The Cram Method for Efficient Simultaneous
Learning and Evaluation

Kosuke Imai

Harvard University

Joint Statistical Meetings
August 5, 2024

Joint work with Zeyang Jia and Michael Lingzhi Li (HBS)

1/21

Motivation

o Widespread use of data-driven algorithms for decisions and predictions
@ In practice, we wish to use the same data to:

@ learn a decision/prediction rule
@ evaluate the learned rule

@ Sample splitting achieves this goal but use the data inefficiently:

ML Algorithm Hold-out Data

"

o Cross-validation is statistically efficient but

o does not evaluate the learned rule

e instead, it evaluates the average performance of ML algorithm
o this leads to underestimation of uncertainty

e in adition, it is computationally inefficient

2/21

The Cram Method

@ General methodology for simultaneous learning and evaluation

o process of repeated training and testing
e vyields a single learned rule and its statistical performance evaluation
e incorporates both learning and evaluation uncertainties

@ Cramming is statistically efficient:

@ the entire sample is used to learn a decision/prediction rule
@ the entire sample is used to evaluate the learned rule

e Cramming is computationally efficient:

@ learning and evaluation occur through a single pass of the sample
@ online fitting algorithms can be used

@ Cram is a general methodology — various extensions are possible

3/21

Cramming at Grance

@ Divide the data into T batches

© Start with Rule 0

© Use Batch 1 to learn Rule 1

@ Use Batches 2-T to evaluate the performance difference between
Rules 0 and 1, i.e., A(Rule 1, Rule 0)

© Use Batches 1-2 to learn Rule 2

@ Use Batches 3-T to evaluate A(Rule 2, Rule 1)

@ Repeat

4/21

Cramming for Policy Learning and Evaluation

e Data (i.i.d.): D, ={X;,Dj, Yi}"_,

o treatment: D; € {0,1}

e outcome: Y;=VY;(D))eYCR

e pre-treatment covariates: X; € X C RP
Assumption (Strong Ignorability):

@ unconfoundedness: {Y(1), Y(0)}1LD | X

@ overlap: c<e(x):=P(D=1|X=x) <1—c where c >0
Policy (either stochastic or deterministic):

m(x) =P(D=1|X=x)€[0,1]

Value of policy 7
V(r) = Ep~[Y(D)] = E[Y(1)7(X)+ Y(0)(1—n(X))]
Policy value difference:
A(mn') = V(r) = V(r') = E[(Y(1) - Y(0))(x(X) — 7'(X))]

Policy learning:

& = argmax V()
mell 5/21

Cramming by Picture

Data Estimator
Iteration 1 Batch 1 Batch 2 Batch 3 eee Batch T-1 Batch T A(fy; o)
+
Iteration 2 Batch 1 Batch 2 Batch 3 oo Batch T-1 Batch T A(fty; 1)
+
+
Iteration T-1 Batch 1 Batch 2 Batch 3 oee Batch T-1 Batch T ARp_q; Rir_z)
n
A(fty; mo)

@ Use blue batches to learn and red batches to evaluate
o Key decomposition:

A(7’1\'T;7T0) = V(7’1\'T) — V(ﬂ'o)

\'

-1
=) AR 1) & D> A(fe fe)

t=1
@ Cram can also be used to evaluate V(7 1)

.-..
Il
—

6/21

The Cram Method for Policy Learning and Evaluation

Algorithm: Cramming
Data: D, = {X,‘, D;, Yf}?:l
Input: learning algorithm A, baseline policy mp, number of batches T
Output: estimated value difference between the learned and baseline
policies A(A(D); mg)
1 Randomly partition the dataset D, into T batches B1, B, ..., BT;
2 Set g = mo;
3fort=1to T —1do
@ Learn a policy using the first t batches 7, := A(Uf:1 B));
@ Evaluate the policy value difference between #; and #;_1 using the
remaining batches U —¢+1 Bj and store the resulting estimate as

A(Wt, 771:—1),

4 Evaluate the value difference between the final learned policy
71 := A(D,) and the baseline policy mg as:

T— 1
71'7—, 7TO
t=1

7/21

Crammed Policy Evaluation Estimator

@ Proposed estimator:

