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Effects on Primary Outcomes
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Part I. Introduction to Mediation
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Causal Mechanism as Direct and Indirect Effects

Directed Acyclic Graph (DAG; Pearl, 2000)
T ∈ T = {0, 1}: treatment
M ∈ M: mediator (mechanism variable)
Y ∈ Y: observed outcome

Direct effect: Effect of T on Y while holding M constant
Indirect effect: Effect of T on Y through M

DAG = Nonparametric Structural Equation Model (NPSEM)

Y = fY (M,T , ϵ)

M = fM(T , η)

where ϵ and η are i.i.d. and are usually omitted from DAG
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Controlled Direct Effect (CDE)

Y (t,m) ∈ Y: potential outcome when T = t and M = m

Definition

Individual: CDEi (m) := Yi (1,m)− Yi (0,m)

Average: CDE(m) := E[Y (1,m)− Y (0,m)]

for a given mediator value m ∈ M

Interpretation
direct effect of treatment while holding the mediator constant at m
effect of joint intervention on T and M

If M fully captures treatment effect, CDEs will be zero for all m
Potential interaction effects:

CDEi (m) ̸= CDEi (m
′) for some i and m ̸= m′

5 / 47



Natural Indirect Effect (NIE)

Definition (Robins and Greenland, 1992; Pearl, 2001)

Individual: NIEi (t) := Yi (t,Mi (1))− Yi (t,Mi (0))

Average: NIE(t) := E[Y (t,M(1))− Y (t,M(0))]

Interpretation
effect of change in M on Y induced by T
change M from M(0) to M(1) while holding T at t = 0 or t = 1
zero treatment effect on M implies zero NIE

Represents the causal effect of T on Y through M

Complete mediation ⇝ NIEi = TEi := Yi (1,Mi (1))− Yi (0,Mi (0))
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Treatment Effect Decomposition

Natural direct effect (NDE):

Indiviual: NDEi (t) := Yi (1,Mi (t))− Yi (0,Mi (t))

Average: NDE(t) := E[Y (1,M(t))− Y (0,M(t))]

change T from 0 to 1 while holding M constant at M(t)
causal effect of T on Y , holding M constant at its potential value that
would be realized when T = t

Represents all mechanisms other than through M
Complete mediation ⇝ NDEi (t) = 0
No mediation ⇝ NDEi = TEi

Effect decomposition:

Yi (1,Mi (1))− Yi (0,Mi (0))︸ ︷︷ ︸
=total effect (TEi )

= NIEi (t) + NDEi (1 − t)

=
1
2

1∑
t=0

{NIEi (t) + NDEi (t)}
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Gender Bias and Educational Attainment (Chen et al. 2019)

Data on Taiwanese families
Y : educational attainment of the oldest child who is female
T : gender of the second oldest child
M: number of siblings

Gender bias
Direct effect: having a brother takes away resources from a female child
Indirect effect: having a brother leads to a smaller number of siblings
and hence more resources
Direct and indirect effects may have opposite signs

Causal effects of interest
CDE: effect of having a brother while keeping sibling size constant at a
fixed value, e.g., 2
NDE: effect of having a brother while keeping sibling size constant at a
value that would result, e.g., if the second child were male
NIE: effect of having a brother through sibling size
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Take-aways I

Causal mechanism
how and why (not just whether) treatment affects outcome
understanding of causal structure (DAG = NPSEM)

Causal quantities of interest
Controlled direct effect (CDE)
Natural direct and indirect effects (NDE, NIE)
Effect decomposition: TE = NDE + NIE
No similar decomposition for CDE
Complete mediation: CDE = NDE = 0 and NIE = TE
No mediation: NIE = 0 and NDE = TE
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Part II. Mediation Analysis Under
Pretreatment Confounding
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Linear Structural Equation Model (LSEM)

Let’s build some intuition with LSEM
Homogeneous effects without interaction:

