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Motivation

Widespread use of data-driven algorithms for decisions and predictions
In practice, we wish to use the same data to:

1 learn a decision/prediction rule
2 evaluate the learned rule

Sample splitting achieves this goal but use the data inefficiently:

Training Data Learning Evaluation

ML Algorithm Hold-out Data

Deployment

Cross-validation is statistically efficient but
does not evaluate the learned rule
instead, it evaluates the average performance of ML algorithm
this leads to underestimation of uncertainty
in adition, it is computationally inefficient
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The Cram Method

General methodology for simultaneous learning and evaluation
process of repeated training and testing
yields a single learned rule and its statistical performance evaluation
incorporates both learning and evaluation uncertainties

Cramming is statistically efficient:
1 the entire sample is used to learn a decision/prediction rule
2 the entire sample is used to evaluate the learned rule

Cramming is computationally efficient:
1 learning and evaluation occur through a single pass of the sample
2 online fitting algorithms can be used

Cram is a general methodology — various extensions are possible
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Cramming at Grance

Evaluation

Learning Rule 0

Δ(Rule 1, Rule 0)

Batch 1

Rule 1

Batch 2  ⋯ Batch T

Rule 2

Δ(Rule 2, Rule 1)

⋯ Rule T-1 Rule T

Δ(Rule T-1, Rule T-2) Δ(Rule T, Rule T-1)⋯

Dataset

1 Divide the data into T batches
2 Start with Rule 0
3 Use Batch 1 to learn Rule 1
4 Use Batches 2–T to evaluate the performance difference between

Rules 0 and 1, i.e., ∆(Rule 1,Rule 0)
5 Use Batches 1–2 to learn Rule 2
6 Use Batches 3–T to evaluate ∆(Rule 2,Rule 1)
7 Repeat
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Cramming for Policy Learning and Evaluation

Data (i.i.d.): Dn = {Xi ,Di ,Yi}ni=1
treatment: Di ∈ {0, 1}
outcome: Yi = Yi (Di ) ∈ Y ⊂ R
pre-treatment covariates: Xi ∈ X ⊂ Rp

Assumption (Strong Ignorability):
1 unconfoundedness: {Y (1),Y (0)}⊥⊥D | X
2 overlap: c ≤ e(x) := P(D = 1 | X = x) ≤ 1 − c where c > 0

Policy (either stochastic or deterministic):

π(x) = P(D = 1 | X = x) ∈ [0, 1]

Value of policy π:

V (π) := ED∼π[Y (D)] = E[Y (1)π(X) + Y (0)(1 − π(X))]

Policy value difference:

∆(π;π′) := V (π)− V (π′) = E[(Y (1)− Y (0))(π(X )− π′(X ))]

Policy learning:
π̂ = argmax

π∈Π
V (π)
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Cramming by Picture

Batch 1 Batch 2 Batch 3 Batch T-1 Batch T

Batch 1 Batch 2 Batch 3 Batch T-1 Batch T

Iteration 1

Iteration 2

Iteration T-1 Batch 1 Batch 2 Batch 3 Batch T-1 Batch T

 Δ෡ 𝜋ොଵ;𝜋଴

 Δ෡ 𝜋ොଶ;𝜋ොଵ

 Δ෡ 𝜋ො்ିଵ;𝜋ො்ିଶ

+

+

+

=

Data

⋯ ⋯
Estimator

𝚫෡ 𝝅ෝ𝑻;𝝅𝟎

Use blue batches to learn and red batches to evaluate
Key decomposition:

∆(π̂T ;π0) := V (π̂T )− V (π0)

=
T∑
t=1

∆(π̂t ; π̂t−1) ≈
T−1∑
t=1

∆(π̂t ; π̂t−1)

Cram can also be used to evaluate V (π̂T ) 6 / 21



The Cram Method for Policy Learning and Evaluation

Algorithm: Cramming
Data: Dn = {Xi ,Di ,Yi}ni=1
Input: learning algorithm A, baseline policy π0, number of batches T
Output: estimated value difference between the learned and baseline

policies ∆̂(A(D);π0)
1 Randomly partition the dataset Dn into T batches B1,B2, ...,BT ;
2 Set π̂0 = π0;
3 for t = 1 to T − 1 do

1 Learn a policy using the first t batches π̂t := A(
⋃t

j=1 Bj);
2 Evaluate the policy value difference between π̂t and π̂t−1 using the

remaining batches
⋃T

j=t+1 Bj and store the resulting estimate as
∆̂(π̂t ; π̂t−1);

