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Motivation

Causal inference is a central goal of scientific research

Randomized experiments are not always possible
 Causal inference in observational studies

Experiments often lack external validity
 Need to generalize experimental results to a target population

Importance of statistical methods to adjust for confounding factors
Distinction between observed and unobserved confounders
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Overview of the Talk

1 Review: Propensity score
propensity score is a covariate balancing score
matching and weighting methods

2 Problem: Propensity score tautology
sensitivity to model misspecification
adhoc specification searches

3 Solution: Covariate balancing propensity score (CBPS)
Estimate propensity score so that covariate balance is optimized

4 Evidence: Reanalysis of two prominent critiques
Improved performance of propensity score weighting and matching

5 Software: R package CBPS

6 Extension: Non-binary treatments
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Propensity Score

Setup:
Ti ∈ {0,1}: binary treatment
Xi : pre-treatment covariates
(Yi (1),Yi (0)): potential outcomes
Yi = Yi (Ti ): observed outcomes

Definition: conditional probability of treatment assignment

π(Xi) = Pr(Ti = 1 | Xi)

Balancing property (without assumption):

Ti ⊥⊥ Xi | π(Xi)
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Rosenbaum and Rubin (1983)

Assumptions:
1 Overlap:

0 < π(Xi ) < 1

2 Unconfoundedness:

{Yi (1),Yi (0)} ⊥⊥ Ti | Xi

Propensity score as a dimension reduction tool:

{Yi(1),Yi(0)} ⊥⊥ Ti | π(Xi)

But, propensity score must be estimated (more on this later)
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Use of Propensity Score for Causal Inference

Matching

Subclassification

Weighting (Horvitz-Thompson):

1
n

n∑
i=1

{
TiYi

π̂(Xi)
− (1− Ti)Yi

1− π̂(Xi)

}
where weights are often normalized

Doubly-robust estimators (Robins et al.):

1
n

n∑
i=1

[{
µ̂(1,Xi) +

Ti(Yi − µ̂(1,Xi))

π̂(Xi)

}
−
{
µ̂(0,Xi) +

(1 − Ti)(Yi − µ̂(0,Xi))

1 − π̂(Xi)

}]

They have become standard tools for applied researchers
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Propensity Score Tautology

Propensity score is unknown
Dimension reduction is purely theoretical: must model Ti given Xi

Diagnostics: covariate balance checking
In practice, adhoc specification searches are conducted
Misspecification is possible especially for non-binary treatments

Theory (Rubin et al.): ellipsoidal covariate distributions
 equal percent bias reduction
Skewed covariates are common in applied settings

Propensity score methods can be sensitive to misspecification
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Kang and Schafer (2007, Statistical Science)

Simulation study: the deteriorating performance of propensity
score weighting methods when the model is misspecified

Setup:
4 covariates X ∗

i : all are i.i.d. standard normal
Outcome model: linear model
Propensity score model: logistic model with linear predictors
Misspecification induced by measurement error:

Xi1 = exp(X∗
i1/2)

Xi2 = X∗
i2/(1 + exp(X∗

1i) + 10)
Xi3 = (X∗

i1X∗
i3/25 + 0.6)3

Xi4 = (X∗
i1 + X∗

i4 + 20)2

Weighting estimators to be evaluated:
1 Horvitz-Thompson
2 Inverse-probability weighting with normalized weights
3 Weighted least squares regression
4 Doubly-robust least squares regression
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Weighting Estimators Do Fine If the Model is Correct
Bias RMSE

Sample size Estimator GLM True GLM True
(1) Both models correct

n = 200

HT 0.33 1.19 12.61 23.93
IPW −0.13 −0.13 3.98 5.03

WLS −0.04 −0.04 2.58 2.58
DR −0.04 −0.04 2.58 2.58

n = 1000

HT 0.01 −0.18 4.92 10.47
IPW 0.01 −0.05 1.75 2.22

WLS 0.01 0.01 1.14 1.14
DR 0.01 0.01 1.14 1.14

(2) Propensity score model correct

n = 200

HT −0.05 −0.14 14.39 24.28
IPW −0.13 −0.18 4.08 4.97

WLS 0.04 0.04 2.51 2.51
DR 0.04 0.04 2.51 2.51

n = 1000

HT −0.02 0.29 4.85 10.62
IPW 0.02 −0.03 1.75 2.27

WLS 0.04 0.04 1.14 1.14
DR 0.04 0.04 1.14 1.14
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Weighting Estimators are Sensitive to Misspecification
Bias RMSE

