Uncovering Causal Mechanisms: Mediation Analysis and Surrogate Indices

Raj Chetty Kosuke Imai

Harvard University

2025 NBER Methods Lecture

Mediation Analysis: Identifying Mechanisms Underlying Treatment Effects on Primary Outcomes

Part I. Introduction to Mediation

Causal Mechanism as Direct and Indirect Effects

- Directed Acyclic Graph (DAG; Pearl, 2000)
 - $T \in \mathcal{T} = \{0, 1\}$: treatment
 - $M \in \mathcal{M}$: mediator (mechanism variable)
 - $Y \in \mathcal{Y}$: observed outcome

- Direct effect: Effect of T on Y while holding M constant
- Indirect effect: Effect of T on Y through M
- DAG = Nonparametric Structural Equation Model (NPSEM)

$$Y = f_Y(M, T, \epsilon)$$
$$M = f_M(T, \eta)$$

where ϵ and η are i.i.d. and are usually omitted from DAG

Controlled Direct Effect (CDE)

- $Y(t, m) \in \mathcal{Y}$: potential outcome when T = t and M = m
- Definition

Individual:
$$CDE_i(m) := Y_i(1, m) - Y_i(0, m)$$

Average: $\overline{CDE}(m) := \mathbb{E}[Y(1, m) - Y(0, m)]$

for a given mediator value $m \in \mathcal{M}$

- Interpretation
 - direct effect of treatment while holding the mediator constant at m
 - effect of joint intervention on T and M
- If M fully captures treatment effect, CDEs will be zero for all m
- Potential interaction effects:

$$CDE_i(m) \neq CDE_i(m')$$
 for some i and $m \neq m'$

Natural Indirect Effect (NIE)

Definition (Robins and Greenland, 1992; Pearl, 2001)

```
Individual: NIE_i(t) := Y_i(t, M_i(1)) - Y_i(t, M_i(0))

Average: \overline{NIE}(t) := \mathbb{E}[Y(t, M(1)) - Y(t, M(0))]
```

- Interpretation
 - effect of change in M on Y induced by T
 - change M from M(0) to M(1) while holding T at t=0 or t=1
 - zero treatment effect on M implies zero NIE

- Represents the causal effect of T on Y through M
- Complete mediation \rightsquigarrow NIE_i = TE_i := $Y_i(1, M_i(1)) Y_i(0, M_i(0))$

Treatment Effect Decomposition

Natural direct effect (NDE):

```
Indiviual: NDE_i(t) := Y_i(1, M_i(t)) - Y_i(0, M_i(t))

Average: \overline{NDE}(t) := \mathbb{E}[Y(1, M(t)) - Y(0, M(t))]
```

- change T from 0 to 1 while holding M constant at M(t)
- causal effect of T on Y, holding M constant at its potential value that would be realized when T=t
- Represents all mechanisms other than through M
 - Complete mediation $\rightsquigarrow \mathsf{NDE}_i(t) = 0$
 - No mediation \rightsquigarrow NDE_i = TE_i
- Effect decomposition:

$$\underbrace{Y_i(1, M_i(1)) - Y_i(0, M_i(0))}_{= \text{total effect (TE}_i)} = \text{NIE}_i(t) + \text{NDE}_i(1 - t)$$

$$= \frac{1}{2} \sum_{t=0}^{1} \{ \text{NIE}_i(t) + \text{NDE}_i(t) \}$$

Gender Bias and Educational Attainment (Chen et al. 2019)

- Data on Taiwanese families
 - Y: educational attainment of the oldest child who is female
 - T: gender of the second oldest child
 - M: number of siblings
- Gender bias
 - Direct effect: having a brother takes away resources from a female child
 - Indirect effect: having a brother leads to a smaller number of siblings and hence more resources
 - Direct and indirect effects may have opposite signs
- Causal effects of interest
 - CDE: effect of having a brother while keeping sibling size constant at a fixed value, e.g., 2
 - NDE: effect of having a brother while keeping sibling size constant at a value that would result, e.g., if the second child were male
 - NIE: effect of having a brother through sibling size

Take-aways I

- Causal mechanism
 - how and why (not just whether) treatment affects outcome
 - understanding of causal structure (DAG = NPSEM)

- Causal quantities of interest
 - Controlled direct effect (CDE)
 - Natural direct and indirect effects (NDE, NIE)
 - Effect decomposition: TE = NDE + NIE
 - No similar decomposition for CDE
 - Complete mediation: CDE = NDE = 0 and NIE = TE
 - No mediation: NIE = 0 and NDE = TE

Part II. Mediation Analysis Under Pretreatment Confounding

Linear Structural Equation Model (LSEM)

