Does AI help humans make better decisions?

A statistical evaluation framework for experimental and observational studies

Kosuke Imai

Harvard University

Statistics Seminar Talk at Imperial College of London March 14, 2025

Joint work with Eli Ben-Michael, D. James Greiner, Melody Huang, Zhichao Jiang, and Sooahn Shin

Al-assisted (Algorithm-assisted) human decision making

- Al and data-driven algorithms are everywhere in our daily lives
- But, humans still make many consequential decisions
- We have not yet outsourced high-stakes decisions to AI

- this is true even when human decisions can be suboptimal
- we may want to hold someone, rather than something, accountable
- Most prevalent system is Al-assisted human decision making
 - humans make decisions with the aid of AI recommendations
 - routine decisions made by individuals in daily lives
 - consequential decisions made by doctors, judges, etc.

Key questions and contributions

- How do Al recommendations influence human decisions?
 - Does AI help humans make more accurate decisions?
 - Does AI help humans improve the fairness of their decisions?
- Many have studied the accuracy and fairness of AI recommendations
 - Relatively few have researched their impacts on human decisions
 - Little is known about how Al's bias interacts with human bias
- A statistical evaluation framework for AI recommendations
 - experimental studies: randomize human-alone vs. human+Al decisions
 - 2 observational studies: applicable under unconfoundedness
 - statistical methodology:
 - statistical decision theory with counterfactual utilities
 - compare human-alone, human+AI, and AI-alone
 - optimally combine human decisions with AI recommendations
 - first ever field experiment: evaluating pretrial public safety assessment

Pretrial public safety assessment (PSA)

- Al recommendations often used in US criminal justice system
- At the first appearance hearing, judges primarily make two decisions
 - whether to release an arrestee pending disposition of criminal charges
 - 2 what conditions (e.g., bail and monitoring) to impose if released
- Goal: avoid predispositional incarceration while preserving public safety
- Judges are required to consider three risk factors along with others
 - arrestee may fail to appear in court (FTA)
 - arrestee may engage in new criminal activity (NCA)
 - 3 arrestee may engage in new violent criminal activity (NVCA)
- PSA as an AI recommendation to judges
 - classifying arrestees according to FTA and NCA/NVCA risks
 - derived from an application of a machine learning algorithm to a training data set based on past observations
 - used in more than 25 states

Field experiment for evaluating the PSA

- Dane County, Wisconsin
- PSA = weighted indices of ten factors
 - age as the single demographic factor: no gender or race
 - nine factors drawn from criminal history (prior convictions and FTA)
- PSA scores and recommendation >> PSA details
 - 1 two separate ordinal six-point risk scores for FTA and NCA
 - one binary risk score for new violent criminal activity (NVCA)
 - 3 aggregate recommendation: signature bond, small and large cash bail
- Judges may have other information about an arrestee
 - affidavit by a police officer about the arrest
 - defense attorney may inform about the arrestee's connections to the community (e.g., family, employment)
- Field experiment
 - PSA is calculated for each case using a computer system
 - provision of PSA is randomized across cases
 - mid-2017 2019 (randomization), 2-year follow-up for half sample
 - we have made the data set publicly available!

DANE COUNTY CLERK OF COURTS Public Safety Assessment – Report

215 S Hamilton St #1000 Madison, WI 53703 Phone: (608) 266-4311

Name: Spillman Name Number: DOB: Gender: Male
Arrest Date: 03/25/2017 PSA Completion Date: 03/27/2017

New Violent Criminal Activity Flag

No

New Criminal Activity Scale								
1 2 3 4 5 6								
Failure to Appear Scale								
1	2	3	4	5	6			

Charge(s):

961.41(1)(D)(1) MFC DELIVER HEROIN <3 GMS F 3

Risk Factors:	Responses:
1. Age at Current Arrest	23 or Older
2. Current Violent Offense	No
a. Current Violent Offense & 20 Years Old or Younger	No
3. Pending Charge at the Time of the Offense	No
4. Prior Misdemeanor Conviction	Yes
5. Prior Felony Conviction	Yes
a. Prior Conviction	Yes
6. Prior Violent Conviction	2
7. Prior Failure to Appear Pretrial in Past 2 Years	0
8. Prior Failure to Appear Pretrial Older than 2 Years	Yes
9. Prior Sentence to Incarceration	Yes

Recommendations:

Release Recommendation - Signature bond

Conditions - Report to and comply with pretrial supervision

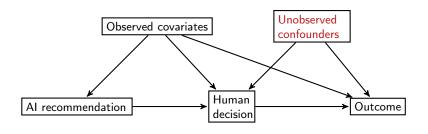
Does the judge agree with PSA?

