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©® Moderation

e How do treatment effects vary across individuals?
e Who benefits from (or is harmed by) the treatment?
e Interaction between treatment and pre-treatment covariates

@ Causal interaction

e What aspects of a treatment are responsible for causal effects?
o What combination of treatments is efficacious?
e Interaction between treatment variables

© Individualized treatment regimes
e What combination of treatments is optimal for a given individual?



@ High dimension = many treatments, each having multiple levels

e A motivating application: Conjoint analysis (Hainmueller et al. 2014)
e survey experiments to measure immigration preferences
e a representative sample of 1,396 American adults
e each respondent evaluates 5 pairs of immigirant profiles

7 0

genderz, education’, origin1
professionll, application reason3, prior trips
Over 1 million treatment combinations!

, experience4, plan4, 1anguage4,
5

What combinations of immigrant characteristics make them preferred?

@ Too many treatment combinations ~~ Need for an effective summary

@ Interaction effects play an essential role



© Conditional effect interpretation:
e Does the effect of one treatment change as we vary the value of
another treatment?

@ Does the effect of being black change depending on whether an
applicant is male or female?

e Useful for testing moderation among treatments

@ Interactive effect interpretation:
e Does a combination of treatments induce an additional effect beyond
the sum of separate effects attributable to each treatment?

@ Does being a black female induce an additional effect beyond the effect
of being black and that of being female?

e Useful for finding efficacious treatment combinations in high dimension



@ Two binary treatments: A and B
e Potential outcomes: Y(a, b) where a,b € {0,1}

o Conditional effect interpretation:

[Y(1,1) - Y(0,1)] - [Y(1,0) - ¥(0,0)]

effect of A when B=1 effect of A when B =0

~ requires the specification of moderator

@ Interactive effect interpretation:

[Y(1,1) - ¥(0,0)] - [Y(1,0) - Y(0,0)] - [Y(0.1) — ¥(0,0)]

effect of A and B effect of A when B =0 effect of B when A =0

~> requires the specification of baseline condition

@ The same quantity but two different interpretations



@ Lack of invariance to the baseline condition
~» Inference depends on the choice of baseline condition

@ 3 x 3 example:

o Treatment A € {ag, a1, a2} and Treatment B € {by, by, by}
o Regression model with the baseline condition (ag, bo):

E(Y|AB) = 1+4aj+a5+b5+ajb; +2ayb; +3a5b;
o Interaction effect for (a», b,) > Interaction effect for (a1, bo)

Another equivalent model with the baseline condition (ag, by):

E(Y | A B) = 1+4a}+4a}+ b} +ajb;—asb; — 3a3b;

Interaction effect for (a2, bo) < Interaction effect for (ay, ba)
Interaction effect for (az, by) is zero under the second model
All interaction effects with at least one baseline value are zero



@ Linear regression with main effects and two-way interactions

o Baseline: Jowest levels of job experiences and education

Education
Job None Ath 8th High — Two-year College Graduate
experience grade grade school  college
- 0 0 0 0 0 0

None
1-2 vears 0 0.009 -0.019 —0.032 0.100 —0.044 —0.064

¥ (0.063) (0.063) (0.063) (0.064) (0.064) (0.063)
3.5 vears 0 0.016 0.056 0.165 0.107 0.010 0.117

Y (0.063) (0.064) (0.064) (0.064) (0.065) (0.063)

0 —0.050 0.126 0.042 0.058 —0.094 0.015

> b years

(0.064)  (0.064) (0.063) (0.064) (0.064) (0.064)




@ Same linear regression but different baseline

o Baseline: highest levels of job experiences and education

Education
Job . None 4th 8th High — Two-year College Graduate
experience grade grade school  college
None 0.015 0.066 —0.111 —-0.027 —0.043 0.109 0
(0.064) (0.062) (0.064) (0.061) (0.063) (0.063)
1-2 years 0.078 0.138 —0.066 0.006 0.120 0.129 0
(0.064) (0.062) (0.062) (0.061) (0.062) (0.062)
—0.102 —-0.036 —0.172 0.021 —0.054 0.002 0
3-5 years

(0.062) (0.062) (0.063) (0.062) (0.061) (0.062)

> b years




@ Problems of the conventional approach:

e Lack of invariance to the choice of baseline condition
e Difficulty of interpretation for higher-order interaction

@ Solution: Average Marginal Treatment Interaction Effect

e invariant to baseline condition
e same, intuitive interpretation even for high dimension
e simple estimation procedure

