Robust Estimation of Inverse Probability Weights for Marginal Structural Models

Kosuke Imai

Princeton University

Atlantic Causal Inference Conference

May 21, 2013

Joint work with Marc Ratkovic

Motivation

- Central role of propensity score in causal inference
 - Adjusting for observed confounding in observational studies
 - Generalizing experimental and instrumental variables estimates
- Causal inference in longitudinal data
 - Marginal Structural Models (MSMs)
 - Inverse probability weighting for dynamic treatment regimes
 - Sensitivity to propensity score model misspecification
 - Difficulty of balance checking
- Covariate Balancing Propensity Score (CBPS)
 - Estimate propensity score by optimizing covariate balance
 - Generalize the cross-section case to the longitudinal setting
 - Balances within each observed treatment sequence
 - Balances across all potential future treatment sequences

CBPS in the Cross-Section Case (JRSSB, in-press)

- Setup:
 - $T_i \in \{0, 1\}$: binary treatment
 - X_i: observed pre-treatment covariates
 - $Pr(T_i = 1 \mid X_i)$: Propensity score
- Covariate balancing conditions:

$$\mathbb{E}\left\{\frac{\mathbb{1}\left\{T_{i}=0\right\}X_{i}}{\Pr(T_{i}=0\mid X_{i})}\right\} \ = \ \mathbb{E}\left\{\frac{\mathbb{1}\left\{T_{i}=1\right\}X_{i}}{\Pr(T_{i}=1\mid X_{i})}\right\}$$

This can be rewritten as:

$$\mathbb{E}\left\{(-1)^{T_i}w_iX_i\right\} = 0 \quad \text{where} \quad w_i = \frac{1}{P(T_i \mid X_i)}$$

• Generalized method of moments (GMM) or empirical likelihood

Marginal Structural Models (MSMs): A Review

- Setup:
 - $T_{i1}, T_{i2} \in \{0, 1\}$: Time one and two binary treatment
 - X_{i1}, X_{i2} : covariates with X_{i2} affected by T_{i1} but not T_{i2}
 - Y_i: Outcome, observed after time two
- The framework and notation generalize to *J* time periods:
 - Treatment history: $\overline{T}_{ij} = \{T_{i1}, \dots, T_{ij}\}$
 - ullet Covariate history: $\overline{X}_{ij} = \{X_{i1}, \dots, X_{ij}\}$
- Assumptions:
 - Sequential ignorability:

$$Y_{i}\left(\overline{t}_{J}\right) \perp \!\!\! \perp T_{ij} \mid \overline{T}_{i,j-1} = \overline{t}_{j-1}, \overline{X}_{ij} = \overline{x}_{j}$$

where
$$\overline{t}_J = \{\overline{t}_{j-1}, t_j, \dots, t_J\}$$

Common support:

$$0 < \Pr(T_{ij} = 1 \mid \overline{T}_{i,j-1}, \overline{X}_{ij}) < 1$$

Inverse Probability Weights for MSMs

Inverse probability weights:

$$w_i = \frac{1}{P(T_{i1}, T_{i2} \mid X_{i1}, X_{i2})}$$
 and $sw_i = \frac{P(T_{i1}, T_{i2})}{P(T_{i1}, T_{i2} \mid X_{i1}, X_{i2})}$

In the general J period case:

$$w_i = \frac{1}{\prod_{j=1}^{J} P(T_{ij} \mid T_{i,j-1}, \overline{X}_{ij})}$$
 and $sw_i = \frac{\prod_{j=1}^{J} P(T_{ij} \mid \overline{T}_{i,j-1})}{\prod_{j=1}^{J} P(T_{ij} \mid T_{i,j-1}, \overline{X}_{ij})}$

- Typically, propensity scores are estimated by a parametric model
- MSM weights = product of estimated propensity scores
 sensitivity to model misspecification
- CBPS: estimate MSM weights so that covariate balance is optimized

Balancing Conditions in the Two Period Case

$$X_{i1} = 1 \quad X_{i2}(1) = 1 \quad Y_{i}(1,1)$$

$$T_{i2} = 0 \quad Y_{i}(1,0)$$

$$T_{i2} = 1 \quad Y_{i}(0,1)$$

$$T_{i2} = 0 \quad Y_{i}(0,0)$$

• time 1 covariates X_{i1} : 3 equality constraints

$$\mathbb{E}(X_{i1}) = \mathbb{E}[\mathbb{1}\{T_{i1} = t_1, T_{i2} = t_2\}w_i X_{i1}]$$

