Experimental Identification of Causal Mechanisms

Kosuke Imai

Princeton University

Joint work with Dustin Tingley and Teppei Yamamoto March 26, 2010

Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

UMBC

1 / 23

Experiments, Statistics, and Causal Mechanisms

- Causal inference is a central goal of most scientific research
- Experiments as gold standard for estimating causal effects
- But, scientists actually care about causal mechanisms
- Knowledge about causal mechanisms can also improve policies
- A major criticism of experimentation:
 it can only determine whether the treatment causes
 changes in the outcome, but not how and why
- Experiments merely provide a **black box** view of causality
- Key Challenge: How can we design and analyze experiments to identify causal mechanisms?

Some Papers

- Imai, Keele, and Yamamoto. "Identification, Inference, and Sensitivity Analysis for Causal Mediation Effects." Statistical Science, in-press.
- Imai, Tingley, and Yamamoto. "Experimental Identification of Causal Mechanisms." Working paper.

available at http://imai.princeton.edu

Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

UMBC

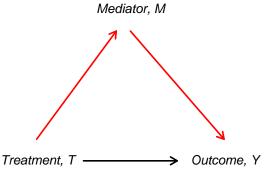
3 / 23

Overview of the Talk

- Show the limitation of a common approach
- Consider alternative experimental designs
- What is a minimum set of assumptions required for identification under each design?
- How much can we learn without the key identification assumptions under each design?
- Identification of causal mechanisms is possible but difficult
- Distinction between design and statistical assumptions
- Roles of creativity and technological developments

Causal Mechanisms as Indirect Effects

- What is a causal mechanism?
- Cochran (1957)'s example: soil fumigants increase farm crops by reducing eel-worms
- Political science examples: resource curse, habitual voting
- Causal mediation analysis



- Quantities of interest: Direct and indirect effects
- Fast growing methodological literature

Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

UMBC

5 / 23

Formal Statistical Framework of Causal Inference

• Binary treatment: $T_i \in \{0, 1\}$

• Mediator: $M_i \in \mathcal{M}$

• Outcome: $Y_i \in \mathcal{Y}$

• Observed covariates: $X_i \in \mathcal{X}$

• Potential mediators: $M_i(t)$ where $M_i = M_i(T_i)$

• Potential outcomes: $Y_i(t, m)$ where $Y_i = Y_i(T_i, M_i(T_i))$

Fundamental problem of causal inference (Holland):
 Only one potential value is observed

Defining and Interpreting Indirect Effects

Total causal effect:

$$\tau_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0))$$

Indirect (causal mediation) effects (Robins and Greenland; Pearl):

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

- Change $M_i(0)$ to $M_i(1)$ while holding the treatment constant at t
- Effect of a change in M_i on Y_i that would be induced by treatment
- Fundamental problem of causal mechanisms:

For each unit i, $Y_i(t, M_i(t))$ is observable but $Y_i(t, M_i(1-t))$ is not even observable

Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

UMBC

7 / 23

Defining and Interpreting Direct Effects

• Direct effects:

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

- Change T_i from 0 to 1 while holding the mediator constant at $M_i(t)$
- Causal effect of T_i on Y_i , holding mediator constant at its potential value that would be realized when $T_i = t$
- Total effect = indirect effect + direct effect:

$$\tau_i = \frac{1}{2} \{ \delta_i(0) + \delta_i(1) + \zeta_i(0) + \zeta_i(1) \}$$

$$= \delta_i + \zeta_i \quad \text{if } \delta_i = \delta_i(0) = \delta_i(1) \text{ and } \zeta_i = \zeta_i(0) = \zeta_i(1)$$

Mechanisms, Manipulations, and Interactions

Mechanisms

• Indirect effects:

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

Counterfactuals about treatment-induced mediator values

Manipulations

Controlled direct effects:

$$\xi_i(t, m, m') \equiv Y_i(t, m) - Y_i(t, m')$$

• Causal effect of directly manipulating the mediator under $T_i = t$

Interactions

• Interaction effects:

$$\xi(1, m, m') - \xi(0, m, m') \neq 0$$

Doesn't imply the existence of a mechanism

Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

UMBC

9 / 23

Single Experiment Design

Assumption Satisfied

Randomization of treatment

$$\{Y_i(t,m), M_i(t')\} \perp T_i \mid X_i$$

- 1) Randomize treatment
- 2) Measure mediator
- 3) Measure outcome

Key Identifying Assumption

Sequential Ignorability:

$$Y_i(t,m) \perp M_i \mid T_i, X_i$$

- Selection on observables
- Violated if there are unobservables that affect mediator and outcome