Sample size Estimator GLM True GLM True
(3) Outcome model correct

n = 200

HT 24.25 −0.18 194.58 23.24
IPW 1.70 −0.26 9.75 4.93

WLS −2.29 0.41 4.03 3.31
DR −0.08 −0.10 2.67 2.58

n = 1000

HT 41.14 −0.23 238.14 10.42
IPW 4.93 −0.02 11.44 2.21

WLS −2.94 0.20 3.29 1.47
DR 0.02 0.01 1.89 1.13

(4) Both models incorrect

n = 200

HT 30.32 −0.38 266.30 23.86
IPW 1.93 −0.09 10.50 5.08

WLS −2.13 0.55 3.87 3.29
DR −7.46 0.37 50.30 3.74

n = 1000

HT 101.47 0.01 2371.18 10.53
IPW 5.16 0.02 12.71 2.25

WLS −2.95 0.37 3.30 1.47
DR −48.66 0.08 1370.91 1.81
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Smith and Todd (2005, J. of Econometrics)

LaLonde (1986; Amer. Econ. Rev.):
Randomized evaluation of a job training program
Replace experimental control group with another non-treated group
Current Population Survey and Panel Study for Income Dynamics
Many evaluation estimators didn’t recover experimental benchmark

Dehejia and Wahba (1999; J. of Amer. Stat. Assoc.):
Apply propensity score matching
Estimates are close to the experimental benchmark

Smith and Todd (2005):
Dehejia & Wahba (DW)’s results are sensitive to model specification
They are also sensitive to the selection of comparison sample
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Propensity Score Matching Fails Miserably

One of the most difficult scenarios identified by Smith and Todd:
LaLonde experimental sample rather than DW sample
Experimental estimate: $886 (s.e. = 488)
PSID sample rather than CPS sample

Evaluation bias:
Conditional probability of being in the experimental sample
Comparison between experimental control group and PSID sample
“True” estimate = 0
Logistic regression for propensity score
One-to-one nearest neighbor matching with replacement

Propensity score model Estimates
Linear −835

(886)
Quadratic −1620

(1003)
Smith and Todd (2005) −1910

(1004)
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Covariate Balancing Propensity Score

Idea: Estimate the propensity score such that covariate balance is
optimized

Covariate balancing condition:

E

{
Ti X̃i

πβ(Xi)
− (1− Ti)X̃i

1− πβ(Xi)

}
= 0

where X̃i = f (Xi) is any vector-valued function

Score condition from maximum likelihood:

E

{
Tiπ
′
β(Xi)

πβ(Xi)
−

(1− Ti)π
′
β(Xi)

1− πβ(Xi)

}
= 0
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Weighting to Balance Covariates

Balancing condition: E
{

Ti Xi
πβ(Xi )

− (1−Ti )Xi
1−πβ(Xi )

}
= 0

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

ATE weighted
Treated units

ATE weighted
Control units
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Generalized Method of Moments (GMM) Framework

Just-identified CBPS: covariate balancing conditions alone
Over-identified CBPS: combine them with score conditions

GMM (Hansen 1982):

β̂GMM = argmin
β∈Θ

ḡβ(T ,X )>Σβ(T ,X )−1ḡβ(T ,X )

where

ḡβ(T ,X ) =
1
N

N∑
i=1

(
score condition

balancing condition

)
︸ ︷︷ ︸

gβ(Ti ,Xi )

“Continuous updating” GMM estimator for Σ
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CBPS Makes Weighting Methods Work Better
Bias RMSE

