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Motivation

Use of machine learning (ML) algorithms in experimental studies
1 estimate heterogeneous treatment effects
2 construct individualized treatment rules

Software implementation of various ML algorithms is readily available

But, do ML algorithms “work” in practice?
unknown theoretical properties
difficulty of uncertainty quantification

We should empirically evaluate the performance of ML algorithms
1 avoid assuming the “nice properties” of ML algorithms
2 accurately quantify uncertainty
3 allow for any ML algorithm
4 applicable even when the sample size is small
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Overview

Individualized treatment rules (ITRs)
designed to increase efficiency of policies or treatments
personalized medicine, micro-targeting in business/politics

Existing literature:
1 development of optimal ITRs
2 estimation of heterogeneous treatment effects
3 extensive use of machine learning (ML) algorithms

Goal: use a randomized experiment to evaluate generic ITRs
1 Neyman’s repeated sampling framework

randomized treatment assignment, random sampling
no modeling assumption or asymptotic approximation
extend analysis to cross-fitting regime

2 Evaluation measures
shortcomings of existing metrics
incorporating a budget constraint
overall evaluation metric for general ITRs

3 Extension to estimation of heterogeneous effects
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Evaluation without a Budget Constraint

Setup
Binary treatment: Ti ∈ {0, 1}
Pre-treatment covariates: X ∈ X
No interference: Yi (T1 = t1,T2 = t2, . . . ,Tn = tn) = Yi (Ti = ti )
Random sampling of units:

(Yi (1),Yi (0),Xi )
i.i.d.∼ P

Completely randomized treatment assignment:

Pr(Ti = 1 | Yi (1),Yi (0),Xi ) =
n1

n
where n1 =

n∑
i=1

Ti

Fixed (for now) ITR:
f : X −→ {0, 1}

based on any ML algorithm or even a heuristic rule
sample splitting for experimental data, separate observational data
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Neyman’s Inference for the Standard Metric

Standard metric (Population Average “Value” or PAV):

λf = E{Yi (f (Xi ))}

A natural estimator:

λ̂f (Z) =
1
n1

n∑
i=1

YiTi f (Xi ) +
1
n0

n∑
i=1

Yi (1− Ti )(1− f (Xi )),

where Z = {Xi ,Ti ,Yi}n
i=1

Unbiasedness: E{λ̂f (Z)} = λf

Variance:

V{λ̂f (Z)} =
E(S2

f 1)

n1
+

E(S2
f 0)

n0
,

where S2
ft =

∑n
i=1(Yfi (t)− Yf (t))2/(n − 1),

Yfi (t) = 1{f (Xi ) = t}Yi (t), and Yf (t) =
∑n

i=1 Yfi (t)/n for
t = {0, 1}
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A Problem of Comparing ITRs Using the PAV

Proportion Treated, p

Average outcome

E[Yi (0)]

E[Yi (1)]

10.2

Random
Treatment

E[Yi (f (Xi ))]

0.2

E[Yi (g(Xi ))]

0.8

λf < λg : but g is performing worse than the random (i.e.,
non-individualized) treatment rule whereas f is not
Need to account for the proportion treated
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Accounting for the Proportion of Treated Units

Prop. Treated, p

Average outcome

E[Yi (0)]

E[Yi (1)]

1

E[Yi (f (Xi ))]

0.2

PAV

PAPE

Population Average Prescriptive Effect (PAPE):

τf = E{Yi (f (Xi ))− pf Yi (1)− (1− pf )Yi (0)}

where pf = Pr(f (Xi ) = 1) is the proportion treated under f
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Estimating the Population Average Prescriptive Effect

An unbiased estimator of PAPE τf :

τ̂f (Z) =
n

n − 1

[
1
n1

n∑
i=1

YiTi f (Xi ) +
1
n0

n∑
i=1

Yi (1− Ti )(1− f (Xi ))︸ ︷︷ ︸
PAV of ITR

− p̂f

n1

n∑
i=1

YiTi −
1− p̂f

n0

n∑
i=1

Yi (1− Ti )

]
︸ ︷︷ ︸

PAV of random treatment rule with the same treated proportion

where p̂f =
∑n

i=1 f (Xi )/n

We also derive its variance, and propose its consistent estimator
Not invariant to additive transformation: Yi + c

Solution: centering E(Yi (1) + Yi (0)) = 0  minimum variance
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Estimating and Evaluating ITRs via Cross-Fitting

Estimate and evaluate an ITR using the same experimental data
How should we account for both estimation uncertainty and evaluation
uncertainty under the Neyman’s framework?
Setup:

ML algorithm
F : Z −→ F .

