator with Ŷ (q) = N−1q
∑N

i=1 Yi1(Zi = q). We

have (a)

cov(τ̂) =

Q∑
q=1

N−1q GqSqqG
>
q −N−1S2

τ ,

where S2
τ is the finite-population covariance of τi =

∑W
q=1GqYi(q); (b) suppose the following condi-

tions hold for q, q′ = 1, . . . , Q as N goes to infinity:

(a) Sqq′ has a finite limit;

(b) Nq/N has a finite limit in (0, 1);

(c) maxi |Yi(q)− Y (q)|2/N = o(1). Then, we have

√
N(τ̂ − τ)

d→ N(0, V ),

where V denotes the limiting value of Ncov(τ̂).
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We then prove Theorem 2. For simplicity, we consider the case with m = 2. From (S10), we

have cov(Ŷ ) = cov(µ) + cov(δ). We then derive the analytic forms of cov(µ) and cov(δ).

For cov(µ), define Bj(a) = (Y j(1, a), Y j(0, a))> as the vector potential outcome of cluster j

under Aj = a with means B(a) = (Y (1, a), Y (0, a))> and covariances

Sb(a) = (J − 1)−1
J∑
j=1

{Bj(a)−Bj(a)}{Wj(a)−Bj(a)}>

=

σ2b (1, 1; a, a) σ2b (1, 0; a, a)

σ2b (1, 0; a, a) σ2b (0, 0; a, a)

 .

We can then write µ as (I2, 02×2)
>B(1) + (02×2, I2)

>B(2). From Lemma S1, we have

cov(µ) = J−11 (I2, 02×2)
>Sb(1)(I2, 02×2) + J−12 (02×2, I2)

>Sb(2)(02×2, I2)− J−1Sb

= J−1(H ◦ Sb).

For cov(δ), theory of simple random sampling implies,

var
{
Ŷj(z, a) | Aj = a

}
=

1

njz

(
1− njz

nj

)
σ2j (z, a),

cov
{
Ŷj(1, a), Ŷj(0, a) | Aj = a

}
= − 1

nj
σ2j (1, 0; a).

We can write

cov
{
Ŷj(z, a), Ŷj(z

′, a) | Aj = a
}

= n−1j {nj/njz1(z = z′)− 1}σ2j (z, z′; a).

Therefore, we have

cov(δj | Aj = a) = J−2a qan
−1
j {Hj(a) ◦ Sw} = q−1a J−2n−1j {Hj(a) ◦ Sj}, (S11)

where

Hj(1) = diag(q−11 , 0)⊗ {diag(nj/nj1, nj/nj0)− 12×2} ,

Hj(2) = diag(0, q−12 )⊗ {diag(nj/nj1, nj/nj0)− 12×2} .

Because Hj = Hj(1) +Hj(2), we can obtain

cov(δw) = E{cov(δj | Aj = a)} = J−2n−1j {Hj ◦ Sj}.

�

7



S3.2 Proof of Theorem 3

Recall that D̂ be a 2m by 2m block diagonal matrix with the a-th matrix on the diagonal

D̂a =
J

Ja

 σ̂2b (1, a) σ̂2b (1, 0; a)

σ̂2b (1, 0; a) σ̂2b (0, a)

 .

We calculate the expectation of each term in D̂a. We have

E{σ̂2b (z, a)}

=
1

Ja − 1
E


J∑
j=1

Ŷ 2
j (z)I(Aj = a)− JaŶ (z)2


=

1

Ja − 1
E

 J∑
j=1

[
var
{
Ŷj(z, a) | Aj = a

}
+ Y j(z, a)2

]
I(Aj = a)

− Ja
Ja − 1

[var{Ŷ (z, a)}+ Y (z, a)2]

=
Ja

J(Ja − 1)

J∑
j=1

var{Ŷj(z) | Aj = a}+
Ja

J(Ja − 1)

J∑
j=1

Y j(z, a)2 − Ja
Ja − 1

[var{Ŷ (z, a)}+ Y (z, a)2]

=
Ja

J(Ja − 1)

J∑
j=1

var
{
Ŷj(z) | Aj = a

}
+
Ja(J − 1)

(Ja − 1)J
σ2b (z, a)− Ja

Ja − 1
var{Ŷ (z, a)}

=
Ja

J(Ja − 1)

J∑
j=1

var
{
Ŷj(z) | Aj = a

}
+
Ja(J − 1)

(Ja − 1)J
σ2b (z, a)

− Ja
Ja − 1

(1− Ja
J

)
σ2b (z, a)

Ja
+

1

JaJ

J∑
j=1

var
{
Ŷj(z, 1) | Aj = a

}
= σ2b (z, a) +

1

J

J∑
j=1

var
{
Ŷj(z, a) | Aj = a

}

= σ2b (z, a) +
1

J

J∑
j=1

1

njz

(
1− njz

nj

)
σ2j (z, a).

Similarly, we obtain

E
{
σ̂2b (1, 0; a)

}
= σ2b (1, 0; a) +

1

J

J∑
j=1

cov
{
Ŷj(1, a), Ŷj(0, a) | Aj = a

}

= σ2b (1, 0; a)− 1

J

J∑
j=1

σ2j (1, 0; a)

nj
.

Finally, we prove that D̂ is a conservative estimator for D. Denote R = E(D̂) − D with the

(k, l)-th element rkl. We have

r2a−1,2a−1 = σ2b (1, a), r2a,2a = σ2b (0, a), r2a−1,2a = σ2b (1, 0; a)
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for a = 1, . . . ,m. For a 6= a′, we have

r2a−1,2a′−1 = σ2b (1; a, a′), r2a,2a′−1 = σ2b (1, 0; a, a′).