Yi = αY + βYTi + γYMi + ϵi

Mi = αM + βMTi + ηi

CDE(m) = NDE(t) = βY for any m and t
NIE(t) = βM × γY for any t
CDE and NDE are identical

Homogeneous effects with interaction:

Yi = αY + βYTi + γYMi + δYTiMi + ϵi

CDE(m) = βY +mδY
NDE(t) = βY + δY (αM + tβM)
NIE(t) = βM × γY + tβM × δY
CDE is different from NDE
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LSEM with Heterogeneous Effects and Interaction

Model
Yi = αY + β

(i)
Y Ti + γ

(i)
Y Mi + δ

(i)
Y TiMi + ϵi

Mi = αM + β
(i)
M Ti + ηi

CDE(m) = β̄Y +mδ̄Y where β̄Y = E[β(i)
Y ] and δ̄Y = E[δ(i)Y ]

NDE(t) = β̄Y + αM × δ̄Y + E[δ(i)Y (tβ
(i)
M + ηi )]

NIE(t) = E[β(i)
M × (γ

(i)
Y + tδ

(i)
Y )]

Heterogeneous effects may be correlated with one another
For example, E[β(i)

M × γ
(i)
Y ] ̸= β̄M × γ̄Y

Possible to have β̄M , γ̄Y > 0 but E[β(i)
M × γ

(i)
Y ] < 0 or vice versa

β̄M , γ̄Y , δ̄Y , etc. are identifiable under exogeneity

But, E[β(i)
M × γ

(i)
Y ], E[β(i)

M × δ
(i)
Y ], etc. are unidentifiable

This is essentially a problem of unobserved pre-treatment confounding
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Identification of CDE with Pre-treatment Confounding

Assumptions:
1 Unconfoundedness

{Yi (t,m),Mi (t)}t,m ⊥⊥ Ti | Xi = x
{Yi (t,m)}m ⊥⊥ Mi | Ti = t,Xi = x

2 Overlap

P(Ti = t | Xi = x) > 0
P(Mi = m | Ti = t,Xi = x) > 0

Identification:

CDE(m)

=
∑
X

(E[Y | T = 1,M = m,X ]− E[Y | T = 0,M = m,X ])P(X )
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Identification of NDE/NIE with Pretreatment Confounding
Replace the following assumption

{Yi (t,m)}m ⊥⊥ Mi︸︷︷︸
=Mi (t)

| Ti = t,Xi = x

with the cross-world independence

{Yi (t
′,m)}t′,m ⊥⊥ Mi (t) | Ti = t,Xi = x

Additional conditional independence between Yi (t
′,m) and Mi (t)

Identification (Imai et al. 2010)

NDE(t) =
∑
M,X

(E[Y | M,T = 1,X ]− E[Y | M,T = 0,X ])

× P(M | T = t,X )P(X )

NIE(t) =
∑
M,X

E[Y | M,T = t,X ]

× {P(M | T = 1,X )− P(M | T = 0,X )}P(X )
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Experimental Identification (Imai et al. 2013)

Parallel design
1 Randomize T and observe M and Y
2 Randomize T and M and observe Y

We can identify P(M(t)), P(Y (t,M(t)), and P(Y (t,m))

CDE is identified
NDE/NIE is still not identifiable:

randomization cannot break correlation between Y (t ′,m) and M(t)
partial identification: sharp bounds contain zero

Crossover design
1 Randomize T and observe M and Y
2 On the same sample, change T to the opposite condition while holding

M at the same value and observe Y

Y (t,M(t)), M(t), and Y (1 − t,M(t)) are observable
Additional assumption: no carryover effects
NDE/NIE is identifiable
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No Interaction Assumption

No individual-level interaction

Yi (1,m)− Yi (0,m) = Yi (1,m′)− Yi (0,m′)

