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Causal Mediation Analysis

@ Investigation of causal mechanisms via intermediate variables
@ How does the treatment alter the outcome?

@ Direct and indirect effects
Mediator, M

/ N\

Treatment, T =———————> Outcome, Y

@ Popular among epidemiologists, psychologists, political scientists
@ Fast growing methodological literature
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Overview

@ Identification under sequential ignorability

e Nonparametric identification without an additional assumption
e Parametric identification under the linear structural equation model

© Estimation and inference under sequential ignorability

e Parametric estimation
e Nonparametric estimator and its asymptotic variance

© Sensitivity analysis for the sequential ignorability assumption

e Nonparametric sensitivity analysis
e Parametric sensitivity analysis

© Empirical illustration

e A randomized experiment from political psychology
e The treatment is randomized but the mediator is not
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Definition of Causal Mediation Effects

@ Binary treatment: T; € {0,1}
@ Mediator: M; ¢ M
@ Outcome: Y, c Y
@ Observed covariates: X; € X

@ Potential mediators: M;(t) where M; = M;(T;)
@ Potential outcomes: Y;(t, m) where Y; = Yi(T;, Mi(T;))

@ Total causal effect: ; = Y;(1, M;(1)) — Yi(0, M;(0))

@ Causal mediation effects: §;(t) = Yi(t, Mi(1)) — Yi(t, M;(0))

@ Natural (pure) direct effects: (;(t) = Y;(1, Mi(t)) — Yi(0, Mi(t))
@ The relationship: 7; = 6;(t) + (1 — )

Kosuke Imai (Princeton) Causal Mediation Analysis November 12, 2008 4/28



Interpretation of Causal Mediation Effects

@ (1) is the indirect causal effect of the treatment on the outcome

through the mediator under treatment status t

@ Controlled indirect effects, Y;(1, m) — Y;(0, m), for the mediator

that can be manipulated and/or randomized
@ Observational studies and experiments with non-random M
@ descriptive vs. prescriptive effects
@ Y(t, M;(t)) is observable but Y;(t, M;(1 — t)) is not
@ 0;(t) =0if M;(1) = M;(0)

@ Quantity of interest:

o(t) = E(6i(1)) = E{Yi(t, Mi(1)) - Yi(t, M;(0))}
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Sequential Ignorability

Assumption 1 (Sequential Ignorability)
{Yi(t7 m)? Ml(t)} A TI | )(i?
fort=0,1andall me M
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@ The second equation can be rewritten as,

Yi(t, m) L Mi(t") | T =t", X
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Nonparametric Identification

Theorem 1 (Nonparametric ldentification)
Under Assumption 1, fort = 0,1,

o(t) = (1)t/{/E(Yi | Mi; Ti = £, X)) dP(M; | Ti =1 =, X;)

—E(Y; | Ti = t,X,-)}dP(Xi)
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Proof (Discrete Mediator with No Observed Covariates):

|
-~

)
J—1

= E(Yi(1,m) — Y;(0,m) | Mi(t*) =m, T; = t) Pr(Mi(t") = m, T; = t)

=0 m=0

oo~

m=

FE(Y;(1,m) — Yi(0,m) | Mi(t") = m, Ty =1 — t)Pr(Mi(t") = m, T = 1 — r*)}

J—1
= > E(Yi(1,m) = Y;(0,m))Pr(M; = m | T; = t*) Pr(T; = t")

FE(Y(1, M) = YO, M(t) | Ti=1 = £)Pr(Ty = 1= )
J—1

= S {EY M =mT=1)—E(Y,|M=mT,=0)}Pr(M=m|T=t)
m=0

xPr(T; = t*) + C(t)Pr(T; =1 - t).

Thus, we have ((t*) =

Yoo {B(Yi | Mi=m, T =1) —E(Y; | Mi=m, T, = 0)} Pr(M; = m | T, = t").

= Z1{E(W(1,m> —Yi(0,m) | Ty = ') Pr(Mi(t") = m | Ty = ) Pr(T; = 1)
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Comparison with the Existing Identification Results

@ The literature insists that an additional assumption is required

@ Pearl's assumption for the identification of §(t*):
Yi(t,m) L M;(t*) | X,

in place of Y;(t,m) 1L M; | T;, X;

@ Robins’ no-interaction assumption about controlled direct effects:

%(17m)_ )/I(Oa m) - Bi

where B, is a random variable that does not depend on m

@ Sequential ignorability alone is sufficient
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Linear Structural Equation Model (LSEM)

@ The Model:
Yi = a1 +061Ti+ e,
M = oo+ BT+ e,
Yi = az+GB3Ti+7M; + e,

where E(eq; | T;) = E(eg; | Tj) = E(esi | M;, T;) = 0.