Therefore, for any vector c = (c1, . . . , c2m), cRc> is the between-cluster variance of
∑m

a=1 c2a−1Yij(1, a)+∑m
a=1 c2aYij(0, a). As a result, D̂ is a conservative estimator for D and is unbiased for D if Y j(z, a)

is constant across clusters. �

S3.3 Proof of Theorem 4

S3.3.1 Lemmas

Let ∗ denote convolution. We need the following lemmas for the proof.

Lemma S2 (Ohlsson (1989), Theorem A.1) For j = 1, . . . , J , let {ξJ,j : j = 1, . . . , J} be a

martingale difference sequence relative to the filtration {FJ,j : j = 0, 1, . . . , J}, and let XJ be an

FJ,0-measurable random variable. Denote ξJ =
∑J

j=1 ξJ,j. Suppose that the following conditions

hold as J goes to infinity:

(a)
∑J

j=1 E(ξ4J,j) = o(1).

(b) For some sequence of non-negative real numbers {βJ : J = 1, 2, . . .} with supJβJ <∞, we have

E
[{∑J

j=1 E(ξ2J,j | FJ,j−1)− β2J
}2
]

= o(1).

(c) For some probability distribution L0, L(XJ) ∗N(0, β2J)
d→ L0.

Then, L(XJ + ξJ)
d→ L0 as J goes to infinity.

Lemma S3 Suppose that Assumptions 1, 2, 3, and Condition 1 hold. Then

J2
J∑
j=1

E(||δj ||42 | Aj = a) = o(1), J2
J∑
j=1

E(||δj ||42) = o(1)

Proof. It suffices to verify the first equality. Note that for j with Aj = a (a = 1, 2)

||δj ||22 =
1

J2
a

[{
Ŷj(1)− Y j(1, a)

}2
+
{
Ŷj(0)− Y j(0, a)

}2
]
.
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From the Cauchy–Schwarz inequality, we have

||δj ||42 ≤
2

J4
a

[{
Ŷj(1)− Y j(1, a)

}4
+
{
Ŷj(0)− Y j(0, a)

}4
]
.

Because
{
Ŷj(z)− Y j(z, a)

}4
≤ 8Ŷ 4

j (z) + 8Y
4
j (z),

J∑
j=1

E
[{
Ŷj(z)− Y j(z, a)

}4
| Aj = a

]

= 8

J∑
j=1

E
{
Ŷ 4
j (z) | Aj = a

}
+ 8

J∑
j=1

Y
4
j (z, a)

= 8
J∑
j=1

E
{
Ŷ 4
j (z) | Aj = a

}
+ o(J2).

From the power-mean inequality, for Aj = a,

Ŷ 4
j (z) ≤ 1

njz

J∑
j=1

Y 4
ij(z, a) · 1(Zij = z) ≤ 1

njz

J∑
j=1

Y 4
ij(z, a) ≤ ε−1Yj(z, a) = o(J2). (S12)

Therefore,

J∑
j=1

E
[{
Ŷj(z)− Y j(z, a)

}4
| Aj = a

]
= o(J2).

As a result,

J2
J∑
j=1

E(||δj ||42 | Aj = a) ≤ 2

q2aJ
2

∑
z=0,1

J∑
j=1

E
[{
Ŷj(z)− Y j(z, a)

}4
| Aj = a

]
= o(1).

�

S3.3.2 Proof of the asymptotic normality

For simplicity, we focus on the case with m = 2. We only need to show that for any unit vector η

with length 4,

η>
√
J(Ŷ − Y ) = η>

√
J(µ− Y + δ)

d→ N(0, η>Dη).

Let XJ = η>
√
J(µ − Y ) and ξJ,j = η>

√
Jδj . It suffices to verify the conditions in Lemma S2. We

will suppress J in the subscripts when no confusion arises.
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First, FJ,0 contains the information from the first stage randomization, and FJ,j contains the

information from the first stage randomization plus the second stage randomization in the first j

clusters. Therefore, {FJ,j : j = 0, . . . , J} is a filtration.

For Lemma S2 condition (a), from the Cauchy–Schwarz inequality, we have

ξ4J,j = J2(η>δj)
4 ≤ J2||η||42 · ||δj ||42 = J2 · ||δj ||42.

From Lemma S3, we have

J∑
j=1

E(ξ4J,j) ≤ J2
J∑
j=1

E(||δj ||42) = o(1).

For Lemma S2 condition (b), we have from Theorem 2,

β2J = var(ξJ) = J−1η>


J∑
j=1

n−1j {Hj ◦ Sj}

 η.

Because E{ξ2J,j | FJ,j−1} = E{ξ2J,j | FJ,0} = var{ξJ,j | FJ,0} and E(ξJ,j | FJ,0) = 0, we have

J∑
j=1

E{ξ2J,j | FJ,j−1} =

J∑
j=1

var{ξJ,j | FJ,0} = var(ξJ | FJ,0)

and β2J = E{var(ξJ | FJ,0)}. Therefore,

E


J∑
j=1

E(ξ2J,j | FJ,j−1)− β2J


2 = var {var(ξJ | FJ,0)} .