NDEi (t) = CDEi (m) = CDEi

NDE(t) = CDE(m) = CDE
NIE(t) = ATE − NDE

Testable implication:

E[Yi (1,m)− Yi (0,m) | Xi = x ] = E[Yi (1,m′)− Yi (0,m′) | Xi = x ]

for all x
NDE/NIE is identifiable so long as CDE can be identified
Experimental identification, and identification with pretreatment and
posttreatment confounding are all possible
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Estimation of Natural Direct and Indirect Effects

Recall the identification formula (NIE)

NIE(t) =
∑
M,X

E[Y | M,T = t,X ]

× {P(M | T = 1,X )− P(M | T = 0,X )}P(X )

1 predict M given each treatment value: {Mi (1), Mi (0)}
2 predict Y by first setting Ti = t and Mi = Mi (0), and then Ti = t and

Mi = Mi (1): {Yi (t,Mi (0)),Yi (t,Mi (1))}
3 compute the average difference between two predicted outcomes

Estimation of NDE is similar

NDE(t) =
∑
M,X

(E[Y | M,T = 1,X ]− E[Y | M,T = 0,X ])

× P(M | T = t,X )P(X )

One can also do: NDE(t) = ATE − NIE(1 − t)
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Weighting Methods for NDE and NIE

Three weighting formulae:

E[Y (t,M(t ′))] = E
[

1{T = t ′}
Pr(T = t ′ | X )︸ ︷︷ ︸

weighting to get P(M(t′)|X )

× E[Y | M,T = t,X ]

]

= E
[

1{T = t}
Pr(T = t | Xi )︸ ︷︷ ︸
treatment weighting

× P(M | T = t ′,X )

P(M | Ti = t,Xi )︸ ︷︷ ︸
mediator weighting

×Y

]

= E
[

1{T = t}
Pr(T = t | M,X )

× Pr(T = t ′ | M,X )

Pr(T = t ′ | X )
× Y

]
The third expression follows from Bayes rule
Useful when the mediator is high-dimensional

Multiply-robust semiparametric estimator (Tchetgen Tchetgen and Shpitser,

2012); Double machine learning (Farbmacher et al. 2022)
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Sensitivity Analysis

Examine the robustness of empirical findings to the violation of
untestable assumptions
How large a departure from the key identification assumption must
occur for the conclusions to no longer hold?
Potential existence of unobserved pretreatment confounding (T is
assumed to be unconfounded)

{Yi (t
′,m)}t′,m ⊥̸⊥ Mi (t) | Ti = t,Xi = x

Recall LSEM (or more generally, additive semiparametric model)

Yi = αY + βYTi + γYMi + λϵUi + ϵ̃i︸ ︷︷ ︸
=ϵi

Mi = αM + βMTi + ληUi + η̃i︸ ︷︷ ︸
=ηi

How much does Ui have to matter for the results to go away?
19 / 47



Sensitivity Parameters

R2 parameterization
1 Proportion of previously unexplained variance explained by Ui

R2∗
M ≡ V(ληUi )

V(ηi )
and R2∗

Y ≡ V(λϵUi )

V(ϵi )

2 Proportion of original variance explained by Ui

R̃2
M ≡ V(ληUi )

V(Mi )
and R̃2

Y ≡ V(λϵUi )

V(Yi )

We also need to specify the direction of effects:

sgn(ληλϵ) =

{
1 if same direction
−1 if opposite directions
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Gender Bias Application: Standard Mediation Analysis

The original analysis fits LSEM with interaction

Yi = αY + βYTi + γYMi + δYTiMi + ξ⊤YXi + ϵi

Mi = αM + βMTi + ξ⊤MXi + ηi

Yi : university admission
Ti : the second child is male
Mi : sibling size is greater than two

Estimates:
ÂTE 0.0020 (0.0013)
̂CDE(M) −0.0010 (0.0014)

N̂DE(1) −0.0001 (0.0014)