Human	

	Signature	Cash
	bond	bail
Signature	54.1%	20.7
bond	(510)	(195)
Cash	9.4	15.8
bail	(89)	(149)

PSA

PSA


	Signature	Cash
	bond	bail
Signature	57.3%	17.1
bond	(543)	(162)
Cash	7.4	18.2
bail	(70)	(173)

 $\mathsf{Human} + \mathsf{PSA}$

- PSA statistically significantly influence the judge's decision
- But how?

Evaluation design

- Two key design features about treatment assignment:
 - 1 randomization (or strong ignorability): human-alone vs. human+Al
 - 2 single blinded treatment: All recommendations affect the outcome only through human decisions

The proposed design is widely applicable even when stakes are high

Required assumptions

- Notation
 - Al recommendation provision (PSA or not): $Z_i \in \{0,1\}$
 - Human decision (signature bond vs. cash bail): $D_i \in \{0,1\}$
 - Observed outcome (FTA, NCA, or NVCA): $Y_i \in \{0,1\}$
 - Potential decisions and outcomes: $D_i(z)$, $Y_i(z, D_i(z))$
- Assumptions
 - Single-blinded treatment:

$$Y_i(z, D_i(z)) = Y_i(D_i(z))$$
 for all i and $z = 0, 1$

Unconfounded treatment:

$$Z_i \perp \!\!\! \perp \{A_i, D_i(0), D_i(1), Y_i(0), Y_i(1)\} \mid X_i \text{ for all } i$$

- **3** Overlap: $0 < Pr(Z_i = 1 \mid X_i = x) < 1$ for all x
- These assumptions can be guaranteed by the experimental design
- No other assumptions are required

Classification ability of decision-making system

		Decision			
		Negative $(D^*=0)$	Positive $(D^*=1)$		
Outcome	Negative ($Y(0) = 0$)	True Negative (TN)	False Positive (FP)		
	Positive $(Y(0) = 1)$	False Negative (FN)	True Positive (TP)		

- (Generic) Decision D*
 - Positive: cash bail
 - Negative: signature bond

- Outcome under release Y(0)
 - Positive: NCA
 - Negative: no NCA

- Classification ability measures
 - False Positive (FP): unnecessary cash bail
 - False Negative (FN): signature bond followed by NCA
- We focus on Y(0) and ignore Y(1)
 - \leadsto general statistical decision theory with counterfactual utilities

Classification risk

		Decision			
		Negative $(D^*=0)$	Positive $(D^*=1)$		
Outcome	Negative $(Y(0) = 0)$	True Negative (TN)	False Positive (FP)		
	(1 (0) = 0)	ℓ_{00}	$\ell_{ extsf{01}}$		
	Positive $(Y(0) = 1)$	False Negative (FN)	True Positive (TP)		
	1 Ositive (1(0) = 1)	$\ell_{ extsf{10}} = 1$	ℓ_{11}		

- Assign a (possibly asymmetric) 'loss' to each classification outcome
- Classification risk of decision-making system D*

$$R(\ell_{01}; D^*) := \underbrace{\ell_{10}}_{=1} \cdot \underbrace{p_{10}(D^*)}_{\mathsf{FNP}} + \ell_{01} \cdot \underbrace{p_{01}(D^*)}_{\mathsf{FPP}},$$

where
$$p_{yd}(D^*) = \Pr(Y(0) = y, D^* = d)$$
 for $y, d \in \{0, 1\}$

• misclassification rate: $R(1; D^*) = FNP + FPP$

Comparing human decisions with and without AI

Risk difference:

$$=\underbrace{\frac{R_{\mathsf{human}+\mathsf{AI}}(\ell_{01})-R_{\mathsf{human}}(\ell_{01})}_{\mathsf{FNP \ difference}} + \ell_{01}\underbrace{\frac{p_{01}(D(1))-p_{01}(D(0))}{\mathsf{FPP \ difference}}}_{\mathsf{FPP \ difference}}$$