Therefore, we only need to verify that var {var(ξJ | FJ,0)} = o(1). Denote

ζj(a) = E(ξ2J,j | Aj = a) = Jη>cov(δj | Aj = a)η

with mean ζ(a) = J−1
∑J

j=1 ζj(a), variance Sζ(a) = (J−1)−1
∑J

j=1{ζj(a)−ζ(a)}2, and sample mean

ζ̂(a) = J−1a
∑J

j=1 ζj(a)1(Aj = a) for a = 1, 2. We have var(ξJ | FJ,0) = J1ζ̂(1) + J2ζ̂(2). Theory of

simple random sampling implies var{ζ̂(a)} = (1− qa)q−1a Sζ(a). Therefore, we have

var {var(ξJ | FJ,0)} = var
{
J1ζ̂(1) + J2ζ̂(2)

}
≤ 2var

{
J1ζ̂(1)

}
+ 2var

{
J1ζ̂(1)

}
= 2Jq1q2(Sζ(1) + Sζ(2)).

11



From the Cauchy–Schwarz inequality,

ζ2j (a) = {E(ξ2j | Aj = a)}2 ≤ E(ξ4j | Aj = a) ≤ J2E{||δj ||42 | Aj = a).

Thus, from Lemma S3, we have

(J − 1)−1
J∑
j=1

{ζj(a)}2 ≤ (J − 1)−1J2
J∑
j=1

E{||δj ||42 | Aj = a) = o(J−1). (S13)

From (S11), we have

ζ(a) = η>


J∑
j=1

cov(δj | Aj = a)

 η

= η>

q−1a J−2
J∑
j=1

n−1j {Hj(a) ◦ Sw}

 η

= o(J−1), (S14)

where the last equality follows from Condition 1. Combining (S13) and (S14), we have Sζ(a) = o(J−1)

for a = 1, 2, which leads to var {var(ξJ | FJ,0)} = o(1).

We then consider Lemma S2 condition (c). From Lemma S1 and Theorem 2, we have
√
J(µ −

Y )
d→ N(0, H◦Sb) under Condition 1. Thus the convolution of L(XJ) withN(0, η>

{∑J
j=1 J

−2n−1j (Hj ◦ Sw)
}
η)

converges in distribution to N(0, η>Dη). �

S3.4 Proof of Theorem 5

We need the following two lemmas.

Lemma S4 Suppose that Assumptions 1, 2, 3, and Condition 1 hold. Then D̂ − E{D̂} = o(1) a.s.

Proof of Lemma S4. Denote

T̂ (z, z′; a) = J−1a

J∑
j=1

Ŷj(z)Ŷj(z
′)1(Aj = a).

We first show that T̂ (z, z′; a) − E
{
T̂ (z, z′; a)

}
= o(1). It suffices to verify that cov

{
T̂ (z, z′; a)

}
=

o(1). Denote Uj = Ŷj(z)Ŷj(z
′)1(Aj = a) and µj = E(Uj | Aj = a). We can write

cov
{
T̂ (z, z′; a)

}
= J−2a


J∑
j=1

cov(Xj) +
∑
j 6=k

cov(Xj , Xk)

 .

12



By some algebra, we have

E{cov(Xj | Aj)} = qacov(Xj | Aj = a) = qaE(X2
j | Aj = a)− qaµ2j ,

cov{E(Xj | Aj)} = E
[
{E(Xj | Aj)}2

]
− {E(Xj)}2

= qa{E(Xj | Aj = a)}2 − q2aµ2j

= qaµ
2
j − q2aµ2j

E{E(Xj | Aj)E(Xk | Ak)} = Pr(Ak = Aj = a)E(Xj | Aj = a)E(Xk | Ak = a)

= qa
Ja − 1

J − 1
µjµk,

E(Xj)E(Xk) = q2aµjµk.

Therefore,

cov(Xj) = E{cov(Xj | Aj)}+ cov{E(Xj | Aj)}

= qaE(X2
j | Aj = a)− q2aµ2j ,

cov(Xj , Xk) = cov{E(Xj | Aj),E(Xk | Ak)}+ E{cov(Xj , Xk | Aj , Ak)}

= cov{E(Xj | Aj),E(Xk | Ak)}

= E{E(Xj | Aj)E(Xk | Ak)} − E(Xj)E(Xk)

= −(J − 1)−1qa(1− qa)µjµk.

As a result, we have

J2
acov

{
T̂ (z, z′; a)

}
= qa

J∑
j=1

E(X2
j | Aj = a)− q2a

J∑
j=1

µ2j −
qa(1− qa)
J − 1

∑
j 6=k

µjµk

= qa

J∑
j=1

E(X2
j | Aj = a)− q2a

J∑
j=1

µ2j +
qa(1− qa)
J − 1

J∑
j=1

µ2j −
qa(1− qa)
J − 1

∑
j,k

µjµk

≤ qa

J∑
j=1

E(X2
j | Aj = a)−

{
q2a −

qa(1− qa)
J − 1

} J∑
j=1

µ2j .

When J goes to infinity, we can obtain

J2
acov

{
T̂ (z, z′; a)

}
≤ qa

J∑
j=1

E(X2
j | Aj = a) = qa

J∑
j=1

E
{
Ŷ 2
j (z)Ŷ 2

j (z′) | Aj = a
}
.

13



From Ŷ 2
j (z)Ŷ 2

j (z′) ≤ 2Ŷ 4
j (z) + 2Ŷ 4

j (z′) and (S12), we then have

J2
acov

{
T̂ (z, z′; a)

}
≤ 2qa

J∑
j=1

E
{
Ŷ 4
j (z) + Ŷ 4

j (z′) | Aj = a
}

= o(1),

where the last equality follows from a similar argument in the proof of Lemma S3. Therefore, we

have T̂ (z, z′; a)− E
{
T̂ (z, z′; a)

}
= o(1).