@ Baron and Kenny (1986):
@ the association between Y; and T; exists
@ the association between M; and T; exists
© the conditional association between Y; and M; given T; exists
©Q . as the causal mediation effect

@ One equation is redundant:
Yi = (az + a2y) + (83 + B27) Ti + (veai + €3))
where yE(ez | Tj) + E{E(es; | Mi, Tj) | Tj} = 0.
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Parametric Identification under Sequential Ignorability

Theorem 2 (ldentification under LSEM)
Consider the following linear structural equation model

Mi = oo+ BT+ ez,
Yi = a3+ G3Ti+vYM; + e3;.

Under Assumption 1, the average causal mediation effects are
identified as 6(0) = 46(1) = [Bor.

@ Assumption 1 implies eo; I e3; as well as eo; I Tj, e3; 1L T;, and

@ Contrary to the literature, sequential ignorability alone is sufficient
@ (3 is the average natural direct effect
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|dentification without the No-interaction Assumption

Assumption 2 (No-interaction)

5(0) = 5(1)

@ Assumption 2 is unnecessary
@ The LSEM with an interaction term:

Mi = oo+ BT+ ez,
Y, = az+ 03T +YMi + cTiM; + e3;.

@ Under Assumption 1, §(f) =3a(~ + tx) for t = 0, 1.
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Parametric Estimation and Inference

@ Under sequential ignorability, equation-by-equation least squares
@ Asymptotic variance via the Delta method:
@ No-interaction:

Var(6(t)) & [ Var(¥) + 7> Var(jz)
@ With-interaction:

Var(5(t)) ~ (v + tr)?Var(B) + B5{Var(§) + tVar(#) + 2tCov(¥, #)}
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Nonparametric Estimation and Inference (Discrete M)

@ A simple nonparametric estimator §(t):

(—1)! JZ ST =1—t.M = m} 537 YiA{T; = t, M = m}
o Mty {Ti=t,M=m}

1 n
_EI;HT = t}Yi>

where n; =", 1{T; = t}.

@ Estimate within each strata defined by X, and then aggregate
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Theorem 3 (Asymptotic Variance)

Under Assumption 1, the asymptotic variance of the nonparametric
estimator is

J—1
1 A _
var(3(f) ~ — Y Ar- tm{( ! ”m—z)Var(Y,-\Mfzm,T,-:o
n ’ )\tm
ne(1 — M\_ = 1
_|_ t( 1 t,m)/'l/tm —i——Val’(Y, | 7—[ — t)
Nt ny
J—-1 J=-2

2
_n— Z Z >\1—t,m>\1—t,m’ﬂtm,utm’a
1-t m'=m+1 m=0

where A\im = Pr(M;=m | T; =t) and uim = E(Y; | Mi=m, T; = t).
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Using Nonparametric Regressions

@ Fit two nonparametric regressions:
Q um(x) = E(Yi | Ti=t,Mi=m,X; = x)
Q \in(x) = Pr(Mi=m| T, =tX = x)

@ An estimator:

1) {Ji S {Ti=1- t}x_tr,?m(x,')z, T = (X)) Am( X))
n1_tZ,-:1 T = t})\tm(X/)

1 n J—1 A
_Ft Z 1{7—' = t} (Z ,LALtm(Xi))\tm(Xi)> } .
i=1 m=0
@ Nonparametric or parametric bootstrap for uncertainty estimates
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A Simulation Study

@ Binary mediator, lognormal outcome
® Yi(t,m) L Mi(t') | Ti =t' but Yj(t,m) L Mi(t') [ Ti=1-1t
@ True values: 5(0) ~ 0.67 and (1) ~ 3.95

Estimator n Bias RMSE 90% ClI 95% ClI

5(0) 50 0013 1.05 077  0.83
100 0.014 069 0.83  0.87
250 0.014 042  0.86  0.91
500 0.013 029 088  0.93
1000 0.013 020 089  0.94
2000 0.016 0.14 090  0.95

5(1) 50 0.088 207 085  0.89
100 0.080 146 087  0.92
250 0.071 092 089  0.94
500 0.080 065 090  0.95
1000 0.079 046 090  0.95
2000 0.094 034 090  0.95
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Need for Sensitivity Analysis

@ The sequential ignorability assumption is often too strong!

17/28

@ Need to assess the robustness of findings via sensitivity analysis

Assumption 3 (Ignorability of Treatment Assignment)

@ Parametric and nonparametric sensitivity analysis under
Assumption 3 alone

@ Maximal degree of departure from Assumption 1 while
maintaining the original conclusion
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Parametric Sensitivity Analysis

@ Assumption 3 implies ex; I T; and e3; I T; but not eo; L €3,
@ Sensitivity parameter: p = Corr(eg;, €3/)

Theorem 4 (ldentification with a Known Error Correlation)
Under Assumption 3,

B B X 1 0.*2
50) = 5(1) = o | B -2 (05‘2 22) :

_ 2
o5 o2\[1—p o5

where sz = Var(ej) forj = 2,3, 052 = Var(e3;), 053 = Cov(ezj, €5;), and

€3; = V€2i t €3;-
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@ Fit the following LSEM via eq.-by-eq. least squares or SUR