N̂IE(0) 0.0022 (0.0005)
Also, fits a random coefficient model to address heterogeneity
Sensitivity analysis based on a semiparametric random coefficient
model (Imai and Yamamoto, 2013)
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Take-aways II

Linear structural equation model
two key assumptions beyond exogeneity:

1 homogeneous effects
2 no interaction

CDE = NDE under those assumptions
Relaxing these assumptions lead to different interpretations and
identification issues

Nonparametric identification analysis under pretreatment confounding
CDE is identifiable under standard exogeneity
NDE/NIE requires cross-world independence
alternatively, CDE = NDE if we assume no individual-level interaction

Difficulty of identification
even when M is randomized, NIE/NDE are unidentifiable
sensitivity analysis plays an important role for assessing robustness
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Part III. Coping with Identification
Difficulties
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Instrumenting the Mediator

Instrument: Zi

Mediator: Mi (t, z)

Exclusion restriction

Yi (t,m, z) = Yi (t,m)

NPSEM:
Y = fY (M,T , ϵ)

M = fM(T ,Z , η)
where ϵ̸⊥⊥η

If M and Z are continuous, we can use the control function approach
(Imbens and Newey, 2009)

1 Independence: Z⊥⊥(ϵ, η)
2 Monotonicity: η is a continuous scalar variable with its CDF and

fM(·, ·, η) being strictly monotonic in η

Then, (M,T )⊥⊥ϵ | C where C = FM|T ,Z (T ,Z ) = Fη(η)
Recall the control function approach to 2SLS
Regress Y on M,T and the first stage residual η̂

Extension: an additional instrument for T (Florich and Huber, 2017)
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Gender Bias Application: IV Analysis

Instrument Z : twinning at the second birth

Mi = αM + βMTi + ζMZi + λMTiZi + ξ⊤MXi + ηi

Assumptions:
exogenous instrument: twinning is random conditional on X
exclusion restriction: twinning affects Y only through M

Findings:

Standard analysis IV analysis
ÂTE 0.0020 (0.0013) 0.0021 (0.0013)
̂CDE(M) −0.0010 (0.0014) −0.0092 (0.0061)

N̂DE(1) −0.0001 (0.0014) −0.0203 (0.0106)
NIE(0) 0.0022 (0.0005) 0.0224 (0.0105)
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Complete Mediation Analysis (Kwon and Roth 2024)

Complete mediation: Yi (t,m) = Yi (m)

Assumption: No unobserved confounding
between T and M and between T and Y

Possible unobserved confounding between M
and Y

M

T Y

X

Under monotonicity Mi (1) ≥ Mi (0) (in the binary mediator case), we
can use the following test of instrumental validity

P(Y ,M = 0 | T = 0,X ) ≥ P(Y ,M = 0 | T = 1,X )

P(Y ,M = 1 | T = 1,X ) ≥ P(Y ,M = 1 | T = 0,X )

Randomized experiment: test of complete mediation
Observational study: unobserved confounding between T and Y can
also lead to the rejection of the null hypothesis
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Implicit Mediation

What if we want to avoid the untestable assumptions at all costs?
What can we infer from ATEM and ATEY that are identifiable without
such assumptions?

Bullock and Green (2021)

28 / 47



Identification Analysis of Implicit Mediation

Questions:
1 Does ATEM = 0 imply NIE = 0 and/or NDE ̸= 0?
2 Does ATEM > 0 and ATEY > 0 imply NIE > 0?