- Let's build some intuition with LSEM
- Homogeneous effects without interaction:

$$Y_i = \alpha_Y + \beta_Y T_i + \gamma_Y M_i + \epsilon_i$$

$$M_i = \alpha_M + \beta_M T_i + \eta_i$$

- $\overline{\mathsf{CDE}}(m) = \overline{\mathsf{NDE}}(t) = \beta_Y$ for any m and t
- $\overline{\text{NIE}}(t) = \beta_M \times \gamma_Y$ for any t
- CDE and NDE are identical
- Homogeneous effects with interaction:

$$Y_i = \alpha_Y + \beta_Y T_i + \gamma_Y M_i + \delta_Y T_i M_i + \epsilon_i$$

- $CDE(m) = \beta_Y + m\delta_Y$
- $\overline{\text{NDE}}(t) = \beta_Y + \delta_Y(\alpha_M + t\beta_M)$
- $\overline{\text{NIE}}(t) = \beta_M \times \gamma_Y + t\beta_M \times \delta_Y$
- CDE is different from NDE

LSEM with Heterogeneous Effects and Interaction

Model

$$Y_i = \alpha_Y + \beta_Y^{(i)} T_i + \gamma_Y^{(i)} M_i + \delta_Y^{(i)} T_i M_i + \epsilon_i$$
$$M_i = \alpha_M + \beta_M^{(i)} T_i + \eta_i$$

- $\overline{\mathsf{CDE}}(m) = \bar{\beta}_Y + m\bar{\delta}_Y$ where $\bar{\beta}_Y = \mathbb{E}[\beta_Y^{(i)}]$ and $\bar{\delta}_Y = \mathbb{E}[\delta_Y^{(i)}]$
- $\overline{\mathsf{NDE}}(t) = \bar{\beta}_Y + \alpha_M \times \bar{\delta}_Y + \mathbb{E}[\delta_Y^{(i)}(t\beta_M^{(i)} + \eta_i)]$
- $\overline{\mathsf{NIE}}(t) = \mathbb{E}[eta_M^{(i)} imes (\gamma_Y^{(i)} + t\delta_Y^{(i)})]$
- Heterogeneous effects may be correlated with one another
 - For example, $\mathbb{E}[\beta_M^{(i)} \times \gamma_Y^{(i)}] \neq \bar{\beta}_M \times \bar{\gamma}_Y$
 - Possible to have $\bar{\beta}_M, \bar{\gamma}_Y > 0$ but $\mathbb{E}[\beta_M^{(i)} \times \gamma_Y^{(i)}] < 0$ or vice versa
- $\bar{\beta}_M$, $\bar{\gamma}_Y$, $\bar{\delta}_Y$, etc. are identifiable under exogeneity
- But, $\mathbb{E}[\beta_M^{(i)} \times \gamma_Y^{(i)}]$, $\mathbb{E}[\beta_M^{(i)} \times \delta_Y^{(i)}]$, etc. are unidentifiable
- This is essentially a problem of unobserved pre-treatment confounding

Identification of CDE with Pre-treatment Confounding

- Assumptions:
 - Unconfoundedness

$$\begin{aligned} &\{Y_i(t,m), M_i(t)\}_{t,m} \perp \!\!\!\perp T_i \mid \boldsymbol{X}_i = \boldsymbol{x} \\ &\{Y_i(t,m)\}_m \perp \!\!\!\perp M_i \mid T_i = t, \boldsymbol{X}_i = \boldsymbol{x} \end{aligned}$$

Overlap

$$P(T_i = t \mid X_i = x) > 0$$

 $P(M_i = m \mid T_i = t, X_i = x) > 0$

• Identification:

$$\overline{\mathsf{CDE}}(m) = \sum_{\mathbf{X}} (\mathbb{E}[Y \mid T = 1, M = m, \mathbf{X}] - \mathbb{E}[Y \mid T = 0, M = m, \mathbf{X}]) P(\mathbf{X})$$

Identification of NDE/NIE with Pretreatment Confounding

• Replace the following assumption

$$\{Y_i(t,m)\}_m \perp \!\!\! \perp \underbrace{M_i}_{=M_i(t)} \mid T_i = t, \boldsymbol{X}_i = \boldsymbol{x}$$

with the cross-world independence

$$\{Y_i(\mathbf{t'},m)\}_{\mathbf{t'},m} \perp M_i(\mathbf{t}) \mid T_i = t, \mathbf{X}_i = \mathbf{x}$$