• time 2 covariates X_{i2} : 2 equality constraints

$$\mathbb{E}(X_{i2}(t_1)) = \mathbb{E}[\mathbb{1}\{T_{i1} = t_1, T_{i2} = t_2\}w_i \ X_{i2}(t_1)]$$
 for $t_2 = 0, 1$

Covariate Balancing Propensity Score

Orthogonalization of Covariate Balancing Conditions

	Trea				
Time period	(0,0)	(0,1)	(1,0)	(1,1)	Moment condition
time 1	+	+	_	_	$\mathbb{E}\left\{(-1)^{T_{i1}}w_iX_{i1}\right\}=0$
	+	_	+	_	$\mathbb{E}\left\{(-1)^{T_{i2}}w_iX_{i1}\right\}=0$
	+	_	_	+	$\mathbb{E}\left\{ (-1)^{T_{i1}+T_{i2}} w_i X_{i1} \right\} = 0$
time 2	+	_	+	_	$\mathbb{E}\left\{(-1)^{T_{i2}}w_iX_{i2}\right\}=0$
	+	_	_	+	$\mathbb{E}\left\{ (-1)^{T_{i1}+T_{i2}}w_{i}X_{i2}\right\} =0$

GMM Estimator (Two Period Case)

Independence across balancing conditions:

$$\hat{\beta} = \underset{\beta \in \Theta}{\operatorname{argmin}} \operatorname{vec}(\mathbf{G})^{\top} \{ \mathbf{I}_3 \otimes \mathbf{W} \}^{-1} \operatorname{vec}(\mathbf{G})$$

$$= \underset{\beta \in \Theta}{\operatorname{argmin}} \operatorname{trace}(\mathbf{G}^{\top} \mathbf{W}^{-1} \mathbf{G})$$

Sample moment conditions:

$$\mathbf{G} = \frac{1}{n} \sum_{i=1}^{n} \left[\begin{array}{ccc} (-1)^{T_{i1}} w_i X_{i1} & (-1)^{T_{i2}} w_i X_{i1} & (-1)^{T_{i1} + T_{i2}} w_i X_{i1} \\ 0 & (-1)^{T_{i2}} w_i X_{i2} & (-1)^{T_{i1} + T_{i2}} w_i X_{i2} \end{array} \right]$$

Covariance matrix:

$$\mathbf{W} = \frac{1}{n} \sum_{i=1}^{n} \left[\begin{array}{ccc} \mathbb{E}(w_{i}^{2} X_{i1} X_{i1}^{\top} \mid X_{i1}, X_{i2}) & \mathbb{E}(w_{i}^{2} X_{i1} X_{i2}^{\top} \mid X_{i1}, X_{i2}) \\ \mathbb{E}(w_{i}^{2} X_{i2} X_{i1}^{\top} \mid X_{i1}, X_{i2}) & \mathbb{E}(w_{i}^{2} X_{i2} X_{i2}^{\top} \mid X_{i1}, X_{i2}) \end{array} \right]$$

Extending Beyond Two Period Case

Orthogonalized Covariate Balancing Conditions

===				Treatme	ent Histo	orv Hada	amard N	Matrix: (t ₁ t ₂ t ₂)	1		
Des	sign	matrix	(0,0,0)		(0,1,0)		(0,0,1)	(1,0,1)	(0,1,1)	, (1,1,1)	1	Time)
T_{i1}	T_{i2}	T_{i3}	h_0	h_1	h_2	h_{12}	h_{13}	h_3	h_{23}	h_{123}	¦1	2	3
_	_	_	+	+	+	+	+	+	+	+	X	X	X
+	_	_	+	_	+	_	+	_	+	_	1	Х	X
_	+	_	¦ +	+	_	_	+	+	_	_	\ /	✓	X
+	+	_	+	_	_	+	+	_	_	+	1	✓	X
_	_	+	+	+	+	+	_	_	_	_	1	✓	1
+	_	+	+	_	+	_	_	+	_	+	\ /	✓	✓
_	+	+	· · +	+	_	_	_	_	+	+	1	✓	✓
+	+	+	+	_	_	+	_	+	+	_	1	✓	/

