High Dimensional Propensity Score Estimation via Covariate Balancing

Kosuke Imai

Princeton University

Talk at Columbia University

May 13, 2017

Joint work with Yang Ning and Sida Peng

Motivation

- Covariate adjustment in observational studies:
 - Identify and measure a set of potential confounders
 - Weight or match the treated and control units to make them similar
- Practical questions:
 - Which covariates should we adjust?
 - We are abound the entry of t
 - What should we do if we have many potential confounders?
- Major advances over the last several years in the literature: Tan, Hainmueller, Graham et al., Zubizarreta, Belloni et al., Chan et al., Farrell, Chernozhukov et al., Athey et al., Zhao, etc.
- Covariate Balancing Propensity Score (CBPS)
 - Imai & Ratkovic JRSSB; Fan et al.
 - Estimate propensity score such that covariates are balanced
 - Extensions: continuous treatment (Fong et al.), dynamic treatment (Imai & Ratkovic JASA), high-dimensional setting (Ning et al.)

Overview

- Review of propensity score and CBPS
 - Inverse probability weighting (IPW)
 - Propensity score tautology → covariate balancing
 - Optimal covariate balancing for CBPS

- High-dimensional CBPS (HD-CBPS)
 - Impossible to balance all covariates → trade-off between covariates
 - Sparsity assumption + Regularization
 - Balance covariates that are predictive of outcome
 - Remove bias (due to regularization) by covariate balancing

Propensity Score and CBPS

- $T_i \in \{0, 1\}$: binary treatment
- **X**_i: *d*-dimensional pre-treatment covariates
- Identification assumptions: SUTVA, overlap, unconfoundedness
- Dual characteristics of propensity score:
 - Predicts treatment assignment:

$$\pi(\mathbf{X}_i) = \Pr(T_i = 1 \mid \mathbf{X}_i)$$

2 Balances covariates:

$$\mathbb{E}\left\{\frac{T_i}{\pi(\mathbf{X}_i)}f(\mathbf{X}_i)\right\} = \mathbb{E}\left\{\frac{1-T_i}{1-\pi(\mathbf{X}_i)}f(\mathbf{X}_i)\right\} = \mathbb{E}\left\{f(\mathbf{X}_i)\right\}$$

- Propensity score tautology
- CBPS: estimate propensity score such that balance is optimized
- Covariate balancing as estimating equations

Optimal Covariate Balancing Equations

- Which covariates and what functions of them should we balance?
- The outcome model matters
- Outcome model: $\mathbb{E}(Y_i(t) \mid \mathbf{X}_i) = K_t(\mathbf{X}_i)$ for t = 0, 1
- Possibly misspecified propensity score $\pi_{\beta}(\mathbf{X}_i) \rightsquigarrow \pi_{\beta^o}(\mathbf{X}_i)$
- Inverse probability weighting (IPW) estimator:

$$\frac{1}{n}\sum_{i=1}^{n}\left\{\frac{T_{i}Y_{i}}{\pi_{\hat{\beta}}(\mathbf{X}_{i})}-\frac{(1-T_{i})Y_{i}}{1-\pi_{\hat{\beta}}(\mathbf{X}_{i})}\right\}$$

Asymptotic bias for the ATE:

$$\mathbb{E}\left[\left(\frac{T_i}{\pi_{\beta^o}(\mathbf{X}_i)} - \frac{1 - T_i}{1 - \pi_{\beta^o}(\mathbf{X}_i)}\right)\underbrace{\{\pi_{\beta^o}(\mathbf{X}_i)K_0(\mathbf{X}_i) + (1 - \pi_{\beta^o})K_1(\mathbf{X}_i)\}}_{\text{optimal } f(\mathbf{X}_i)}\right]$$

$$= \mathbb{E}\left[\underbrace{\left(1 - \frac{1 - T_i}{1 - \pi_{\beta^o}(\mathbf{X}_i)}\right)}_{\text{balance control group}} K_0(\mathbf{X}_i) + \underbrace{\left(\frac{T_i}{\pi_{\beta^o}(\mathbf{X}_i)} - 1\right)}_{\text{balance treatment group}} K_1(\mathbf{X}_i)\right]$$

Covariate Balancing in High-Dimension

- We focus on the estimation of $\mathbb{E}(Y_i(1))$
- A similar estimation strategy can be applied to $\mathbb{E}(Y_i(0))$
- Low dimension → strong covariate balancing

$$\frac{1}{n}\sum_{i=1}^{n}\left(\frac{T_{i}}{\hat{\pi}_{i}}-1\right)\mathbf{X}_{i}=0$$

asymptotic normality, semiparametric efficiency, double robustness (Fan et al.)