K -fold cross-fitting: Z = {Z1,Z2, . . . ,ZK}

f̂−k = F (Z1,Z2, . . . ,Zk−1,Zk+1, . . . ,ZK )

Evaluation metric estimators:

λ̂F =
1
K

K∑
k=1

λ̂f̂−k
(Zk ), τ̂F =

1
K

K∑
k=1

τ̂f̂−k
(Zk )

Uncertainty over both evaluation data and all random sets of training
data (of a fixed size) as well as treatment assignment
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Causal Estimands

Population Average Value (PAV)
Generalized ITR averaging over the random sampling of training data
Ztr

f̄F (x) = E{f̂Ztr (x) | Xi = x} = Pr(f̂Ztr (x) = 1 | Xi = x)

Estimand

λF = E
{
f̄F (Xi )Yi (1) + (1− f̄F (Xi ))Yi (0)

}

Population Average Prescriptive Effect (PAPE)
Proportion treated

pF = E{f̄F (Xi )}.

Estimand
τF = E{λF − pFYi (1)− (1− pF )Yi (0)}.
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Inference under Cross-Fitting

Under Neyman’s framework, the cross-fitting estimators are unbiased,
i.e., E(λ̂F ) = λF and E(τ̂F ) = τF

The variance of the PAV estimator

V(λ̂F ) =
E(S2

f̂ 1
)

m1
+

E(S2
f̂ 0

)

m0︸ ︷︷ ︸
evaluation uncertainty

+E
{

Cov(f̂Ztr (Xi ), f̂Ztr (Xj ) | Xi ,Xj )τiτj

}
︸ ︷︷ ︸

estimation uncertainty

− K − 1
K

E(S2
F )︸ ︷︷ ︸

efficiency gain due
to cross−fitting

for i 6= j where mt is the size of the training set with Ti = t,

τi = Yi (1)− Yi (0), S2
F =

∑K
k=1

{
λ̂f̂−k

(Zk )− λ̂f̂−k
(Zk )

}2
/(K − 1)

Analogous results for the PAPE τF
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Evaluation with a Budget Constraint

Policy makers often face a binding budget constraint p
Scoring rule:

s : X −→ S where S ⊂ R

Example: CATE s(x) = E(Yi (1)− Yi (0) | Xi = x)

(Fixed) ITR with a budget constraint:

f (Xi , c) = 1{s(Xi ) > c},

where cp(f ) = inf{c ∈ R : Pr(f (Xi , c) = 1) ≤ p}
PAPE under a budget constraint

τfp = E{Yi (f (Xi , cp(f )))− pYi (1)− (1− p)Yi (0)}.

We derive the bias (and its finite sample bound) and variance under
the Neyman’s framework
Extensions: cross-fitting, diff. in PAPE between two ITRs
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The Area Under Prescriptive Effect Curve (AUPEC)

Budget, p

Average outcome

E[Yi (0)]

E[Yi (1)]

E[Yi (f (Xi , c1/n))]

E[Yi (f (Xi , c2/n))]

1
n

2
n

pf

Measure of performance across different budget constraints
We show how to do inference with and without cross-fitting
Normalized AUPEC = average percentage gain using an ITR over the
randomized treatment rule across a range of budget contraints

Kosuke Imai (Harvard) Experiments and Machine Learning EGAP (July 28, 2021) 13 / 24



R Package evalITR

## train ML algorithms (Causal Forest and BART)
cf <- causal_forest(X_train , Y_train , T_train ,

tune.parameters = TRUE , num.trees = 4000)
bart <- bartMachine(X = cbind(X_train ,T_train),

Y = Y_train , serialize = TRUE)
## predict treatment effects on test set
tau_cf <- predict(cf, X_test)
tau_bart <- predict(bart , X_test1) -

predict(bart , X_test0)
## generate ITR from treatment effects
ITR_cf <- as.numeric(tau_cf > 0)
ITR_bart <- as.numeric(tau_bart > 0)
## calculate PAPE
PAPE_cf <- PAPE(T_test , ITR_cf , Y_test)
PAPE_bart <- PAPE(T_test , ITR_bart , Y_test)
## calculate PAPD
PAPD_cf_bart <- PAPD(T_test , ITR_cf , ITR_bart , Y_test)
## calculate AUPEC and plot it
AUPEC_cf <- AUPEC(T_test , tau_cf , Y_test)
plot(AUPEC_cf$vec)
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Simulations

Atlantic Causal Inference Conference data analysis challenge
Data generating process

8 covariates from the Infant Health and Development Program
(originally, 58 covariates and 4,302 observations)
population distribution = original empirical distribution
Model

Yi (t) = µ(Xi ) + τ(Xi )t + σ(Xi )εi ,

where t = 0, 1, εi
i.i.d.∼ N (0, 1), and

µ(x) = − sin(Φ(π(x))) + x43,

π(x) = 1/[1 + exp{3(x1 + x43 + 0.3(x10 − 1))− 1}],
τ(x) = ξ(x3x24 + (x14 − 1)− (x15 − 1)),

σ(x) = 0.25
√

V(µ(x) + π(x)τ(x)).

