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Motivation

Rise of causal machine learning (causal ML)
1 heterogeneous treatment effects
2 individualized treatment rules

Experimental evaluation of causal ML
1 causal ML algorithms may not work well in practice
2 need for assumption-lean evaluation with uncertainty quantification

Today, I will show how to experimentally evaluate:
1 heterogeneous treatment effects discovered by causal ML
2 subgroup of exceptional responders identified by causal ML
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Setup

Notation: n experimental units
1 Ti ∈ {0, 1}: binary treatment
2 Xi : pre-treatment covariates
3 Yi (t) where t ∈ {0, 1}: potential outcomes
4 Yi = Yi (Ti ): observed outcome

Assumptions:
1 no interference between units: Yi (T1 = t1, . . . ,Tn = tn) = Yi (Ti = ti )
2 randomization of treatment assignment: {Yi (1),Yi (0)}⊥⊥Ti

3 random sampling of units: {Yi (1),Yi (0)}
i.i.d.∼ P
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Evaluation of Heterogeneous Treatment Effects

How can we make statistical inference for heterogeneous treatment
effects discovered by a generic ML algorithm?
Conditional Average Treatment Effect (CATE):

τ(x) = E(Yi (1)− Yi (0) | Xi = x)

CATE estimation based on ML algorithm

s : X −→ S ⊂ R

Sorted Group Average Treatment Effect (GATES; Chernozhukov et al.)

τk = E(Yi (1)− Yi (0) | ck−1 ≤ s(Xi ) < ck)

for k = 1, 2, . . . ,K where ck is a quantile cutoff (c0 = −∞, cK = ∞)
Could also use the baseline risk E(Yi (0) | Xi = x) or some other score
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GATES Estimation

A natural GATES estimator:

τ̂k =
K

n1

n∑
i=1

YiTi f̂k(Xi )−
K

n0

n∑
i=1

Yi (1 − Ti )f̂k(Xi ),

where f̂k(Xi ) = 1{s(Xi ) ≥ ĉk} − 1{s(Xi ) ≥ ĉk−1} is the group
indicator

Bias is small: finite-sample bound is derived
Variance:

V(τ̂k) = K 2

(
V(f̂k(Xi )Yi (1))

n1
+

V(f̂k(Xi )Yi (0))
n0

)

−K − 1
n − 1

E[Yi (1)− Yi (0) | f̂k(Xi ) = 1]2︸ ︷︷ ︸
negative because Corr(f̂k (Xi ),f̂k (Xj ))<0

5 / 19



GATES Inference

Two regularity conditions:
1 continuity of E[Yi (1)− Yi (0) | s(Xi )] at thresholds and bounded

variation elsewhere
2 moment conditions

Rewrite the GATES estimator as an induced order statistic

τ̂k =
1
n

n∑
i=1

1
{
(k − 1)n

K
< i ≤ kn

K

}
KY[i ,n]

(
T[i ,n]

n1/n
−

1 − T[i ,n]

n0/n

)
︸ ︷︷ ︸

:=U[i,n]

where (Y[i ,n],T[i ,n],X[i ,n]) is ordered s.t. s(X[1,n]) ≤ · · · ≤ s(X[n,n])

U[i ,n] − E[U[i ,n] | s(X[i ,n])] is independent of one another given all X
Asymptotic distribution:

τ̂k − τk√
V(τ̂k)

d→ N(0, 1)
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Estimation and Evaluation Using the Same Data

Cross-fitting:
1 randomly split the data into L folds: Z1, . . . ,ZL

2 estimate the CATE using L− 1 folds: f̂−ℓ

3 estimate GATES with the hold-out set: τ̂ (ℓ)k (f̂−ℓ)
4 repeat the process for each ℓ and average

τ̂k(S) =
1
L

L∑
ℓ=1

τ̂
(ℓ)
k (f̂−ℓ)

where S : Z −→ S is a generic but stable ML algorithm with
Ztrain ∈ Z and ŝZtrain = S(Ztrain) ∈ F

Estimand: average performance of S

τk(S) = EZtrain [E{Yi (1)−Yi (0) | ck−1(f̂Ztrain) ≤ f̂Ztrain(Xi ) < ck(ŝZtrain)}]

Inference without resampling (see Imai and Li. 2023. JASA)
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Simulation Study

A highly nonlinear specification from the 2016 ACIC competition
58 covariates (3 categorical, 5 binary, 27 counts, 13 continuous)
sample size: n = 4802
use empirical distribution of Xi as true distribution