- Additional conditional independence between $Y_i(t', m)$ and $M_i(t)$
- Identification (Imai et al. 2010)

$$\overline{\mathsf{NDE}}(t) = \sum_{M, \mathbf{X}} (\mathbb{E}[Y \mid M, T = 1, \mathbf{X}] - \mathbb{E}[Y \mid M, T = 0, \mathbf{X}])$$
$$\times P(M \mid T = t, \mathbf{X}) P(\mathbf{X})$$

$$\overline{\mathsf{NIE}}(t) \ = \ \sum_{X \in \mathcal{X}} \mathbb{E}[Y \mid M, T = t, \boldsymbol{X}]$$

$$\times \{ P(M \mid T = 1, \mathbf{X}) - P(M \mid T = 0, \mathbf{X}) \} P(\mathbf{X})$$

Experimental Identification (Imai et al. 2013)

- Parallel design
 - Randomize T and observe M and Y
 - 2 Randomize T and M and observe Y
- We can identify P(M(t)), P(Y(t, M(t))), and P(Y(t, m))
- CDE is identified
- NDE/NIE is still not identifiable:
 - randomization cannot break correlation between Y(t', m) and M(t)
 - partial identification: sharp bounds contain zero
- Crossover design
 - lacktriangledown Randomize T and observe M and Y
 - ② On the same sample, change T to the opposite condition while holding M at the same value and observe Y
- Y(t, M(t)), M(t), and Y(1 t, M(t)) are observable
- Additional assumption: no carryover effects
- NDE/NIE is identifiable

No Interaction Assumption

No individual-level interaction

$$Y_i(1, m) - Y_i(0, m) = Y_i(1, m') - Y_i(0, m')$$

- $NDE_i(t) = CDE_i(m) = CDE_i$
- $\overline{\mathsf{NDE}}(t) = \overline{\mathsf{CDE}}(m) = \overline{\mathsf{CDE}}$
- $\overline{\text{NIE}}(t) = \text{ATE} \overline{\text{NDE}}$
- Testable implication:

$$\mathbb{E}[Y_i(1,m) - Y_i(0,m) \mid \mathbf{X}_i = \mathbf{x}] = \mathbb{E}[Y_i(1,m') - Y_i(0,m') \mid \mathbf{X}_i = \mathbf{x}]$$

for all x

- NDE/NIE is identifiable so long as CDE can be identified
- Experimental identification, and identification with pretreatment and posttreatment confounding are all possible

Estimation of Natural Direct and Indirect Effects

Recall the identification formula (NIE)

$$\overline{\mathsf{NIE}}(t) = \sum_{M, \mathbf{X}} \mathbb{E}[Y \mid M, T = t, \mathbf{X}]$$

$$\times \{P(M \mid T = 1, \mathbf{X}) - P(M \mid T = 0, \mathbf{X})\} P(\mathbf{X})$$

- predict M given each treatment value: $\{M_i(1), M_i(0)\}$
- ② predict Y by first setting $T_i = t$ and $M_i = M_i(0)$, and then $T_i = t$ and $M_i = M_i(1)$: $\{Y_i(t, M_i(0)), Y_i(t, M_i(1))\}$
- 3 compute the average difference between two predicted outcomes
- Estimation of NDE is similar

$$\overline{\mathsf{NDE}}(t) = \sum_{M, \boldsymbol{X}} (\mathbb{E}[Y \mid M, T = 1, \boldsymbol{X}] - \mathbb{E}[Y \mid M, T = 0, \boldsymbol{X}])$$

$$\times P(M \mid T = t, \boldsymbol{X})P(\boldsymbol{X})$$

• One can also do: $\overline{\mathsf{NDE}}(t) = \mathsf{ATE} - \overline{\mathsf{NIE}}(1-t)$

Weighting Methods for NDE and NIE

• Three weighting formulae:

$$\mathbb{E}[Y(t, M(t'))] = \mathbb{E}\left[\underbrace{\frac{1\{T = t'\}}{\Pr(T = t' \mid \boldsymbol{X})}}_{\text{weighting to get } P(M(t') \mid \boldsymbol{X})} \times \mathbb{E}[Y \mid M, T = t, \boldsymbol{X}]\right]$$

$$= \mathbb{E}\left[\underbrace{\frac{1\{T = t\}}{\Pr(T = t \mid \boldsymbol{X}_i)}}_{\text{treatment weighting}} \times \underbrace{\frac{P(M \mid T = t', \boldsymbol{X})}{P(M \mid T_i = t, \boldsymbol{X}_i)}}_{\text{mediator weighting}} \times Y\right]$$

$$= \mathbb{E}\left[\frac{1\{T = t\}}{\Pr(T = t \mid M, \boldsymbol{X})} \times \frac{\Pr(T = t' \mid M, \boldsymbol{X})}{\Pr(T = t' \mid \boldsymbol{X})} \times Y\right]$$