Identification under the Single Experiment Design

- Sequential ignorability yields nonparametric identification
- Under the single experiment design and sequential ignorability,

$$\bar{\delta}(t) \ = \ \int \int \mathbb{E}(Y_i \mid M_i, T_i = t, X_i) \left\{ dP(M_i \mid T_i = 1, X_i) - dP(M_i \mid T_i = 0, X_i) \right\} dP(X_i)$$

- Linear structural equation modeling (a.k.a. Baron-Kenny)
- Sequential ignorability is an untestable assumption
- Sensitivity analysis: How large a departure from sequential ignorability must occur for the conclusions to no longer hold?

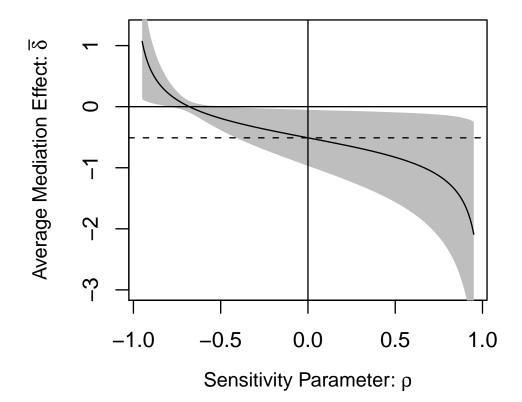
Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

UMBC

11 / 23

Sensitivity Analysis



Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

UMBC

Identification Power of the Single Experiment Design

- How much can we learn without sequential ignorability?
- Sharp bounds on indirect effects (Sjölander):

$$\max \left\{ \begin{array}{l} -P_{001} - P_{011} \\ -P_{011} - P_{010} - P_{110} \\ -P_{000} - P_{001} - P_{100} \end{array} \right\} \leq \bar{\delta}(1) \leq \min \left\{ \begin{array}{l} P_{101} + P_{111} \\ P_{010} + P_{110} + P_{111} \\ P_{000} + P_{100} + P_{101} \end{array} \right\}$$

$$\max \left\{ \begin{array}{l} -P_{100} - P_{110} \\ -P_{011} - P_{111} - P_{110} \\ -P_{001} - P_{101} - P_{100} \end{array} \right\} \leq \bar{\delta}(0) \leq \min \left\{ \begin{array}{l} P_{000} + P_{010} \\ P_{011} + P_{111} + P_{010} \\ P_{000} + P_{001} + P_{101} \end{array} \right\}$$

where
$$P_{ymt} = Pr(Y_i = y, M_i = m \mid T_i = t)$$

- The sign is not identified
- Can we design experiments to better identify causal mechanisms?

Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

UMBC

13 / 23

The Parallel Design

- Suppose we can directly manipulate the mediator without directly affecting the outcome
- No manipulation effect assumption: The manipulation has no direct effect on outcome other than through the mediator value
- Running two experiments in parallel:

Randomly split sample

Experiment 1

- 1) Randomize treatment
- 2) Measure mediator
- 3) Measure outcome

Experiment 2

- 1) Randomize treatment
- 2) Randomize mediator
- 3) Measure outcome

Identification under the Parallel Design

Difference between manipulation and mechanism

Prop.	$M_i(1)$	$M_i(0)$	$Y_i(t,1)$	$Y_i(t,0)$	$\delta_i(t)$
0.3	1	0	0	1	-1
0.3	0	0	1	0	0
0.1	0	1	0	1	1
0.3	1	1	1	0	0

•
$$\mathbb{E}(M_i(1) - M_i(0)) = \mathbb{E}(Y_i(t, 1) - Y_i(t, 0)) = 0.2$$
, but $\bar{\delta}(t) = -0.2$

- Is the randomization of mediator sufficient? No
- The no interaction assumption (Robins) yields point identification

$$Y_i(1,m) - Y_i(1,m') = Y_i(0,m) - Y_i(0,m')$$

- Must hold at the unit level
- Not directly testable but indirect tests are possible

Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

UMBC

15 / 23

Sharp Bounds under the Parallel Design

- Again, a special case of binary mediator and outcome
- Use of linear programming (Balke and Pearl)
- Objective function:

$$\mathbb{E}\{Y_i(1,M_i(0))\} = \sum_{y=0}^1 \sum_{m=0}^1 (\pi_{1ym1} + \pi_{y1m1})$$

where
$$\pi_{y_1y_0m_1m_0} = \Pr(Y_i(1,1) = y_1, Y_i(1,0) = y_0, M_i(1) = m_1, M_i(0) = m_0)$$