High dimension → weak covariate balancing

$$\frac{1}{n} \sum_{i=1}^{n} \left(\frac{T_i}{\hat{\pi}_i} - 1 \right) \alpha^{*\top} \mathbf{X}_i = 0$$

Assumptions for Estimating $\mu_1^* = \mathbb{E}(Y_i(1))$

Linear outcome model:

$$K_1(\mathbf{X}_i) = \alpha^{*\top} \mathbf{X}_i$$

2 Logistic propensity score model:

$$Pr(T_i = 1 \mid \mathbf{X}_i) = \pi(\beta^{*\top}\mathbf{X}_i) = \frac{\exp(\beta^{*\top}\mathbf{X}_i)}{1 + \exp(\beta^{*\top}\mathbf{X}_i)}$$

Sparsity of both models:

$$\max(s_1, s_2) \log d \sqrt{\log n/n} = o(1)$$

where
$$s_1=\#\{eta_j^*>0\}$$
 and $s_2=\#\{lpha_j^*>0\}$

Tuning parameters for Lasso:

$$\lambda = a\sqrt{\log(d)/n}$$
 and $\lambda' = a'\sqrt{\log(d)/n}$

for some unknown constants a and a

The Proposed Methodology

• Fit the penalized logistic regression model for propensity score:

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \left\{ T_i(\boldsymbol{\beta}^\top \mathbf{X}_i) - \log(1 + \exp(\boldsymbol{\beta}^\top \mathbf{X}_i)) \right\} + \lambda \|\boldsymbol{\beta}\|_1,$$

Fit the penalized linear regression model for the outcome:

$$\widetilde{\alpha} = \underset{\boldsymbol{\alpha} \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n T_i \{ Y_i - \boldsymbol{\alpha}^\top \mathbf{X}_i \}^2 + \lambda' \| \boldsymbol{\alpha} \|_1,$$

Calibrate the estimated propensity score by balancing covariates:

$$\widetilde{\gamma} = \underset{\boldsymbol{\gamma} \in \mathbb{R}^{|\widetilde{S}|}}{\operatorname{argmin}} \left\| \frac{1}{n} \sum_{i=1}^{n} \left(\frac{T_{i}}{\pi(\boldsymbol{\gamma}^{\top} \mathbf{X}_{i\widetilde{S}} + \hat{\boldsymbol{\beta}}_{\widetilde{S}^{c}}^{\top} \mathbf{X}_{i\widetilde{S}^{c}})} - 1 \right) \mathbf{X}_{i\widetilde{S}} \right\|_{2}^{2}$$

where $\widetilde{S} = \{j : |\tilde{\alpha}_j| > 0\}$

Use the estimated propensity score $\tilde{\pi}_i = \pi(\tilde{\gamma}^\top \mathbf{X}_{i\widetilde{S}} + \hat{\beta}_{\widetilde{S}^c}^\top \mathbf{X}_{i\widetilde{S}^c})$ for the IPW estimator $\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n T_i Y_i / \tilde{\pi}_i$

Theoretical Properties

• \sqrt{n} -consistency

$$\hat{\mu}_1 - \mu_1^* = \frac{1}{n} \sum_{i=1}^n \left[\frac{T_i}{\pi_i^*} (Y_i(1) - \alpha^{*\top} \mathbf{X}_i) + \alpha^{*\top} \mathbf{X}_i - \mu_1^* \right] + o_p(n^{-1/2})$$

asymptotic normality and semiparametric efficiency

$$\sqrt{n}(\hat{\mu}_1 - \mu_1^*) \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}\left(0, \ \mathbb{E}\left[\frac{1}{\pi^*}\mathbb{E}(\epsilon_{i1}^2 \mid \mathbf{X}) + (\boldsymbol{\alpha}^{*\top}\mathbf{X}_i - \mu_1^*)^2\right]\right)$$