- The third expression follows from Bayes rule
- Useful when the mediator is high-dimensional
- Multiply-robust semiparametric estimator (Tchetgen Tchetgen and Shpitser, 2012); Double machine learning (Farbmacher et al. 2022)

Sensitivity Analysis

- Examine the robustness of empirical findings to the violation of untestable assumptions
- How large a departure from the key identification assumption must occur for the conclusions to no longer hold?
- ullet Potential existence of unobserved pretreatment confounding (T is assumed to be unconfounded)

$$\{Y_i(t',m)\}_{t',m} \not\perp \!\!\!\!\perp M_i(t) \mid T_i = t, \boldsymbol{X}_i = \boldsymbol{x}$$

Recall LSEM (or more generally, additive semiparametric model)

$$Y_{i} = \alpha_{Y} + \beta_{Y} T_{i} + \gamma_{Y} M_{i} + \underbrace{\frac{\lambda_{\epsilon} U_{i} + \tilde{\epsilon}_{i}}{\epsilon_{i}}}_{=\epsilon_{i}}$$

$$M_{i} = \alpha_{M} + \beta_{M} T_{i} + \underbrace{\frac{\lambda_{\eta} U_{i} + \tilde{\eta}_{i}}{\epsilon_{i}}}_{=\eta_{i}}$$

• How much does U_i have to matter for the results to go away?

Sensitivity Parameters

- R² parameterization
 - lacktriangle Proportion of previously unexplained variance explained by U_i

$$R_M^{2*} \equiv \frac{\mathbb{V}(\lambda_{\eta} U_i)}{\mathbb{V}(\eta_i)}$$
 and $R_Y^{2*} \equiv \frac{\mathbb{V}(\lambda_{\epsilon} U_i)}{\mathbb{V}(\epsilon_i)}$

2 Proportion of original variance explained by U_i

$$\widetilde{R}_M^2 \equiv \frac{\mathbb{V}(\lambda_{\eta} U_i)}{\mathbb{V}(M_i)}$$
 and $\widetilde{R}_Y^2 \equiv \frac{\mathbb{V}(\lambda_{\epsilon} U_i)}{\mathbb{V}(Y_i)}$

We also need to specify the direction of effects:

$$\operatorname{sgn}(\lambda_{\eta}\lambda_{\epsilon}) \ = \ egin{cases} 1 & ext{if same direction} \ -1 & ext{if opposite directions} \end{cases}$$

Gender Bias Application: Standard Mediation Analysis

The original analysis fits LSEM with interaction

$$Y_i = \alpha_Y + \beta_Y T_i + \gamma_Y M_i + \delta_Y T_i M_i + \boldsymbol{\xi}_Y^\top \boldsymbol{X}_i + \epsilon_i$$
$$M_i = \alpha_M + \beta_M T_i + \boldsymbol{\xi}_M^\top \boldsymbol{X}_i + \eta_i$$

- Y_i: university admission
- T_i: the second child is male
- M_i : sibling size is greater than two
- Estimates:

ÂTE	0.0020 (0.0013)
$\widehat{CDE}(\widehat{M})$	-0.0010 (0.0014)
$\widehat{NDE}(1)$	-0.0001 (0.0014)
$\widehat{\overline{NIE}(0)}$	0.0022 (0.0005)

- Also, fits a random coefficient model to address heterogeneity
- Sensitivity analysis based on a semiparametric random coefficient model (Imai and Yamamoto, 2013)

Take-aways II

- Linear structural equation model
 - two key assumptions beyond exogeneity:
 - homogeneous effects
 - 2 no interaction
 - CDE = NDE under those assumptions
 - Relaxing these assumptions lead to different interpretations and identification issues
- Nonparametric identification analysis under pretreatment confounding
 - CDE is identifiable under standard exogeneity
 - NDE/NIE requires cross-world independence
 - \bullet alternatively, CDE = NDE if we assume no individual-level interaction
- Difficulty of identification
 - even when *M* is randomized, NIE/NDE are unidentifiable
 - sensitivity analysis plays an important role for assessing robustness

Part III. Coping with Identification Difficulties

Instrumenting the Mediator

- Instrument: Z_i
- Mediator: $M_i(t,z)$
- Exclusion restriction

$$Y_i(t, m, z) = Y_i(t, m)$$

NPSEM:

$$Y = f_Y(M, T, \epsilon)$$

 $M = f_M(T, Z, \eta)$ where $\epsilon \not \perp \!\!\! \perp \eta$

- If M and Z are continuous, we can use the control function approach (Imbens and Newey, 2009)
 - **1** Independence: $Z \perp \!\!\! \perp (\epsilon, \eta)$
 - ② Monotonicity: η is a continuous scalar variable with its CDF and $f_M(\cdot,\cdot,\eta)$ being strictly monotonic in η
- Then, $(M, T) \perp \!\!\! \perp \!\!\! \perp \in C$ where $C = F_{M|T,Z}(T,Z) = F_{\eta}(\eta)$
 - Recall the control function approach to 2SLS
 - ullet Regress Y on M,T and the first stage residual $\hat{\eta}$
- Extension: an additional instrument for T (Florich and Huber, 2017)