• The mod 2 discrete Fourier transform:

$$\mathbb{E}\{(-1)^{T_{i1}+T_{i3}}w_iX_{ij}\}=0 \quad \text{(6th row)}$$

- Connection to the fractional factorial design
 - "Fractional" = past treatment history
 - "Factorial" = future potential treatments

A Simulation Study with Correct Lag Structure

- 3 time periods
- Treatment assignment process (logistic model):

- Outcome: $Y_i = 250 10 \cdot \sum_{j=1}^{3} T_{ij} + \sum_{j=1}^{3} \delta^{\top} X_{ij} + \epsilon_i$
- ullet Functional form misspecification by nonlinear transformation of X_{ij}

Bias

- β_i : regression coefficient for T_{ij} from marginal structural model
- Last column: mean bias for $\mathbb{E}\{Y_i(t_1, t_2, t_3)\}$

Root Mean Square Error

A Simulation Study with Incorrect Lag Structure

- 3 time periods
- Treatment assignment process (logistic model):

- The same outcome model
- Incorrect lag: only adjusts for previous lag but not all lags
- In addition, the same functional form misspecification of X_{ij}

Bias

- ullet β_i : regression coefficient for T_{ij} from marginal structural model
- Last column: mean bias for $\mathbb{E}\{Y_i(t_1, t_2, t_3)\}$

Root Mean Square Error

Concluding Remarks

- Covariate Balancing Propensity Score (CBPS):
 - optimizes covariate balance when estimating propensity score
 - is more robust to model misspecification than a standard method
 - improves inverse probability weighting methods including MSMs
- Ongoing work:
 - Generalized propensity score estimation
 - Generalizing experimental and instrumental variable estimates
 - Confounder selection, moment selection
- Open-source software, CBPS: R Package for Covariate Balancing Propensity Score, is available at CRAN

GMM in the General Case

• The same setup as before:

$$\hat{\beta} = \underset{\beta \in \Theta}{\operatorname{argmin}} \operatorname{trace}(\mathbf{G}^{\top} \mathbf{W}^{-1} \mathbf{G})$$

where

where
$$\mathbf{G} = \begin{bmatrix} \widetilde{\mathbf{X}}_1^\top \mathbf{M} \mathbf{R}_1 \\ \vdots \\ \widetilde{\mathbf{X}}_J^\top \mathbf{M} \mathbf{R}_J \end{bmatrix} \text{ and } \mathbf{W} = \begin{bmatrix} \mathbb{E}(\widetilde{\mathbf{X}}_1 \widetilde{\mathbf{X}}_1^\top \mid \mathbf{X}) & \cdots & \mathbb{E}(\widetilde{\mathbf{X}}_1 \widetilde{\mathbf{X}}_J^\top \mid \mathbf{X}) \\ \vdots & \ddots & \vdots \\ \mathbb{E}(\widetilde{\mathbf{X}}_J \widetilde{\mathbf{X}}_1^\top \mid \mathbf{X}) & \cdots & \mathbb{E}(\widetilde{\mathbf{X}}_J \widetilde{\mathbf{X}}_J^\top \mid \mathbf{X}) \end{bmatrix}$$

- **M** is an $n \times (2^{J} 1)$ "model matrix" based on the design matrix
- For each time period j, define \mathbf{X}_i and "selection matrix" \mathbf{R}_i

$$\widetilde{\mathbf{X}}_{j} = \begin{bmatrix} w_{1} X_{1j}^{-} \\ w_{2} X_{2j}^{-} \\ \vdots \\ w_{n} X^{T} \end{bmatrix}$$
 and $\mathbf{R}_{j} = \begin{bmatrix} \mathbf{0}_{2^{j-1} \times 2^{j-1}} & \mathbf{0}_{2^{j-1} \times (2^{J}-2^{j-1})} \\ \mathbf{0}_{(2^{J}-2^{j-1}) \times 2^{j-1}} & \mathbf{I}_{2^{J}-2^{j-1}} \end{bmatrix}$