© Reanalysis of the immigration survey experiment



@ Two factorial treatments:

A e A= {a,a1,.---,ap,-1}
B € B = {bo,bl,...,bDB_l}

@ Assumption: Full factorial design
© Randomization of treatment assignment

{Y(ala bm)}ageA,bmeB uin {Aa B}
@ Non-zero probability for all treatment combination

Pr(A=a;,B=b,) > 0 forallaye A and b,e€B

@ Fractional factorial design not allowed

@ Use a small non-zero assignment probability
@ Focus on a subsample
© Combine treatments



© Average Treatment Combination Effect (ATCE):

o Average effect of treatment combination (A, B) = (a, by) relative to
the baseline condition (A, B) = (ao, bo)

7(ae, bm; a0, bo) = E{Y(ar, bn) — Y (a0, bo)}

o Which treatment combination is most efficacious?

@ Average Marginal Treatment Effect (AMTE; Hainmueller et al. 2014):

o Average effect of treatment A = a, relative to the baseline condition
A = ag averaging over the other treatment B

¥(ag, a0) = /BIE{Y(ag,B)—Y(ao,B)}dF(B)

e Which treatment is effective on average?



@ Average Treatment Interaction Effect (ATIE):

f(ag, bm; ao, bo) = E{ Y(ag, bm) — Y(ao, bm) — Y(ag, bo) + Y(ao, bo)}

o Conditional effect interpretation:

E{Y(a¢, bm) — Y(a0, bm)} — E{Y(ae,bo) Y (a0, bo)}
Effect of A = ;grwhen B =bn Effect of A = ae when B = by

@ Interactive effect interpretation:

7(a¢, bm; a0, bo) —E{Y (a, bo) — Y (a0, bo)} — E{Y (a0, bm) — ¥ (ao, bo)}
A'T'EE Effect of A :Taz when B = by Effect of B :7); when A = ag

@ Estimation: Linear regression with interaction terms



@ Average Marginal Treatment Interaction Effect (AMTIE):
m(ae, bmi ao, bo) = 7(ar, bmi a0, bo)  —  ¥(ar, a0) — Y(bm, bo)
—_—— —_——  —
ATCE of (A, B) = (ag, bm)  AMTE of a, AMTE of by,

@ Interactive effect interpretation: additional effect induced by A = ay
and B = by, together beyond the separate effect of A = a; and that
of B= b,

o Compare this with ATIE:

Z'(ag, bm; do, bo)/—lE{ Y(ag, bo) — Y(ao, bo)} —EE{ Y(ao, bm) — Y(ao, bo)}

ATCE Effect of A = a; when B = by Effect of B = by, when A = a9

@ We prove that the AMTIEs are both interval and order invariant
@ The AMTIEs do depend on the distribution of treatment assignment

@ specified by one's experimental design
@ motivated by the target population



Education
Job . None 4th 8th High  Two-year College Graduate
experience grade grade school college
None - —0.004 —-0.028 —-0.035 —0.031 0.012 —-0.010

1-2 years  —0.001 —0.001 —-0.025 —0.040 0.024 —0.009 —0.044
3-5years —0.040 —0.019 —-0.042° 0.031 -0.026 —-0.022 0.024
>byears —0.014 —-0.031 0.041 —-0.011 -0.021 —-0.036 —0.024




Education
Job . one 4th 8th High Two-year College Graduate
experience grade grade school college
None 0.024 0.020 —0.004 —0.011 -0.007 0.036 0.014

1-2 years  0.023 0.023 —0.001 —0.016" 0.048 0.015 —0.020
3-5years —0.016 0.005 —0.018 0.055 —0.002 0.002 0.048
>5years  0.010 —0.007 0.65 0.013 0.003 —0.012[ 0




@ The AMTIE is a linear function of the ATIEs:

(a0, bmi a0, bo) = &(ar, bmi a0, bo) — Y Pr(Ai = a) &(a, bm; a0, bo)
acA

— Z Pr(B; = b) {(ar, b; a0, bo)

beB

@ The ATIE is also a linear function of the AMTIEs:

&(ag, bm; a0, bo) = m(ae, bm; a0, bo) — m(ay, bo; ao, bo) — m(ao, bm; a0, bo,

@ Absence of causal interaction:
All of the AMTIEs are zero if and only if all of the ATIEs are zero

@ The AMTIEs can be estimated by first estimating the ATIEs



e J factorial treatments: T = (T1,..., T))
@ Assumptions:
@ Full factorial design

Yt) L T and Pr(T=t) > 0 forallt
@ Independent treatment assignment
T, 1L T_; forallj

@ Assumption 2 is not necessary for identification but considerably
simplifies estimation

@ We are interested in the K-way interaction where K < J

@ We extend all the results for the 2-way interaction to this general case



@ Generalize the 2-way ATIE by marginalizing the other treatments T1?2

E12(t1, to; to1, to2) = /E{Y(tlat27ll:2)_ Y (to1, t2, TH?)