Machine learning algorithms
Causal forest and Lasso
L = 5 and also use 5-fold cross validation for tuning
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Evaluation Bias and Coverage under Cross-fitting

n = 100 n = 500 n = 2500
bias s.d. coverage bias s.d. coverage bias s.d. coverage

Causal Forest
τ̂1 −0.05 2.97 94.0% −0.01 1.57 95.6% −0.01 0.59 97.7%
τ̂2 −0.06 2.58 95.9 −0.04 1.08 98.2 0.01 0.54 98.6
τ̂3 −0.01 2.56 96.7 −0.05 1.06 97.7 0.02 0.47 98.1
τ̂4 −0.12 2.87 97.4 0.05 1.15 97.9 −0.01 0.51 98.6
τ̂5 0.14 3.45 94.1 0.00 1.62 96.0 −0.01 0.62 98.3
LASSO
τ̂1 −0.13 3.20 97.6% −0.03 1.49 96.0% −0.00 0.67 96.0%
τ̂2 0.04 2.28 97.5 −0.07 1.03 97.9 −0.02 0.59 98.9
τ̂3 −0.13 2.35 96.6 −0.02 1.00 97.9 0.04 0.49 97.5
τ̂4 −0.00 2.54 96.8 0.04 1.17 96.8 0.03 0.64 97.2
τ̂5 0.11 3.62 96.2 0.05 1.81 95.0 0.02 0.70 95.3

Reduction in standard errors compared with fixed S of the same
evaluation size (see the paper) is more than 50% in some cases
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Empirical Application

National Supported Work Demonstration Program (LaLonde 1986)
Temporary employment program to help disadvantaged workers by
giving them a guaranteed job for 9 to 18 months

Data
sample size: n1 = 297 and n0 = 425
outcome: annualized earnings in 1978 (36 months after the program)
7 pre-treatment covariates: demographics and prior earnings

Setup
ML algorithms: BART, Causal Forest, and LASSO
Sample-splitting: 2/3 of the data as training data
Cross-fitting: 3 folds

10 / 19



GATES Estimates (in 1,000 US Dollars)

τ̂1 τ̂2 τ̂3 τ̂4 τ̂5
Sample-splitting

BART 2.90 −0.73 −0.02 3.25 2.57
[−2.25, 8.06] [−5.05, 3.58] [−3.47, 3.43] [−1.53, 8.03] [−3.82, 8.97]

Causal Forest 3.40 0.13 −0.85 −1.91 7.21
[−1.29, 3.40] [−5.37, 5.63] [−5.22, 3.52] [−5.16, 1.34] [1.22, 13.19]

LASSO 1.86 2.62 −2.07 1.39 4.17
[−3.59, 7.30] [−1.69, 6.93] [−5.39, 1.26] [−2.95, 5.73] [−2.30, 10.65]

Cross-fitting
BART 0.40 −0.15 −0.40 2.52 2.19

[−3.79, 4.59] [−2.54, 2.23] [−3.37, 2.56] [−0.99, 6.03] [−0.73, 5.11]
Causal Forest −3.72 1.05 5.32 −2.64 4.55

[−6.52,−0.93] [−2.28, 4.37] [2.63, 8.01] [−5.07,−0.22] [1.14, 7.96]
LASSO 0.65 0.45 −2.88 1.32 5.02

[−3.65, 4.94] [−3.28, 4.18] [−5.38,−0.38] [−1.83, 4.48] [−0.14, 10.18]
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Data-driven Subgroup Identification

In GATES estimation, the percentile cutoff p is given
How do you choose p based on the data?

1 those who benefit from treatment the most (exceptional responders)
2 those who are harmed by treatment

Challenges:
1 sample size may not be large
2 ML estimates of CATE may be biased and noisy
3 proportion of exceptional responders may be small

Can we provide a statistical guarantee?
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Problem of the Standard Approach

The problem is trivial if we had an infinite amount of data

p∗ = argmax
p∈[0,1]

Ψ(p) where Ψ(p) = E[Yi (1)− Yi (0)︸ ︷︷ ︸
:=ψi

| F (s(Xi )) ≥ p],

Standard method suffers from multiple testing problem:

p̂n = argmax
p∈[0,1]

Ψ̂n(p) where Ψ̂n(p) =
1
np

⌊np⌋∑
i=1

ψ̂[n,i ]

where s(X[n,1]) ≥ · · · ≥ s(X[n,n]) and

ψ̂[n,i ] =
T[n,i ]Y[n,i ]

n1/n
−

(1 − T[n,i ])Y[n,i ]

n0/n
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Providing a Statistical Performance Guarantee

(one-sided) Uniform confidence band:

P
(
∀p ∈ [0, 1], Ψ(p) ≥ Ψ̂n(p)− Cn(p, α)

)
≥ 1 − α.