4 Evaluate the value difference between the final learned policy
π̂T := A(Dn) and the baseline policy π0 as:

∆̂(π̂T ;π0) :=
T−1∑
t=1

∆̂(π̂t ; π̂t−1).
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Crammed Policy Evaluation Estimator

Proposed estimator:

∆̂(π̂T ;π0) :=
T−1∑
t=1

∆̂(π̂t ; π̂t−1)

where

∆̂(π̂t ; π̂t−1) :=
1

T − t

T∑
j=t+1

Γ̂tj , (avg. of T − t unbiased estimates)

Γ̂tj :=
1
B

∑
i∈Bj

{
YiDi

e(Xi )
− Yi (1 − Di )

1 − e(Xi )

}
︸ ︷︷ ︸
inverse probability weighting

· (π̂t(Xi )− π̂t−1(Xi ))︸ ︷︷ ︸
policy difference

.

Could use other unbiased estimator (e.g., doubly-robust estimator)
Difficult to analyze because of complex correlations across ∆̂(π̂t ; π̂t−1)
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Exploiting the Sequential Structure of Cramming

Alternaive expression of the same crammed estimator:

∆̂(π̂T ;π0) =
T∑
j=2

Γ̂j(T ) where Γ̂j(T ) :=

j−1∑
t=1

1
T − t

Γ̂tj .

Γ̂tj is an unbiased estimator of ∆(π̂t ; π̂t−1) using batch j

Using batch j , Γ̂j(T ) estimates
∑j−1

t=1 ∆(π̂t ; π̂t−1)/(T − t), which
depends only on prior batches

Policy difference 1 2 3 · · · T − 1 T

∆(π̂1;π0) ✓ Γ̂1,2
T−1

Γ̂1,3
T−1 · · · Γ̂1,T−1

T−1
Γ̂1,T
T−1

∆(π̂2; π̂1) ✓ ✓ Γ̂2,3
T−2 · · · Γ̂2,T−1

T−2
Γ̂2,T
T−2

...
...

...
...

. . .
...

...

∆(π̂T−2; π̂T−3) ✓ ✓ ✓ · · · Γ̂T−2,T−1
2

Γ̂T−2,T
2

∆(π̂T−1; π̂T−2) ✓ ✓ ✓ · · · ✓ Γ̂T−1,T
1

∆(π̂T ; π̂T−1) ✓ ✓ ✓ · · · ✓ ✓
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Stability Condition

The amount of evaluation data decreases at the rate of 1/T
The policy value difference must stabilize at least at the same rate

Assumption 2 (Stability Condition)
The learning algorithm satisfies the following stabilization rate condition;
∃δ > 0,R1 > 0,K0 > 0, such that for all t ≥ R1,

t1+δQt ≤ K0 holds almost surely

where Qt := EX [|π̂t(X)− π̂t−1(X)|] =
∫
x∈X |π̂t(x)− π̂t−1(x)|dFX(x)

Qt is a random variable that depends on the data Dn

We can relax this uniform condition to

lim sup
t→∞

t1+δQt ≤ K0 almost surely

Currently, exploring additional relaxation
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A Simple Algorithm to Stabilize any Learning Algorithm

Algorithm: Stabilizer
Data: a sequence of batches from cramming, B1,B2, . . . ,Bt , . . .
Input: a policy learning algorithm A, a baseline policy π0, constants

δ > 0 and C > 0
Result: a sequence of learned policies π̂1, π̂2, . . . satisfying the stability

condition of Assumption 2
1 Set π̂0 = π0;
2 for t ≥ 1 do
3 Obtain a candidate policy π̃t := A(

⋃t
j=1 Bj) by applying the

algorithm A to the first t batches
4 Compute the acceptance probability pt := min{Ct−1−δ, 1}
5 Generate a learned policy as π̂t(x) := pt π̃t(x) + (1 − pt)π̂t−1(x)

Choose sufficiently large C and sufficiently small δ
In practice, choose these values such that the algorithm can learn
without modification for at least 80% of the data
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Other Conditions on Learning Algorithms

Proposition 1 (Limit policy)

Under Assumption 2, for any learned policy sequence {π̂t}∞t=1, there exists
a unique limit policy π̂∞ : X → [0, 1] such that with probability 1 the
following equality holds,

lim
t→∞

EX[|π̂∞(X)− π̂t(X)|] = 0.