T-1
A(7tr;mo) = ZA(m,m 1
t=1
where
. 1 <
AT fre1) = e Z Ty, (avg. of T —t unbiased estimates)
e
= Y:Di Yi(1-Dj) . .
My = BZ{) 1—e(X) }'(”f(x")_”tl(x"))‘
i€B; '

~~ policy difference
inverse probability weighting

@ Could use other unbiased estimator (e.g., doubly-robust estimator)
o Difficult to analyze because of complex correlations across ﬁ(ﬁt; 1)

8/21

Exploiting the Sequential Structure of Cramming

@ Alternaive expression of the same crammed estimator:

T
A(ﬁT; 7T0) = Z FJ-(T

° FtJ is an unbiased estimator of A(m ft—1) using batch j

e Using batch j, T; ;(T) estimates Z
depends only on prior batches

where

j_

t=

’r\
T—t*"

A(7y; 7e—1)/(T — t), which

Policy difference | 1 2 3 T-1 T
INER v Fl,z F1,3 M7-1 M7
(71; m0) T-1 T-1 T-1 T-1
Afnt) |V VS B AL
Araifrs) | v v TR TR
AGT_1770) | v vV v T
A(7ATT; 'ﬁT—l) v v v v v

9/21

Stability Condition

@ The amount of evaluation data decreases at the rate of 1/ T
@ The policy value difference must stabilize at least at the same rate

Assumption 2 (Stability Condition)

The learning algorithm satisfies the following stabilization rate condition;
36 > 0,Ry > 0, Ko > 0, such that for all t > Ry,

10 Q, < Ky holds almost surely

where Q: = Ex [[#:(X) = #e1(X)[] = [[Fe(x) = Fe1(x)|dFx(x)

@ @: is a random variable that depends on the data D,
@ We can relax this uniform condition to

limsup ' Q; < Ky almost surely
t—o00

@ Currently, exploring additional relaxation

10/21

A Simple Algorithm to Stabilize any Learning Algorithm

Algorithm: Stabilizer
Data: a sequence of batches from cramming, By, Ba, ..., B, ...
Input: a policy learning algorithm A, a baseline policy g, constants
0>0and C>0
Result: a sequence of learned policies 71, 72, . . . satisfying the stability
condition of Assumption 2
1 Set 79 = mo;
2 fort >1do
3 Obtain a candidate policy #; := .A(U;:1 B;) by applying the
algorithm A to the first t batches
Compute the acceptance probability p; := min{Ct~17° 1}
Generate a learned policy as 7:(x) := pefte(x) + (1 — pe)7e—1(x)

(S

o Choose sufficiently large C and sufficiently small §

@ In practice, choose these values such that the algorithm can learn
without modification for at least 80% of the data

11/21

Other Conditions on Learning Algorithms

Proposition 1 (Limit policy)

Under Assumption 2, for any learned policy sequence {7+}2,, there exists
a unique limit policy o, : X — [0, 1] such that with probability 1 the
following equality holds,

Jim Ex(1f00(X) = Q) = 0.

Assumption 3 (Limit policy differs from the baseline policy)

The limit policy 7t of a learned policy sequence {#t+}32, differs from the
baseline policy g in the Ly distance almost surely. That is, there exists
My > 0 such that,

Ex [|m0(X) — oo (X)|] > My almost surely.

12/21

Regularity Conditions

Assumption 4 (Bounded conditional moments)

Both the conditional expectation and conditional variance of the potential
outcome, i.e., pq(x) := E[Y(d) | X = x] and 03(x) := V(Y(d) | X = x) for
d = 0,1, respectively, are uniformly bounded on the covariate space X :

sup pg(x) < 0o, 0 < inf 03(x) < sup 05(x) < 0o, ford =0,1.
xeX xeX xeX

Assumption 5 (Moment condition)

The potential outcomes have finite fourth moments:

JKy > 0,s.t. E[Y(d)*] < Ky, ford=0,1.

13/21

Consistency

Theorem 1 (L; consistency)

Suppose that a sequence of learned policies {#;}]_, satisfies Assumption 2.
Then, under Assumptions 1, 4, and 5, we have,

E Uﬁ(ﬁy—;ﬁo) - A(ﬁr;ﬂo)ﬂ —0 as T — oo.