Gender Bias Application: IV Analysis

• Instrument Z: twinning at the second birth

$$M_i = \alpha_M + \beta_M T_i + \zeta_M Z_i + \lambda_M T_i Z_i + \boldsymbol{\xi}_M^\top \boldsymbol{X}_i + \eta_i$$

- Assumptions:
 - exogenous instrument: twinning is random conditional on X
 - ullet exclusion restriction: twinning affects Y only through M
- Findings:

	Standard analysis	IV analysis
ÂTE	0.0020 (0.0013)	0.0021 (0.0013)
$\widehat{CDE}(\widehat{M})$	$-0.0010 \ (0.0014)$	-0.0092 (0.0061)
$\widehat{NDE}(1)$	-0.0001 (0.0014)	-0.0203 (0.0106)
$\overline{NIE}(0)$	0.0022 (0.0005)	0.0224 (0.0105)

Complete Mediation Analysis (Kwon and Roth 2024)

- Complete mediation: $Y_i(t, m) = Y_i(m)$
- Assumption: No unobserved confounding between T and M and between T and Y
- Possible unobserved confounding between M and Y

• Under monotonicity $M_i(1) \ge M_i(0)$ (in the binary mediator case), we can use the following test of instrumental validity

$$P(Y, M = 0 \mid T = 0, \mathbf{X}) \ge P(Y, M = 0 \mid T = 1, \mathbf{X})$$

 $P(Y, M = 1 \mid T = 1, \mathbf{X}) \ge P(Y, M = 1 \mid T = 0, \mathbf{X})$

- Randomized experiment: test of complete mediation
- ullet Observational study: unobserved confounding between T and Y can also lead to the rejection of the null hypothesis

Implicit Mediation

- What if we want to avoid the untestable assumptions at all costs?
- What can we infer from ATE_M and ATE_Y that are identifiable without such assumptions?

Table 1. Possible Implicit-Mediation Findings

Result	Inference	Rationale
X affects M and Y	M may be a mediator.	X appears to influence M, and this effect seems to coincide with a change in Y, as would be expected if M were a mediator.
X affects M but not Y	M appears not to be a mediator.	Although <i>X</i> affects <i>M</i> , this effect seems not to have any consequences for <i>Y</i> .
X affects Y but not M	Some variable other than M may be a mediator.	X appears to have no effect on M, which means that X's apparent effect on Y is not due to changes in M.
X affects neither M nor Y	There seem to be no indirect pathways from <i>X</i> to <i>Y</i> through <i>M</i> or other mediators.	X seems not to set in motion any causal effects.

Identification Analysis of Implicit Mediation

- Questions:
 - ① Does ATE_M = 0 imply $\overline{\text{NIE}} = 0$ and/or $\overline{\text{NDE}} \neq 0$?
 - ② Does $ATE_M > 0$ and $ATE_Y > 0$ imply $\overline{NIE} > 0$?
- No! Recall even the no-assumption bounds from the parallel experiment design always contain zero
- The decomposition under a binary mediator:

$$\overline{\mathsf{NIE}}(t) = \underbrace{\mathbb{E}[Y_i(t,1) - Y_i(t,0) \mid M(1) = 1, M(0) = 0]}_{\mathsf{ATE} \text{ of } M \text{ on } Y \text{ for compliers}} \cdot p_{10}$$

$$-\underbrace{\mathbb{E}[Y_i(t,1) - Y_i(t,0) \mid M(1) = 0, M(0) = 1]}_{\mathsf{ATE} \text{ of } M \text{ on } Y \text{ for defiers}} \cdot p_{01}$$

where
$$p_{m_1m_0} = \Pr(M(1) = m_1, M(0) = m_0)$$

Cross-world assumption or homogeneity assumption leads to the usual product estimator

$$\overline{\mathsf{NIE}}(t) = \underbrace{\mathbb{E}[Y_i(t,1) - Y_i(t,0)]}_{\mathsf{=ATE of }M \text{ on }Y} \times \underbrace{(p_{10} - p_{01})}_{\mathsf{=ATE}_M}$$

Identification under Monotonicity

(Blackwell et al. 2024; Kwon and Roth 2024)

Monotonicity assumption (no defier) yields:

$$\overline{\mathsf{NIE}}(t) = \mathbb{E}[Y_i(t,1) - Y_i(t,0) \mid M(1) = 1, M(0) = 0] \cdot p_{10}$$