Estimator logit CBPS1 CBPS2 True logit CBPS1 CBPS2 True
(3) Outcome model correct

n = 200

HT 24.25 1.09 −5.42 −0.18 194.58 5.04 10.71 23.24
IPW 1.70 −1.37 −2.84 −0.26 9.75 3.42 4.74 4.93
WLS −2.29 −2.37 −2.19 0.41 4.03 4.06 3.96 3.31
DR −0.08 −0.10 −0.10 −0.10 2.67 2.58 2.58 2.58

n = 1000

HT 41.14 −2.02 2.08 −0.23 238.14 2.97 6.65 10.42
IPW 4.93 −1.39 −0.82 −0.02 11.44 2.01 2.26 2.21
WLS −2.94 −2.99 −2.95 0.20 3.29 3.37 3.33 1.47
DR 0.02 0.01 0.01 0.01 1.89 1.13 1.13 1.13

(4) Both models incorrect

n = 200

HT 30.32 1.27 −5.31 −0.38 266.30 5.20 10.62 23.86
IPW 1.93 −1.26 −2.77 −0.09 10.50 3.37 4.67 5.08
WLS −2.13 −2.20 −2.04 0.55 3.87 3.91 3.81 3.29
DR −7.46 −2.59 −2.13 0.37 50.30 4.27 3.99 3.74

n = 1000

HT 101.47 −2.05 1.90 0.01 2371.18 3.02 6.75 10.53
IPW 5.16 −1.44 −0.92 0.02 12.71 2.06 2.39 2.25
WLS −2.95 −3.01 −2.98 0.19 3.30 3.40 3.36 1.47
DR −48.66 −3.59 −3.79 0.08 1370.91 4.02 4.25 1.81
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CBPS Sacrifices Likelihood for Better Balance
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Revisiting Smith and Todd (2005)

Evaluation bias: “true” bias = 0
CBPS improves propensity score matching across specifications
and matching methods
However, specification test rejects the null

1-to-1 Nearest Neighbor Optimal 1-to-N Nearest Neighbor
Specification GLM CBPS1 CBPS2 GLM CBPS1 CBPS2
Linear −1209.15 −654.79 −505.15 −1209.15 −654.79 −130.84

(1426.44) (1247.55) (1335.47) (1426.44) (1247.55) (1335.47)
Quadratic −1439.14 −955.30 −216.73 −1234.33 −175.92 −658.61

(1299.05) (1496.27) (1285.28) (1074.88) (943.34) (1041.47)
Smith & Todd −1437.69 −820.89 −640.99 −1229.81 −826.53 −464.06

(1256.84) (1229.63) (1757.09) (1044.15) (1179.73) (1130.73)
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Comparison with the Experimental Benchmark

LaLonde, Dehejia and Wahba, and others did this comparison
Experimental estimate: $866 (s.e. = 488)
LaLonde+PSID pose a challenge: e.g., GenMatch −571 (1108)

1-to-1 Nearest Neighbor Optimal 1-to-N Nearest Neighbor
Specification GLM CBPS1 CBPS2 GLM CBPS1 CBPS2
Linear −304.92 423.30 183.67 −211.07 423.30 138.20

(1437.02) (1295.19) (1240.79) (1201.49) (1110.26) (1161.91)
Quadratic −922.16 239.46 1093.13 −715.54 307.51 185.57

(1382.38) (1284.13) (1567.33) (1145.82) (1158.06) (1247.99)
Smith & Todd −734.49 −269.07 423.76 −439.54 −617.68 690.09

(1424.57) (1711.66) (1404.15) (1259.28) (1438.86) (1288.68)
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Software: R Package CBPS

## upload the package
library("CBPS")
## load the LaLonde data
data(LaLonde)
## Estimate ATT weights via CBPS
fit <- CBPS(treat ~ age + educ + re75 + re74 +

