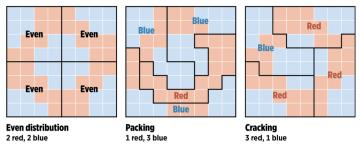
Using Simulation Algorithms to Analyze and Evaluate Redistricting Plans

Kosuke Imai

Harvard University

Asian Political Methodology Conference National University of Singapore January 7, 2023

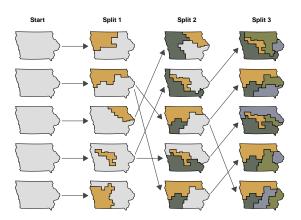
Joint work with Christopher Kenny, Cory McCartan, Tyler Simko, Shiro Kuriwaki, and Others


Algorithm-Assisted Redistricting Methodology (ALARM)

- What we do:
 - develop efficient and flexible simulation algorithms
 - 2 build open-source software packages for the entire workflow
 - 3 evaluate redistricting plans in the United States and elsewhere
- Goal: empower researchers, policy makers, data journalists, and citizen data scientists

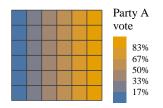
Redistricting Basics

Classic gerrymandering strategies: packing and cracking

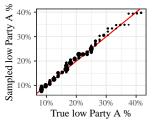

- What has changed: availability of granular data and mapping software (e.g., Maptitude)
- US congressional redistricting
 - racial gerrymandering: Shelby County v. Holder, Merrill v. Milligan
 - partisan gerrymandering: Rucho v. Common Cause; Moore v. Harper

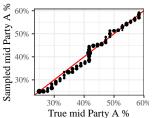
Why Use Simulation Algorithm for Redistricting Evaluation?

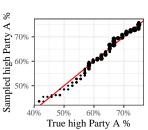
- Traditional redistricting evaluation
 - compute various fairness metrics
 - 2 compare them across states and over time
- Confounded by differences in political geography and redistricting rules
- Simulation-based redistricting evaluation
 - generate many alternative plans under a set of redistricting criteria
 - 2 compare them with a proposed plan to evaluate its properties
- Benefits of simulation approach
 - can control for state-specific political geography and redistricting rules
 - 2 transparency and ability to isolate a relevant factor
 - mathematical properties → representative sample of alternative plans


Sequential Monte Carlo (SMC) Algorithm (McCartan and Imai, 2020)

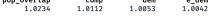
 Start with a blank state in parallel, use the spanning tree approach to sample a district at a time, resample with weights at each step




- Advantage: unlike MCMC, sampled plans are nearly independent
- Limitation: hard to incorporate plan-wide or region-specific constraints

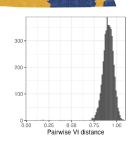

Validation

- Divide a 6×6 grid into 3 districts
- Enumerate all 264,000 possibilities
- Party A vote share: compare simulated with enumerated plans



SMC Diagnostics

```
SMC: 1,000 sampled plans of 11 districts on 2,465 units
'adapt_k_thresh'=0.985 • 'seq_alpha'=0.5
'est_label_mult'=1 • 'pop_temper'=0.01
```

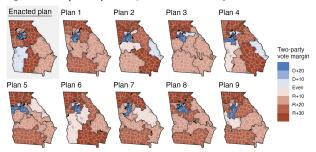

Plan diversity 80% range: 0.82 to 0.98

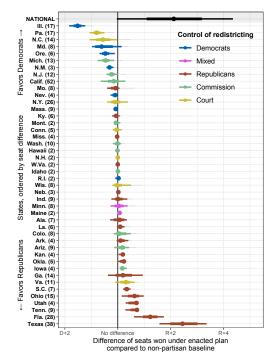
R-hat values for summary statistics: pop_overlap comp dem e_dem

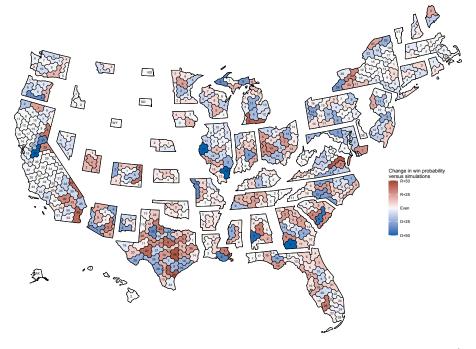
Sampling diagnostics for SMC run 1 of 4 (250 samples) Eff. samples (%) Acc. rate Log wgt. sd Max.

	ETT.	samples (%)	Acc. rate	Log wgt. Sa	Max.	unique	EST. K
Split 1		242 (97.0%)	20.6%	0.36	245	(98%)	10
Split 2		240 (95.8%)	31.2%	0.43	193	(77%)	6
Split 3		233 (93.4%)	21.8%	0.49	199	(80%)	8
Split 4		231 (92.3%)	29.9%	0.56	196	(78%)	5
Split 5		219 (87.6%)	36.1%	0.62	195	(78%)	3
Split 6		213 (85.0%)	44.9%	0.67	191	(76%)	2
Split 7		224 (89.7%)	15.9%	0.59	189	(76%)	7
Split 8		227 (90.8%)	24.2%	0.59	192	(77%)	4
Split 9		227 (90.9%)	16.9%	0.60	181	(72%)	3
Split 10		228 (91.3%)	3.8%	0.58	174	(70%)	2
Resample		166 (66.4%)	NA%	0.59	183	(73%)	NA

