Discussion: Causal Inference with Latent Variables

Kosuke Imai

Harvard University

Joint Statistical Meetings

August 9, 2021

VanderWeele and Vansteelandt

- What are "latent variables"?
 - unobserved variables
 - often, they represent psycho-social constructs: depression, intelligence, well-being, socio economic status, social integration
- Structural vs. Statistical latent factor models

$$X_i = \lambda_i \eta + \epsilon_i$$
 for each observed variable X_i

- Many researchers regress Y on $\hat{\eta}$ and give causal interpretation
- But, Factor model does not distinguish these two DAGs
- The authors derive a statistical test of the structural interpretation

What is the structural latent factor model?

- DAG implications:
 - \bigcirc no arrow directly out of (X_1, X_2, \dots, X_n)
 - 2 no arrow into $(X_1, X_2, ..., X_n)$ except η
- Applicable when X_i is a survey measurement of η
 - η: satisfaction with life
 - X_i: "If could live my life over, I would change almost nothing"
 - The answer to this question does not affect other variables on DAG
 - "Satisfaction with life" is the only thing that affects this question
- May not be applicable when X_i is some behavioral measurement
 - η : political ideology of legislators
 - X_i: rollcall votes
 - incoming arrows: constituency interests
 - · outgoing arrows: election outcomes
- The 1st case is about measurement validity
- ullet The 2nd case is also structural since η is causally efficacious

Key Result: Theorem 1

Under the structural latent factor model

$$Z \perp \!\!\! \perp (X_1, \ldots, X_n) \mid \eta$$
 for any variable Z on DAG

Testable implication under the linear factor model:

$$\lambda_i \mathbb{E}(X_j \mid Z = z) = \lambda_j \mathbb{E}(X_i \mid Z = z)$$

This follows because for any i

$$\mathbb{E}(X_i/\lambda_i \mid Z = z) = \mathbb{E}\{\mathbb{E}(X_i/\lambda_i \mid \eta, Z = z) \mid Z = z\}$$

$$= \mathbb{E}\{\mathbb{E}(X_i/\lambda_i \mid \eta) \mid Z = z\}$$

$$= \mathbb{E}(\eta \mid Z = z)$$

- The authors develop the likelihood ratio test
- Extension to the case when η is multi-dimensional? Identifiability of the number of dimensions in factor model?

Questions

- How does the identifiability of factor model affect these results?
- **②** What are the identification conditions for the causal effects of η on Y?
- The role of factor model in the causal effects of X on Y

 → stochastic intervention (Papadogeorgou et al. 2020)
- Measurement error under the structural factor model?

Wang and Blei

- A follow-up of their influential 2019 JASA paper (2019 JSM)
- Setup:
 - multiple causes: $\mathbf{A}_i = (A_{i1}, A_{i2}, \dots, A_{im})$
 - unobserved multi-cause confounders: $\mathbf{A}_i \perp \!\!\! \perp Y_i(\mathbf{a}) \mid \mathbf{U}_i$
- Deconfounder methodology:
 - Factor model

$$p(A_{i1}, A_{i2}, ..., A_{im}) = \int p(\mathbf{Z}_i) \prod_{j=1}^m p(A_{ij} \mid \mathbf{Z}_i) d\mathbf{Z}_i$$

Substitute confounder Z_i

$$\mathbb{E}\{Y_i(\mathbf{a}) - Y_i(\mathbf{a}')\} = \mathbb{E}\{\mathbb{E}(Y_i \mid \mathbf{A}_i = \mathbf{a}, \mathbf{Z}_i) - \mathbb{E}(Y_i \mid \mathbf{A}_i = \mathbf{a}', \mathbf{Z}_i)\}$$

- Advantages
 - \bigcirc checkable assumption about unobserved confounders: $A_{ij} \perp \!\!\! \perp A_{ij'} \mid \mathbf{Z}_i$
 - easy to implement

