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Motivation and Overview

Two methodological revolutions over the past two decades
1 randomized experiments (field/lab/survey)
2 machine learning

Causal machine learning (causal ML)
1 estimation of heterogeneous treatment effects
2 development of individualized treatment rules

Experimental evaluation of causal ML
1 ML algorithms may not work well in practice
2 assumption-free uncertainty quantification is essential

I will show how to experimentally evaluate heterogeneous treatment
effects discovered by generic causal ML
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Setup

Notation:
n experimental units
Ti ∈ {0, 1}: binary treatment
Yi (t) where t ∈ {0, 1}: potential outcomes
Yi = Yi (Ti ): observed outcome
Xi : moderator of interest

Assumptions:
1 no interference between units:

Yi (T1 = t1, . . . ,Tn = tn) = Yi (Ti = ti )

2 randomization of treatment assignment:

{Yi (1),Yi (0)}⊥⊥Ti

3 random sampling of units:

{Yi (1),Yi (0)}
i.i.d.∼ P
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Exploration of Heterogeneous Treatment Effects

Two commonly used treatment prioritization scores
1 Conditional average treatment effect (CATE):

τ(x) = E(Yi (1)− Yi (0) | Xi = x)

2 Baseline risk:
λ(x) = E(Yi (0) | Xi = x)

Estimate a score with ML algorithm using an external data set

f : X −→ S ⊂ R

Group Average Treatment Effect (GATES; Chernozhukov et al. 2019)

τk = E(Yi (1)− Yi (0) | pk−1 ≤ Si = f (Xi ) < pk)

for k = 1, 2, . . . ,K where pk is a cutoff (p0 = −∞, pK = ∞)

4 / 14



Statistical Inference for GATES

How can we make valid statistical inference for GATES without
assuming that the scores are correctly estimated by ML algorithm?

A natural difference-in-means estimator for GATES:

τ̂k =
K

n1

n∑
i=1

YiTi f̂k(Xi )−
K

n0

n∑
i=1

Yi (1 − Ti )f̂k(Xi ),

where f̂k(Xi ) = 1{Si ≥ p̂k(s)} − 1{Si ≥ p̂k−1}

Bias bound and exact variance are derived, accounting for the
estimation uncertainty of cutoffs
Under mild regularity conditions (e.g., continuity of CATE at
thresholds), the distribution of τ̂k is asymptotically normal
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Statistical Hypothesis Tests for Subgroups

1 Nonparametric test of treatment effect homogeneity:
Null hypothesis:

H0 : τ1 = τ2 = · · · = τK .

Test statistic:
τ̂⊤Σ−1τ̂

d−→ χ2
K

where τ̂ = (τ̂1 − τ̂ , · · · , τ̂K − τ̂)⊤

2 Nonparametric test of rank-consistent treatment effect heterogeneity:
Null hypothesis:

H∗
0 : τ1 ≤ τ2 ≤ · · · ≤ τK .

Test statistic:

(τ̂ − µ∗(τ̂ ))⊤ Σ−1 (τ̂ − µ∗(τ̂ ))
d−→ χ̄2

K .

where µ∗(x) = argminµ ∥µ− x∥2
2 subject to µ1 ≤ µ2 ≤ · · · ≤ µK .
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Estimation and Evaluation Using the Same Data

Cross-fitting procedure:
1 randomly split the data into L folds: Z1, . . . ,ZL

2 estimate the score using L− 1 folds: f̂−ℓ

3 estimate GATES with the hold-out set: τ̂
(ℓ)
k (f̂−ℓ)

4 repeat the process for each ℓ and average

τ̂k(F ; n −m) =
1
L

L∑
ℓ=1

τ̂
(ℓ)
k (f̂−ℓ)

where F : Z −→ F is a generic but stable ML algorithm with
Ztrain ∈ Z and f̂Ztrain = F (Ztrain) ∈ F

Estimand: average performance of F

τk(F ; n −m)

= E[E{Yi (1)− Yi (0) | pk−1(f̂Zn−m
train

) ≤ f̂Zn−m
train

(Xi ) < pk(f̂Zn−m
train

)}].

Unbiasedness: E(τ̂k(F ; n −m)) = τk(F ; n −m)

Finite-sample (conservative) variance estimator (Imai and Li, JASA, 2023)
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Simulation Study

A highly nonlinear specification from the 2016 ACIC competition
58 covariates (3 categorical, 5 binary, 27 counts, 13 continuous)
sample size: n = 4802
use empirical distribution of Xi as true distribution

Machine learning algorithms
Causal forest and Lasso
L = 5 and also use 5-fold cross validation for tuning

Fixed score (see the paper) and estimated one with cross-fitting
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Simulation Results: Bias and Coverage

n = 100 n = 500 n = 2500
bias s.d. coverage bias s.d. coverage bias s.d. coverage

