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Motivation

@ Fixed effects models are a primary workhorse for causal inference
in applied panel data analysis

@ Researchers use them to adjust for unobservables:

» “Good instruments are hard to find ..., so we’d like to have other
tools to deal with unobserved confounders. This chapter considers
... strategies that use data with a time or cohort dimension to
control for unobserved but fixed omitted variables”

(Angrist & Pischke, Mostly Harmless Econometrics)

» “fixed effects regression can scarcely be faulted for being the
bearer of bad tidings” (Green et al., Dirty Pool)

@ Fixed effects models are often said to be superior to matching
estimators because the latter can only adjust for observables

@ Question: What are the exact causal assumptions underlying
linear fixed effects regression models?
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Main Results

@ Standard (one-way and two-way) linear fixed effects estimators
are equivalent to particular matching estimators

© Common belief that fixed effects models adjust for unobservables
but matching does not is wrong

© Identify the information used implicitly to estimate counterfactual
outcomes under fixed effects models

© Point out potential sources of bias and inefficiency in fixed effects
estimators

©@ Propose simple ways to improve fixed effects estimators using
weighted linear fixed effects regression

© Within-unit matching, first differencing, propensity score weighting,
difference-in-differences are all weighted linear fixed effects with
different regression weights
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Matching and Regression in Cross-Section Settings
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@ Estimating the Average Treatment Effect via matching
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Matching Representation of Simple Regression
@ Cross-section simple linear regression model:
Yi = a+B8X +e¢

@ Binary treatment: X; € {0,1}
@ Equivalent matching estimator:

N
A 1 —_— —_—
3= 5> (Y- Yi0)
i=1
Yi(1) = { = Z,/ (XeYy ifX=0
’1
' ) Y; if X =0

@ Treated units matched with the average of non-treated units
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Fixed Effects Regression
@ Simple (one-way) fixed effects regression:
Yii = aj+ BXit + €it

@ This estimator is in general inconsistent for the average treatment
effect even if Xj; is exogenous within each unit

@ Instead, it converges to the weighted avearge of ATEs:

g P, SR E(Yal1) = Yi(0)) Pr(Xe = D{T = PrXy = 1)}
Si Pr(Xe = {1 = Pr(X; = 1)}

@ Unit fixed effects = within-unit comparison

@ Estimates of all counterfactual outcomes come from other time
periods within the same unit

@ How is this done under the fixed effects model?
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Mismatches in One-way Fixed Effects Model
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@ T:treated observations

@ C: control observations

@ Circles: Proper matches

) : “Mismatches” — attenuation bias
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Matching Representation of Fixed Effects Regression

Proposition 1

AFE 1 R R
BRE = > (Ve = Yal@) ¢

i=1 t=1
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K = 77.22 Xit'T_1Z(1*Xit/)+(1*)(it)'ﬁz)(it’ .
t=1

i=1 t £t t#t

@ K: average proportion of proper matches across all observations
@ More mismatches = larger adjustment

@ Adjustment is required except very special cases

@ “Fixes” attenuation bias but this adjustment is not sufficient

@ Fixed effects estimator is a special case of matching estimators
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Unadjusted Matching Estimator
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@ Consistent if the treatment is exogenous within each unit

@ Only equal to fixed effects estimator if heterogeneity in either
treatment assignment or treatment effect is non-existent
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Unadjusted Matching as Weighted FE Estimator

Proposition 2
The unadjusted matching estimator

> (VT - Vi)

i=1 t=1

where
YI'I lf )(I'I = 1 Et/ 1(1 Xt/) it! .
P _— L AL AT A
Ylt(‘l) = Zt! 1 lt’ lt’ ifX: =0 and Ylt(o) = E = (1 X ) ' &
Zn 1 Xir t Yif if Xjp =0

is equivalent to the weighted fixed effects model

@M, p") = argmmzz WiV — oi — BXi)

