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Motivation

Central role of propensity score in causal inference
Adjusting for observed confounding in observational studies
Matching and inverse-probability weighting methods

Extensions of propensity score to general treatment regimes
Weighting (e.g., Imbens, 2000; Robins et al., 2000)
Subclassification (e.g., Imai & van Dyk, 2004)
Regression (e.g., Hirano & Imbens, 2004)

But, propensity score is mostly applied to binary treatment
All available methods assume correctly estimated propensity score
No reliable methods to estimate generalized propensity score
Harder to check balance across a non-binary treatment
Many researchers dichotomize the treatment
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Contributions of the Paper

Generalize the covariate balancing propensity score (CBPS; Imai
& Ratkovic, 2014, JRSSB)

Key idea: estimate the generalized propensity score such that the
association between treatment and covariates is reduced

1 Multi-valued treatment (3 and 4 categories)
2 Continuous treatment

Useful especially because checking covariate balance is harder
for non-binary treatment

Facilitates the use of generalized propensity score methods
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The Setup

Ti ∈ T : non-binary treatment
Xi : pre-treatment covariates
Yi(t): potential outcomes
Strong ignorability:

Ti ⊥⊥ Yi(t) | Xi and p(Ti = t | Xi) > 0 for all t ∈ T

p(Ti | Xi): generalized propensity score

T̃i : dichotomized treatment
T̃i = 1 if Ti ∈ T1
T̃i = 0 if Ti ∈ T0
T0
⋂
T1 = ∅ and T0

⋃
T1 = T

What is the problem of dichotomizing a non-binary treatment?
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The Problems of Dichotomization

Under strong ignorability,

E(Yi | T̃i = 1,Xi)− E(Yi | T̃i = 0,Xi)

=

∫
T1

E(Yi(t) | Xi)p(Ti = t | T̃i = 1,Xi)dt

−
∫
T0

E(Yi(t) | Xi)p(Ti = t | T̃i = 0,Xi)dt

Aggregation via p(Ti | T̃i ,Xi)
1 some substantive insights get lost
2 external validity issue

Checking covariate balance: T̃i⊥⊥Xi does not imply Ti⊥⊥Xi
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Two Motivating Examples

1 Effect of education on political participation
Education is assumed to play a key role in political participation
Ti : 3 education levels (graduated from college, attended college but
not graduated, no college)
Original analysis dichotomization (some college vs. no college)
Propensity score matching
Critics employ different matching methods

2 Effect of advertisements on campaign contributions
Do TV advertisements increase campaign contributions?
Ti : Number of advertisements aired in each zip code
ranges from 0 to 22,379 advertisements
Original analysis dichotomization (over 1000 vs. less than 1000)
Propensity score matching followed by linear regression with an
original treatment variable
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Balancing Covariates for a Dichotomized Treatment
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May Not Balance Covariates for the Original Treatment
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Propensity Score for a Multi-valued Treatment

Consider a multi-valued treatment: T = {0,1, . . . , J − 1}
Standard approach: MLE with multinomial logistic regression

πj (Xi ) = Pr(Ti = j | Xi ) =
exp

(
X>i βj

)
1 + exp

(∑J
j′=1 X>i βj′

)
where β0 = 0 and

∑J−1
j=0 π

j(Xi) = 1

Covariate balancing conditions with inverse-probability weighting:

E

(
1{Ti = 0}Xi

π0
β(Xi )

)
= E

(
1{Ti = 1}Xi

π1
β(Xi )

)
= · · · = E

(
1{Ti = J − 1}Xi

πJ−1
β (Xi )

)

which equals E(Xi)

Idea: estimate πj(Xi) to optimize the balancing conditions
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CBPS for a Multi-valued Treatment

Consider a 3 treatment value case as in our motivating example
Sample balance conditions with orthogonalized contrasts:

ḡβ(T ,X ) =
1
N

N∑
i=1

21{Ti=0}
π0
β(Xi )

− 1{Ti=1}
π1
β(Xi )

− 1{Ti=2}
π2
β(Xi )

1{Ti=1}
π1
β(Xi )

− 1{Ti=2}
π2
β(Xi )

Xi

Generalized method of moments (GMM) estimation:

β̂CBPS = argmin
β

ḡβ(T ,X ) Σβ(T ,X )−1 ḡβ(T ,X )

where Σβ(T ,X ) is the covariance of sample moments
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Score Conditions as Covariate Balancing Conditions