→ valid under K-fold cross-validation

sample boundedness

$$\hat{\mu}_1 \geq \frac{\min_{i:T_i=1} Y_i}{n} \sum_{i=1}^n \frac{T_i}{\tilde{\pi}_i} = \min_{i:T_i=1} Y_i$$

and similarly, $\hat{\mu}_1 \leq \max_{i:T_i=1} Y_i$

Robustness and Generalizations

- Multi-valued treatment regime
 - use the penalized multinomial logistic regression
 - balance selected covariates for each treatment group
- Generalized linear models for the outcome
 - exponential family

$$p(Y \mid \mathbf{X}) = h(Y, \psi) \exp[\{Y\alpha^{*\top}\mathbf{X} - b(\alpha^{*\top}\mathbf{X})\}/a(\psi)]$$

• balance $f(\mathbf{X}_i) = (b'(\widetilde{\alpha}^{\top}\mathbf{X}_i), b''(\widetilde{\alpha}^{\top}\mathbf{X}_i)\mathbf{X}_{i\widetilde{S}})$

$$b'(\alpha^{*\top}\mathbf{X}_i) \approx b'(\widetilde{\alpha}^{\top}\mathbf{X}_i) + b''(\widetilde{\alpha}^{\top}\mathbf{X}_i)(\alpha^* - \widetilde{\alpha})\mathbf{X}_i^{\top}$$

- Misspecified propensity score model
 - theoretical properties hold so long as the outcome model is correct
 - ullet sure screening property must hold for \widetilde{S} in the outcome model

Comparison with Other Methods

- Augmented inverse probability weighting (AIPW)
 - Belloni et al. (2014), Farrell (2015), Chernozhukov et al. (2016)
 - Extends Robins' doubly-robust estimator to high-dimension

$$\frac{1}{n}\sum_{i=1}^n\left\{\hat{m}_1(\mathbf{X}_i)+\frac{T_i(Y_i-\hat{m}_1(\mathbf{X}_i))}{\hat{\pi}_i(\mathbf{X}_i)}\right\}$$

- "Double selection" method
- Residual balancing (RB)
 - Athey, Imbens, and Wagner (2016)
 - Assumes sparsity only for the outcome model
 - Critically relies on linearity assumption

Simulation Studies

- Inspired by Kang and Schafer (2007)
- Covariates: $\mathbf{X}_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Sigma)$ where $\Sigma_{jk} = \rho^{|j-k|}$
- Propensity score model:

$$Pr(T_i \mid \mathbf{X}_i) = logit^{-1}(-X_{i1} + 0.5X_{i2} - 0.25X_{i3} - 0.1X_{i4})$$

Outcome model:

$$Y_i(1) = 2 + 0.137X_{i7} + 0.137X_{i8} + 0.137X_{i9} + \epsilon_{1i}$$

$$Y_i(0) = 1 + 0.291X_{i5} + 0.291X_{i6} + 0.291X_{i7} + 0.291X_{i8} + 0.291X_{i9} + \epsilon_{0i}$$

where
$$\epsilon_{ti} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$$
 for $t = 0, 1$

- Add irrelevant covariates so that a total number of covariates, d, varies from 10 to 2000
- Comparison with Residual Balancing (RB) and regularized augmented inverse probability weighting (AIPW)

Both Models are Correct

• Standardized root-mean-squared error $\sqrt{\mathbb{E}(\hat{\mu}-\mu^*)^2}/\mu^*$

	n = 100			100 $n = 1000$		
d	HD-CBPS	RB	AIPW	HD-CBPS	RB	AIPW
10	0.2163	0.2301	0.2209	0.0707	0.0720	0.0950
100	0.2272	0.2421	0.2273	0.0765	0.0787	0.0692
500	0.3262	0.3132	0.3859	0.0729	0.0810	0.1009
1000	0.2083	0.2413	0.2072	0.0817	0.0894	0.0992
2000	0.2327	0.2212	0.2058	0.0716	0.0760	0.0903

Propensity Score Model is Misspecified

• Misspecification through transformation: $\mathbf{X}_{mis} = (\exp(X_1/2), X_2(1 + \exp(X_1))^{-1} + 10, (X_1X_3/25 + 0.6)^3, (X_2 + X_4 + 20)^2, X_5, \dots, X_d)$

	n = 100			<i>n</i> = 1000		
d	HD-CBPS	RB	AIPW	HD-CBPS	RB	AIPW
10	0.2230	0.2348	0.2174	0.0714	0.0734	0.0934
100	0.2163	0.2185	0.2104	0.0720	0.0784	0.0688
500	0.3255	0.3256	0.3742	0.0731	0.0852	0.1063
1000	0.2273	0.2462	0.2239	0.0892	0.0981	0.1074
2000	0.2232	0.2348	0.2061	0.0764	0.0844	0.0924