We then show that Ŷ − Y = o(1). From Theorem 2, we have

cov(Ŷ ) = J−1(H ◦ Sb) + J−2
J∑
j=1

n−1j {Hj ◦ Sj} = o(1),

where the last equality follows from Condition 1.

Finally, we prove that D̂−E(D̂) = o(1) as J goes to infinity. The elements of D̂ are J/Jaσ̂
2(z, z′; a),

which can be written as

q−1a

{
T̂ (z, z′; a)− Ŷ (z, a)Ŷ (z, a′)

}
,

where we ignore the difference between Ja and Ja − 1. Therefore, J/Jaσ̂
2(z, z′; a) converges to

q−1a

[
E
{
T̂ (z, z′; a)

}
− Y (z, a)Y (z, a′)

]
,

which is equal to J/JaE
{
σ̂2(z, z′; a)

}
. �

Lemma S5 (i) If X ∼ Nk(0, A), Then X>BX
d
=
∑k

j=1 λj(AB)ξ2j , where the λj(AB)’s are eigenval-

ues of AB, and ξj ∼ χ2(1) and are i.i.d. with each other.

(ii) If Xn
d→ Nk(0, A), and Bn

p→ B, then X>n BnXn
d
=
∑k

j=1 λj(AB
−1)ξ2j . If B − A is positive

semidefinite, then 0 ≤ λj(AB−1) ≤ 1 for all j.

Proof of Lemma S5. Lemma S5(i) follows form linear algebra and Lemma S5(ii) follows from Slutsky’s

Theorem. �

We then prove Theorem 5. From Theorem 4 and Lemma S4, we know that
√
J(CŶ − x)

d→

N2m(0, CDC>), CD̂C>
p→ CE(D̂)C>. Because CE(D̂)C> − CDC> is positive semi-definite, from

Lemma S5(ii), we have T
d
=
∑k

j=1 λjξ
2
j , where k is the rank of C and 0 ≤ λj ≤ 1 for all j. �
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S3.5 Proof of Theorem 6

To prove Theorem 6, we need the following lemma.

Lemma S6 Suppose (X1, . . . , Xk) follows a standard multivariate normal distribution. If 0 < aj ≤ a′j

for j = 1, . . . , k, then as J goes to infinity,

Pr


k∑
j=1

(
a′jXj +

√
Jxj

)2
≥ t

 ≥ p
implies

Pr


k∑
j=1

(
ajXj +

√
Jxj

)2
≥ t

 ≥ p
where xj’s, t, and p are arbitrary non-zero constants.

Proof of Lemma S6. Without loss of generality, we can assume xj > 0 for all j. Since Xj ’s are

independent of each other, it suffices to show that

Pr

{(
a′jXj +

√
Jxj

)2
≥ t
}
≥ p (S15)

implies

Pr

{(
ajXj +

√
Jxj

)2
≥ t
}
≥ p (S16)

for all j. By some algebra, (S15) is equivalent to

Φ

(√
Jxj −

√
t

a′j

)
+ Φ

(
−
√
Jxj −

√
t

a′j

)
≥ p. (S17)

As J goes to infinity, the second term on the left-hand side of (S17) goes to 0. Therefore, we can

write (S17) as

Φ

(√
Jxj −

√
t

a′j

)
≥ p. (S18)

Similarly, we can show that (S16) is equivalent to

Φ

(√
Jxj −

√
t

aj

)
≥ p. (S19)
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Because a′j ≥ aj , (S18) implies (S19). This completes the proof. �

We now prove Theorem 6. The number of clusters requires for the test to have power 1 − β

should satisfy

Pr{J(CŶ )>(CD̂C>)−1(CŶ ) ≥ χ2
1−α(k) | CY = x} ≥ 1− β.

Theorem 4 implies

√
J(CŶ − x)

d→ Nk(0, CDC
>)

Therefore, we can write CŶ = 1/
√
J · (CDC>)1/2 ·Wk + x, where Wk is a k-length vector following

a standard multivariate normal distribution. As a result, we can write the test statistic as

{(CDC>)1/2Wk + x}>(CD̂C>)−1{(CDC>)1/2Wk + x}

By Slutsky’s theorem, it has the same asymptotic distribution as

T ′ = {(CDC>)1/2Wk +
√
Jx}>{CE(D̂)C>}−1{(CDC>)1/2Wk +

√
Jx}

= [{CE(D̂)C>}−1/2(CDC>)1/2Wk +
√
J{CE(D̂)C>}−1/2x]>

·[{CE(D̂)C>}−1/2(CDC>)1/2Wk +
√
J{CE(D̂)C>}−1/2].

From the matrix theory, we can write (CDC>)1/2{CE(D̂)C>}−1(CDC>)1/2 = P>ΛP , where P is

an orthogonal matrix and Λ = diag(λ1, . . . , λk) is a diagonal matrix. Because D0 − D is positive

semidefinite, 0 ≤ λj ≤ 1 for all j. Denote U = (U1, . . . , Um) = PW , which also follows a standard

multivariate normal distribution. Then, we can write

T ′ =
[
Λ1/2U +

√
J{CE(D̂)C>}−1/2x

]> [
Λ1/2U +

√
J{CE(D̂)C>}−1/2x

]
=

k∑
j=1

(
√
λjUj +

√
Jx′j)

2,

where x′j is the j-th element of {CE(D̂)C>}−1/2x. From Lemma S6, Pr(T ′ ≥ t) ≥ 1− β is implied

by

Pr


k∑
j=1

(Uj +
√
Jx′j)

2 ≥ t

 ≥ 1− β. (S20)
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Based on the definition of s2(q, 1− β, k), (S20) is equivalent to

J
k∑
j=1

x′2j ≥ s2(χ2
1−α(k), 1− β, k).