50 State Redistricting Simulations Project

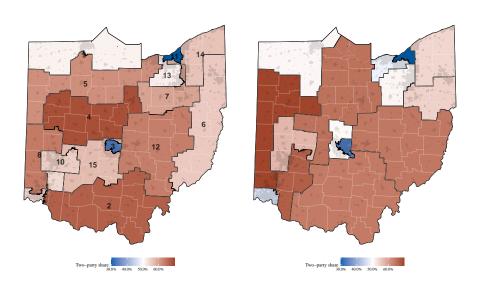

Comprehensive project to simulate alternative congressional redistricting plans for all fifty states.

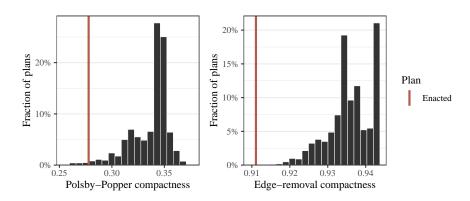

- tidied 2020 Census plus statewide election data from the VEST
- collect state-specific redistricting requirements
- construct algorithmic constraints based on these and traditional redistricting criteria
- 5,000 simulation plans based on SMC
- code and data are available at the Harvard Dataverse


Check out https://alarm-redist.org/fifty-states/

Georgia Example

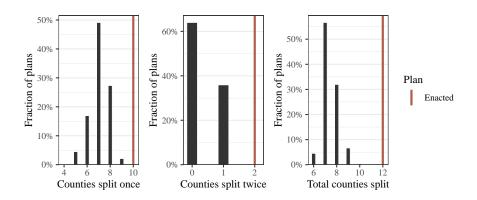
- 14 Congressional districts
- According to Georgia's House Legislative and Congressional Reapportionment Committee, districts must:
 - be contiguous
 - a have equal populations
 - be geographically compact
 - preserve county and municipality boundaries as much as possible
 - avoid the unnecessary pairing of incumbents
- We attempted to account for everything except incumbency constraint
- Voting rights act (VRA) compliance is tricky



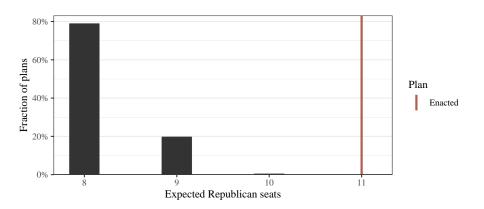

Application in the Court: Ohio Congressional Redistricting

- Currently 16 districts: 4 Democrats and 12 Republicans
- After 2020 Census, the number of seats is reduced to 15 districts
- 2018 Ohio voters passed the constitutional amendment
- I served as an expert witness for Relators: League of Women Voters of Ohio et al. v. Ohio Redistricting Commission, et al.
- Simulation analysis
 - 5,000 alternative plans
 - contiguous and compact districts
 - compliant with the Voting Rights Act (Cleveland)
 - several complicated splitting constraints
 - Section 2(B)(5): out of Ohio's 88 counties,
 - at least 65 counties should not be split
 - no more than 18 counties can be split no more than once
 - no more than 5 counties can be split no more than twice

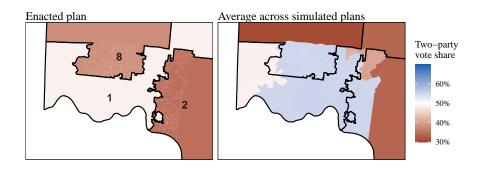
The Enacted and Example Simulated Plans

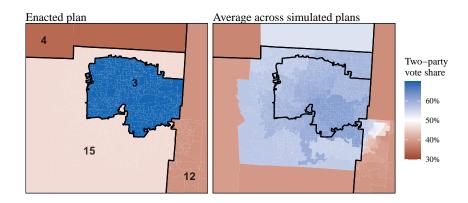


Compactness



- Polsby-Popper: the ratio of the district area to the area of a circle with the same perimeter
- Edge-removal


Administrative Boundary Splits


Expected Number of Republican Seats

Hamilton County: Cincinnati Area

Franklin County: Columbus Area

Ohio Supreme Court Strikes Down the Enacted Map

The Court Opinion

Id. at Section 1(C)(3)(a). The above evidence, particularly Dr. Imai's conclusion that the enacted plan will result in, on average, 2.8 more Republican seats than are warranted, shows that the General Assembly's decision to shift what could have been—under a neutral application of Article XIX—Democratic-leaning areas into competitive districts, i.e., districts that give the Republican Party's candidates a better chance of winning than they would otherwise have had in a more compactly drawn district, resulted in a plan that unduly favors the Republican Party and unduly disfavors the Democratic Party.

Concluding Remarks

- Redistricting matters
 - fair representation and policy outcomes
 - competitiveness of districts and responsiveness
 - political polarization
- Use of algorithms to detect gerrymandering
- Roles of experts
 - legislative process
 - court testimony
- Algorithm-generated redistricting plan proposals
- Japan: 47 prefecture project https://alarm-redist.org/japan/