Two scenarios: large vs. small treatment effects ξ ∈ {2, 1/3}
Sample sizes: n ∈ {100, 500, 2, 000}
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Results I: Fixed ITR

f : Bayesian Additive Regression Tree (BART)
No budget constraint, 20% constraint
g : Causal Forest
h: LASSO

n = 100 n = 500 n = 2000
Estimator truth cov. bias s.d. cov. bias s.d. cov. bias s.d.
Small effect
τ̂f 0.066 94.3 0.005 0.124 96.2 0.001 0.053 95.1 0.001 0.026
τ̂f (c0.2) 0.051 93.2 −0.002 0.109 94.4 0.001 0.046 95.2 0.002 0.021
Γ̂f 0.053 95.3 0.001 0.106 95.1 0.001 0.045 94.8 −0.001 0.024
∆̂0.2(f , g) −0.022 94.0 0.006 0.122 95.4 0.002 0.051 96.0 0.000 0.026
∆̂0.2(f , h) −0.014 93.9 −0.001 0.131 94.9 −0.000 0.060 95.3 −0.000 0.030
Large effect
τ̂f 0.430 94.7 −0.000 0.163 95.7 0.000 0.064 94.4 -0.000 0.031
τ̂f (c0.2) 0.356 94.7 0.004 0.159 95.7 0.002 0.072 95.8 0.000 0.035
Γ̂f 0.363 94.3 −0.005 0.130 94.9 0.003 0.058 95.7 0.000 0.029
∆̂0.2(f , g) −0.000 96.9 0.008 0.151 97.9 −0.002 0.073 98.0 −0.000 0.026
∆̂0.2(f , h) 0.000 94.7 −0.004 0.140 97.7 −0.001 0.065 96.6 0.000 0.033
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Results II: Estimated ITR

5-fold cross fitting
F : LASSO
std. dev. for n = 500 is roughly half of the fixed n = 100 case

n = 100 n = 500 n = 2000
Estimator cov. bias s.d. cov. bias s.d. cov. bias s.d.
Small effect
λ̂F 96.4 0.001 0.216 96.7 0.002 0.100 97.2 0.002 0.046
τ̂F 94.6 −0.002 0.130 95.5 −0.002 0.052 94.4 −0.000 0.027
τ̂F (c0.2) 95.4 −0.003 0.120 95.4 −0.002 0.043 96.8 0.001 0.029
Γ̂F 98.2 0.002 0.117 96.8 −0.001 0.048 95.9 0.001 0.001
Large effect
λ̂H 96.9 −0.007 0.261 96.5 −0.003 0.125 97.3 0.001 0.062
τ̂F 93.6 −0.000 0.171 93.0 0.000 0.093 95.3 0.001 0.041
τ̂F (c0.2) 94.8 −0.002 0.170 96.2 −0.005 0.075 95.8 0.001 0.037
Γ̂F 98.5 0.001 0.126 98.9 0.005 0.053 99.0 0.001 0.026
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Application to the STAR Experiment

Experiment involving 7,000 students across 79 schools
Randomized treatments (kindergarden):

1 Ti = 1: small class (13–17 students)
2 Ti = 0: regular class (22–25)
3 regular class with aid

Outcome: SAT scores
Literature on heterogeneous treatments in labor economics
10 covariates

4 demographics: gender, race, birth month, birth year
6 school characteristics: urban/rural, enrollment size, grade range,
number of students on free lunch, percentage white, number of
students on school buses

Sample size: n = 1, 911, 5-fold cross-fitting
Average Treatment Effects:

SAT reading: 6.78 (s.e.=1.71)
SAT math: 5.78 (s.e.=1.80)
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Results I: ITR Performance

BART Causal Forest LASSO
est. s.e. treated est. s.e. treated est. s.e. treated

Fixed ITR
No budget constraint
Reading 0 0 100% −0.38 1.14 84.3% −0.41 1.10 84.4%
Math 0.52 1.09 86.7 0.09 1.18 80.3 1.73 1.25 78.7
Writing −0.32 0.72 92.7 −0.70 1.18 78.0 −0.30 1.26 80.0