Because
∑k

j=1 x
′2
j = x>{CE(D̂)C>}x, we obtain the sample size formula,

J ≥
s2(χ2

1−α(m), 1− β,m)

x>{CE(D̂)C>}−1x
.

�

S3.6 Proof of Theorem 7

We first derive the expression of E(D̂) under Assumption 4. From Appendix S3.2, we have

E{σ̂2b (1, a)} = σ2b (1, a) +
1

J

J∑
j=1

1

nj1

(
1− nj1

nj

)
σ2j (1, a)

= σ2b +
1− pa
npa

σ2w

=

{
r +

(1− pa)(1− r)
npa

}
σ2,

where the second equality follows from conditions (a), (b), and (c) of Assumption 4. Similarly, we

obtain

E{σ̂2b (0, a)} = σ2b (0, a) +
1

J

J∑
j=1

1

nj0

(
1− nj0

nj

)
σ2j (0, a)

= σ2b +
pa

n(1− pa)
σ2w

=

{
r +

pa(1− r)
n(1− pa)

}
σ2

and

E{σ̂2b (1, 0; a)} = σ2b (1, 0; a)− 1

J

J∑
j=1

σ2j (1, 0; a)

nj

= ρσ2b −
ρσ2w
n

= ρ

(
r − 1− r

n

)
· σ2.

Therefore, under Assumption 4, E(D̂) = D∗0 = σ2 · diag(D∗01, D
∗
02, . . . , D

∗
0m), where

D∗0a =
1

qa

r + (1−pa)(1−r)
npa

ρ
(
r − 1−r

n

)
ρ
(
r − 1−r

n

)
r + pa(1−r)

n(1−pa)


17



for a = 1, . . . ,m.

We next prove the sample size formula. From Theorem 6, the number of clusters required for

detecting the alternative hypothesis Hde
1 : ADE = x with power 1− β based on Tde is given as,

J ≥
s2(χ2

1−α(m), 1− β,m)

x>{C1E(D̂)C>1 }−1x
,

which, under Assumption 4, is equivalent to

J ≥
s2(χ2

1−α(m), 1− β,m) · σ2

x>{C1D∗0C
>
1 }−1x

.

Therefore, under the alternative hypothesis H1 : |ADE| = µ for all a, the sample size formula is

J ≥
s2(χ2

1−α(m), 1− β,m) · σ2

µ2 · 1>m{C1D∗0C
>
1 }−11m

=
s2(χ2

1−α(m), 1− β,m) · σ2

µ2
· 1∑m

a=1 {(1,−1)D∗0a(1,−1)>}−1
.

Under r ≥ 1/(n + 1), we have (1,−1)D0a(1,−1)> ≥ (1,−1)D∗0a(1,−1)>. Thus, a more conser-

vative sample size formula is given as,

J ≥
s2(χ2

1−α(m), 1− β,m) · σ2

µ2
· 1∑m

a=1 {(1,−1)D0a(1,−1)>}−1
.

�

S3.7 Proof of Theorem 8

From Theorem 6, the number of clusters required for detecting the alternative hypothesis Hmde
1 :

MDE = µ with power 1− β based on Tmde is given as,

J ≥
s2(χ2

1−α(m), 1− β,m)

µ2{C2E(D̂)C>2 }−1
,

which, under Assumption 4, is equivalent to

J ≥
s2(χ2

1−α(1), 1− β, 1) · σ2

µ2

m∑
a=1

q2a

{
(1,−1)D∗0a(1,−1)>

}
.

Under r ≥ 1/(n+ 1), we have (1,−1)D0a(1,−1)> ≥ (1,−1)D∗0a(1,−1)>. Thus, a more conservative

sample size formula is given as,

J ≥
s2(χ2

1−α(m), 1− β,m) · σ2

µ2
·
m∑
a=1

q2a

{
(1,−1)D0a(1,−1)>

}
.

�
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S3.8 Proof of Theorem 9

From Theorem 6, the number of clusters required for detecting the alternative hypothesis ASE = x

with power 1− β based on Tse is given as,

J ≥
s2(χ2

1−α(2m− 2), 1− β, 2m− 2)

x>{C3E(D̂)C>3 }−1x
,

which, under Assumption 4, is equivalent to

J ≥
s2(χ2

1−α(m), 1− β,m) · σ2

x>{C3D∗0C
>
3 }−1x

.

Therefore, under the alternative hypothesis Hse
1 : maxa6=a′ |ASE(z; a, a′)| = µ for z = 0, 1, the sample

size formula is

J ≥
s2(χ2

1−α(2m− 2), 1− β, 2m− 2) · σ2

µ2 ·mins∈S s>{C3D∗0C
>
3 }−1s

,

where S is the set of s = (ASE(0; 1, 2),ASE(0; 2, 3), . . . ,ASE(0;m−1,m),ASE(1; 1, 2),ASE(1; 2, 3), . . . ,

ASE(1;m− 1,m)) satisfying maxz,a 6=a′ |ASE(a, a′)| = 1 for z = 0, 1. �

S3.9 Proof of Theorem S1

We first prove the equivalence between the point estimators. The OLS estimate can be written as,

β̂ = (X>WX)−1X>WY .

Because the columns of X are orthogonal to each other, we can consider each element of β̂ separately.