Both Models are Misspecified

• Outcome model misspecification through another transformation: $\mathbf{X}_{mis} = (\exp(X_1/2), X_2(1 + \exp(X_1))^{-1} + 10, (X_1X_3/25 + 0.6)^3, (X_2 + X_4 + 20)^2, X_6, \exp(X_6 + X_7), X_9^2, X_7^3 - 20, X_9, \dots, X_d)$

	<i>n</i> = 100			<i>n</i> = 1000		
d	HD-CBPS	RB	AIPW	HD-CBPS	RB	AIPW
10	0.2386	0.2462	0.2614	0.0655	0.0661	0.0724
100	0.2385	0.2556	0.2422	0.0647	0.0680	0.0693
500	0.3324	0.3400	0.3696	0.0790	0.0861	0.0765
1000	0.2226	0.2369	0.2209	0.0725	0.0822	0.0765
2000	0.2108	0.2157	0.1974	0.0843	0.0878	0.0972

Coverage of 95% Confidence Intervals

- Both models are correctly specified
- Average length of confidence intervals in parentheses

d	n = 100		n = 500		n = 1000	
10	0.9450	(0.8550)	0.9500	(0.3674)	0.9550	(0.2766)
100	0.9000	(0.7649)	0.9450	(0.3767)	0.9700	(0.2747)
500	0.9000	(0.8027)	0.9300	(0.3800)	0.9650	(0.2617)
1000	0.9350	(0.7268)	0.9700	(0.3718)	0.9350	(0.2697)
2000	0.9050	(0.7882)	0.9450	(0.4000)	0.9350	(0.2609)

Logistic Outcome Model

$$\begin{aligned} & \text{Pr}(Y_i(1) = 1 \mid \mathbf{X}_i) \\ &= \text{logit}^{-1}(1 + \exp(2 + 0.137X_{i1} + 0.137X_{i2} + 0.137X_{i3})) \\ & \text{Pr}(Y_i(0) = 1 \mid \mathbf{X}_i) \\ &= \text{logit}^{-1}(1 + \exp(1 + 0.291X_{i1} + 0.291X_{i2} + 0.291X_{i3} + 0.291X_{i4} + 0.291X_{i5})) \end{aligned}$$

	<i>n</i> = 100		<i>n</i> = 500		<i>n</i> = 1000	
d	HD-CBPS	AIPW	HD-CBPS	AIPW	HD-CBPS	AIPW
10	0.0947	0.0908	0.0398	0.0441	0.0252	0.0297
100	0.0745	0.0759	0.0352	0.0367	0.0239	0.0252
500	0.1075	0.1082	0.0351	0.0354	0.0303	0.0367
1000	0.0729	0.0730	0.0350	0.0358	0.0294	0.0320
2000	0.2113	0.2144	0.0357	0.0378	0.0232	0.0255

Empirical Illustration

- Effect of college attendance on political participation (Kam and Palmer 2008 JOP)
- Data: Youth-Parent Socialization Panel Study (n = 1051)
- Outcome: a total number of (up to 8) "participatory acts"
- Covariates: 81 pre-adult characteristics
- Propensity score: a total of 204 predictors
- The authors found little effect of college attendance
- Henderson and Chatfield (2011) and Mayer (2011) use genetic matching and find a positive and statistically significant effect

Empirical Results

- Propensity score: logistic regression with 204 predictors
- Outcome model: binomial logistic regression with 204 predictors
- 27 covariates are selected by HD-CBPS

HD-CBPS	CBPS	AIPW
0.8293	1.0163	0.8796
(0.1247)	(0.2380)	(0.1043)
0.8439	1.1232	
(0.1420)	(0.3094)	
0.8445		0.8977
(0.1279)		(0.1089)
	0.8293 (0.1247) 0.8439 (0.1420) 0.8445	0.8293 1.0163 (0.1247) (0.2380) 0.8439 1.1232 (0.1420) (0.3094) 0.8445

Concluding Remarks

- Covariate balancing as an efficient and robust way to estimate propensity score
- Challenges in high-dimension = cannot balance all covariates
- High-dimensional covariate balancing propensity score (HD-CBPS)
 - sparsity assumption + weak covariate balancing
 - efficient and robust to misspecification of propensity score model
- HD-CBPS is implemented in the R package CBPS