(e.B) =1 =1
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We = 0 i X=o0
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Equal Weights
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Different Weights
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@ Any within-unit matching procedure leads to weighted fixed effects
regression with particular weights

@ Theorem 1 shows how to derive regression weights given a
matching procedure
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First Differencing

@ AYj = BAXj +cir where AYy = Yir — Y1, DXy = Xit — X 11
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@ First-difference = matching = weighted one-way fixed effects
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Adjusting for Time-varying Observed Confounders

@ Confounders Zj; are correlated with treatment and outcome
@ Regression-adjusted matching: Yy — g/(Z,\,) where
9(z2) =E(Yy | Xy = 0,2 = 2)
© Linear regression adjustment with:

arg min Z Z Wir(Yie — aj — BXip — 7 Zy)?

(@.B,8) =1 t=1

» Ex postinterpretation: Y; — 87 Z; = aj+ BXi + €it
© Inverse-propensity score weighting with normalized weights

SR O RIIECLID IR P ID JER Y

where 7(Z;) = Pr(Xiy = 1| Z;) is the propensﬁy score
» within-unit weighting followed by across-units averaging
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Propensity Score Weighting Estimator is Equivalent to

Transformed Weighted FE Estimator

Proposition 3

(&Wvﬂl\w) = argmlnzzvvlt It i_B)(it)2

(@) =1 t=1
where the transformed outcome Y is,
(Z0 (Si X )V [Siawdy 0 Xe=
Yi = { \
PO (1 Xier) ; Vi 1— .
S S ,/)) it Xi =0

and the weights are the same as before

it Xy=1,

T
Wi = ¢ T
S (1=Xy) =
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Mismatches in Two-way FE Model

Yi =
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) : Two kinds of mismatches

» Same treatment status
» Neither same unit nor same time
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Mismatches in Weighted Two-way FE Model

Time periods

Units

@ Some mismatches can be eliminated
@ You can NEVER eliminate them all
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Weighted Two-way FE Estimator

Proposition 4
The adjusted matching estimator
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and mj = | M|, ng = [N|, and a; = [ Ay N7, ')« Xy = Xig} .

is equivalent to the following weighted two-way fixed effects
estimator,

(@M AMT BMTY = argmmzz Wir(Yie — i — e — BXir)?

(,8,7) 121 =1

Imai and Kim (Princeton) Fixed Effects for Causal Inference EGAP at MIT (Nov. 3, 2011) 18/22



Weighted Two-way Fixed Effects Model
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General Difference-in-Differences Estimator is
Equivalent to Weighted Two-Way FE Estimator

@ Multiple time periods, repeated treatments

Treatment Weights
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@ Difference-in-differences = matching = weighted two-way FE
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Concluding Remarks and Practical Suggestions

@ Standard one-way and two-way FE estimators are adjusted
matching estimators

FE models are not a magic bullet solution to endogeneity

Key Question: “Where are the counterfactuals coming from?”
Results can be sensitive to the underlying causal assumptions
Different assumptions lead to different FE regression weights

@ Our results show how to construct FE regression weights under a
broad class of causal assumptions

@ Within-unit matching, first differencing, propensity score weighting
are all equivalent to weighted one-way FE estimators

@ Difference-in-differences estimator is equivalent to the weighted
two-way FE estimator
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Theorem: General Equivalence between Weighted
Fixed Effects and Matching Estimators

General matching estimator

BM N ZI 12{ 1 C/t i=1 Z Clt( ” - Y’[(O))

t=1
where 0 < Cr < o0, 2, SN, Cy > 0,

T Yit if Xip =1
(1) = {Z,T, vil' Xip Yy if Xig = 0
Vi) = { She v"’(1f Xi) Yier - if Xjp = 1
Y0 = { Vi if X; = 0

.

D vi X = ZV&' Xi) =1

t'=1

is equivalent to the weighted one-way fixed effects estimator

ZZW,, and wy' = vICuy i (i,t) € Myy

i'=1t= 0 otherwise.

{ Cr i (i) =(i',1)
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