- Selective labels problem: we do not observe Y(0) when D=1
- FNP is identifiable while FPP is unidentified
- But, the FPP difference is identifiable
 - by randomization $Pr(Y(0) = 0 \mid Z = 1, X = x) = Pr(Y(0) = 0 \mid Z = 0, X = x)$
 - by law of total probability

$$p_{01}(D(1) \mid X = x) + p_{00}(D(1) \mid X = x)$$

$$= p_{01}(D(0) \mid X = x) + p_{00}(D(0) \mid X = x)$$

$$\iff \text{FPP difference} = -\text{TNP difference}$$

Doubly robust estimation

Identification formula:

$$R_{\mathsf{human}+\mathsf{AI}}(\ell_{01}) - R_{\mathsf{human}}(\ell_{01})$$

$$= \mathbb{E}\left[\Pr(Y = 1, D = 0 \mid Z = 1, X) - \Pr(Y = 1, D = 0 \mid Z = 0, X) - \ell_{01}\left\{\Pr(Y = 0, D = 0 \mid Z = 1, X) - \Pr(Y = 0, D = 0 \mid Z = 0, X)\right\}\right]$$

Compound outcome:

$$W_i := Y_i(1-D_i) - \ell_{01}(1-Y_i)(1-D_i)$$

= $(1-D_i)\{(1+\ell_{01})Y_i - \ell_{01}\}$

- Three models:
 - propensity score: $e(z,x) := \Pr(Z = z \mid X = x)$
 - 2 decision model: $m^D(z,x) := \Pr(D=1 \mid Z=z, X=x)$
 - **3** outcome model: $m^Y(z, x) := \Pr(Y = 1 \mid D = 0, Z = z, X = x)$

AIPW estimator:

$$\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \{ \widehat{\varphi}_{1}(Z_{i}, X_{i}, D_{i}, Y_{i}; \ell_{01}) - \widehat{\varphi}_{0}(Z_{i}, X_{i}, D_{i}, Y_{i}; \ell_{01}) \}$$

where $\widehat{\varphi}_z(Z, X, D, Y; \ell_{01})$ is the (uncentered) influence function:

$$\begin{split} \widehat{\varphi}_{z}(Z,X,D,Y;\ell_{01}) \\ &:= \left(1 - \hat{m}^{D}(z,X)\right) \left\{ (1 + \ell_{01}) \hat{m}^{Y}(z,X) - \ell_{01} \right\} \\ &+ \frac{\mathbb{1}\{Z = z\}(1 - D)}{\hat{e}(z,X)} (1 + \ell_{01}) \left(Y - \hat{m}^{Y}(z,X)\right) \\ &- \left\{ (1 + \ell_{01}) \hat{m}^{Y}(z,X) - \ell_{01} \right\} \frac{\mathbb{1}\{Z = z\}}{\hat{e}(z,X)} \left(D - \hat{m}^{D}(z,X)\right) \end{split}$$

- Properties:
 - asymptotic normality
 - \bullet double robustness: (outcome model + decision model) \times propensity score model

When do you prefer human-alone vs. human+AI?