14 /21

Asymptotic Normality

Theorem 2 (Asymptotic normality)

Suppose that a sequence of learned policies {#;}]_, satisfies
Assumptions 2 and 3. Then, under Assumptions 1, 4, and 5, we have,

~

A(F+ — A(R+
y7 . AlErim) = Al#rim) d, N(0,1).
VT

The asymptotic variance is given by,

;
vio= T V([(T) | M)
j=2

@ Unlike the standard CLT, A(71; 7o) depends on the data D,
@ Leverage the fact that FJ(T) is i.i.d. conditional on H;_;

15 /21

Discussion

e Why does cramming work?

o evaluation starts early if policy stabilizes fast
e more samples used for evaluation early when policy is changing
e plot estimated policy value differences to check stabilization

@ Choice of batch size

smaller batch size leads to more efficient use of data

larger batch size leads to more stable policy learning

noisy data — smaller batch size

we do not yet know optimal batch size / batch size can vary too
in practice, we recommend a batch size of about 5%

16 /21

Simulation Studies

e ACIC 2016 Data set (Dorie et al. 2019)

o 77 different DGPs
o conditional average treatment effect (CATE) estimation
e various nonlinearities and signal-noise ratios

@ Learning algorithms:

S-learner: outcome models with treatment / covariate interactions

o M-learner: modified outcome model YD/e(X) — Y(1 — D)/(1 — e(X))
o Causal Forest (Wager and Athey 2018)

e For S and M-learners, we use ridge regression and neural networks

Sample splitting: 80-20% (main text), 60-40% splits (appendix)

Cramming: 5% batch size (results not sensitive to the batch size)

17 /21

Cramming vs. Sample Splitting

Average relative change in policy value

5.0%

4.0%

3.0%

2.0%

-1.0%

kL s

1 121 31 4 st el 71
Simulation setup ID

(a) Improvement in the policy value

Bias as percentage of policy value

2.0%

0.0%

-2.0%

—4.0%

x Sample-splitting
o cramming

1 1 21 31 41 51 61 71
Simulation setup ID

(c) Standardized bias

-10%

—-20%

-30%

—40%

-50%

Relative change in evaluation standard error

-60%

1 11 21 31 41 51 61 7
Simulation setup ID

(b) Improvement in standard error

x Sample-splitting
o cramming

°
©
8

°
©
&

o
o
2

Empirical coverage

°
©
S

1 1 21 31 a1 51 61 71
Simulation setup ID

(d) Coverage of 95% confidence intervals

18 /21

Empirical Application

Clinical trial: synthetic estrogen for late-stage prostate cancer
Binary Treatment: 5.0mg/2.0mg/1.0mg estrogen vs control
No statistically significant average treatment effect on total survival

But, subsequent analyses found heterogeneous effects

Trial data:

o Covariates X: Patient characteristics at initial visit
o Treatment D: Control (D = 0) and Estrogen (D = 1)
e Outcome Y: Length of total survival

Baseline: No treatment
Cramming: 5% batch size
Sample-splitting: 80/20 split

19/21

Cramming is More Effective than Sample Splitting

cramming sample-splitting

Estimated proportion treated 57.76% 56.94%
Estimated value 7.77 3.90
Estimated standard error 4.42 6.65
90% confidence interval [0.50, 15.04] [-7.03, 14.84]

@ 99% increase in estimated policy value: 3.90 — 7.77
@ 33% reduction of standard error: 6.65 — 4.42

20/21

Concluding Remarks

@ The cram method for simultaneous policy learning and evaluation

statistically efficient

computationally efficient

more efficient alternative to sample splitting

application to policy learning and evaluation

evaluates a learned policy rather than an algorithm using the same data

o Future extensions:

onpolicy evaluation of bandit (coming soon!)

machine learning prediction and classification (work in progress)
cramming cross-validation

active learning

@ Paper available at https://arxiv.org/pdf/2403.07031.pdf

21/21

https://arxiv.org/pdf/2403.07031.pdf

	Introduction
	The Proposed Methodology
	Simulation Studies
	Empirical Application
	Concluding Remarks