Assumptions

- Unconfoundedness: $\mathbf{A}_i \perp \perp Y_i(\mathbf{a}) \mid \mathbf{U}_i$
- U is a multi-cause separator:

$$P(A_1,\ldots,A_m \mid \mathbf{U})$$

$$= \prod_{j=1}^m P(A_j \mid \mathbf{U})$$

- **U** does not contain a single-cause separator
- "Pinpointness" condition: All multi-cause separators **Z** ("substitute confounder") is a deterministic function of the multi causes **A**

$$P(\mathbf{Z} \mid A_1, \dots, A_m) = \delta_{f(A_1, \dots, A_m)}$$

Related to the propensity function of Imai & van Dyk (2004)

Mechanics of the Substitute Confounder

Substitute confounder has the property: A_i⊥⊥U_i | Z_i

$$\begin{split} & \mathbb{E}\{Y_i(\mathbf{a}, \mathbf{U}_i)\} \\ &= \int Y_i(\mathbf{a}, \mathbf{U}_i = \mathbf{u}) p(\mathbf{U}_i = \mathbf{u}) d\mathbf{u} \\ &= \int \int Y_i(\mathbf{a}, \mathbf{U}_i) \ p(\mathbf{U}_i = \mathbf{u} \mid \mathbf{Z}_i = \mathbf{z}) p(\mathbf{Z}_i = \mathbf{z}) d\mathbf{u} d\mathbf{z} \\ &= \int \int Y_i(\mathbf{a}, \mathbf{U}_i) \ p(\mathbf{U}_i = \mathbf{u} \mid \mathbf{A}_i = \mathbf{a}, \mathbf{Z}_i = \mathbf{z}) p(\mathbf{Z}_i = \mathbf{z}) d\mathbf{u} d\mathbf{z} \\ &= \int \mathbb{E}(Y_i \mid \mathbf{A}_i = \mathbf{a}, \mathbf{Z}_i = \mathbf{z}) p(\mathbf{Z}_i = \mathbf{z}) d\mathbf{z} \end{split}$$

Implied estimator:

$$\mathbb{E}\{\widehat{Y_i(\mathbf{a},\mathbf{U}_i)}\} = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(Y_i \mid \widehat{\mathbf{A}_i = \mathbf{a}}, \mathbf{Z}_i = \widehat{\mathbf{Z}}_i) \text{ where } \widehat{\mathbf{Z}}_i = \widehat{f}(\mathbf{A}_i)$$

Questions

- Why do you need the pinpointness assumption?
 - The support of $p(\mathbf{Z}_i)$ must be the same as that of $p(\mathbf{Z}_i \mid \mathbf{A}_i = \mathbf{a})$
 - Otherwise, we can't compute $\mathbb{E}(Y_i \mid \mathbf{A}_i = \mathbf{a}, \mathbf{Z}_i = \mathbf{z})$ for some \mathbf{z}
 - Substitute confounder Z_i is a deterministic function of A_i
 - Factor model gives an estimate of this function

 → identifiability of factor model?
- We have a sumption of the proposition of the pro
- How sensitive are the results to the violation of this assumption?

 ¬ analogous to covariate balancing propensity score?
- Does the assumption of no single cause confounder depend on the definition of "cause" and "confounder"?

Egleston et al.

- Using electronic health records to predict type 2 diabetes
- Two types of data
 - structured fields: diagnosis code
 - unstructured fields: notes by clinicians
- Using word2vec, the authors show how the textual data can be used to predict type 2 diabetes
- The authors also show how to quantify statistical uncertainty
- Questions:
 - Is the ultimate goal using clinician's notes to diagnose disease?
 - Probabilistic models of texts (e.g., LDA)?
- Extensions to causal inference:
 - texts as moderator
 - texts as treatment
- Use of latent variable modeling

Concluding Remarks

- Key roles of latent variables in many disciplines
- Causal inference with latent variables
 - VanderWeele: latent variable as treatment
 - Blei: latent variable as deconfounder
 - Egleston: latent variable as predictor

- Main difficulty: model dependent due to unobservability
- What are the roles of latent variable models in causal inference?
 - data generating process (i.e., structural)
 - summarization tool