Assumption 3 (Limit policy differs from the baseline policy)

The limit policy π̂∞ of a learned policy sequence {π̂t}∞t=1 differs from the
baseline policy π0 in the L1 distance almost surely. That is, there exists
M1 > 0 such that,

EX [|π0(X)− π̂∞(X)|] > M1 almost surely.
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Regularity Conditions

Assumption 4 (Bounded conditional moments)

Both the conditional expectation and conditional variance of the potential
outcome, i.e., µd(x) := E[Y (d) | X = x] and σ2

d(x) := V(Y (d) | X = x) for
d = 0, 1, respectively, are uniformly bounded on the covariate space X :

sup
x∈X

µd(x) < ∞, 0 < inf
x∈X

σ2
d(x) ≤ sup

x∈X
σ2
d(x) < ∞, for d = 0, 1.

Assumption 5 (Moment condition)

The potential outcomes have finite fourth moments:

∃K4 > 0, s.t. E[Y (d)4] ≤ K4, for d = 0, 1.
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Consistency

Theorem 1 (L1 consistency)

Suppose that a sequence of learned policies {π̂t}Tt=1 satisfies Assumption 2.
Then, under Assumptions 1, 4, and 5, we have,

E
[∣∣∆̂(π̂T ;π0)−∆(π̂T ;π0)

∣∣] → 0 as T → ∞.
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Asymptotic Normality

Theorem 2 (Asymptotic normality)

Suppose that a sequence of learned policies {π̂t}Tt=1 satisfies
Assumptions 2 and 3. Then, under Assumptions 1, 4, and 5, we have,

√
T · ∆̂(π̂T ;π0)−∆(π̂T ;π0)

vT

d−→ N(0, 1).

The asymptotic variance is given by,

v2
T := T

T∑
j=2

V(Γ̂j(T ) | Hj−1).

Unlike the standard CLT, ∆(π̂T ;π0) depends on the data Dn

Leverage the fact that Γ̂j(T ) is i.i.d. conditional on Hj−1
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Discussion

Why does cramming work?
evaluation starts early if policy stabilizes fast
more samples used for evaluation early when policy is changing
plot estimated policy value differences to check stabilization

Choice of batch size
smaller batch size leads to more efficient use of data
larger batch size leads to more stable policy learning
noisy data −→ smaller batch size
we do not yet know optimal batch size / batch size can vary too
in practice, we recommend a batch size of about 5%
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Simulation Studies

ACIC 2016 Data set (Dorie et al. 2019)
77 different DGPs
conditional average treatment effect (CATE) estimation
various nonlinearities and signal-noise ratios

Learning algorithms:
S-learner: outcome models with treatment / covariate interactions
M-learner: modified outcome model YD/e(X )− Y (1 − D)/(1 − e(X ))
Causal Forest (Wager and Athey 2018)
For S and M-learners, we use ridge regression and neural networks

Sample splitting: 80-20% (main text), 60-40% splits (appendix)
Cramming: 5% batch size (results not sensitive to the batch size)
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Cramming vs. Sample Splitting
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(a) Improvement in the policy value
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(b) Improvement in standard error
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(c) Standardized bias
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(d) Coverage of 95% confidence intervals
18 / 21



Empirical Application

Clinical trial: synthetic estrogen for late-stage prostate cancer
Binary Treatment: 5.0mg/2.0mg/1.0mg estrogen vs control
No statistically significant average treatment effect on total survival
But, subsequent analyses found heterogeneous effects

Trial data:
Covariates X : Patient characteristics at initial visit
Treatment D: Control (D = 0) and Estrogen (D = 1)
Outcome Y : Length of total survival

Baseline: No treatment
Cramming: 5% batch size
Sample-splitting: 80/20 split
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Cramming is More Effective than Sample Splitting

cramming sample-splitting
Estimated proportion treated 57.76% 56.94%
Estimated value 7.77 3.90
Estimated standard error 4.42 6.65
90% confidence interval [0.50, 15.04] [−7.03, 14.84]

99% increase in estimated policy value: 3.90 −→ 7.77
33% reduction of standard error: 6.65 −→ 4.42
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Concluding Remarks

The cram method for simultaneous policy learning and evaluation
statistically efficient
computationally efficient
more efficient alternative to sample splitting
application to policy learning and evaluation
evaluates a learned policy rather than an algorithm using the same data

Future extensions:
onpolicy evaluation of bandit (coming soon!)
machine learning prediction and classification (work in progress)
cramming cross-validation
active learning

Paper available at https://arxiv.org/pdf/2403.07031.pdf
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