• Hypothesis test given the relative loss ℓ_{01} :

$$H_0: R_{\mathsf{Human}}(\ell_{01}) \leq R_{\mathsf{Human}+\mathsf{AI}}(\ell_{01}),$$

 $H_1: R_{\mathsf{Human}}(\ell_{01}) > R_{\mathsf{Human}+\mathsf{AI}}(\ell_{01})$

- ullet Invert this test to obtain a confidence interval on ℓ_{01}
 - **1** Reject H_0 : prefer Human+AI over Human-alone
 - Reject H₁: prefer Human-alone over Human+AI
 - Fail to reject either hypothesis: statistically ambiguous

Comparing AI decisions with human-alone and human+AI

- What happens if we completely outsource decisions to AI?
- No experimental arm for Al-alone decision system

$$R_{AI}(\ell_{01}) := R(\ell_{01}; A) = p_{10}(A) + \ell_{01}p_{01}(A)$$

where

$$p_{ya}(A) = \Pr(Y(0) = y, A = a, D = 1) + \Pr(Y(0) = y, A = a, D = 0)$$

- Derive the sharp bound of risk difference: e.g., $R_{\rm AI}(\ell_{01}) R_{\rm Human}(\ell_{01})$
- The bound width depends on the agreement between Human and AI:

$$(1 + \ell_{01})\mathbb{E}\left\{ \Pr(A = 0 \mid X) - \max_{z'} \Pr(Y = 1, D = 0, A = 0 \mid Z = z', X) - \max_{z'} \Pr(Y = 0, D = 0, A = 0 \mid Z = z', X) \right\}$$

- Applicable to any generic Al or any other decision system
- Doubly robust estimation of the bounds

When do you prefer Al-alone vs. Human-alone?

Same hypothesis testing framework as before:

$$H_0: R_{\mathsf{AI}}(\ell_{01}) \le R_{\mathsf{Human}}(\ell_{01}), \ H_1: R_{\mathsf{AI}}(\ell_{01}) > R_{\mathsf{Human}}(\ell_{01}).$$

- Due to partial identification, we instead test
 - **1** $H_{L0}: L_0 \le 0 \text{ vs. } H_{L1}: L_0 > 0$
 - ② $H_{U0}: U_0 \ge 0$ vs. $H_{U1}: U_0 < 0$
- As before, we invert these hypothesis tests
 - **1** Rejecting H_{L0} implies Human is preferred over AI
 - 2 Rejecting H_{U0} implies AI is preferred over Human
 - 4 Ambiguous otherwise

Learning when to provide AI recommendations

- Policy: $\pi: \mathcal{X} \to \{0,1\}$, provide AI recommendation or not
- Optimal policy:

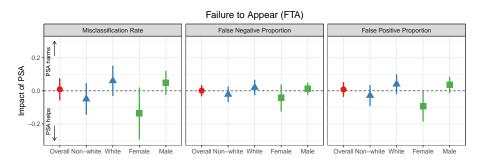
$$\pi_{\mathsf{rec}}^* \in \operatorname*{argmin}_{\pi \in \Pi} \underbrace{\rho_{10}(D(\pi(\boldsymbol{X}))) + \ell_{01}\rho_{01}(D(\pi(\boldsymbol{X})))}_{=R_{\mathsf{rec}}(\ell_{01};\pi)}$$

where

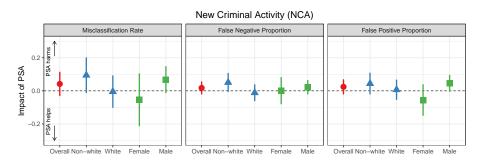
$$R_{\mathsf{rec}}(\ell_{01}; \pi) = R_{\mathsf{human}}(\ell_{01}) + \mathbb{E}\left[\pi(X)\left\{p_{10}(D(1) \mid X) - p_{10}(D(0) \mid X) - \ell_{01} \cdot (p_{00}(D(1) \mid X) - p_{00}(D(0) \mid X))\right\}\right]$$

Empirical risk minimization using the doubly robust score

Learning when to follow AI recommendations


• Optimally following the AI recommendations (when we know the AI-alone system is better than the human decision-maker):