Sharp bounds

$$\max\{-\mathsf{ATE}_M, -q_{1-t,t|t}\} \leq \overline{\mathsf{NIE}}(t) \leq \min\{\mathsf{ATE}_M, q_{tt|t}\}$$
 where $q_{ym|t} = \mathsf{Pr}(Y=y, M=m \mid T=t)$

- Two fundamental difficulties remain:
 - effect heterogeneity
 - endogeneity of mediator
- Even under an additional assumption of $\mathbb{E}[Y(t,1) Y(t,0)] > 0$, the sharp bounds still contain zero

Take-aways III

- Instrumental variable approach
 - addressing the endogeneity problem
 - the instrument must be exogeneous
 - exclusion restriction needs to be satisfied
 - nonparametric estimation is possible
- Complete mediation
 - hypothesis testing approach
 - no need to assume the exogeneity of mediator
 - ullet no unobserved confounding between T and Y (satisfied in RCT)
- Implicit mediation
 - an attempt to sidestep assumptions
 - not informative even about the signs of NIE/NDE
 - · monotonicity is not sufficient

Part IV. Mediation Analysis under Posttreatment Confounding

Identification of CDE with Posttreatment Confounding

Replace the following assumption

$$\{Y_i(t,m)\}_m \perp \!\!\! \perp M_i \mid T_i = t, \boldsymbol{X}_i = \boldsymbol{x},$$

with

$$\{Y_i(t,m)\}_m \perp \!\!\!\perp M_i \mid \mathbf{V}_i = \mathbf{v}, T_i = t, \mathbf{X}_i = \mathbf{v}\}$$

$$\overline{\mathsf{CDE}}(m) \neq \sum_{\boldsymbol{X},\boldsymbol{V}} (\mathbb{E}[Y \mid T=1, M=m, \boldsymbol{X}, \boldsymbol{V}]$$

$$-\mathbb{E}[Y \mid T=0, M=m, \boldsymbol{X}, \boldsymbol{V}])P(\boldsymbol{X}, \boldsymbol{V})$$

Identification: model V given T and X

$$\overline{\mathsf{CDE}}(m) \ = \ \sum \ \{\mathbb{E}[Y \mid T=1, M=m, \boldsymbol{X}, \boldsymbol{V}] P(\boldsymbol{V} \mid T=1, \boldsymbol{X})$$

$$-\mathbb{E}[Y \mid T=0, M=m, \boldsymbol{X}, \boldsymbol{V}] P(\boldsymbol{V} \mid T=0, \boldsymbol{X}) \} P(\boldsymbol{X})$$

Estimation of Controlled Direct Effects

Directly use the identification formula

$$\bar{\xi}(m) = \sum_{\boldsymbol{X},\boldsymbol{V}} \{ \mathbb{E}[Y \mid T=1, M=m, \boldsymbol{X}, \boldsymbol{V}] P(\boldsymbol{V} \mid T=1, \boldsymbol{X}) \\ -\mathbb{E}(Y \mid T=0, M=m, \boldsymbol{X}, \boldsymbol{V}) P(\boldsymbol{V} \mid T=0, \boldsymbol{X}) \} P(\boldsymbol{X})$$

- regression of Y on T, M, X, V
- model \boldsymbol{V} given T and $\boldsymbol{X} \leadsto$ difficult if \boldsymbol{V} is high-dimensional
- Marginal structural models (Robins et al. 2000)

$$\mathbb{E}[Y(t,m)] = \mathbb{E}\left[\underbrace{\frac{1\{T=t,M=m\}}{\Pr(T=t\mid \boldsymbol{X})}}_{\text{IPW for treatment}} \cdot \underbrace{\frac{1}{\Pr(M=m\mid T=t,\boldsymbol{X},\boldsymbol{V})}}_{\text{IPW for mediator given treatment}} \times Y\right]$$

- ullet no need to model $oldsymbol{V}$
- covariate balancing methods are also available (Imai and Ratkovic, 2015)