Budget constraint
Reading −0.89 1.30 20 0.66 1.23 20 −1.17 1.18 20
Math 0.70 1.25 20 2.57 1.29 20 1.25 1.32 20
Writing 2.60 1.17 20 2.98 1.18 20 0.28 1.19 20

Estimated ITR
No budget constraint
Reading 0.19 0.37 99.3% 0.31 0.77 86.6% 0.32 0.53 87.6%
Math 0.92 0.75 84.7 2.29 0.80 79.1 1.52 1.60 75.2
Writing 1.12 0.86 88.0 1.43 0.71 67.4 0.05 1.37 74.8

Budget constraint
Reading 1.55 1.05 20 0.40 0.69 20 −0.15 1.41 20
Math 2.28 1.15 20 1.84 0.73 20 1.50 1.48 20
Writing 2.31 0.66 20 1.90 0.64 20 −0.47 1.34 20
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Results II: Comparison between ML Algorithms

Causal Forest BART
vs. BART vs. LASSO vs. LASSO

est. 95% CI est. 95% CI est. 95% CI
Fixed ITR
Math 1.55 [−0.35, 3.45] 1.83 [−0.50, 4.16] 0.28 [−2.39, 2.95]
Reading 1.86 [−0.79, 4.51] 1.31 [−1.49, 4.11] −0.55 [−4.02, 2.92]
Writing 0.38 [−1.66, 2.42] 2.69 [−0.27, 5.65] 2.32 [−0.53, 5.15]

Estimated ITR
Reading −1.15 [−3.99, 1.69] 0.55 [−1.05, 2.15] 1.70 [−0.90, 4.30]
Math −0.43 [−2.57, 3.43] 0.34 [−1.32, 2.00] 0.77 [−1.99, 3.53]
Writing −0.41 [−1.63, 0.80] 2.37 [0.76, 3.98] 2.79 [1.32, 4.26]
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Results III: AUPEC

AUPEC = 1.52 (s.e. = 0.88) AUPEC = 1.02 (s.e. = 0.97) AUPEC = -0.06 (s.e. = 0.97)

BART Causal Forest LASSO
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Fixed ITR

AUPEC = 1.75 (s.e. = 2.18)AUPEC = 1.75 (s.e. = 2.18) AUPEC = 1.47 (s.e. = 1.33)AUPEC = 1.47 (s.e. = 1.33) AUPEC = -0.19 (s.e. = 2.00)AUPEC = -0.19 (s.e. = 2.00)

BART Causal Forest LASSO
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Estimated ITR
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Extension to Heterogeneous Treatment Effects

Inference for heterogeneous treatment effects discovered via a generic
ML algorithm

cannot assume ML algorithms converge uniformly
avoid computationally intensive method (e.g., repeated cross-fitting)
use Neyman’s repeated sampling framework for inference

Setup:
Conditional Average Treatment Effect (CATE):

τ(x) = E(Yi (1)− Yi (0) | Xi = x)

CATE estimation based on ML algorithm

s : X −→ S ⊂ R

Sorted Group Average Treatment Effect (GATE; Chernozhukov et al.
2019)

τk := E(Yi (1)− Yi (0) | ck−1(s) ≤ s(Xi ) < ck (s))

for k = 1, 2, . . . ,K where ck represents the cutoff between the
(k − 1)th and kth groups
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GATE Estimation as ITR Evaluation

A natural GATE estimator

τ̂k =
K

n1

n∑
i=1

YiTi f̂k (Xi )−
K

n0

n∑
i=1

Yi (1− Ti )f̂k (Xi ),

where f̂k (Xi ) = 1{s(Xi ) ≥ ĉk (s)} − 1{s(Xi ) ≥ ĉk−1(s)}
Rewrite this as the PAPE:

τ̂k = K

{
1
n1

n∑
i=1

YiTi f̂k (Xi ) +
1
n0

n∑
i=1

Yi (1− Ti )(1− f̂k (Xi ))︸ ︷︷ ︸
estimated PAV

− 1
n0

n∑
i=1

Yi (1− Ti )

}
︸ ︷︷ ︸

no one gets treated

.

Our results can be extended to both sample-splitting and cross-fitting
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Concluding Remarks

Use of ML algorithms is increasing in experimental studies

Inference about ITRs has been largely model-based
We show how to experimentally evaluate ITRs
We incorporate budget constraints
No modeling assumption or asymptotic approximation is required
Complex ML algorithms can be used
Applicable to cross-fitting estimators
Simulations: good small sample performance

Ongoing extensions
heterogeneous treatment effects using ML algorithms
dynamic ITRs

Paper (JASA, forthcoming): https://arxiv.org/abs/1905.05389
Software: evalITR available at CRAN
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