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Causal Heterogeneity and Interaction Effects

Causal inference revolution in social sciences

Randomized experiments: laboratory, field, and survey experiments
Observational studies: natural experiments, research designs

Many methods for estimating average treatment effect (ATE)

Beyond ATE  Causal heterogeneity
1 Moderation:

How does the effect of a treatment vary across individuals?
Interaction between the treatment variable and pre-treatment covariates

2 Causal interaction:

What combination of treatments is efficacious?
Interaction among multiple treatment variables

3 Individualized treatment regimes:

What treatment combination is optimal for a given individual?
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Factorial Experiments for Causal Interaction

Causal interaction requires multiple treatments
Randomized experiments with a factorial design

Factor = categorical variable with discrete values or “levels”
Example: 22 · 3 · 4 design (Gerber and Green, 2000)

American Political Science Review Vol. 99, No. 2

candidates may want to know about how many visits
or postcards are necessary to increase voter turnout by
one percentage point. In this case, it is not necessary to
know how many voters actually talked to canvassers or
read postcards. On the other hand, political scientists,
who want to assess the relative effectiveness of vari-
ous canvassing methods need this extra information.
Even when personal canvassing seems less effective,
for example, it may only appear ineffective because
voters are more difficult to reach by visits than by
postcards. Hence, the different compliance rates for
the two methods become critical.

THE NEW HAVEN VOTER MOBILIZATION
STUDY

In this section, I replicate and extend Gerber and
Green’s analysis of the voter mobilization study.
Gerber and Green (2000) designed and conducted an
experiment where registered voters in randomly se-
lected households of New Haven were encouraged to
vote in the 1998 general election by means of per-
sonal visits, phone calls, and postcards. They then ex-
amined voting records and analyzed which strategies
had increased voter turnout. In addition to the voting
record of the 1998 election, the data include covari-
ates that describe the following characteristics of each
registered voter: number of registered voters in the
household (one or two), age, party affiliation (regis-
tered Democrats, registered Republicans, or others),
voting record in the last general election (voted, did
not vote, or was not registered for 1996 election), and
ward of residence in New Haven (29 wards).

Inefficient Experimental Design

Table 1 shows the unusually complicated experimen-
tal design of the original study with the substantial
overlap of different treatment assignments. Over 40%
of voters in the sample were assigned more than one
treatment. For example, 122 voters were assigned to re-
ceive three postcards, a phone call, and a personal visit
with the civic duty message. Further variation in the
nature of the treatment was possible because Gerber
and Green used three different appeal messages; civic
duty, neighborhood solidarity, and close election. The
authors note that the neighborhood solidarity message
was not used for phone calls (Gerber and Green 2000,
656). Altogether, this design produced a total of 45 dif-
ferent treatment combinations and their corresponding
potential outcomes.

Such complex experimental design leads to the inef-
ficient estimation of treatment effects unless one makes
arbitrary assumptions. This is unfortunate since the ad-
vantage of experimental methods is to avoid additional
assumptions that are often necessary in observational
studies. For example, Gerber and Green (2000) assume
that the effect of telephone canvassing remains the
same regardless of whether voters have received other
treatments. However, phone calls may not increase the
probability of voting as much for those voters who al-

TABLE 1. The Original Experimental Design
Reported in Gerber and Green (2000)

Mail

None Once Twice 3 times
Phone

Visit
Civic 33 103 126 122
Neighbor/civica 74 144 113 127
Close 110 138 113 134

No visit
Civic 581 443 432 479
Neighbor/civica 0 491 520 542
Close 377 517 534 501

No phone
Visit

Civic 1,011 150 213 227
Neighbor 853 175 201 194
Close 822 194 211 206

No visit
Civic 870 922 825
Neighbor 10,800 764 849 767
Close 722 817 783

Note: The figures represent the number of registered voters in
New Haven for each treatment assignment combination. For
example, 122 voters were assigned to receive three postcards,
a phone call, and a personal visit with the civic duty message.
Treatment assignment groups of interest are underlined. A box
highlights the large control group.
a For phone calls, the civic duty appeal was used instead of
the neighborhood solidarity message (Gerber and Green 2000,
656).