Safe identification of exceptional responders:

p̂
n

= argmax
p∈[0,1]

Ψ̂n(p)− Cn(p, α),

implying

P
(
Ψ(p∗) ≥ Ψ̂n(p̂n)− Cn(p̂n, α)

)
≥ P

(
Ψ(p̂

n
) ≥ Ψ̂n(p̂n)− Cn(p̂n, α)

)
≥ 1 − α.

Other data-driven selection of p is possible: e.g., for a given c

estimate p̂
n
(c) = sup{p ∈ [0, 1] : Ψ̂n(p)− Cn(p, α) ≥ c},

to target p∗(c) = sup{p ∈ [0, 1] : Ψ(p) ≥ c}
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Constructing Uniform Confidence Band

1 Obtain finite-sample bias bound and variance of Ψ̂n(p) as before
2 Use a generalized version of Donsker’s invariance principle to show:V( in Ψ̂n(

i
n ))

V(Ψ̂n(1))
,

i
nΨ( in )−

i
n Ψ̂n(

i
n )√

V(Ψ̂n(1))

 d−→ (p,G (p)) for i = 1, . . . , n.

Recall

Ψ̂n(p) =
1
np

⌊np⌋∑
i=1

ψ̂[n,i ]

3 Sorted individual treatment effects are always non-negatively correlated

Corr(ψ̂[n,i ], ψ̂[n,j]) ≥ 0 for any 1 ≤ i < j ≤ n

0.000

0.005

0.010

0.015

0.020

-1.0 -0.5 0.0 0.5 1.0
Corr(Si, yi)

C
ov

(y
i, 

y i
+1

)

4 Use Slepian’s Lemma to bound non-negatively correlated and
normalized pΨ̂n(p) by an appropriately scaled Wiener process

5 Approximate the confidence band by minimizing the area, e.g.,

P
(
W (t) ≤ β0 + β1

√
t, ∀t ∈ [0, 1]

)
≥ 1 − α

The validity of this CI does not depend on how the score is constructed!
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Minimum-Area Confidence Band
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lim
n→∞

P

(
∀p ∈ [0, 1],Ψ(p) ≥ Ψ̂n(p)−

β∗
0 (α)

p

√
V(Ψ̂n(1))︸ ︷︷ ︸

extra CI

−β∗
1 (α)

√
V(Ψ̂n(p))︸ ︷︷ ︸

standard CI

)
≥ 1 − α

where {β∗
0 (α), β

∗
1 (α)} are the solution to:

argmin
β0,β1∈R2

+

∫ 1

0
β0 + β1

√
t dt subject to P

(
W (t) ≤ β0 + β1

√
t, ∀t ∈ [0, 1]

)
≥ 1 − α.
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Simulation Studies

A data generating process from the ACIC

ML algorithm Uniform Pointwise
n = 100 n = 500 n = 2500 n = 100 n = 500 n = 2500

BART 96.1% 96.0% 95.2% 87.2% 76.5% 70.3%
Causal Forest 96.0% 95.3% 95.7% 83.7% 77.1% 71.9%
LASSO 95.8% 95.6% 95.6% 84.1% 76.0% 69.8%

n = 100 n = 500 n = 2500
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Empirical Application

Clinical trial data on late-stage prostate cancer (n1 = 125, n0 = 127)
Outcome: total survival in months, Treatment: estrogen
Sample-split (40% train., 60% eval.), ATE estimate −0.3 month

BART Causal Forest LASSO
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Estimated proportion of Estimated 90% uniform
ML algorithm exceptional responders GATES confidence band
Causal Forest 18.8% 27.2 (4.45, ∞)
BART 32.2% 18.1 (2.12, ∞)
LASSO 91.2% 1.35 (−6.26, ∞)
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Concluding Remarks

Causal machine learning (ML) is rapidly becoming popular
estimation of heterogeneous treatment effects
development of individualized treatment rules

Safe deployment of causal ML requires uncertainty quantification
Subgroup identification with statistical performance guarantees

Does not assume that ML algorithms are accurate
Computationally efficient (no resampling)
Applicable to any complex causal ML algorithms
Good small sample performance

Open source software: evalITR: Evaluating Individualized Treatment
Rules at CRAN https://CRAN.R-project.org/package=evalITR

More information: https://imai.fas.harvard.edu/research/

19 / 19

https://CRAN.R-project.org/package=evalITR
https://imai.fas.harvard.edu/research/