Therefore, we have

β̂za =


J∑
j=1

nj∑
i=1

1(Zij = z,Aj = a)wij


−1

J∑
j=1

nj∑
i=1

1(Zij = z,Aj = a)wijYij


=

J∑
j=1

nj∑
i=1

1

Janjz
· 1(Zij = z,Aj = a)Yij

= Ŷ (z, a).

We then prove the equivalence between the variance estimators. Recall the variance estimator,

v̂arclusterhc2 (β̂) = (X>WX)−1

∑
j

X>j Wj(Inj −Pj)
−1/2ε̂j ε̂

>
j (Inj −Pj)

−1/2WjXj

 (X>WX)−1,
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where Inj is the nj × nj identity matrix and Pj is the following cluster leverage matrix,

Pj = W
1/2
j Xj(X

>WX)−1X>j W
1/2
j .

Without loss of generality, suppose Aj = 1. We have

(X>WX)−1 = In×n,

Pj = W
1/2
j Xj(X

>WX)−1X>j W
1/2
j

=


1√
J1nj1

1nj1 0nj1

0nj0
1√
J1nj0

1nj0




1√
J1nj1

1nj1 0nj1

0nj0
1√
J1nj0

1nj0


>

=

 1
Janj1

1nj1×nj1 0nj1×nj0

0nj0×nj1
1

Janj0
1nj0×nj0

 ,

where Ik is an k-dimensional identity matrix, 1k (0k) is an k-dimensional vector of ones (zeros) and

1k1×k2 (0k1×k2) is an k1 × k2 dimensional matrix of ones (zeros).

Since (1>nj1
,0>nj0

)> and (0>nj1
,1>nj0

)> are two eigenvectors of Inj −Pj whose eigenvalue is (J1 −

1)/J1, we have,

(Inj −Pj)
−1/2(1>nj1

,0>nj0
)> =

√
J1

J1 − 1
(1>nj1

,0>nj0
)>,

(Inj −Pj)
−1/2(0>nj1

,1>nj0
)> =

√
J1

J1 − 1
(0>nj1

,1>nj0
)>.

Thus,

(Inj −Pj)
−1/2WjXj =

√
J1

J1 − 1

 1
J1nj1

1nj1 0nj1 0nj1×(2m−2)

0nj0
1

J1nj0
1nj0 0nj0×(2m−2)

 .

For a unit with (Aj = 1, Zij = 1), we have ε̂ij = Yij − β̂11 = Yij − Ŷ (1, 1), and for a unit with

(Aj = 1, Zij = 0), we have ε̂ij = Yij − α̂01 = Yij − Ŷ (0, 1). As a result,

ε̂>j (Inj −Pj)
−1/2WjXj

=

√
J1

J1 − 1
(Y1j − Ŷ (1, 1), . . . , Ynjj − Ŷ (0, 1))

 1
J1nj1

1nj1 0nj1 0nj1×(2m−2)

0nj0
1

J1nj0
1nj0 0nj0×(2m−2)

 ,
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=

√
J1

J1 − 1

 1
J1nj1

{∑nj

i=1 YijZij − nj1Ŷ (1, 1)
}

1
J1nj0

{∑nj

i=1 Yij(1− Zij)− nj0Ŷ (0, 1)
}

>

=

√
1

J1(J1 − 1)

(
Ŷj(1)− Ŷ (1, 1), Ŷj(0)− Ŷ (0, 1),0>2m−2

)
.

Similar result applies for Aj = a, where a = 1. . . . , J . Therefore, v̂arclusterhc2 (β̂) is a block diagonal

matrix with the a-th block

1

Ja(Ja − 1)

J∑
j=1

1(Aj = a)
(
Ŷj(1)− Ŷ (1, a), Ŷj(0)− Ŷ (0, a)

)(
Ŷj(1)− Ŷ (1, a), Ŷj(0)− Ŷ (0, a)

)>

=


∑J

i=1{Ŷj(1)−Ŷ (1,a)}21(Aj=a)

Ja(Ja−1)

∑J
i=1{Ŷj(1,a)−Ŷ (1,a)}{Ŷj(0,a)−Ŷ (0,a)}1(Aj=a)

Ja(Ja−1)∑J
i=1{Ŷj(1,a)−Ŷ (1,a)}{Ŷj(0,a)−Ŷ (0,a)}1(Aj=a)

Ja(Ja−1)

∑J
i=1{Ŷj(0)−Ŷ (0,a)}21(Aj=a)

Ja(Ja−1)


=

D̂

J
.

�

S3.10 Proof of Theorem S2

First, we calculate the variance of ÂTE under the two-stage randomized design. In this case, ÂTE

is the same as ÂDE. From Theorem 2, we have

var
(
ÂDE

)
=

m∑
a=1

J2
a

J2
· var

{
ÂDE(a)

}
+
∑
a6=a′

JaJa′

J2
· cov

{
ÂDE(a), ÂDE(a′)

}
.