I(re75==0) + I(re74==0),
data = LaLonde, ATT = TRUE)

summary(fit)
## matching via MatchIt
library(MatchIt)
## one to one nearest neighbor with replacement
m.out <- matchit(treat ~ 1, distance = fitted(fit),

method = "nearest", data = LaLonde,
replace = TRUE)

summary(m.out)
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Extensions to Other Causal Inference Settings

Propensity score methods are widely applicable

Thus, CBPS is also widely applicable

Extensions of propensity score to general treatment regimes
Weighting (e.g., Imbens, 2000; Robins et al., 2000)
Subclassification (e.g., Imai & van Dyk, 2004)
Regression (e.g., Hirano & Imbens, 2004)

But, propensity score is mostly applied to binary treatment
All existing methods assume correctly estimated propensity score
No reliable methods to estimate generalized propensity score
Harder to check balance across a non-binary treatment
Many researchers dichotomize the treatment

Estimate the generalized propensity score such that covariate is
balanced across all treatment groups
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Two Motivating Examples

1 Effect of education on political participation
Education is assumed to play a key role in political participation
Ti : 3 education levels (graduated from college, attended college but
not graduated, no college)
Original analysis dichotomization (some college vs. no college)
Propensity score matching
Critics employ different matching methods

2 Effect of advertisements on campaign contributions
Do TV advertisements increase campaign contributions?
Ti : Number of advertisements aired in each zip code
ranges from 0 to 22,379 advertisements
Original analysis dichotomization (over 1000 vs. less than 1000)
Propensity score matching followed by linear regression with an
original treatment variable
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Covariates are Not Balanced for Original Treatment
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Covariates are Not Balanced for Original Treatment
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CBPS for a Multi-valued Treatment

Consider a 3 treatment value case as in our motivating example
Generalized propensity score:

1 π1
β(Xi ) = Pr(Yi = 1 | Xi )

2 π2
β(Xi ) = Pr(Yi = 2 | Xi )

Standard estimation: multinomial logit regression

Sample balance conditions with orthogonalized contrasts:

ḡβ(T ,X ) =
1
N

N∑
i=1

 1{Ti =1}
π1
β(Xi )

− 1{Ti =2}
π2
β(Xi )

1{Ti =1}
π1
β(Xi )

+ 1{Ti =2}
π2
β(Xi )

− 2 1{Ti =0}
1−π1

β(Xi )−π2
β(Xi )

Xi

GMM estimation as before
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CBPS for a Continuous Treatment

Generalized propensity score: f (Ti | Xi)

Standard model: linear regression
The stabilized weights (Robins et al.):

f (Ti)

f (Ti | Xi)

Covariate balancing condition:

E
(

f (T ∗
i )

f (T ∗
i | X ∗

i )
T ∗

i X ∗
i

)
=

∫ {∫
f (T ∗

i )

f (T ∗
i | X ∗

i )
T ∗

i dF (T ∗
i | X ∗

i )

}
X ∗

i dF (X ∗
i )

= E(T ∗
i )E(X ∗

i ) = 0.

where T ∗i and X ∗i are centered versions of Ti and Xi

Again, estimate the generalized propensity score such that
covariate balance is optimized
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Back to the Education Example: CBPS vs. ML

CBPS achieves better covariate balance
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CBPS Avoids Extremely Large Weights
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CBPS Balances Well for a Dichotomized Treatment
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Empirical Results: Graduation Matters, Efficiency Gain
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Onto the Advertisement Example

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Absolute Pearson Correlations

CBPS

ML

Original

Main Variables

Fixed Effects

Kosuke Imai (Princeton) Covariate Balancing Propensity Score Laval/Montreal (October 2014) 32 / 34



Empirical Finding: Some Effect of Advertisement
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Concluding Remarks

Numerous advances in generalizing propensity score methods to
non-binary treatments
Yet, many applied researchers don’t use these methods and
dichotomize non-binary treatments

We offer a simple method to improve the estimation of propensity
score for general treatment regimes
Open-source R package: CBPS: Covariate Balancing Propensity
Score available at CRAN

Ongoing extensions:
1 nonparametric estimation via empirical likelihood
2 generalizing instrumental variables estimates
3 spatial treatments
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