No! Recall even the no-assumption bounds from the parallel
experiment design always contain zero
The decomposition under a binary mediator:

NIE(t) =E[Yi (t, 1)− Yi (t, 0) | M(1) = 1,M(0) = 0]︸ ︷︷ ︸
ATE of M on Y for compliers

·p10

− E[Yi (t, 1)− Yi (t, 0) | M(1) = 0,M(0) = 1]︸ ︷︷ ︸
ATE of M on Y for defiers

·p01

where pm1m0 = Pr(M(1) = m1,M(0) = m0)
Cross-world assumption or homogeneity assumption leads to the usual
product estimator

NIE(t) = E[Yi (t, 1)− Yi (t, 0)]︸ ︷︷ ︸
=ATE of M on Y

× (p10 − p01)︸ ︷︷ ︸
=ATEM
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Identification under Monotonicity
(Blackwell et al. 2024; Kwon and Roth 2024)

Monotonicity assumption (no defier) yields:

NIE(t) = E[Yi (t, 1)− Yi (t, 0) | M(1) = 1,M(0) = 0] · p10

Sharp bounds

max{−ATEM ,−q1−t,t|t} ≤ NIE(t) ≤ min{ATEM , qtt|t}

where qym|t = Pr(Y = y ,M = m | T = t)

Two fundamental difficulties remain:
1 effect heterogeneity
2 endogeneity of mediator

Even under an additional assumption of E[Y (t, 1)− Y (t, 0)] > 0, the
sharp bounds still contain zero
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Take-aways III

Instrumental variable approach
addressing the endogeneity problem
the instrument must be exogeneous
exclusion restriction needs to be satisfied
nonparametric estimation is possible

Complete mediation
hypothesis testing approach
no need to assume the exogeneity of mediator
no unobserved confounding between T and Y (satisfied in RCT)

Implicit mediation
an attempt to sidestep assumptions
not informative even about the signs of NIE/NDE
monotonicity is not sufficient
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Part IV. Mediation Analysis under
Posttreatment Confounding
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Identification of CDE with Posttreatment Confounding
Replace the following assumption

{Yi (t,m)}m ⊥⊥ Mi | Ti = t,Xi = x ,

with

{Yi (t,m)}m ⊥⊥ Mi | Vi = v ,Ti = t,Xi = x

Post-treatment bias: cannot simply control for V

CDE(m) ̸=
∑
X ,V

(E[Y | T = 1,M = m,X ,V ]

− E[Y | T = 0,M = m,X ,V ])P(X ,V )

Identification: model V given T and X

CDE(m) =
∑
X ,V

{E[Y | T = 1,M = m,X ,V ]P(V | T = 1,X )

−E[Y | T = 0,M = m,X ,V ]P(V | T = 0,X )}P(X )
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Estimation of Controlled Direct Effects

1 Directly use the identification formula

ξ̄(m) =
∑
X ,V

{E[Y | T = 1,M = m,X ,V ]P(V | T = 1,X )

−E(Y | T = 0,M = m,X ,V )P(V | T = 0,X )}P(X )

regression of Y on T ,M,X ,V
model V given T and X ⇝ difficult if V is high-dimensional

2 Marginal structural models (Robins et al. 2000)

E[Y (t,m)] = E

[
1{T = t,M = m}
Pr(T = t | X )︸ ︷︷ ︸
IPW for treatment

· 1
Pr(M = m | T = t,X ,V )︸ ︷︷ ︸
IPW for mediator given treatment

×Y

]

no need to model V
covariate balancing methods are also available (Imai and Ratkovic, 2015)
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Identification of NDE/NIE with Posttreatment Confounding

Identification is impossible with observed posttreatment confounding
Consider the following NPSEM

Y = fY (M,V ,T , ϵ)

M = fM(V ,T , η)

V = fV (T , ξ)

Cross-world independence cannot hold

V (1)︸ ︷︷ ︸
=fV (1,ξ)

⊥̸⊥ V (0)︸ ︷︷ ︸
=fV (0,ξ)

=⇒ Y (t ′,m,V (t ′), ϵ) ⊥̸⊥ M(t,V (t), η)

Conditioning on T and V does not solve this problem
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Multiple Causally Related Mediators

Same as the posttreatment confounding setting
Path specific effects

1 T → Y
2 T → M1 → Y
3 T → M2 → Y
4 T → M1 → M2 → Y

Combined effect:

T → M1 ⇝ Y

= (T → M1 → Y ) + (T → M1 → M2 → Y )

Generalized cross-world independence assumptions:
1 {M1i (t),M2i (t,m1),Yi (t,m1,m2)}t,m1,m2⊥⊥Ti | Xi = x
2 {M2i (t

′,m1),Yi (t
′,m1,m2)}t′,m1,m2⊥⊥M1i (t) | Ti = t,Xi = x

3 {Yi (t
′,m1,m2)}t′,m2⊥⊥M2i (t,m1) | M1i = m1,Ti = t,Xi = x

Identifiable decomposition:

ATE = (T → Y ) + (T → M2 → Y ) + (T → M1 ⇝ Y )
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Interventional Direct and Indirect Effects (IDE and IIE)

PM(t): interventional distribution that independently generates M(t)
Definition (Geneletti, 2007; Lok, 2016)

Individual:

{
IIEi (t) = Yi (t,PM(1))− Yi (t,PM(0))

IDEi (t) = Yi (1,PM(t))− Yi (0,PM(t))

Average:

{
IIE(t) = E[Y (t,PM(1))− Y (t,PM(0))]

IDE(t) = E[Y (t,PM(1))− Y (t,PM(0))]

Interpretation
similar to NIE and NDE
IDE is a function of CDE:

IDEi (t) =
∑
m

CDEi (m)× P(M(t) = m)

no mediation: zero treatment effect on M implies zero IIE
Effect decomposition

Yi (1,PM(1))− Yi (0,PM(0))︸ ︷︷ ︸
Interventional Total Effect (ITE) ̸= TE

= IIEi (t) + IDEi (1 − t)
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Identification of IDE and IIE

Once CDE is identified, we can identify IDE:

IDE(t) =
∑
m

CDE(m)P(M(t) = m)

IIE is also identifiable:

IIE(t) =
∑
m

E[Y (t,m)] {P(M(1) = m)− P(M(0) = m)}

Effect decomposition

E[Y (1,PM(1))− Y (0,PM(0))]︸ ︷︷ ︸
̸=E[Y (1,M(1))−Y (0,M(0))]

= IDE(t) + IIE(1 − t)

Complete mediation: IDE = 0
Identification is possible with observed pretreatment and
posttreatment confounding
Experimental identification via parallel design is also possible
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Take-aways IV

Posttreatment confounding
CDE can be identified under exogeneity
estimation of CDE requires marginalizing posttreatment confounders
NIE/NDE are not identifiable under exogeneity
Different decomposition is identifiable under cross-world independence

Alternative estimands
interventional direct and indirect effects (IDE/IIE)
interventional distribution on M
enables decomposition of alternative total effect
identification of CDE implies that of IDE/IIE
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Conclusion, Resources, and References
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Concluding Remarks on Causal Mechanisms

Study of causal mechanisms is essential but challenging

Triangulation of evidence is necessary
causal quantities

CDE
NDE/NIE, path specific effects
IDE/IIE

causal identification strategies
selection on observables
instrumental variables
experimental designs
partial identification

statistical methodologies
weighting and regression
sensitivity analysis
nonparametric modeling and machine learning
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Resources

Statistical software:
mediation (R and Stata)
Valeri and VanderWeele macros (SPSS, SAS, Stata)

Review article by an economist:

Huber, Martin (2020). “Mediation Analysis”.
Handbook of Labor, Human Resources and Population Economics.
Ed. by Klaus F. Zimmermann. Cham: Springer.

Monographs:

VanderWeele, Tyler J. (2015).
Explanation in Causal Inference: Methods for Mediation and Interaction.
New York: Oxford University Press.

Wodtke, Geoffrey T. and Xiang Zhou (Forthcoming).
Causal Mediation Analysis. Cambridge University Press.
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