When there is no interference, we have

var
{
D̂EY(a)

}
=

(
1− Ja

J

)
τ2b
Ja

+
1

JaJ

J∑
j=1

{∑n
i=1(Yij(1)− Y j(1))2

(n− 1)npa
+

∑n
i=1(Yij(0)− Y j(0))2

(n− 1)n(1− pa)
−
∑n

i=1(ATEij −ATEj)
2

(n− 1)n

}

=

(
1− Ja

J

)
τ2b
Ja

+
nJ − 1

(n− 1)nJaJ

{
η2w(1)

pa
+
η2w(0)

1− pa
− τ2w

}

and cov
{
ÂDE(a), ÂDE(a′)

}
= −τ2b /J . Therefore, we can obtain

var
(
ÂDE

)
=

m∑
a=1

Ja

(
1− Ja

J

)
τ2b
J2
−

m∑
a6=a′

JaJa′

J2
·
τ2b
J

+
m∑
a=1

J2
a

J2
· nJ − 1

(n− 1)nJaJ

{
η2w(1)

pa
+
η2w(0)

1− pa
− τ2w

}
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=
nJ − 1

J3(n− 1)

m∑
a=1

Ja
npa
· η2w(1) +

nJ − 1

J3(n− 1)

m∑
a=1

Ja
n(1− pa)

· η2w(0)− nJ − 1

J3(n− 1)

m∑
a=1

Ja
n
· τ2w

=
(nJ − 1)(1− r)

nJ3

{
m∑
a=1

Ja
npa
· η2(1) +

m∑
a=1

Ja
n(1− pa)

· η2(0)−
m∑
a=1

Ja
n
· τ2
}

≈ 1− r
J2

m∑
a=1

Ja
npa
· η2(1) +

1− r
J2

m∑
a=1

Ja
n(1− pa)

· η2(0)− 1− r
nJ

· τ2,

where the last line follows from the approximation assumptions in equation (S3).

Second, the variance of ÂTE under the completely randomized experiment with the number of

the treated units equal to
∑m

a=1 Janpa is given as,

1∑m
a=1 Janpa

· η2(1) +
1∑m

a=1 Jan(1− pa)
· η2(0)− 1

Jn
· τ2.

Third, we calculate the variance of ÂTE under cluster randomized experiments with the same

number of treated units. In the cluster randomized experiments, the units in each cluster get the

same treatment condition. Thus, the number of the treated clusters is
∑m

a=1 Japa. As a result, the

variance of ÂTE is given as,

η2b (1)∑m
a=1 Japa

+
η2b (0)∑m

a=1 Ja(1− pa)
−
τ2b
J
·

≈ 1 + (n− 1)r∑m
a=1 Janpa

· η2(1) +
1 + (n− 1)r∑m
a=1 Jan(1− pa)

· η2(0)− 1 + (n− 1)r

nJ
· τ2,

where the last line follows from the approximation assumptions in equation (S3). �

S4 Computational details

We provide a strategy for numerically calculating the required number of clusters in Theorem 9. We

focus on the following optimization problem,

min
s∈S

s>{C3D0C
>
3 }−1s,

where a = (ASE(0; 1, 2),ASE(0; 2, 3), . . . ,ASE(0;m−1,m),ASE(1; 1, 2),ASE(1; 2, 3), . . . ,ASE(1;m−

1,m)) satisfies the constraint maxa6=a′ |ASE(z; a, a′)| = 1 for z = 0, 1.

We consider all the possible cases in which maxa6=a′ |ASE(z; a, a′)| = 1 holds for z = 0, 1. First,

using quadratic programming, we can obtain the minimum of s>{C3D0C
>
3 }−1s under the constraint

22



ASE(1; 1, 2) = 1, ASE(0; 1, 2) = 1 and −1 ≤ ASE(z; a, a′) ≤ 1 for all z, a, a′. We denote it

by l(1, 2; 1, 2). Similarly, we can obtain l(a1, a
′
1; a0, a

′
0) for all a1, a

′
1, a0, a

′
0 by implementing this

procedure for each of the possible cases satisfying maxa6=a′ |ASE(z; a, a′)| = 1 for z = 0, 1. As a

result, the solution to the optimization problem is min l(a1, a
′
1; a0, a

′
0).

S5 Simulation Studies

We conduct simulation studies to evaluate the empirical performance of the sample size formulas for

the direct, marginal direct, and spillover effects. We consider a two-stage randomized experiment

with three different treatment assignment mechanisms (m = 4), under which the treated proportions

are 20%, 40%, 60%, and 80%, respectively. We generate the treatment assignment mechanism Aj

with Pr(Aj = a) = 1/4 for a = 1, 2, 3, 4 such that Ja = J/4. We then completely randomize the

treatment assignment Zij within each cluster according to the selected assignment mechanism.

Our data generating process is as follows. First, we generate the cluster-level average potential

outcomes as,

Y j(0, a) ∼ N(θ0a, σ
2
b ), Y j(1, a) ∼ N(θ1a + ρ{Y j(0, a)− θ0a}, (1− ρ2)σ2b )

for a = 1, 2, 3, 4. Second, we generate the individual-level average potential outcomes Yij(z, a) as,Yij(1, a)

Yij(0, a)

 ∼ N2


Y j(1, a)

Y j(0, a)

 ,

 σ2w ρσ2w

ρσ2w σ2w




for a = 1, 2, 3, 4. In this super population setting, the direct effect under treatment assignment

mechanism a is given by θ1a − θ0a for a = 1, 2, 3, 4, whereas the marginal direct effect equals (θ11 +

θ12 + θ13 + θ14)/4− (θ01 + θ02 + θ03 + θ04)/4. The spillover effect comparing treatment assignment

mechanisms a and a′ under treatment condition z is θza − θza′ for z = 0, 1 and a, a′ = 1, 2, 3, 4.