Identification of NDE/NIE with Posttreatment Confounding

- Identification is impossible with observed posttreatment confounding
- Consider the following NPSEM

$$Y = f_{Y}(M, \mathbf{V}, T, \epsilon)$$

 $M = f_{M}(\mathbf{V}, T, \eta)$
 $\mathbf{V} = f_{\mathbf{V}}(T, \xi)$

Cross-world independence cannot hold

$$\underbrace{\boldsymbol{V}(1)}_{=f_{\boldsymbol{V}}(1,\xi)} \not\perp \underbrace{\boldsymbol{V}(0)}_{=f_{\boldsymbol{V}}(0,\xi)} \implies Y(t',m,\boldsymbol{V}(t'),\epsilon) \not\perp \!\!\!\!\perp M(t,\boldsymbol{V}(t),\eta)$$

ullet Conditioning on T and $oldsymbol{V}$ does not solve this problem

Multiple Causally Related Mediators

- Same as the posttreatment confounding setting
- Path specific effects

 - $2 T \rightarrow M_1 \rightarrow Y$
- Combined effect:

$$T \to M_1 \rightsquigarrow Y$$

$$= (T \to M_1 \to Y) + (T \to M_1 \to M_2 \to Y)$$

- Generalized cross-world independence assumptions:

 - $\{M_{2i}(t', m_1), Y_i(t', m_1, m_2)\}_{t', m_1, m_2} \perp \!\!\! \perp M_{1i}(t) \mid T_i = t, X_i = x$
 - $\{Y_i(t', m_1, m_2)\}_{t', m_2} \perp \perp M_{2i}(t, m_1) \mid M_{1i} = m_1, T_i = t, X_i = x$
- Identifiable decomposition:

$$\mathsf{ATE} \ = \ (\ {\color{blue} T} \rightarrow {\color{blue} Y}) + (\ {\color{blue} T} \rightarrow {\color{blue} M_2} \rightarrow {\color{blue} Y}) + (\ {\color{blue} T} \rightarrow {\color{blue} M_1} \rightsquigarrow {\color{blue} Y})$$

Interventional Direct and Indirect Effects (IDE and IIE)

- \bullet $\mathcal{P}_{M(t)}$: interventional distribution that independently generates M(t)
- Definition (Geneletti, 2007; Lok, 2016)

Individual:
$$\begin{cases} \mathsf{IIE}_i(t) &= Y_i(t, \mathcal{P}_{M(1)}) - Y_i(t, \mathcal{P}_{M(0)}) \\ \mathsf{IDE}_i(t) &= Y_i(1, \mathcal{P}_{M(t)}) - Y_i(0, \mathcal{P}_{M(t)}) \end{cases}$$
 Average:
$$\begin{cases} \overline{\mathsf{IIE}}(t) &= \mathbb{E}[Y(t, \mathcal{P}_{M(1)}) - Y(t, \mathcal{P}_{M(0)})] \\ \overline{\mathsf{IDE}}(t) &= \mathbb{E}[Y(t, \mathcal{P}_{M(1)}) - Y(t, \mathcal{P}_{M(0)})] \end{cases}$$

- Interpretation
 - similar to NIE and NDE
 - IDE is a function of CDE:

$$\mathsf{IDE}_i(t) = \sum_{m} \mathsf{CDE}_i(m) \times P(M(t) = m)$$

- no mediation: zero treatment effect on M implies zero IIE
- Effect decomposition

$$\underbrace{Y_i(1,\mathcal{P}_{M(1)}) - Y_i(0,\mathcal{P}_{M(0)})}_{\text{Interventional Total Effect (ITE)} \neq \text{TE}} = \text{IIE}_i(t) + \text{IDE}_i(1-t)$$

Identification of IDE and IIE

Once CDE is identified, we can identify IDE:

$$\overline{\mathsf{IDE}}(t) = \sum_{m} \overline{\mathsf{CDE}}(m) P(M(t) = m)$$

IIE is also identifiable:

$$\overline{\mathsf{IIE}}(t) = \sum_{m} \mathbb{E}[Y(t,m)] \left\{ P(M(1) = m) - P(M(0) = m) \right\}$$

Effect decomposition

$$\underbrace{\mathbb{E}[Y(1,\mathcal{P}_{M(1)}) - Y(0,\mathcal{P}_{M(0)})]}_{\neq \mathbb{E}[Y(1,M(1)) - Y(0,M(0))]} = \overline{\mathsf{IDE}}(t) + \overline{\mathsf{IIE}}(1-t)$$

- Complete mediation: $\overline{\mathsf{IDE}} = 0$
- Identification is possible with observed pretreatment and posttreatment confounding
- Experimental identification via parallel design is also possible

Take-aways IV

- Posttreatment confounding
 - CDE can be identified under exogeneity
 - estimation of CDE requires marginalizing posttreatment confounders
 - NIE/NDE are not identifiable under exogeneity
 - Different decomposition is identifiable under cross-world independence

- Alternative estimands
 - interventional direct and indirect effects (IDE/IIE)
 - interventional distribution on M
 - enables decomposition of alternative total effect
 - identification of CDE implies that of IDE/IIE

Conclusion, Resources, and References

Concluding Remarks on Causal Mechanisms

- Study of causal mechanisms is essential but challenging
- Triangulation of evidence is necessary
 - causal quantities
 - CDE
 - NDE/NIE, path specific effects
 - IDE/IIE
 - causal identification strategies
 - selection on observables
 - instrumental variables
 - experimental designs
 - partial identification
 - statistical methodologies
 - weighting and regression
 - sensitivity analysis
 - nonparametric modeling and machine learning

Resources

- Statistical software:
 - mediation (R and Stata)
 - Valeri and VanderWeele macros (SPSS, SAS, Stata)
- Review article by an economist:

Huber, Martin (2020). "Mediation Analysis".