Mi = ax+ BoT;+ €
\/, = O{g"‘ﬁékT/‘FE;,

@ Monotone function of p
ﬁg(t) _ P 1 o2 _ 035"
dp o2(1—pPP)\1 -\ o3

@ J(t) =0if and only if p = Corr(ez;, €3;) (€asy to compute!)
@ For confidence intervals, apply the iterative FGLS algorithm to

Mi = ao+ BaT;+ e
Yi = az+ G3Ti+vYM; + €3,
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Large Sample Nonparametric Bounds
@ Balke and Pearl (1997)’s strategy: discrete outcome and mediator
@ Binary case: population probabilities of 64 types

T e = Pr(Yi(1,1) = y11, Yi(1,0) = y10, Yi(0,1) = yor,
Yi(0,0) = ¥oo, Mi(1) = my, M;(0) = mp)

@ Mediation effects as a linear function of =

1 1 1 1 1 1
< _ mmyg . mym
5(0 o Z Z Z Z T y11Y10¥01 Yoo Z T y11Y10¥01 Yoo
my =0

m=0y1_t,m=0Yy1,1—m=0Y0,1—m=0 \ mo=0

@ Assumption 3 implies linear restrictions

1 1 1 1
PF(Y,' =Y, Mi=m ‘ Ti = t) = Z Z Z Z Wﬁlﬂ%)’oﬂoo’

where m; = mand yym = y.
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@ Symbolic linear programming

Theorem 5 (Sharp Large Sample Bounds)

Under Assumption 3 the sharp large sample bounds of the average
causal mediation effects are given by,

—Pr(Yi=1-t|T;=1)
maxq¢ —Pr(Mi=1—-t|Ti=1-t)-Pr(Yi=M=1-t|Ti=1t) <
—Pr(My=t| Ti=1-t)—Pr(Yi=1—tMi=t|Ti=1)
Pr(Y; = t] T; = 1
S(y<min PriMi=1—t|Ti=1-t)+Pr(Yi=tMi=1-t|Ti=t) ;,
PriMi=t| Ti=1-8)+Pr(Y,=M=1t|Ti=1t)

fort =0,1.

@ [a, 8] always improves upon [—1,1]; B —a < 1
@ Not very informative —1 <a <0< <1
@ Possible to impose the no-interaction assumption §(1) = 5(0)
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Nonparametric Sensitivity Analysis

Bounds are not informative even under additional assumptions
@ Ignorability of the mediator implies

Pr(\/i(171):yﬂ7\/"(170):.}/107 \/1(071) = Yo1, \/1(070) = Yoo ’ Mf: 1;TI: t,)
= Pr(YI(1,1):}/117\//(1,0):}’10,\/:(0,1) = Yo1, Y/(0,0) = Yoo | M,':O,T,': t/)

@ Sensitivity parameter:

1 im 1 om,
ZmO:O 7T}’11f’10}/01}/oo B ZmO:O 7T}/11f’10}’01}/00 < P
Pi(Mi=1[T,=1) PrMi=0|T,=1)] — "
1 my1 1 m40
Zm1 =0 7TV11Y10Y01Y00 B Zm1 =0 7T,V11Y1oyo1}/oo < P
P(M;=1|T,=0) Pr(M;=0|T,=0)| — "
where 0 < p < 1
@ Compute the sharp bounds for various values of p
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Political Psychology Experiment: Nelson et al. (APSR)

How does media framing affect citizens’ political opinions?
News stories about the Ku Klux Klan rally in Ohio

Free speech frame (T; = 0) and public order frame (T, = 1)
Randomized experiment with the sample size = 136

@ Mediators: general attitudes (12 point scale) about the importance
of free speech and public order

@ Outcome: tolerance (7 point scale) for the Klan rally
@ Expected findings: negative mediation effects
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Analysis under Sequential Ignorability

Mediator
Estimator Public Order Free Speech
Parametric
No-interaction —0.510 —0.126
[—0.969, —0.051] [—0.388,0.135]
5(0) —0.451 —0.131
[-0.871,—0.031] [—0.404,0.143]
5(1) —0.566 —0.122
[-1.081,-0.050] [—0.380,0.136]
Nonparametric
5(0) —0.374 —0.094
[—0.823,0.074] [—0.434,0.246]
5(1) —0.596 —0.222

[—1.168, —0.024]

[-0.662,0.219]
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Sensitivity Analysis

Parametric Analysis Nonparametric Analysis
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Concluding Remarks and Future Work

Nonparametric identification under sequential ignorability
Parametric identification under LSEM

Nonparametric estimator and its asymptotic variance
Nonparametric and parametric sensitivity analysis

Nonparametric sensitivity analysis in a more general setting
@ Nonparametric estimation under the no-interaction assumption

@ Use of parametric/nonparametric regressions in practical causal
mediation analysis

@ Extension to multiple mediators
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