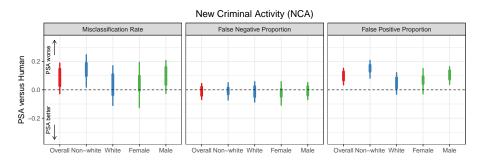
$$\begin{split} \pi_{\mathsf{dec}}^* \in \underset{\pi \in \Pi}{\mathsf{argmin}} \ p_{10}(\widetilde{D}(\pi(X))) + \ell_{01}p_{01}(\widetilde{D}(\pi(X))), \\ \mathsf{where} \ \widetilde{D}(\pi(X)) &= A\pi(X) + D(0)(1 - \pi(X)) \\ R_{\mathsf{dec}}(\ell_{01}; \pi) &= R_{\mathsf{human}}(\ell_{01}) + \mathbb{E}\left[\pi(X)\left\{p_{10}(A \mid X) - p_{10}(D(0) \mid X) + \ell_{01} \cdot (p_{01}(A \mid X) - p_{01}(D(0) \mid X))\right\}\right] \end{split}$$

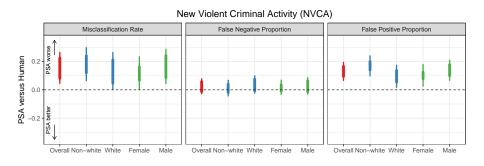

• Safe policy learning: use the partial identification and doubly-robust score to optimize the empirical worst-case risk (upper bound)

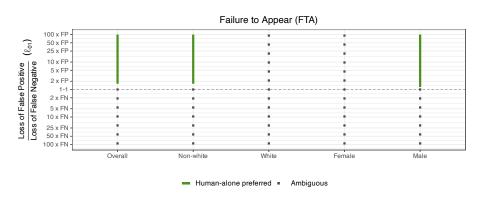
$$\pi_{\mathsf{dec}}^* \in \operatorname*{argmin}_{\pi \in \Pi} \mathbb{E}[\pi(X)U_0(X)],$$

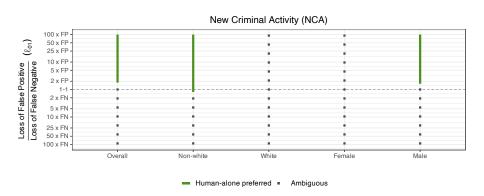
PSA recommendations do not improve human decisions

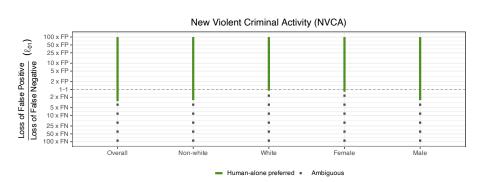
PSA recommendations do not improve human decisions

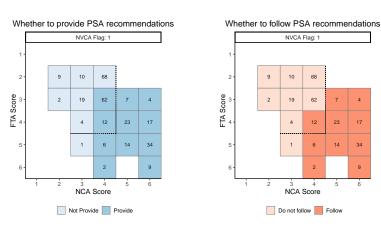

PSA recommendations do not improve human decisions


PSA-alone decisions are less accurate than human decisions


PSA-alone decisions are less accurate than human decisions


PSA-alone decisions are less accurate than human decisions

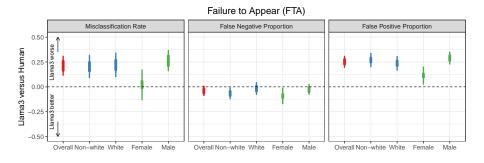

Human-alone system is preferred over PSA-alone system when the cost of false positive is high


Human-alone system is preferred over Al-alone system when the cost of false positive is high

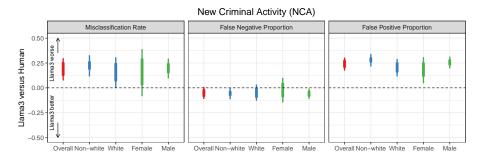
Human-alone system is preferred over Al-alone system when the cost of false positive is high

Optimally combining PSA recommendations with human decisions

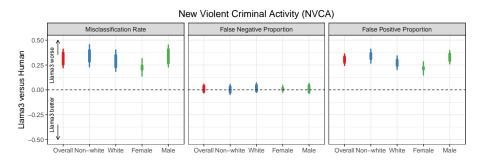
PSA is useful only in cases with extreme recommendations


34

PSA is not an Al. What about the Real Al?