However, our target causal quantities of interest are finite-sample causal effects (ADE(a), MDE,

ASE(z; a, a′)), which generally do not equal their super-population counterparts due to sample

variation. Therefore, we center the generated potential outcomes so that the finite-sample and super-

population causal effects are equal to one another, i.e., Y (z, a) = θza for z = 0, 1 and a = 1, 2, 3, 4.
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We choose different values of θ’s based on the different alternative hypotheses for our three causal

effects of interest. For the direct effect, we generate θ0a (a = 1, 2, 3, 4) from a uniform distribution

on the interval [−0.3, 0.3], and set θ1a = 0.3 + θ0a for all a; the generated potential outcomes

satisfy |ADE(a)| = 0.3 for all a. For the marginal direct effect, we generate θ0a (a = 1, 2, 3, 4)

from a uniform distribution on the interval [−0.3, 0.3] and set θ11 = 0.12 + θ01, θ12 = 0.48 + θ02,

θ13 = 0.24 + θ03, and θ14 = 0.36 + θ04; the generated potential outcomes satisfy MDE = 0.3. For

the spillover effect, we generate θ0a and θ1a from a uniform distribution on the interval [−0.15, 0.15]

for (a = 1, 2, 3) and set θz4 = 0.3 + min(θz1, θz2, θz3) for z = 0, 1; the generated potential outcomes

satisfy maxa6=a′ |ASE(Z; a, a′)| = 0.3 for z = 0, 1.

We first consider the scenario with equal cluster size n for all clusters, the total variance σ2 = 1,

and two levels of cluster size (n = 20 and n = 100). We choose three values of the correlation

coefficient between potential outcomes, ρ = 0, 0.3, 0.6. Because the sample size formulas in equa-

tions (12), (14), and (17) assume ρ = 0, the simulation settings with ρ = 0.3, 0.6 evaluate their

robustness to the misspecification of this design parameters. In each setting, we vary the intraclus-

ter correlation coefficient r = σ2b/(σ
2
w + σ2b ) from 0 to 1, which also determines the values of σ2w and

σ2b . We compute the required number of clusters using the sample size formulas and then generate

the data based on the resulting number of clusters. The statistical power is estimated under each

setting by averaging over 1, 000 Monte Carlo simulations.

Figure S1 shows the required number of clusters calculated from equations (12), (14), and (17)

for the statistical power of 80%. The parameters are set to σ2 = 1, µ = 0.3, α = 0.05, and β = 0.2

with the intracluster correlation coefficient varying from 0 to 1 (horizontal axis). The required

number of clusters for the marginal direct effect (middle panel) is much less than those for the direct

and spillover effects (left and right panels, respectively). Across all settings, the required cluster

number increases linearly with the intracluster correlation coefficient. The difference between the

settings with a small cluster size n = 20 and a moderate cluster size n = 100 is not substantial.

This is because the conservative variance (covariance) matrix estimators rely solely on the estimated
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Figure S1: The required number of clusters calculated from equations (12), (14), and (17) for the

statistical power of 80%. The parameters are set to σ2 = 1, µ = 0.3, α = 0.05, β = 0.2 with the

intracluster correlation coefficient varying from 0 to 1 (horizontal axis). The solid lines indicate the

setting with cluster size of n = 20, and the dashed lines indicate the setting with n = 100.

between-cluster variances, in which the cluster size plays a minimal role. As a result, having a large

cluster size does not affect the required number of clusters significantly.

Figure 2(a) presents the estimated statistical power for testing the alternative hypotheses con-

cerning the direct, marginal direct, and spillover effects in the left, middle, and right plots, respec-

tively. With the correct specification of the correlation coefficient ρ, the achieved power is close to its

expected level (0.8) under almost all settings for the direct effect, marginal direct effect, and spillover

effect. When the intracluster correlation coefficient is small, the statistical power for the direct effect

and marginal direct effect is sometimes below the nominal level of 0.8. This may arise because

the required number of clusters is small under these settings (e.g., J ≥ 20 for the marginal direct

effect when the intracluster correlation coefficient is 0.1), reducing the accuracy of the asymptotic

approximation used by the sample size formulas.

With the misspecified values of correlation coefficient ρ = 0.3, 0.6, the power is close to 1 for the
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(a) Equal cluster size
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(b) Unequal cluster size

Figure S2: Estimated statistical power for testing the alternative hypotheses the direct, marginal

direct, and spillover effects. The solid lines indicate the setting with cluster size of n = 20, and

the dashed lines indicate the setting with n = 100. In each plot, we vary the correlation between

potential outcomes ρ as well as the intracluster correlation coefficient (horizontal axis).
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direct effect and marginal direct effect when the intracluster correlation coefficient is moderate or

large. This suggests that the sample size formula is conservative for these quantities. In contrast,

the power is smaller than the expected level for the spillover effect, especially with a large value of

the intracluster correlation coefficient. This suggests that the sample size formula for the spillover

effect may not be robust to the misspecification of the correlation coefficient.

Next, we consider the scenario with unequal cluster size. We generate each cluster size from a

categorical distribution distribution taking values in {0.5n, 0.75n, n, 1.5n, 2n, 2.5n} with probabilities

{0.25, 0.1, 0.1, 0.1, 0.2, 0.25}, respectively. We then generate the data using the number of clusters

calculated from the sample size formulas. The parameter n̄ in these formulas is calculated based on

the distribution of the cluster sizes. Other parameters are the same as those of the case with equal

cluster size.

Figure 2(b) shows the results. The results for the direct effect and marginal direct effect are

largely similar to those presented in Figure 2(a). For the spillover effect, the variation of power

is larger with unequal cluster size than with equal cluster size when the intracluster correlation

coefficient is misspecified. These results show that the sample size formulas are robust to the unequal

cluster sizes.

The simulation results also suggest that the sample size formulas are robust to the violation of

the simplifying conditions used in Assumption 4. The reason is that the variances in the generated

data do not satisfy these simplifying conditions due to finite sample variation.
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