- Linear constraints implied by $Pr(Y_i = y, M_i = m \mid T_i = t, D_i = 0)$, $Pr(Y_i = y \mid M_i = m, T_i = t, D_i = 1)$, and the summation constraint
- Sharp bounds (expressions given in the paper) are more informative than those under the single experiment design
- Can sometimes identify the sign of average indirect effects

The Crossover Design

Experiment 1

- 1) Randomize treatment
- 2) Measure mediator
- 3) Measure outcome

Same sample

Experiment 2

- 1) Fix treatment opposite Experiment 1
- 2) Manipulate mediator to level observed in Experiment 1
- 3) Measure outcome

Kosuke Imai (Princeton)

Basic Idea

- Want to observe $Y_i(1 t, M_i(t))$
- Figure out $M_i(t)$ and then switch T_i while holding the mediator at this value
- Subtract direct effect from total effect

Key Identifying Assumptions

- No Manipulation Effect
- No Carryover Effect: First experiment doesn't affect second experiment
- Not testable, longer "wash-out" period

Experiments and Causal Mechanisms

UMBC

17 / 23

The Encouragement Design

- Direct manipulation of mediator is often difficult
- Even if possible, the violation of no manipulation effect can occur
- Need for indirect and subtle manipulation
- Randomly encourage units to take a certain value of the mediator
- Instrumental variables assumptions (Angrist et al.):
 - Encouragement does not discourage anyone
 - 2 Encouragement does not directly affects the outcome
- Not as informative as the parallel design
- Sharp bounds on the average "complier" indirect effects can be informative

The Crossover Encouragement Design

Experiment 1

- 1) Randomize treatment
- 2) Measure mediator
- 3) Measure outcome (optional)

Same sample

Experiment 2

- 1) Fix treatment opposite Experiment 1
- 2) Randomly encourage mediator to level observed in Experiment 1
- 3) Measure outcome

Kosuke Imai (Princeton)

Key Identifying Assumptions

- Encouragement doesn't discourage anyone
- No Manipulation Effect
- No Carryover Effect

Identification Analysis

- Identify indirect effects for "compliers"
- No carryover effect assumption is indirectly testable (unlike the crossover design)

Experiments and Causal Mechanisms

UMBC

19 / 23

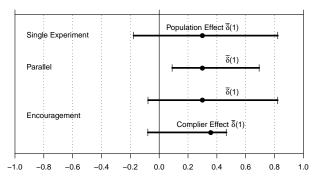
Comparing Alternative Designs

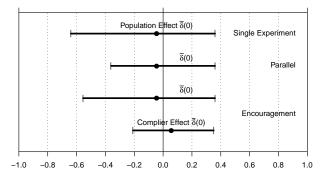
- No manipulation
 - Single experiment: sequential ignorability
- Direct manipulation
 - Parallel: no manipulation effect, no interaction
 - Crossover: no manipulation effect, no carryover effect
- Indirect manipulation
 - Encouragement: no manipulation effect, monotonicity, no interaction (?)
 - Crossover encouragement: no manipulation effect, monotonicity, no carryover effect

An Example from Social Science

- Brader et al.: media framing experiment
 - Single experiment design with statistical mediation analysis
 - Treatment: Ethnicity (Latino vs. Caucasian) of an immigrant
 - Mediator: anxiety
 - Outcome: immigration
- Emotion: difficult to directly manipulate but indirect manipulation may be possible
- An artificial data consistent with the observed data

Average Indirect Effects





Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

UMBC

21 / 23

An Example from Behavioral Neuroscience

Question: What mechanism links low offers in an ultimatum game with "irrational" rejections?

 A brain region known to be related to fairness becomes more active when unfair offer received (single experiment design)

Design solution: manipulate mechanisms with TMS

 Knoch et al. use TMS to manipulate — turn off — one of these regions, and then observes choices (parallel design)

Concluding Remarks

- Identification of causal mechanisms is difficult but is possible
- Additional assumptions are required
- Five strategies:
 - Single experiment design
 - Parallel design
 - Crossover design
 - Encouragement design
 - Crossover encouragement design
- Statistical assumptions: sequential ignorability, no interaction
- Design assumptions: no manipulation, no carryover effect
- Experimenters' creativity and technological development to improve the validity of these design assumptions

Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

UMBC

23 / 23