Causal Forest
τ̂1 −0.05 2.97 94.0% −0.01 1.57 95.6% −0.01 0.59 97.7%
τ̂2 −0.06 2.58 95.9 −0.04 1.08 98.2 0.01 0.54 98.6
τ̂3 −0.01 2.56 96.7 −0.05 1.06 97.7 0.02 0.47 98.1
τ̂4 −0.12 2.87 97.4 0.05 1.15 97.9 −0.01 0.51 98.6
τ̂5 0.14 3.45 94.1 0.00 1.62 96.0 −0.01 0.62 98.3
LASSO
τ̂1 −0.13 3.20 97.6% −0.03 1.49 96.0% −0.00 0.67 96.0%
τ̂2 0.04 2.28 97.5 −0.07 1.03 97.9 −0.02 0.59 98.9
τ̂3 −0.13 2.35 96.6 −0.02 1.00 97.9 0.04 0.49 97.5
τ̂4 −0.00 2.54 96.8 0.04 1.17 96.8 0.03 0.64 97.2
τ̂5 0.11 3.62 96.2 0.05 1.81 95.0 0.02 0.70 95.3

Reduction in standard errors compared with fixed F of the same
evaluation size is more than 50% in some cases
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Simulation Results: Size and Power of Tests

n = 100 n = 500 n = 2500
rejection median rejection median rejection median

rate p-value rate p-value rate p-value
Causal Forest
Homogeneity 1.4% 0.79 4.6% 0.71 51.4% 0.04
Rank-consistency 1.4% 0.70 0.8% 0.85 0.0% 0.98
LASSO
Homogeneity 0.6% 0.88 1.8% 0.85 9.0% 0.66
Rank-consistency 1.0% 0.72 0.6% 0.77 0.2% 0.89

Heterogeneous but rank-consistent effects
More conservative and lower power than fixed case
When sample size is large, cross-fitting yields higher power
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Empirical Application

National Supported Work Demonstration Program (LaLonde 1986)
Temporary employment program to help disadvantaged workers by
giving them a guaranteed job for 9 to 18 months

Data
sample size: n1 = 297 and n0 = 425
outcome: annualized earnings in 1978 (36 months after the program)
7 pre-treatment covariates: demographics and prior earnings

Setup
ML algorithms: Causal Forest, BART, and LASSO
Sample-splitting: 2/3 of the data as training data
Cross-fitting: 3 folds
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GATES Estimates (in 1,000 US Dollars)

τ̂1 τ̂2 τ̂3 τ̂4 τ̂5
Sample-splitting

BART 2.90 −0.73 −0.02 3.25 2.57
[−2.25, 8.06] [−5.05, 3.58] [−3.47, 3.43] [−1.53, 8.03] [−3.82, 8.97]

Causal Forest 3.40 0.13 −0.85 −1.91 7.21
[−1.29, 3.40] [−5.37, 5.63] [−5.22, 3.52] [−5.16, 1.34] [1.22, 13.19]

LASSO 1.86 2.62 −2.07 1.39 4.17
[−3.59, 7.30] [−1.69, 6.93] [−5.39, 1.26] [−2.95, 5.73] [−2.30, 10.65]

Cross-fitting
BART 0.40 −0.15 −0.40 2.52 2.19

[−3.79, 4.59] [−2.54, 2.23] [−3.37, 2.56] [−0.99, 6.03] [−0.73, 5.11]
Causal Forest −3.72 1.05 5.32 −2.64 4.55

[−6.52,−0.93] [−2.28, 4.37] [2.63, 8.01] [−5.07,−0.22] [1.14, 7.96]
LASSO 0.65 0.45 −2.88 1.32 5.02

[−3.65, 4.94] [−3.28, 4.18] [−5.38,−0.38] [−1.83, 4.48] [−0.14, 10.18]

Greater statistical power with cross-fitting
ML algorithms are not necessarily reliable
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Results of Hypothesis Tests

Causal Forest BART LASSO
stat p-value stat p-value stat p-value

Sample-splitting
Homogeneity 9.78 0.08 2.76 0.74 5.26 0.36
Rank-consistency 3.07 0.32 1.13 0.66 3.14 0.30
Cross-fitting
Homogeneity 30.29 0.00 2.32 0.80 10.79 0.06
Rank-consistency 0.06 0.69 0.04 0.89 0.45 0.71
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Concluding Remarks

Causal machine learning (ML) is rapidly becoming popular
estimation of heterogeneous treatment effects (HTEs)
development of individualized treatment rules (ITRs)

Safe deployment of causal ML requires uncertainty quantification
experimental evaluation of HTEs and ITRs
no modeling assumption
no resampling (computationally efficient)
applicable to any complex causal ML algorithms
good small sample performance

Open source software: evalITR: Evaluating Individualized Treatment
Rules at CRAN https://CRAN.R-project.org/package=evalITR

More information: https://imai.fas.harvard.edu/research/
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