Handbook of Labor, Human Resources and Population Economics.

Ed. by Klaus F. Zimmermann. Cham: Springer.

Monographs:

VanderWeele, Tyler J. (2015).

Explanation in Causal Inference: Methods for Mediation and Interaction.

New York: Oxford University Press.

Wodtke, Geoffrey T. and Xiang Zhou (Forthcoming).

<u>Causal Mediation Analysis</u>. Cambridge University Press.

Works Cited I

- Blackwell, Matthew, Ruofan Ma, and Aleksei Opacic (2024). "Assumption Smuggling in Intermediate Outcome Tests of Causal Mechanisms". arXiv preprint arXiv:2407.07072.
- Bullock, John G. and Donald P. Green (2021). "The Failings of Conventional Mediation Analysis and a Design-Based Alternative". Advances in Methods and Practices in Psychological Science 4.4, pp. 1–14.
- Chen, Stacey H., YenâChien Chen, and JinâTan Liu (2019). "The Impact of Family Composition on Educational Achievement".

Journal of Human Resources 54.1, pp. 122-170.

Farbmacher, Helmut et al. (Jan. 2022). "Causal mediation analysis with double machine learning". The Econometrics Journal 25.2, pp. 277–300.

Works Cited II

- Frölich, Markus and Martin Huber (2017). "Direct and Indirect Treatment Effects-Causal Chains and Mediation Analysis with Instrumental Variables".
 - Journal of the Royal Statistical Society Series B: Statistical Methodology 79.5, pp. 1645–1666.
- Geneletti, Sara (2007). "Identifying direct and indirect effects in a non-counterfactual framework".
 - Journal of the Royal Statistical Society, Series B (Statistical Methodology) 69.2, pp. 199–215.
- Imai, Kosuke, Luke Keele, and Teppei Yamamoto (2010). "Identification, Inference, and Sensitivity Analysis for Causal Mediation Effects".

 <u>Statistical Science</u> 25.1, pp. 51–71.

Works Cited III

- Imai, Kosuke and Marc Ratkovic (2015). "Robust Estimation of Inverse Probability Weights for Marginal Structural Models". Journal of the American Statistical Association 110.511,
 - pp. 1013–1023.
- Imai, Kosuke, Dustin Tingley, and Teppei Yamamoto (2013). "Experimental Designs for Identifying Causal Mechanisms (with discussions)". Journal of the Royal Statistical Society, Series A (Statistics in Society) 176.1, pp. 5-51.
- Imai, Kosuke and Teppei Yamamoto (Spring 2013). "Identification and Sensitivity Analysis for Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments". Political Analysis 21.2, pp. 141–171.
- Imbens, Guido W. and Whitney K. Newey (2009). "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity". Econometrica 77.5, pp. 1481–1512.

Works Cited IV

- Kwon, Soonwoo and Jonathan Roth (Apr. 2024). "Testing Mechanisms". arXiv preprint arXiv:2404.11739.
- Lok, Judith J. (2016). "Defining and Estimating Causal Direct and Indirect Effects When Setting the Mediator to Specific Values Is Not Feasible". Statistics in Medicine 35.22, pp. 4008–4020.
- Pearl, Judea (2000). <u>Causality: Models, Reasoning, and Inference</u>. New York: Cambridge <u>University Press</u>.
- (2001). "Direct and Indirect Effects".
 Proc. of the 17th Conference on Uncertainty in Artificial Intelligence.
 San Francisco, CA: Morgan Kaufmann, pp. 411–420.
- Robins, James M. and Sander Greenland (Mar. 1992). "Identifiability and exchangeability for direct and indirect effects". Epidemiology 3.2, pp. 143–155.

Works Cited V

- Robins, James M., Miguel Ángel Hernán, and Babette Brumback (2000). "Marginal Structural Models and Causal Inference in Epidemiology". Epidemiology 11.5, pp. 550–560.
- Tchetgen, Eric J. and Ilya Shpitser (2012). "Semiparametric Theory for Causal Mediation Analysis: Efficiency Bounds, Multiple Robustness, and Sensitivity Analysis". Annals of Statistics 40.3, pp. 1816–1845.