=Y (t1, to2, T+2) + Y (tor, top, TH2) } dF (TH?)

@ In the literature, the 3-way ATIE is defined as

&1:3(t, to, t3; to1, to2, to3)
= Gt b ton, to2 | T3 = 13) — S1a(t1, 0o to1, to2 | T3 = to3)

2-way ATIE when T3 = t3 2-way ATIE when T3 = tp3

@ Higher-order ATIEs are similarly defined sequentially
@ This representation is based on the conditional effect interpretation

@ Problem: the conditional effect of conditional effects!



@ Definition: the difference between the ATCE and the sum of
lower-order AMTIEs

@ Interactive effect interpretation
o Example: 3-way AMTIE, 7T1;3(t1, to, t3; to1, to2, t03), equals

T1:3(t1, t2, t3; to1, to2, fo32
ATCE
—iﬁl:z(t17 to; tot, to2) + m2:3(t2, t3; too, to3) + m1:3(t1, t3; to1, fo3)}1
sum of 2-way AMTIEs
- \{¢(h: tor) + ¥ (t2; toa) + (t3; tos)}/

sum of (1-way) AMTEs

@ Properties:
@ K-way ATCE = the sum of all K-way and lower-order AMTIEs
@ Interval and order invariance to the baseline condition
© Derive the relationships between the AMTIEs and ATIEs for any order



7 0

5 factors (gender?, education’, origin!®, experience?*, plan?)

@ full factorial design assumption
@ computational tractability

Matched-pair conjoint analysis: randomly choose one profile

Binary outcome: whether a profile is selected

Model with one-way, two-way, and three-way interaction terms
p=1,575 and n = 6,980

Curse of dimensionality = sparcity assumption

Support vector machine with a lasso constraint (Imai & Ratkovic, 2013)
Under-identified model that includes baseline conditions

99 non-zero and 1,476 zero coefficients

Cross-validation for selecting a tuning parameter

FindIt: Finding heterogeneous treatment effects



One-way Effects:
Plan
Education
Origin
Experience

Gender

Tuo-way Ereas @ Range of AMTIEs:
Origin:Experience .
aucaton Experience importance of each
e factor and factor
Experience:Plan interaction
Education:Plan
Education:Gender
Gender:Plan .
condor o @ Sparcity-of-effects
Gender:Experience prl n Ci p | e

Thioe-ay Efecs @ gender appears to play

Education:Gender:Origin

Education:Experience:Plan

a significant role in
Education:Gender:Experience - . .
oo GenderPin three-way interactions
Gender:Experience:Plan
Gender:Origin:Experience
Education:Origin:Plan
Education:Origin:Experience -
Origin:Experience:Plan

Gender:Origin:Plan

o

Ranges of the K-way AMTIE
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e Two-way effect example (origin x experience):

7(Somalia, 1-2 years; India, None) (n=168; n=155)
—3.74
= 1(Somalia; India)+ (1 — 2years; None) + 7(Somalia, 1 — 2years; India, None)
—5.14 5.12 —-3.72

@ Three-way examples (education X gender X origin):

7(Graduate,Male, India; Graduate, Female, India) (n=152; n=40)
7.46
= 1(Male; Female) + m(Graduate, Male; Graduate, Female)
—-0.77 —0.34
+ m(Male, India; Female, India) + m(Graduate, Male, India; Graduate, Female, India)
1.56 7.01



@ Interaction effects play an essential role in causal heterogeneity

@ moderation
@ causal interaction

@ Two interpretations of causal interaction

@ conditional effect interpretation (problematic in high dimension)
@ interactive effect interpretation

@ Average Marginal Treatment Interaction Effect

@ interactive effect in high-dimension

@ invariant to baseline condition

© enables effect decomposition

Q@ -~ effective analysis of interactions in high-dimension

e Estimation challenges in high dimension

© group lasso, hierarchical interaction
@ post-selection inference
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