ready have received a personal visit. Furthermore, the
timing of contact differs from one canvassing method
to another and this variation was not randomized; e.g.,
phone calls were made during the three days prior to
the election, whereas personal visits were made over
a period of four weeks. Such systematic differences
in the administration of multiple treatments will yield
incorrect inferences unless properly controlled in the
analysis.

Incorrectly Identified Treatment Assignment
and Control Groups

Gerber and Green (2000) also incorrectly identified
the treatment assignment and control groups used in
their field experiment and, as such, failed to estimate
their causal quantities of interest. For example, when
estimating the marginal effect of phone calls, Gerber
and Green used the treatment assignment group that
includes those who were also assigned other treatments
such as personal visits and postcards (the upper two
rows in Table 1). Their control group included those
voters who were assigned other treatments (all cate-
gories in the bottom two rows in Table 1). In order
to correctly estimate the treatment and ITT effects,
the appropriate control group should consist solely of
the 10,800 voters who were assigned no treatment and
hence received no intervention. Likewise, the mem-
bers of the treatment assignment group for phone calls
should not include those who were assigned any other
treatment.

287

Factorial design is often used for audit studies and conjoint analysis
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Conjoint Analysis

Survey experiments with a factorial design

Respondents evaluate several pairs of randomly selected profiles
defined by multiple factors

Social scientists use it to analyze multidimensional preferences

Example: Immigration preference (Hopkins and Hainmueller 2014)

representative sample of 1,407 American adults
each respondent evaluates 5 pairs of immigrant profiles
gender2, education7, origin10, experience4, plan4, language4,
profession11, application reason3, prior trips5

What combinations of immigrant characteristics do Americans prefer?
High dimension: over 1 million treatment combinations

Methodological challenges:

Many interaction effects  false positives, difficulty of interpretation
Very few applied researchers study interaction
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The Overview of the Talk

1 New causal estimand: Average Marginal Interaction Effect (AMIE)

relative magnitude does not depend on baseline condition
intuitive interpretation even for high dimension
estimation using ANOVA with weighted zero-sum constraints
regularization done directly on AMIEs

2 Comparison with the conventional interaction effect:

lack of invariance to the choice of baseline condition
difficulty of interpretation for higher-order interaction

3 Reanalysis of the conjoint analysis on ethnic voting in Africa
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Factorial Experiments with Two Treatments

Two factorial treatments (e.g., gender and race):

A ∈ A = {a0, a1, . . . , aLA−1}
B ∈ B = {b0, b1, . . . , bLB−1}

Assumption: Full factorial design
1 Randomization of treatment assignment

{Y (a`, bm)}a`∈A,bm∈B ⊥⊥ {A,B}

2 Non-zero probability for all treatment combination

Pr(A = a`,B = bm) > 0 for all a` ∈ A and bm ∈ B

Fractional factorial design not allowed
1 Use a small non-zero assignment probability
2 Focus on a subsample
3 Combine treatments
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Main Causal Estimands in Factorial Experiments

1 Average Combination Effect (ACE):

Average effect of treatment combination (A,B) = (a`, bm) relative to
the baseline condition (A,B) = (a0, b0)

τAB(a`, bm; a0, b0) = E{Y (a`, bm)− Y (a0, b0)}

Effect of being Asian male

2 Average Marginal Effect (AME; Hainmueller et al. 2014; Dasgupta et al.
2015):

Average effect of treatment A = a` relative to the baseline condition
A = a0 averaging over the other treatment B

ψA(a`, a0) =

∫
E{Y (a`,B)− Y (a0,B)}dF (B)

Effect of being male averaging over race
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The New Causal Interaction Effect