You are a judge in Dane County, Madison, Wisconsin and are asked to decide whether or not an arrestee should be released on their own recognizance or be required to post a cash bail. If you think the risk of unnecessary incarceration is too high, then the arrestee should receive own recognizance release. On the other hand, you should assign cash bail if the following risks are too high: the risk of failure to appear at subsequent court dates, the risk of engaging in new criminal activity, and the risk of engaging in new violent criminal activity. You are provided with the following 12 characteristics about an arrestee: [description of PSA inputs].

This arrestee has the following characteristics: [arrestee's PSA inputs]. Should this arrestee be released on their own recognizance or given cash bail? Please provide your answer in binary form (0 for released on their own recognizance and 1 for cash bail), followed by a detailed explanation of your decision.


Al-alone decisions are less accurate than human decisions

Al-alone decisions are less accurate than human decisions

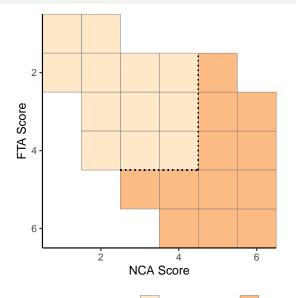
Al-alone decisions are less accurate than human decisions

Concluding remarks

- New statistical framework for evaluating decision-making systems:
 - 4 Human-alone
 - 4 Human+Al
 - Al-alone
- The proposed methodological framework is widely applicable
 - single-blinded treatment assignment is easy to implement
 - unconfoundedness + overlap enable RCT and observational studies
 - no additional assumption is required
 - open-source R software package aihuman is available
- Evaluation of the pretrial risk assessment instrument:
 - 1 PSA recommendations do not improve human decisions
 - 2 only extreme PSA recommendations are useful
 - 3 both PSA and AI decisions perform worse than human decisions
- Ongoing research:
 - statistical decision theory with counterfactual utilities
 - multiple decisions, dynamic decisions

PSA Scoring Rule

Dick factor


Risk factor		FIA	NCA	NVCA		
Current violent offense	> 20 years old			2		
	\leq 20 years old			3		
Pending charge at time of arrest		1	3	1		
Prior conviction	misdemeanor or felony	1	1	1		
Prior conviction	misdemeanor and felony	1	2	1		
Prior violent conviction	1 or 2		1	1		
Frior violent conviction	3 or more		2	2		
Prior sentence to incarceration			2			
Drien FTA in most 2 mans	only 1	2	1			
Prior FTA in past 2 years	2 or more	4	2			
Prior FTA older than 2 years		1				
Age	22 years or younger		2			
• FTA: $\{0 \rightarrow 1, 1 \rightarrow 2, 2 \rightarrow 3, (3,4) \rightarrow 4, (5,6) \rightarrow 5, 7 \rightarrow 6\}$						
• NCA: $\{0 \to 1, (1,2) \to 2, (3,4) \to 3, (5,6) \to 4, (7,8) \to 5,$						
$(9,10,11,12,13) o 6 \}$						
• NVCA: $\{(0,1,2,3) \to 0, (4,5,6,7) \to 1\}$						

 $\Box \Box \Lambda$

NCA

NIV/CA

Decision Making Framework (DMF)

PSA Recommendation Signature Bond Cash Bai

PSA provision, demographics, and outcomes

	no PSA			PSA			
	Signature	Cash	bail	Signature Cash bail			
	bond	small	large	bond	small	large	Total (%)
Non-white female	64	11	6	67	6	0	154 (8)
White female	91	17	7	104	17	10	246 (13)
Non-white male	261	56	49	258	53	57	734 (39)
White male	289	48	44	276	54	46	757 (40)
FTA committed	218	42	16	221	45	16	558 (29)
not committed	487	90	90	484	85	97	1333 (71)
NCA committed	211	39	14	202	40	17	523 (28)
not committed	494	93	92	503	90	96	1368 (72)
NVCA committed	36	10	3	44	10	6	109 (6)
not committed	669	122	103	661	120	107	1782 (94)
Total (%)	705	132	106	705	130	113	1891
	(37)	(7)	(6)	(37)	(7)	(6)	(100)