Balancing the first derivative across treatment values:

1
N

N∑
i=1

sβ(Ti ,Xi )

=
1
N

N∑
i=1


(

1{Ti=1}
π1
β(Xi )

− 1{Ti=0}
π0
β(Xi )

)
∂
∂β1

π1
β(Xi ) +

(
1{Ti=2}
π2
β(Xi )

− 1{Ti=0}
π0
β(Xi )

)
∂
∂β1

π2
β(Xi )(

1{Ti=1}
π1
β(Xi )

− 1{Ti=0}
π0
β(Xi )

)
∂
∂β2

π1
β(Xi ) +

(
1{Ti=2}
π2
β(Xi )

− 1{Ti=0}
π0
β(Xi )

)
∂
∂β2

π2
β(Xi )


=

1
N

N∑
i=1

(
1{Ti = 1} − π1

β(Xi )

1{Ti = 2} − π2
β(Xi )

)
Xi

Can be added to CBPS as over-identifying restrictions
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Extension to More Treatment Values

The same idea extends to a treatment with more values
For example, consider a four-category treatment
Sample moment conditions based on orthogonalized contrasts:

ḡβ(Ti ,Xi) =
1
N

N∑
i=1


1{Ti=0}
π0
β(Xi )

+ 1{Ti=1}
π1
β(Xi )

− 1{Ti=2}
π2
β(Xi )

− 1{Ti=3}
π3
β(Xi )

1{Ti=0}
π0
β(Xi )

− 1{Ti=1}
π1
β(Xi )

− 1{Ti=2}
π2
β(Xi )

+ 1{Ti=3}
π3
β(Xi )

−1{Ti=0}
π0
β(Xi )

+ 1{Ti=1}
π1
β(Xi )

− 1{Ti=2}
π2
β(Xi )

+ 1{Ti=3}
π3
β(Xi )

Xi

A similar orthogonalization strategy can be applied to marginal
structural models (Imai & Ratkovic, 2014)
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Propensity Score for a Continuous Treatment

The stabilized weights:
f (Ti)

f (Ti | Xi)

Covariate balancing condition:

E
(

f (T ∗i )

f (T ∗i | X ∗i )
T ∗i X ∗i

)
=

∫ {∫
f (T ∗i )

f (T ∗i | X ∗i )
T ∗i dF (T ∗i | X ∗i )

}
X ∗i dF (X ∗i )

= E(T ∗i )E(X ∗i ) = 0.

where T ∗i and X ∗i are centered versions of Ti and Xi

Again, estimate the generalized propensity score such that
covariate balance is optimized

Kosuke Imai (Princeton) Covariate Balancing Propensity Score JSM (August 7, 2014) 13 / 21



CBPS for a Continuous Treatment

Standard approach (e.g., Robins et al. 2000):

T ∗i | X ∗i
indep.∼ N (X>i β, σ

2)

T ∗i
i.i.d.∼ N (0, σ2)

where further transformation of Ti can make these distributional
assumptions more credible

Sample covariate balancing conditions:

ḡθ(T ,X ) =

(
s̄θ(T ,X )
w̄θ(T ,X )

)
=

1
N

N∑
i=1


1
σ2 (T ∗i − X ∗i

>β)X ∗i
− 1

2σ2

{
1− 1

σ2 (T ∗i − X ∗i
>β)2

}
exp

[
1

2σ2

{
−2X ∗i

>β + (X ∗i
>β)2

}]
T ∗i X ∗i


GMM estimation: covariance matrix can be analytically calculated
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Back to the Education Example: CBPS vs. ML

CBPS achieves better covariate balance
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CBPS Avoids Extremely Large Weights
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CBPS Balances Well for a Dichotomized Treatment
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Empirical Results: Graduation Matters, Efficiency Gain
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Onto the Advertisement Example
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Empirical Finding: Little Effect of Advertisement
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Concluding Remarks

Numerous advances in generalizing propensity score methods to
non-binary treatments
Yet, many applied researchers don’t use these methods and
dichotomize non-binary treatments

We offer a simple method to improve the estimation of propensity
score for general treatment regimes
Open-source R package: CBPS: Covariate Balancing Propensity
Score available at CRAN

Future extensions: nonparametric estimation, spatial treatments
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