Average Marginal Interaction Effect (AMIE):

πAB(a`, bm; a0, b0) = τAB(a`, bm; a0, b0)︸ ︷︷ ︸
ACE of (a`, bm)

− ψA(a`, a0)︸ ︷︷ ︸
AME of a`

−ψB(bm, b0)︸ ︷︷ ︸
AME of bm

Interpretation: additional effect induced by A = a` and B = bm
together beyond the separate effect of A = a` and that of B = bm

Additional effect of being Asian male beyond the sum of separate
effects for being male and being Asian

Decomposition of ACE: τAB = ψA + ψB + πAB

Invariance: the relative magnitude of AMIE does not depend on the
choice of baseline condition

AMIEs depend on the distribution of treatment assignment:
1 specified by one’s experimental design
2 motivated by a target population
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The Conventional Causal Interaction Effect

Average Interaction Effect (AIE):

ξAB(a`, bm; a0, b0) = E{Y (a`, bm)− Y (a0, bm)− Y (a`, b0) + Y (a0, b0)}

Equal to linear regression coefficients

Interactive effect interpretation (similar to AMIE):

τAB(a`, bm; a0, b0)︸ ︷︷ ︸
ACE of (a`, bm)

− E{Y (a`, b0)− Y (a0, b0)}︸ ︷︷ ︸
Effect of A = a` when B = b0

− E{Y (a0, bm)− Y (a0, b0)}︸ ︷︷ ︸
Effect of B = bm when A = a0

Conditional effect interpretation:

E{Y (a`, bm)− Y (a0, bm)} − E{Y (a`, b0)− Y (a0, b0)}
= E{Y (a`, bm)− Y (a`, b0)} − E{Y (a0, bm)− Y (a0, b0)}

difference in effect of being male between Asian and White
difference in effect of being Asian between male and female
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Comparison between AMIE and AIE

AIE is NOT invariant to baseline category:
1 cannot compare regression coefficients
2 zero interaction when a baseline category is involved

ξAB(a`, b0; a0, b0) = ξAB(a0, bm; a0, b0) = 0 for all `,m

3 cannot regularize regression coefficients

AMIE and AIE are closely related:
1 Conditional effect as a function of AMIE

E{Yi (a`, b0)− Yi (a0, b0)} = ψA(a`; a0) + πAB(a`, b0; a0, b0)

2 AIE is a linear function of AMIEs

ξAB(a`, bm; a0, b0) = πAB(a`, bm; a0, b0)−πAB(a`, b0; a0, b0)−πAB(a0, bm; a0, b0)

3 AMIE is also a linear function of AIEs
4 No causal interaction  zero AMIEs, zero AIEs
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Higher-order Causal Interaction

J factorial treatments with Lj levels each: T = (T1, . . . ,TJ)

Assumptions:
1 Full factorial design

Y (t) ⊥⊥ T and Pr(T = t) > 0 for all t

2 Independent treatment assignment

Tj ⊥⊥ T−j for all j

Assumption 2 is not necessary for identification but considerably
simplifies estimation

We are interested in the K -way interaction where K ≤ J

We extend all the results for the 2-way interaction to this general case
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Higher-order Average Marginal Interaction Effect

General definition: the difference between ACE and the sum of all
lower-order AMIEs (first-order AMIE = AME)

Example: 3-way AMIE, π1:3(t1, t2, t3; t01, t02, t03), equals

τ1:3(t1, t2, t3; t01, t02, t03)︸ ︷︷ ︸
ACE

−
{
π1:2(t1, t2; t01, t02) + π2:3(t2, t3; t02, t03) + π1:3(t1, t3; t01, t03)

}︸ ︷︷ ︸
sum of all 2-way AMIEs

−
{
ψ(t1; t01) + ψ(t2; t02) + ψ(t3; t03)

}︸ ︷︷ ︸
sum of AMEs

Properties:
1 K -way ACE = the sum of all K -way and lower-order AMIEs
2 Invariance to the baseline condition
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Difficulty of Higher-order AIEs

Generalize the 2-way ATIE by marginalizing the other treatments T1:2

ξ1:2(t1, t2; t01, t02) =

∫
E
{
Y (t1, t2,T

1:2)− Y (t01, t2,T
1:2)

−Y (t1, t02,T
1:2) + Y (t01, t02,T

1:2)
}
dF (T1:2)

In the literature, the 3-way ATIE is defined as

ξ1:3(t1, t2, t3; t01, t02, t03)

= ξ1:2(t1, t2; t01, t02 | T3 = t3)︸ ︷︷ ︸
2-way AIE when T3 = t3

− ξ1:2(t1, t2; t01, t02 | T3 = t03)︸ ︷︷ ︸
2-way AIE when T3 = t03

Higher-order ATIEs are similarly defined sequentially

This representation is based on the conditional effect interpretation

Problem: conditional effect of conditional effects!
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Nonparametric Estimation of AMIE

1 Difference-in-means estimator
estimate ACE and AMEs using the difference-in-means estimators
estimate AMIE as π̂AB = τ̂AB − ψ̂A − ψ̂B

higher-order AMIEs can be estimated sequentially
uses the empirical treatment assignment distribution

2 ANOVA based estimator
saturated ANOVA include all interactions up to the Jth order
weighted zero-sum constraints: for all factors and levels,

LA−1∑
`=0

Pr(Ai = a`)βA
` = 0,

LA−1∑
`=0

Pr(Ai = a`)βAB
`m = 0,

LB−1∑
m=0

Pr(Bi = bm)βB
m = 0,

LB−1∑
m=0

Pr(Bi = bm)βAB
`m = 0, and so on

AMIEs are differences of coefficients:

E(β̂A
` − β̂A

0 ) = ψA(a`; a0), E(β̂AB
`m − β̂AB

00 ) = πAB(a`, bm; a0, b0)

can use any marginal treatment assignment distribution of choice

Egami and Imai (Princeton) Causal Interaction Macau (June, 2017) 14 / 23



Regularization via GASH-ANOVA

Too many coefficients to be estimated  over fitting, false positives,
difficult interpretation

Need for regularization by collapsing levels and selecting factors

Grouping and Selection using Heredity in ANOVA (Post and Bondell):∑
`,`′

wA
``′ max{φA(`, `′)}+

∑
m,m′

wB
mm′ max{φB(m,m′)} ≤ c︸︷︷︸

cost parameter

where

φA(`, `′) = |βA` − βA`′︸ ︷︷ ︸
AME

|
⋃ 

LB−1⋃
m=0

|βAB`m − βAB`′m︸ ︷︷ ︸
AMIE

|


The adaptive weight takes the following form:

wA
``′ =

[
(LA + 1)

√
LA max{φ̄A(`, `′)}

]−1

where φ̄A(`, `′) is AMEs and AMIEs estimated without regularization

Egami and Imai (Princeton) Causal Interaction Macau (June, 2017) 15 / 23



Conjoint Analysis of Ethnic Voting in Africa

Ethnic voting and accountability: Carlson (2015, World Politics)

Do voters prefer candidates of same ethnicity regardless of their prior
performance? Do ethnicity and performance interact?

Conjoint analysis in Uganda: 547 voters from 32 villages

Each voter evaluates 3 pairs of hypothetical candidates

5 factors: Coethnicity2, Prior record2, Prior office4,
Platform3, Education8

Prior record = No if Prior office = businessman

 combine these two factors into a single factor with 7 levels

Collapse Education into 2 levels: relevant degrees (MA in
business, law, economics, development) and other degrees
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A Statistical Model of Preference Differentials

ANOVA regression with one-way and two-way effects:

Yi (Ti ) = µ+
J∑

j=1

Lj−1∑
`=0

βj
`1{Tij = `}+

∑
j 6=j′

Lj−1∑
`=0

Lj′−1∑
m=0

βjj′

`m1{Tij = `,Tij′ = m}+ εi

with appropriate weighted zero-sum constraints

In conjoint analysis, we observe the sign of preference differentials
Linear probability model of preference differential:

Pr(Yi (T
∗
i ) > Yi (T

?
i ) | T∗i ,T?

i )

= µ∗ +
J∑

j=1

Lj−1∑
`=0

βj
`(1{T ∗ij = `} − 1{T ?

ij = `})

+
∑
j 6=j′

Lj−1∑
`=0

Lj′−1∑
m=0

βjj′

`m(1{T ∗ij = `,T ∗ij′ = m} − 1{T ?
ij = `,T ?

ij′ = m})

where µ∗ = 0.5 if the position of profile does not matter

We apply GASH-ANOVA to this model
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Ranges of Estimated AMEs and AMIEs

Selection
Range prob.

AME
Record 0.122 1.00
Coethnicity 0.053 1.00
Platform 0.023 0.93
Degree 0.000 0.33

AMIE
Coethnicity × Record 0.053 1.00
Record × Platform 0.030 0.92
Platform × Coethnic 0.008 0.64
Coethnicity × Degree 0.000 0.62
Platform × Degree 0.000 0.35
Record × Degree 0.000 0.09

Factor selection probability based on bootstrap
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Close Look at the Estimated AMEs

Selection
Factor AME prob.

Record
Yes/Village
Yes/District
Yes/MP
No/Village
No/District
No/MP

{ No/Businessman

0.122
0.122
0.101
0.047
0.051
0.047
base

〉 0.71
〉 0.77
〉 1.00
〉 0.74
〉 0.74
〉 1.00

Platform{
Jobs
Clinic

{ Education

−0.023
−0.023

base

〉 0.56
〉 0.94

Coethnicity 0.054 1.00
Degree 0.000 0.33
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Effect of Regularization on AMIEs

Yes/Village Yes/District Yes/MP No/Village No/District No/MP No/Business

−0.04 0.00 0.04

Yes/Village Yes/District Yes/MP No/Village No/District No/MP No/Business

Record

−0.05 0.00 0.05

Without Regularization

Yes/Village Yes/District Yes/MP No/Village No/District No/MP No/Business

−0.02 0.00 0.02

Yes/Village Yes/District Yes/MP No/Village No/District No/MP No/Business

Record

−0.015 0.000 0.015

With Regularization

C
oe

th
ni

ci
ty

P
la

tfo
rm
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Decomposition and Conditional Effects

Decomposition of ACE (Coethnicity × Record interaction):

τ(Coethnic, No/Business; Non-coethnic, No/MP)︸ ︷︷ ︸
−2.4

= ψ(Coethnic; Non-coethnic)︸ ︷︷ ︸
5.4

+ψ(No/Business; No/MP)︸ ︷︷ ︸
−4.7

+π(Coethnic, No/Business; Non-coethnic, No/MP)︸ ︷︷ ︸
−3.1

Conditional effects (Platform × Record interaction):

AMIE: π(Education, No/MP}; {Job, No/MP}) = −2.3
Conditional effect of Education relative to Job for No/MP is
approximately zero
AME: ψ(Education; Job) = 2.3
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Concluding Remarks

Interaction effects play an essential role in causal heterogeneity
1 moderation
2 causal interaction

Randomized experiments with a factorial design
1 useful for testing multiple treatments and their interactions
2 social science applications: audit studies, conjoint analysis
3 challenge: estimation and interpretation in high dimension

Average Marginal Interaction Effect (AMIE)
1 invariant to baseline condition
2 straightforward interpretation even for high order interaction
3 enables effect decomposition
4 enables regularization through ANOVA

Designing factorial experiments (work in progress)
1 select factors and levels via our method to reduce dimension
2 use unregularized ANOVA for the main study
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